JP2007136356A - Ozone water generator - Google Patents

Ozone water generator Download PDF

Info

Publication number
JP2007136356A
JP2007136356A JP2005334486A JP2005334486A JP2007136356A JP 2007136356 A JP2007136356 A JP 2007136356A JP 2005334486 A JP2005334486 A JP 2005334486A JP 2005334486 A JP2005334486 A JP 2005334486A JP 2007136356 A JP2007136356 A JP 2007136356A
Authority
JP
Japan
Prior art keywords
electrode
water
ozone
ozone water
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005334486A
Other languages
Japanese (ja)
Other versions
JP4256383B2 (en
Inventor
Hiroichi Shioda
博一 塩田
Yoshiyuki Nishimura
喜之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Micron Co Ltd
Original Assignee
Nikka Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Micron Co Ltd filed Critical Nikka Micron Co Ltd
Priority to JP2005334486A priority Critical patent/JP4256383B2/en
Publication of JP2007136356A publication Critical patent/JP2007136356A/en
Application granted granted Critical
Publication of JP4256383B2 publication Critical patent/JP4256383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone water generator capable generating ozone water having a necessary concentration and enhancing the efficiency of generating the ozone water by effectively dissolving a generated ozone gas in raw water to ozonize it without preventing an increase in ozone concentration in a method for generating the ozone water by sinking a catalyst electrode in a water tank. <P>SOLUTION: The ozone water generator 100 comprises a container 1 filled with the raw water and the catalyst electrode 2 inserted into the container 1. The catalyst electrode 2 comprises a pillar-shaped rod member 20, a cathode electrode 23 successively superimposed and wound from the inner side so as to cover ditch parts 20a, 20a, ... formed by vertically passed through longitudinally along the outer peripheral face of the rod member 20, a cation exchange membrane 21, and an anode electrode 22. The ozone water is generated by applying a direct current voltage between the anode electrode 22 and the cathode electrode 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原料水が満たされた容器内に棒状の触媒電極を挿入して原料水に接触させることにより、水の電気分解によってオゾン水を生成するオゾン水生成装置に関する。   The present invention relates to an ozone water generator that generates ozone water by electrolysis of water by inserting a rod-shaped catalyst electrode into a container filled with raw material water and bringing it into contact with the raw material water.

近年、オゾン水の殺菌や脱臭効果が一般にもよく知られ、さらに皮膚の活性化や美容効果についての報文が内外で多く発表されているためオゾン水を利用した機器の需要が高まっている。
オゾン水を生成する装置としては、電解面に原料水を直接接触させてオゾン水を生成させる直接電解法を利用したものが実用されている(例えば、特許文献1参照)。しかしながら、直接電解法による装置は、大型で高価なものであるから、より小型で安価で、かつ、必要な濃度のオゾン水を生成でき身近に使用することのできる汎用性のあるオゾン水生成装置が要求されている。
例えば、最も簡単なオゾン水生成装置の需要は、小さいコップないし1〜2Lの小さな水槽に原料水を満たし、そのままオゾン水化することが可能となれば、我々の生活により身近にオゾン水を利用することが可能となる。特に最近、感染の脅威にさらされているインフルエンザ感染防止には2〜3ppmのオゾン水のうがいが最良の方法とされているが、病院や公共の場所はもとより、各家庭に簡易なうがい用オゾン水生成装置があれば、感染防止に大いに寄与できると考えられる。さらに多くの人が悩んでいる歯周病治療にもオゾン水の口ゆすぎが有効との報文もある。また、1〜3Lくらいの小型水槽の水を簡単にオゾン水化できれば、循環フィルターを持つ空気清浄機に応用して、ペットなどに起因する室内の脱臭にも利用できるとされているが、従来そのような簡便なオゾン水生成装置は入手できなかった。
そのため、最近では、小型の水槽中に電解式のオゾン発生電極(触媒電極)を裸で沈めて、陽極電極から発生するオゾンガスを水中に溶解させて、1ppm未満の低濃度のオゾン水を得る方法が成功している。
特開平8−134678号公報
In recent years, the sterilization and deodorizing effects of ozone water are generally well known, and more and more reports on skin activation and beauty effects have been published both inside and outside of the country, increasing the demand for equipment using ozone water.
As an apparatus for generating ozone water, an apparatus utilizing a direct electrolysis method in which raw water is brought into direct contact with an electrolytic surface to generate ozone water has been put into practical use (for example, see Patent Document 1). However, since the apparatus based on the direct electrolysis method is large and expensive, it is more compact and inexpensive, and can generate ozone water having a necessary concentration and can be used in a familiar manner. Is required.
For example, the demand for the simplest ozone water generator is that if you can fill raw water in a small cup or a small tank of 1 to 2L and turn it into ozone water as it is, use ozone water closer to our daily lives. It becomes possible to do. In particular, gargle of 2 to 3 ppm of ozone water is the best method for preventing influenza infection, which has been exposed to the threat of infection recently, but it is easy to use gargle ozone in each home as well as in hospitals and public places. If there is a water generator, it is thought that it can greatly contribute to prevention of infection. In addition, there is a report that rinsing with ozone water is effective in treating periodontal diseases that many people are suffering from. In addition, if the water in a small water tank of about 1 to 3 L can be easily converted into ozone water, it can be applied to an air purifier having a circulation filter and used for indoor deodorization caused by pets. Such a simple ozone water generator was not available.
Therefore, recently, a method of obtaining low-concentration ozone water of less than 1 ppm by immersing an electrolytic ozone generating electrode (catalyst electrode) naked in a small water tank and dissolving ozone gas generated from the anode electrode in water. Has been successful.
JP-A-8-134678

しかしながら、上述の触媒電極を水槽中に裸で沈めてオゾン水を生成する方法は、ごく小さな100〜200mlの水槽ではオゾン水を得ることが可能であるが、水槽を500ml〜1Lと大きくすると、オゾン濃度がなかなか上昇せず、水温がすぐに30℃を超えてしまう現象が見られた。その結果、必要濃度のオゾン水を得られないという問題があった。
そこで、本発明は、上記事情に鑑みてなされたもので、水槽中に触媒電極を沈めてオゾン水を発生させる方法において、オゾン濃度の上昇を妨げることなく、発生したオゾンガスを有効に原料水中に溶解してオゾン水化させることにより、必要濃度のオゾン水を生成でき、オゾン水生成効率を向上させることのできるオゾン水生成装置を提供することを目的としている。
However, the method of generating ozone water by nakedly sinking the catalyst electrode in the water tank can obtain ozone water in a very small 100 to 200 ml water tank, but when the water tank is enlarged to 500 ml to 1 L, There was a phenomenon in which the ozone concentration did not rise easily and the water temperature immediately exceeded 30 ° C. As a result, there was a problem that ozone water having a necessary concentration could not be obtained.
Therefore, the present invention has been made in view of the above circumstances, and in a method for generating ozone water by sinking a catalyst electrode in a water tank, the generated ozone gas is effectively contained in the raw material water without hindering an increase in ozone concentration. It aims at providing the ozone water production | generation apparatus which can produce | generate ozone water of required density | concentration by melt | dissolving and making it ozone water, and can improve ozone water production | generation efficiency.

本発明者等は、裸電極法によって生成したオゾン水の減衰時間が他の従来の方法で生成したオゾン水よりも早くオゾン濃度が減衰することに着目し、裸触媒電極の陰極電極から発生している水素は大きい泡となって水面に移動し、空気中に拡散されるので、オゾン発生に阻害するものではないと考えていたが、電気化学会の発表(第26回電解技術討論会(ソーダ工業技術討論会)の講演要旨集 平成14年11月28日)によって、電解水中の水素濃度が過飽和のときには、水溶液中の一部が疎水性コロイドとして長時間水中に存在することを知った。
そこで、上記の裸電極法の陰極電極付近の水の挙動を調べた結果、水素が部分的に過飽和の状態にあり、さらに肉眼では観察できない多数の水素微粒子が水中に存在することを確認した。その結果、水槽を大きくした際の水温の上昇は、単に電極から発生するジュール熱のみに起因するものではなく、浮遊水素微粒子が発生したオゾンガス微泡と反応して生じた反応熱に起因することが判明し、オゾン濃度の上昇が妨げられている主因であるということを突き止めた。
The present inventors pay attention to the fact that the ozone concentration decays faster than the ozone water produced by other conventional methods, and the ozone water produced by the bare electrode method is generated from the cathode electrode of the bare catalyst electrode. The hydrogen contained in the water moves into the water surface and is diffused in the air, so it was thought that it does not inhibit ozone generation, but the Electrochemical Society presented (The 26th Electrolysis Technology Conference ( (Soda Industrial Technology Conference) November 28, 2002) When the hydrogen concentration in the electrolyzed water was supersaturated, it was found that a part of the aqueous solution existed in the water for a long time as a hydrophobic colloid. .
Therefore, as a result of investigating the behavior of water near the cathode electrode in the bare electrode method, it was confirmed that hydrogen was partially supersaturated and that many hydrogen fine particles existed in the water that could not be observed with the naked eye. As a result, the rise in water temperature when the water tank is enlarged is not only due to Joule heat generated from the electrodes, but also due to reaction heat generated by reacting with fine ozone gas bubbles generated by suspended hydrogen fine particles. As a result, it was found that the increase in ozone concentration is the main reason for the hindrance.

そこで、上記課題を解決するため、請求項1の発明は、例えば、図1、図2に示すように、
原料水を満たした容器1と、前記容器内に挿入される触媒電極2とを備え、
前記触媒電極は、柱状の棒状部材20と、前記棒状部材の外周面に長手方向に沿って上下に貫通して形成された溝部20a,20a,…を覆うように内側から順に重ねて巻き付けられた陰極電極と、陽イオン交換膜と、陽極電極とを備えており、
前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成することを特徴とする。
Therefore, in order to solve the above problem, the invention of claim 1 is, for example, as shown in FIGS.
A container 1 filled with raw water, and a catalyst electrode 2 inserted into the container,
The catalyst electrode was wound in an overlapping manner in order from the inside so as to cover the columnar rod-shaped member 20 and the grooves 20a, 20a,... Formed vertically penetrating along the longitudinal direction on the outer circumferential surface of the rod-shaped member. A cathode electrode, a cation exchange membrane, and an anode electrode,
Ozone water is generated by applying a DC voltage between the anode electrode and the cathode electrode.

請求項1の発明によれば、触媒電極は、柱状の棒状部材の外周面に長手方向に沿って上下に貫通して形成された溝部を覆うようにして陰極電極、陽イオン交換膜、陽極電極が内側から順に重ねて巻き付けられているので、陽極電極は最外周に配されており露出面積が多いことから、原料水の多くが陽極電極に接触することになり、陽極電極からオゾンガスが効率良く発生し、オゾンガスが原料水中に溶解することでオゾン水が生成される。
一方、陰極電極は棒状部材の外周面の溝部を覆うようにして、棒状部材の外周面に直接巻き付けられているので、溝部内に進入した原料水に陰極電極が接触することにより発生した水素気泡は溝部内をそのまま上昇して系外に放出される。すなわち、水素気泡を、容器内の大部分の原料水と接触させずに、容器外に放出せることができる。よって、従来のように陽極電極と陰極電極とが露出した裸電極を水槽内に浸積させる場合に比して、水素気泡に阻害されずに、陽極電極から生成したオゾンガスを有効に水中に溶解させてオゾン水化させることができる。その結果、オゾン濃度の減衰を抑制することができ、オゾン水生成効率を向上させることができる。また、上記触媒電極を容器内に挿入することにより、簡易にオゾン水を生成できる。
According to the first aspect of the present invention, the catalyst electrode comprises a cathode electrode, a cation exchange membrane, and an anode electrode so as to cover a groove formed in the outer peripheral surface of the columnar bar-like member so as to penetrate vertically along the longitudinal direction. Since the anode electrode is arranged on the outermost periphery and has a large exposed area, most of the raw material water comes into contact with the anode electrode, and ozone gas is efficiently emitted from the anode electrode. Ozone water is generated by generating and dissolving ozone gas in the raw material water.
On the other hand, since the cathode electrode is directly wound around the outer peripheral surface of the rod-shaped member so as to cover the groove portion on the outer peripheral surface of the rod-shaped member, hydrogen bubbles generated when the cathode electrode comes into contact with the raw material water that has entered the groove portion Rises in the groove and is released out of the system. That is, hydrogen bubbles can be discharged out of the container without contacting with most of the raw water in the container. Therefore, the ozone gas generated from the anode electrode is effectively dissolved in water without being hindered by hydrogen bubbles, compared to the case where the bare electrode with the anode electrode and the cathode electrode exposed is immersed in the water tank as in the prior art. Can be made into ozone water. As a result, attenuation of ozone concentration can be suppressed, and ozone water generation efficiency can be improved. Moreover, ozone water can be easily generated by inserting the catalyst electrode into the container.

請求項2の発明は、例えば、図5に示すように、
原料水を満たした容器と、前記容器内に挿入される触媒電極2Aとを備え、
前記触媒電極は、内部に上下に貫通する空洞を有する棒状部材20Aと、前記棒状部材の外周面に前記空洞20bに貫通して形成された複数の貫通孔20c,20c,…を覆うように内側から順に重ねて巻き付けられた陰極電極23と、陽イオン交換膜21と、陽極電極22とを備えており、
前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成することを特徴とする。
The invention of claim 2 is, for example, as shown in FIG.
A container filled with raw water, and a catalyst electrode 2A inserted into the container,
The catalyst electrode has an inner side so as to cover a rod-like member 20A having a cavity penetrating vertically inside and a plurality of through holes 20c, 20c,... Formed in the outer peripheral surface of the rod-like member so as to penetrate the cavity 20b. Comprising a cathode electrode 23, a cation exchange membrane 21, and an anode electrode 22 wound in an overlapping manner in order,
Ozone water is generated by applying a DC voltage between the anode electrode and the cathode electrode.

請求項2の発明によれば、触媒電極は、内部に上下に貫通する空洞を有する棒状部材の外周面に、複数の貫通孔を覆うようにして陰極電極、陽イオン交換膜、陽極電極が順に重ねて巻き付けられているので、陽極電極は最外周に配されており露出面積が多いことから、原料水の多くが陽極電極に接触することになり、陽極電極からオゾンガスが発生し、オゾンガスが原料水中に溶解することでオゾン水が生成される。
一方、陰極電極は棒状部材の外周面の貫通孔を覆うようにして、棒状部材の外周面に直接巻き付けられているので、棒状部材の空洞から貫通孔を介して進入した原料水に接触し、陽極電極に比べて原料水に接触する面積も少なく、陰極電極で発生した水素気泡は貫通孔を介して棒状部材の空洞内を上昇して系外に放出される。すなわち、水素気泡を容器内の原料水と接触させずに容器外に放出させることができる。よって、従来のように陽極電極と陰極電極とが露出した裸電極を水槽内に浸積させる場合に比して、水素気泡に阻害されずに、陽極電極から生成したオゾンガスを有効に水中に溶解させてオゾン水化させることができる。その結果、オゾン濃度の減衰を抑制することができ、オゾン水生成効率を向上させることができる。また、上記触媒電極を容器内に挿入することにより、簡易にオゾン水を生成できる。
According to the second aspect of the present invention, the catalyst electrode has a cathode electrode, a cation exchange membrane, and an anode electrode in this order so as to cover the plurality of through holes on the outer peripheral surface of the rod-shaped member having a cavity penetrating vertically. Since the anode electrode is arranged on the outermost circumference and has a large exposed area, the raw material water comes into contact with the anode electrode, ozone gas is generated from the anode electrode, and ozone gas is the raw material. Ozone water is generated by dissolving in water.
On the other hand, the cathode electrode is directly wound around the outer peripheral surface of the rod-shaped member so as to cover the through-hole on the outer peripheral surface of the rod-shaped member, so that it contacts the raw material water that has entered through the through-hole from the cavity of the rod-shaped member, Compared to the anode electrode, the area in contact with the raw material water is small, and the hydrogen bubbles generated at the cathode electrode rise through the through-holes in the cavity of the rod-shaped member and are discharged out of the system. That is, hydrogen bubbles can be discharged out of the container without contacting the raw material water in the container. Therefore, the ozone gas generated from the anode electrode is effectively dissolved in water without being hindered by hydrogen bubbles, compared to the case where the bare electrode with the anode electrode and the cathode electrode exposed is immersed in the water tank as in the prior art. Can be made into ozone water. As a result, attenuation of ozone concentration can be suppressed, and ozone water generation efficiency can be improved. Moreover, ozone water can be easily generated by inserting the catalyst electrode into the container.

請求項3の発明は、例えば、図1、図2に示すように、請求項1又は2に記載のオゾン水生成装置において、
前記触媒電極に、前記陰極電極、陽イオン交換膜及び陽極電極を前記棒状部材に固定する筒状部材(円筒状部材3)が挿通されていることを特徴とする。
The invention of claim 3 is an ozone water generator according to claim 1 or 2, as shown in FIGS.
A cylindrical member (cylindrical member 3) for fixing the cathode electrode, the cation exchange membrane and the anode electrode to the rod-shaped member is inserted into the catalyst electrode.

請求項3の発明によれば、触媒電極に筒状部材が挿通されているので、筒状部材によって陽極電極、陽イオン交換膜及び陰極電極が棒状部材に確実に固定される。   According to the invention of claim 3, since the cylindrical member is inserted through the catalyst electrode, the anode electrode, the cation exchange membrane and the cathode electrode are securely fixed to the rod-shaped member by the cylindrical member.

請求項4の発明は、請求項1〜3のいずれか一項に記載のオゾン水生成装置において、
前記陽極電極の外周面に、その外周面を覆うようにグレーチングが設けられていることを特徴とする。
Invention of Claim 4 is the ozone water production | generation apparatus as described in any one of Claims 1-3,
A grating is provided on the outer peripheral surface of the anode electrode so as to cover the outer peripheral surface.

請求項4の発明によれば、陽極電極の外周面に、その外周面を覆うようにグレーチングが設けられているので、水流がグレーチングに接触して渦流を生じ、陽極電極で発生したオゾンの微泡を巻き込んで溶解を早めることができる。その結果、オゾン水生成効率を向上させることができる。   According to the invention of claim 4, since the grating is provided on the outer peripheral surface of the anode electrode so as to cover the outer peripheral surface, the water flow contacts the grating to generate a vortex, and the ozone generated at the anode electrode is reduced. Bubbles can be involved to accelerate dissolution. As a result, the ozone water generation efficiency can be improved.

本発明によれば、陰極電極で発生した水素気泡は、溝部内を上昇するか、あるいは、貫通孔を介して空洞内を上昇して系外に放出されるので、容器内の大部分の原料水と接触することがなく、陽極電極から生成したオゾンガスを有効に水中に溶解させてオゾン水化させることができる。その結果、オゾン濃度の減衰を抑制することができ、オゾン水生成効率の向上を図れる。また、本発明の触媒電極を容器内に挿入することにより、家庭内等でも簡易にオゾン水を生成でき、オゾン水の普及につながる。
また、陰極電極から発生して系外に放出された水素気泡は、そのまま捕集することができ、燃料電池に接続することで再利用することができる。
According to the present invention, the hydrogen bubbles generated in the cathode electrode rise in the groove portion or rise in the cavity through the through hole and are discharged outside the system, so that most of the raw material in the container Without contacting with water, ozone gas generated from the anode electrode can be effectively dissolved in water to make ozone water. As a result, attenuation of the ozone concentration can be suppressed, and the ozone water generation efficiency can be improved. Moreover, by inserting the catalyst electrode of the present invention into a container, ozone water can be easily generated even at home and the like, leading to the spread of ozone water.
Further, hydrogen bubbles generated from the cathode electrode and released to the outside of the system can be collected as they are, and can be reused by connecting to a fuel cell.

以下、本発明の第一及び第二の実施の形態について図面を参照しながら説明する。
[第一の実施の形態]
図1は、本発明の第一の実施の形態のオゾン水生成装置100の斜視図である。
図1に示すように、オゾン水生成装置100は、原料水(例えば、水)が満たされた容器1内に、棒状の触媒電極2を挿入して動かすとともに、触媒電極2に直流電圧を印加することによってオゾン気泡を発生させて、そのオゾン気泡を水に溶解させることによりオゾン水を生成する装置である。
容器1は、上端が開口した円筒状をなしており、容器1内にはその上端部近傍まで原料水で満たされている。具体的に容器1としては、例えば水槽やビーカー、コップ等を使用することができる。
Hereinafter, first and second embodiments of the present invention will be described with reference to the drawings.
[First embodiment]
FIG. 1 is a perspective view of an ozone water generator 100 according to the first embodiment of the present invention.
As shown in FIG. 1, the ozone water generator 100 inserts and moves a rod-shaped catalyst electrode 2 in a container 1 filled with raw material water (for example, water) and applies a DC voltage to the catalyst electrode 2. This is a device for generating ozone water by generating ozone bubbles and dissolving the ozone bubbles in water.
The container 1 has a cylindrical shape with an upper end opened, and the container 1 is filled with raw water up to the vicinity of the upper end. Specifically, as the container 1, for example, a water tank, a beaker, a cup, or the like can be used.

図2(a)は、触媒電極2を構成する棒状部材20の外観斜視図、(b)は触媒電極2の外観斜視図、(c)は切断線II−IIに沿って切断した際の触媒電極2の矢視断面図である。
触媒電極2は、柱状の棒状部材20と、棒状部材20の外周面に、その外周面に沿って順に重ねて設けられた陰極電極23、陽イオン交換膜21、陽極電極22とを備えている。
棒状部材20は、オゾンや水素で酸化・還元されにくい材料が好ましく、例えば、テフロン(登録商標)やナイロン等を材料としている。棒状部材20の外周面には、長手方向に沿って上下に貫通する五つの溝部20a,20a,…が所定間隔に形成されており、これら溝部20a、20a,…を覆うようにして棒状部材20の外周面に、円筒状に陰極電極23が巻き付けられ、陰極電極23上に円筒状に陽イオン交換膜21が巻き付けられ、さらに陽イオン交換膜21上に円筒状に陽極電極22が巻き付けられている。したがって、容器1内に挿入された触媒電極2は、原料水の大部分が最外周に位置する陽極電極22面に接触するようになっており、陰極電極23は、棒状部材20に形成された溝部20a,20a,…内に進入した原料水に接触するようになっている。
2A is an external perspective view of the rod-shaped member 20 constituting the catalyst electrode 2, FIG. 2B is an external perspective view of the catalyst electrode 2, and FIG. 2C is a catalyst when cut along the cutting line II-II. 3 is a cross-sectional view of the electrode 2 as viewed in the direction of the arrows.
The catalyst electrode 2 includes a columnar rod-shaped member 20, and a cathode electrode 23, a cation exchange membrane 21, and an anode electrode 22 that are provided on the outer circumferential surface of the rod-shaped member 20 in order along the outer circumferential surface. .
The rod-shaped member 20 is preferably made of a material that is not easily oxidized or reduced by ozone or hydrogen. For example, Teflon (registered trademark) or nylon is used as the material. On the outer peripheral surface of the rod-shaped member 20, five grooves 20a, 20a,... Penetrating vertically along the longitudinal direction are formed at predetermined intervals, and the rod-shaped member 20 is covered so as to cover these grooves 20a, 20a,. A cathode electrode 23 is wound in a cylindrical shape on the outer peripheral surface of the electrode, a cation exchange membrane 21 is wound in a cylindrical shape on the cathode electrode 23, and an anode electrode 22 is wound in a cylindrical shape on the cation exchange membrane 21. Yes. Therefore, the catalyst electrode 2 inserted into the container 1 is configured such that most of the raw water contacts the surface of the anode electrode 22 located on the outermost periphery, and the cathode electrode 23 is formed on the rod-shaped member 20. It contacts the raw material water that has entered the grooves 20a, 20a,.

また、上述のようにして形成された触媒電極2の外周面(すなわち、陽極電極22の外周面)には、外周面を覆う円筒状部材3が挿通されている。円筒状部材3としては、例えば、加熱により熱収縮するシュリンクチューブ等が挙げられる。したがって、触媒電極2をシュリンクチューブ3に挿通した後、加熱することによってシュリンクチューブ3が収縮するので、陰極電極23、陽イオン交換膜21及び陽極電極22が棒状部材20に固定される。これによって、溝部20a,20a,…が陰極電極23によって確実に覆われるので、陰極電極23面で発生した水素気泡が溝部20a,20a,…内を確実に移動して系外に放出されるようになっている。   A cylindrical member 3 that covers the outer peripheral surface is inserted into the outer peripheral surface of the catalyst electrode 2 formed as described above (that is, the outer peripheral surface of the anode electrode 22). Examples of the cylindrical member 3 include a shrink tube that is thermally contracted by heating. Therefore, after the catalyst electrode 2 is inserted into the shrink tube 3 and heated, the shrink tube 3 contracts, so that the cathode electrode 23, the cation exchange membrane 21 and the anode electrode 22 are fixed to the rod-shaped member 20. As a result, the grooves 20a, 20a,... Are reliably covered with the cathode electrode 23, so that hydrogen bubbles generated on the surface of the cathode electrode 23 are surely moved within the grooves 20a, 20a,. It has become.

さらに、陽極電極22と陰極電極23との間には、電源装置の出力端(図示略)が電気的に連結され、直流電圧が印加されるように構成されている。すなわち、陽極電極22及び陰極電極23は、各電極22,23に導線を介して電源装置に連結されている。印加する直流電圧は、例えば、9〜15ボルト(V)が好ましい。   Further, an output terminal (not shown) of the power supply device is electrically connected between the anode electrode 22 and the cathode electrode 23 so that a DC voltage is applied. That is, the anode electrode 22 and the cathode electrode 23 are connected to the power supply device via the conductive wires to the electrodes 22 and 23. The DC voltage to be applied is preferably 9 to 15 volts (V), for example.

陽イオン交換膜21としては、従来公知のものを使用することができ、発生するオゾンに耐久性の強いフッ素系陽イオン交換膜を使用することができ、例えば厚さ100〜250ミクロンが好ましい。   As the cation exchange membrane 21, a conventionally known one can be used, and a fluorine-based cation exchange membrane having high durability against the generated ozone can be used. For example, a thickness of 100 to 250 microns is preferable.

陽極電極22としてはオゾン発生触媒機能を有した金属を使用し、純粋なオゾン水を得るため、白金又は白金被覆金属の電極を使用することが好ましく、特に、本発明ではチタンに白金を被覆した金属を使用することが好ましい。
一方、陰極電極23としては塩化銀層を有する銀又は銀被覆金属を使用する。塩化銀はオゾン測定の比較電極としても使われており、毒性なく安定してカソード電位の維持を行い、陽極電極22において安定してオゾンを発生できるものである。また、被覆処理としては、例えばメッキや電着等により行うことができる。
As the anode electrode 22, a metal having an ozone generation catalyst function is used, and in order to obtain pure ozone water, it is preferable to use an electrode of platinum or a platinum-coated metal. In particular, in the present invention, titanium is coated with platinum. It is preferable to use a metal.
On the other hand, as the cathode electrode 23, silver having a silver chloride layer or a silver-coated metal is used. Silver chloride is also used as a reference electrode for ozone measurement, and can stably maintain the cathode potential without toxicity and can stably generate ozone at the anode electrode 22. Moreover, as a coating process, it can carry out by plating, electrodeposition, etc., for example.

なお、図示しないが、陽極電極22の外周には、さらにチタン製のグレーチングが巻き付けられていることが好ましい。グレーチングは、線材を格子状に溶接したものであり、これを陽極電極22の外周に巻き付けることによりグレーチングの凹凸面によって、水流と接触して渦流を生じ、陽極電極22で発生したオゾンの微泡を巻き込んで溶解を早めることができる。その結果、オゾン水生成効率の向上にもつながる。グレーチングは、陽極電極22の外周全面に設けても良いし、容器1内に挿入される部分にのみ設けても良い。また、円筒状部材3が挿通される箇所に設けても良いし、設けなくとも良い。
また、グレーチングを設けなくとも、陽極電極22自体をグレーチング状に形成しても構わない。
Although not shown, it is preferable that a titanium grating is wound around the outer periphery of the anode electrode 22. Grating is obtained by welding wire rods in a lattice shape, and by winding the wire around the outer periphery of the anode electrode 22, an eddy current is generated in contact with the water flow by the uneven surface of the grating, and ozone fine bubbles generated at the anode electrode 22 are generated. Can be dissolved to accelerate dissolution. As a result, the ozone water generation efficiency is improved. The grating may be provided on the entire outer periphery of the anode electrode 22 or may be provided only on a portion inserted into the container 1. Moreover, you may provide in the location where the cylindrical member 3 is penetrated, and does not need to provide.
Further, the anode electrode 22 itself may be formed in a grating shape without providing the grating.

次に、オゾン水生成装置100を使用してオゾン水を生成するオゾン水生成方法について説明する。
図1に示すように、予め、容器1内に原料水を満たしておき、容器1内に触媒電極2を挿入して触媒電極2を手で動かす。これによって容器1内には内周面に沿って旋回水流が発生する。ここで、水流の大部分は陽極電極22面に連続接触し、一部は棒状部材20の溝部20a,20a,…内に進入して陰極電極23面に接触する。
また、この際に、電源装置を駆動させることによって陽極電極及22び陰極電極23間に所定の電圧を印加する。この通電により原料水が電気分解されて、陽極電極22側にはオゾン気泡が発生し、陰極電極23側には水素気泡が発生する。
Next, the ozone water production | generation method which produces | generates ozone water using the ozone water production | generation apparatus 100 is demonstrated.
As shown in FIG. 1, the raw material water is filled in the container 1 in advance, the catalyst electrode 2 is inserted into the container 1, and the catalyst electrode 2 is moved by hand. As a result, a swirling water flow is generated in the container 1 along the inner peripheral surface. Here, most of the water flow is in continuous contact with the surface of the anode electrode 22, and part of the water flow enters the grooves 20 a, 20 a,.
At this time, a predetermined voltage is applied between the anode electrode 22 and the cathode electrode 23 by driving the power supply device. By this energization, the raw water is electrolyzed, ozone bubbles are generated on the anode electrode 22 side, and hydrogen bubbles are generated on the cathode electrode 23 side.

陽極電極23側では、旋回水流によって発生したオゾン気泡を一早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22と陽イオン交換膜21との間(正確には陽極電極22と陰極電極23との間)に電流が多く流れる状態を確保することになる。   On the anode electrode 23 side, ozone water generated by the swirling water flow is quickly taken into water and dissolved to generate ozone water, and between the anode electrode 22 and the cation exchange membrane 21 (more precisely, the anode electrode 22 and A state where a large amount of current flows between the cathode electrode 23 and the cathode electrode 23 is ensured.

一方、陰極電極23側においては、陰極電極23で発生した水素気泡が陰極電極23から離されてその浮力によって、溝部20a,20a,…内を移動して水面へと上昇し、水素ガスとして系外に放出される。溝部20a,20a,…は、陰極電極23によって覆われているため、陰極電極23で発生した水素気泡は溝部20a,20a,…以外への逃げ場がなく、溝部20a,20a,…に沿って上昇する。その結果、原料水中に取り込まれたり、生成されたオゾン水と混合することを防止できる。
以上のようにして生成されたオゾン水は、水素ガスが混合しておらず、オゾン濃度の上昇が妨げられない。
On the other hand, on the cathode electrode 23 side, the hydrogen bubbles generated at the cathode electrode 23 are separated from the cathode electrode 23 and moved by the buoyancy in the grooves 20a, 20a,... Released outside. Since the groove portions 20a, 20a,... Are covered with the cathode electrode 23, hydrogen bubbles generated at the cathode electrode 23 have no escape space other than the groove portions 20a, 20a,... And rise along the groove portions 20a, 20a,. To do. As a result, it can be prevented that it is taken into raw material water or mixed with generated ozone water.
The ozone water produced as described above is not mixed with hydrogen gas, and the increase in ozone concentration is not hindered.

以上、本発明の第一の実施の形態によれば、触媒電極2は、柱状の棒状部材20の外周面に長手方向に沿って上下に貫通して形成された溝部20a,20a,…を覆うようにして陰極電極23、陽イオン交換膜21、陽極電極22が順に重ねて巻き付けられているので、最外周に配された陽極電極22に原料水の多くが接触することにより、陽極電極22からオゾンガスが効率良く発生し、このオゾンガスが原料水中に溶解することでオゾン水が生成される。
一方、陰極電極23は棒状部材20の外周面の溝部20a,20a,…を覆うようにして、棒状部材20の外周面に直接巻き付けられているので、溝部20a,20a,…内に進入した原料水に陰極電極23が接触することにより発生した水素気泡は、容器1内の原料水の大部分に接触することなく、溝部20a,20a,…内をそのまま上昇して系外に放出される。よって、水素気泡に阻害されずに、陽極電極22から生成したオゾンガスを水中に有効に溶解させてオゾン水化させることができる。その結果、オゾン濃度の減衰を抑制することができ、オゾン水生成効率を向上させることができる。また、このような触媒電極2を容器1内に挿入することにより、家庭内等でも簡易にオゾン水を生成でき、オゾン水の普及につながる。その上、系外に放出された水素ガスを捕集することにより、燃料電池に再利用することもできる。
As described above, according to the first embodiment of the present invention, the catalyst electrode 2 covers the groove portions 20a, 20a,... Formed in the outer peripheral surface of the columnar rod-shaped member 20 so as to penetrate vertically along the longitudinal direction. In this way, the cathode electrode 23, the cation exchange membrane 21, and the anode electrode 22 are sequentially overlapped and wound, so that most of the raw material water comes into contact with the anode electrode 22 disposed on the outermost periphery, so that the anode electrode 22 Ozone gas is efficiently generated, and ozone water is generated by dissolving the ozone gas in the raw material water.
On the other hand, since the cathode electrode 23 is directly wound around the outer peripheral surface of the rod-shaped member 20 so as to cover the grooves 20a, 20a,. The hydrogen bubbles generated when the cathode electrode 23 comes into contact with water rises as they are in the grooves 20a, 20a,... Therefore, the ozone gas generated from the anode electrode 22 can be effectively dissolved in water without being hindered by hydrogen bubbles to be converted into ozone water. As a result, attenuation of ozone concentration can be suppressed, and ozone water generation efficiency can be improved. Moreover, by inserting such a catalyst electrode 2 into the container 1, ozone water can be easily generated even at home and the like, leading to the spread of ozone water. In addition, by collecting the hydrogen gas released outside the system, it can be reused in the fuel cell.

なお、上記第一の実施の形態において、触媒電極2は手で攪拌するものとしたが、例えば触媒電極2をモータ等を利用した装置で動かすように構成しても良い。
また、図3に示すように、触媒電極2を動かさずに、容器1を触媒電極2に対して手で動かすようにしても良い。具体的には、触媒電極2を上方から吊り下げるなどして固定しておき、下端部を容器1内に挿入して原料水に接触させるようにし、容器1を触媒電極2を中心として動かす。
さらに、図4に示すように、容器1内の底面にマグネットスターラ4等の回転子を設けておき、このマグネットスターラ4を磁力で攪拌する攪拌装置5を使用して容器1内に旋回水流を発生させて触媒電極2に原料水を連続接触させるようにしても良い。
In the first embodiment, the catalyst electrode 2 is stirred by hand. However, for example, the catalyst electrode 2 may be moved by an apparatus using a motor or the like.
Further, as shown in FIG. 3, the container 1 may be moved by hand with respect to the catalyst electrode 2 without moving the catalyst electrode 2. Specifically, the catalyst electrode 2 is fixed by being suspended from above, the lower end portion is inserted into the container 1 so as to be in contact with the raw material water, and the container 1 is moved around the catalyst electrode 2.
Further, as shown in FIG. 4, a rotor such as a magnet stirrer 4 is provided on the bottom of the container 1, and a swirling water flow is generated in the container 1 using a stirring device 5 that stirs the magnet stirrer 4 with a magnetic force. Alternatively, the raw material water may be continuously brought into contact with the catalyst electrode 2.

ここで、上述したオゾン水生成装置100において、手で触媒電極2を動かした場合(図1参照)と、マグネットスターラ4及び攪拌装置5を使用した場合(図4参照)とでその効果について実施例を挙げて説明する。
〈本発明例1〉
外周面に長手方向に沿って深さ2mmの溝部が六つ形成された直径10mmのテフロン棒の外周面に陰極電極、陽イオン交換膜及び陽極電極の順に重ねて巻き付け、電極面積を約10cm2とした触媒電極2を用意する。そして、400mlの円形ビーカー中に水を満たしておき、この中に触媒電極を挿入して、陽極電極と陰極電極間に12Vの直流電圧を印加したところ、約4Aの電流が流れ、陽極電極の表面から多数の微泡が発生した。この電極を手で丸く円運動させたところ、約30秒でビーカー中のオゾン濃度は約3ppmに達した。
〈比較例1〉
従来のように、陽極電極と陰極電極とがともに露出し、本発明例1と同じ材料からなる電極面積が約10cm2の裸電極を沈め、同じように手で丸く円運動させたが、電流値は約3Aで30秒後のオゾン濃度はわずか0.7ppmにしか上昇しなかった。
Here, in the ozone water generating apparatus 100 described above, the effect is carried out when the catalyst electrode 2 is moved by hand (see FIG. 1) and when the magnet stirrer 4 and the stirring device 5 are used (see FIG. 4). An example will be described.
<Invention Example 1>
A cathode electrode, a cation exchange membrane and an anode electrode are wound around the outer peripheral surface of a 10 mm diameter Teflon rod in which six grooves having a depth of 2 mm are formed along the longitudinal direction on the outer peripheral surface, and the electrode area is about 10 cm 2. The catalyst electrode 2 was prepared. Then, a 400 ml circular beaker was filled with water, a catalyst electrode was inserted therein, and a DC voltage of 12 V was applied between the anode electrode and the cathode electrode. Many fine bubbles were generated from the surface. When this electrode was circularly moved by hand, the ozone concentration in the beaker reached about 3 ppm in about 30 seconds.
<Comparative example 1>
As in the prior art, both the anode electrode and the cathode electrode were exposed, and a bare electrode made of the same material as that of the present invention example 1 and having an electrode area of about 10 cm 2 was sunk and circularly moved by hand in the same manner. The value was about 3A, and the ozone concentration after 30 seconds increased only to 0.7 ppm.

〈本発明例2〉
電極面積が約7cm2とした以外は本発明例1と同様の触媒電極を用意する。そして、約3Lの円形容器の底面にマグネットスターラを載置し、容器の下側には攪拌装置を設置する。次いで、容器内に水を満たしておき、この中に触媒電極を挿入して、陽極電極と陰極電極間に12Vの直流電圧を印加したところ、約3Aの電流が流れ、陽極電極の表面から多数の微泡が発生した。マグネットスターラを回転させると、3分後にはオゾン濃度が約1ppm、5分後には1.5ppm、10分後には約2ppmに達し、その後もこの濃度の前後で推移した。
〈比較例2〉
従来のように、陽極電極と陰極電極とがともに露出し、本発明例1と同じ材料からなる電極面積が約7cm2の触媒電極を用意する。そして、本発明例2と同様の容器内に沈めて同様に実験をしたところ、3分後には0.2ppm、5分後に0.2ppmと濃度は上がらず、10分後には水温が約12℃上昇し濃度はほとんど検出できないという現象が観察された。
<Invention Example 2>
A catalyst electrode similar to Example 1 of the present invention is prepared except that the electrode area is about 7 cm 2 . A magnet stirrer is placed on the bottom surface of a circular container of about 3 L, and a stirring device is installed on the lower side of the container. Next, when the container is filled with water, a catalyst electrode is inserted therein, and a DC voltage of 12 V is applied between the anode electrode and the cathode electrode, a current of about 3 A flows, and a large number of currents flow from the surface of the anode electrode. A fine bubble was generated. When the magnetic stirrer was rotated, the ozone concentration reached about 1 ppm after 3 minutes, 1.5 ppm after 5 minutes, and about 2 ppm after 10 minutes, and then changed around this concentration.
<Comparative example 2>
As in the prior art, a catalyst electrode having both an anode electrode and a cathode electrode exposed and having an electrode area of about 7 cm 2 made of the same material as Example 1 of the present invention is prepared. When the same experiment was conducted by submerging in the same container as Example 2, the concentration did not increase to 0.2 ppm after 3 minutes and 0.2 ppm after 5 minutes, and the water temperature was about 12 ° C. after 10 minutes. A phenomenon was observed in which the concentration was almost undetectable.

以上の結果から明らかなように、比較例1〜2のように裸電極を容器内に沈めてオゾン水を生成する方法は、水素気泡と発生したオゾンガスとが反応することにより、オゾン濃度の減衰に繋がることが明白である。そして、本発明例1〜2のように陰極電極から発生する水素気泡を系外に放出させるように構成することで、オゾン濃度が減衰することなく必要濃度のオゾン水を簡易にかつ確実に生成することができることが認められる。   As is clear from the above results, the method of generating ozone water by sinking the bare electrode in the container as in Comparative Examples 1 and 2 is the attenuation of the ozone concentration by the reaction between the hydrogen bubbles and the generated ozone gas. It is clear that this leads to And, by configuring so that hydrogen bubbles generated from the cathode electrode are discharged out of the system as in Invention Examples 1 and 2, ozone water having a required concentration can be easily and reliably generated without attenuation of the ozone concentration. It is recognized that you can.

[第二の実施の形態]
図5(a)は、触媒電極2Aを構成する棒状部材20Aの外観斜視図、(b)は触媒電極2Aの外観斜視図、(c)は切断線V−Vに沿って切断した際の触媒電極2Aの矢視断面図で
ある。
第二の実施の形態のオゾン水生成装置では、第一の実施の形態の触媒電極2と異なる触媒電極20Aを使用しており、その他の点は第一の実施の形態と同様のため同様の構成部分については同様の符号を付してその説明を省略する。
触媒電極2Aは、内部に上下に貫通する空洞20bが設けられた円筒状の棒状部材20Aと、棒状部材20Aの外周面に、その外周面に沿って順に重ねて設けられた陰極電極23、陽イオン交換膜21、陽極電極22とを備えている。
棒状部材20Aの外周面下端部には、空洞20bに貫通する複数の貫通孔20c,20c,…が形成され、これら貫通孔20c,20c,…を覆うようにして棒状部材20の外周面に、円筒状に陰極電極23が巻き付けられ、陰極電極23上に円筒状に陽イオン交換膜21が巻き付けられ、さらに陽イオン交換膜21上に円筒状に陽極電極22が巻き付けられている。したがって、容器1内に挿入された触媒電極2は、原料水の大部分が最外周に位置する陽極電極22面に接触するようになっており、陰極電極23は、棒状部材20Aの空洞20bから貫通孔20c,20c,…を通って進入した原料水に接触するようになっている。
[Second Embodiment]
5A is an external perspective view of the rod-like member 20A constituting the catalyst electrode 2A, FIG. 5B is an external perspective view of the catalyst electrode 2A, and FIG. 5C is a catalyst when cut along the cutting line VV. It is arrow sectional drawing of 2 A of electrodes.
In the ozone water generating apparatus of the second embodiment, a catalyst electrode 20A different from the catalyst electrode 2 of the first embodiment is used, and the other points are the same as in the first embodiment, and thus the same. Constituent parts are denoted by the same reference numerals and description thereof is omitted.
The catalyst electrode 2A includes a cylindrical rod-shaped member 20A provided with a hollow 20b penetrating vertically therein, a cathode electrode 23 provided on the outer circumferential surface of the rod-shaped member 20A in an overlapping manner along the outer circumferential surface, a positive electrode An ion exchange membrane 21 and an anode electrode 22 are provided.
A plurality of through-holes 20c, 20c,... Penetrating through the cavity 20b are formed at the lower end of the outer peripheral surface of the rod-shaped member 20A, and on the outer peripheral surface of the rod-shaped member 20 so as to cover these through-holes 20c, 20c,. A cathode electrode 23 is wound in a cylindrical shape, a cation exchange membrane 21 is wound on the cathode electrode 23 in a cylindrical shape, and an anode electrode 22 is wound on the cation exchange membrane 21 in a cylindrical shape. Therefore, the catalyst electrode 2 inserted into the container 1 is configured such that most of the raw material water contacts the surface of the anode electrode 22 located on the outermost periphery, and the cathode electrode 23 extends from the cavity 20b of the rod-shaped member 20A. It contacts the raw material water that has entered through the through holes 20c, 20c,.

また、上述のようにして形成された触媒電極2Aの外周面(すなわち、陽極電極22の外周面)には、外周面を覆う円筒状部材3が挿通されている。円筒状部材3としては、第一の実施の形態と同様に熱収縮するシュリンクチューブ等が挙げられる。したがって、触媒電極をシュリンクチューブに挿通した後、加熱することによってシュリンクチューブが収縮するので陰極電極22、陽イオン交換膜21及び陽極電極22が棒状部材20Aに固定される。これによって、棒状部材20Aの外周面の貫通孔20c,20c,…が陰極電極23によって確実に覆われるので、陰極電極23面で発生した水素気泡が貫通孔20c,20c,…に確実に移動して、その後、棒状部材20Aの空洞20bから系外に放出されるようになっている。   Further, the cylindrical member 3 covering the outer peripheral surface is inserted through the outer peripheral surface of the catalyst electrode 2A formed as described above (that is, the outer peripheral surface of the anode electrode 22). Examples of the cylindrical member 3 include a shrink tube that thermally contracts as in the first embodiment. Therefore, after the catalyst electrode is inserted into the shrink tube, the shrink tube is contracted by heating, so that the cathode electrode 22, the cation exchange membrane 21, and the anode electrode 22 are fixed to the rod-shaped member 20A. As a result, the through holes 20c, 20c,... On the outer peripheral surface of the rod-shaped member 20A are surely covered by the cathode electrode 23, so that hydrogen bubbles generated on the surface of the cathode electrode 23 reliably move to the through holes 20c, 20c,. Then, it is discharged out of the system from the cavity 20b of the rod-shaped member 20A.

また、陽極電極22と陰極電極23との間には、電源装置の出力端(図示略)が電気的に連結され、直流電圧が印加されるように構成されている。すなわち、陽極電極22及び陰極電極23は、各電極22,23に導線を介して電源装置に連結されている。印加する直流電圧は、例えば、9〜15ボルト(V)が好ましい。
なお、陽イオン交換膜21、陽極電極22及び陰極電極23の材料等は第一の実施の形態と同様のため、その説明を省略する。また、陽極電極22の外周に上述のグレーチングを巻き付けても良い。
Further, an output terminal (not shown) of the power supply device is electrically connected between the anode electrode 22 and the cathode electrode 23 so that a DC voltage is applied. That is, the anode electrode 22 and the cathode electrode 23 are connected to the power supply device via the conductive wires to the electrodes 22 and 23. The DC voltage to be applied is preferably 9 to 15 volts (V), for example.
In addition, since the material of the cation exchange membrane 21, the anode electrode 22, and the cathode electrode 23 is the same as that of 1st Embodiment, the description is abbreviate | omitted. Further, the above grating may be wound around the outer periphery of the anode electrode 22.

このような触媒電極2Aを備えたオゾン水生成装置は、第一の実施の形態と同様に、触媒電極2Aを手で動かしたり、容器1を動かしたり、マグネットスターラ4及び攪拌装置を使用してオゾン水を生成することができる。   As in the first embodiment, the ozone water generating apparatus equipped with such a catalyst electrode 2A moves the catalyst electrode 2A by hand, moves the container 1, or uses the magnetic stirrer 4 and the stirring device. Ozone water can be generated.

以上、本発明の第二の実施の形態によれば、触媒電極2Aは中空を有する棒状部材20Aの外周面に、複数の貫通孔20c,20c,…を覆うようにして陰極電極23、陽イオン交換膜21、陽極電極22が順に重ねて巻き付けられているので、最外周に配された陽極電極22に原料水の多くが接触することにより、陽極電極22からオゾンガスが効率良く発生し、このオゾンガスが原料水中に溶解することでオゾン水が生成される。
一方、陰極電極23は棒状部材20Aの外周面の貫通孔20c,20c,…を覆うようにして、棒状部材20Aの外周面に直接巻き付けられているので、棒状部材20Aの空洞20bから貫通孔20c,20c,…を介して進入した原料水に陰極電極23が接触することにより発生した水素気泡は、容器1内の原料水の大部分に接触することなく、貫通孔20c,20c,…を介して棒状部材20Aの空洞20b内をそのまま上昇して系外に放出される。よって、水素気泡に阻害されずに、陽極電極22から生成したオゾンガスを有効に水中に溶解させてオゾン水化させることができる。その結果、オゾン濃度の減衰を抑制することができ、オゾン水生成効率を向上させることができる。また、このような触媒電極2Aを容器1内に挿入することにより、家庭内等でも簡易にオゾン水を生成でき、オゾン水の普及につながる。その上、系外に放出された水素ガスを捕集することにより、燃料電池に再利用することもできる。
As described above, according to the second embodiment of the present invention, the catalyst electrode 2A has the cathode electrode 23, the cation so that the outer peripheral surface of the hollow rod-shaped member 20A covers the plurality of through holes 20c, 20c,. Since the exchange membrane 21 and the anode electrode 22 are wound one on top of the other in order, ozone gas is efficiently generated from the anode electrode 22 when most of the raw material water contacts the anode electrode 22 disposed on the outermost periphery. Is dissolved in the raw water to produce ozone water.
On the other hand, the cathode electrode 23 is directly wound around the outer peripheral surface of the rod-shaped member 20A so as to cover the through-holes 20c, 20c,... On the outer peripheral surface of the rod-shaped member 20A. , 20c,..., And hydrogen bubbles generated when the cathode electrode 23 comes into contact with the raw material water that has entered through the through holes 20c, 20c,. Then, it rises as it is in the hollow 20b of the rod-shaped member 20A and is discharged out of the system. Therefore, the ozone gas generated from the anode electrode 22 can be effectively dissolved in water without being hindered by hydrogen bubbles to be converted into ozone water. As a result, attenuation of ozone concentration can be suppressed, and ozone water generation efficiency can be improved. Moreover, by inserting such a catalyst electrode 2A into the container 1, ozone water can be easily generated even at home and the like, leading to the spread of ozone water. Moreover, by collecting the hydrogen gas released outside the system, it can be reused in the fuel cell.

なお、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
例えば、上記第一及び第二の実施の形態の棒状部材20,20Aの平断面形状は、円形であるとしたが、矩形状であっても良いし、三角形状等であっても良い。また、溝部20a,20a,…や貫通孔20c,20c,…の数も適宜変更可能である。
In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change suitably.
For example, the flat cross-sectional shape of the rod-shaped members 20 and 20A of the first and second embodiments is circular, but may be rectangular, triangular, or the like. In addition, the number of grooves 20a, 20a,... And through holes 20c, 20c,.

また、容器1内のオゾン濃度を検出する濃度検出センサを設け、検出したオゾン濃度に基づいて電源装置が触媒電極2,2Aへの通電を制御するように構成しても良い。
具体的に、濃度検出センサは、検出電極と電位測定の基準となる比較電極、これら検出電極及び比較電極の一方の端部に結線して電位を測定する電位差計等から構成し、検出電極及び比較電極の先端部(他方の端部)を容器内の溶液中に浸し、検出電極のオゾン濃度変化による検出電極と比較電極との電位差を検出して濃度を測定するものとする。
検出電極としては、例えば白金や金等からなる電極を使用し、比較電極としては銀/塩化銀を使用することが好ましい。このようにして検出されたオゾン濃度と、予め設定されたオゾン濃度とが一致するように電源装置が陽極電極22及び陰極電極23間の電圧を制御する。
Further, a concentration detection sensor for detecting the ozone concentration in the container 1 may be provided, and the power supply device may be configured to control energization to the catalyst electrodes 2 and 2A based on the detected ozone concentration.
Specifically, the concentration detection sensor includes a detection electrode and a reference electrode serving as a reference for potential measurement, a potentiometer connected to one end of the detection electrode and the comparison electrode to measure a potential, and the like. The tip (the other end) of the comparison electrode is immersed in the solution in the container, and the concentration is measured by detecting the potential difference between the detection electrode and the comparison electrode due to the ozone concentration change of the detection electrode.
As the detection electrode, for example, an electrode made of platinum or gold is preferably used, and silver / silver chloride is preferably used as the comparison electrode. The power supply device controls the voltage between the anode electrode 22 and the cathode electrode 23 so that the ozone concentration detected in this manner matches the preset ozone concentration.

本発明の第一の実施の形態のオゾン水生成装置100の斜視図である。It is a perspective view of ozone water generating device 100 of a first embodiment of the present invention. (a)は、触媒電極2を構成する棒状部材20の外観斜視図、(b)は触媒電極2の外観斜視図、(c)は切断線II−IIに沿って切断した際の触媒電極2の矢視断面図である。(a) is an external perspective view of the rod-shaped member 20 constituting the catalyst electrode 2, (b) is an external perspective view of the catalyst electrode 2, and (c) is the catalyst electrode 2 when cut along the cutting line II-II. FIG. オゾン水生成装置100を使用してオゾン水を生成する方法の変形例を示した斜視図である。It is the perspective view which showed the modification of the method of producing | generating ozone water using the ozone water production | generation apparatus 100. FIG. オゾン水生成装置100を使用してオゾン水を生成する方法の変形例を示した斜視図である。It is the perspective view which showed the modification of the method of producing | generating ozone water using the ozone water production | generation apparatus 100. FIG. (a)は本発明の第二の実施の形態のオゾン水生成装置の触媒電極2Aを構成する棒状部材20Aの外観斜視図、(b)は触媒電極2Aの外観斜視図、(c)は切断線V−Vに沿って切断した際の触媒電極2Aの矢視断面図である。(a) is an external perspective view of the rod-shaped member 20A constituting the catalyst electrode 2A of the ozone water generating apparatus according to the second embodiment of the present invention, (b) is an external perspective view of the catalyst electrode 2A, and (c) is a cut view. It is arrow sectional drawing of 2 A of catalyst electrodes at the time of cut | disconnecting along line VV.

符号の説明Explanation of symbols

1 容器
2,2A 触媒電極
3 円筒状部材
20,20A 棒状部材
20a 溝部
20b 空洞
20c 貫通孔
21 陽イオン交換膜
22 陽極電極
23 陰極電極
100 オゾン水生成装置
DESCRIPTION OF SYMBOLS 1 Container 2, 2A Catalytic electrode 3 Cylindrical member 20, 20A Bar-shaped member 20a Groove part 20b Cavity 20c Through-hole 21 Cation exchange membrane 22 Anode electrode 23 Cathode electrode 100 Ozone water production | generation apparatus

Claims (4)

原料水を満たした容器と、前記容器内に挿入される触媒電極とを備え、
前記触媒電極は、柱状の棒状部材と、前記棒状部材の外周面に長手方向に沿って上下に貫通して形成された溝部を覆うように内側から順に重ねて巻き付けられた陰極電極と、陽イオン交換膜と、陽極電極とを備えており、
前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成することを特徴とするオゾン水生成装置。
A container filled with raw water, and a catalyst electrode inserted into the container,
The catalyst electrode includes a columnar rod-shaped member, a cathode electrode wound on the outer peripheral surface of the rod-shaped member so as to cover a groove formed vertically through the longitudinal direction, and a cation It has an exchange membrane and an anode electrode,
An ozone water generating apparatus, wherein ozone water is generated by applying a direct current voltage between the anode electrode and the cathode electrode.
原料水を満たした容器と、前記容器内に挿入される触媒電極とを備え、
前記触媒電極は、内部に上下に貫通する空洞を有する棒状部材と、前記棒状部材の外周面に前記空洞に貫通して形成された複数の貫通孔を覆うように内側から順に重ねて巻き付けられた陰極電極と、陽イオン交換膜と、陽極電極とを備えており、
前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成することを特徴とするオゾン水生成装置。
A container filled with raw water, and a catalyst electrode inserted into the container,
The catalyst electrode was wound in an overlapping manner in order from the inside so as to cover a rod-shaped member having a cavity penetrating vertically inside and a plurality of through-holes formed through the cavity on the outer peripheral surface of the rod-shaped member. A cathode electrode, a cation exchange membrane, and an anode electrode,
An ozone water generating apparatus, wherein ozone water is generated by applying a direct current voltage between the anode electrode and the cathode electrode.
前記触媒電極に、前記陰極電極、陽イオン交換膜及び陽極電極を前記棒状部材に固定する筒状部材が挿通されていることを特徴とする請求項1又は2に記載のオゾン水生成装置。   The ozone water generating apparatus according to claim 1 or 2, wherein a cylindrical member for fixing the cathode electrode, the cation exchange membrane and the anode electrode to the rod-shaped member is inserted into the catalyst electrode. 前記陽極電極の外周面に、その外周面を覆うようにグレーチングが設けられていることを特徴とする請求項1〜3のいずれか一項に記載のオゾン水生成装置。   Grating is provided in the outer peripheral surface of the said anode electrode so that the outer peripheral surface may be covered, The ozone water generating apparatus as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2005334486A 2005-11-18 2005-11-18 Ozone water generator Expired - Fee Related JP4256383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334486A JP4256383B2 (en) 2005-11-18 2005-11-18 Ozone water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334486A JP4256383B2 (en) 2005-11-18 2005-11-18 Ozone water generator

Publications (2)

Publication Number Publication Date
JP2007136356A true JP2007136356A (en) 2007-06-07
JP4256383B2 JP4256383B2 (en) 2009-04-22

Family

ID=38199847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334486A Expired - Fee Related JP4256383B2 (en) 2005-11-18 2005-11-18 Ozone water generator

Country Status (1)

Country Link
JP (1) JP4256383B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078701A1 (en) 2007-11-15 2009-07-15 Permelec Electrode Ltd. Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
US7891046B2 (en) 2006-02-10 2011-02-22 Tennant Company Apparatus for generating sparged, electrochemically activated liquid
US8007654B2 (en) 2006-02-10 2011-08-30 Tennant Company Electrochemically activated anolyte and catholyte liquid
US8012340B2 (en) 2006-02-10 2011-09-06 Tennant Company Method for generating electrochemically activated cleaning liquid
US8012339B2 (en) 2006-02-10 2011-09-06 Tennant Company Hand-held spray bottle having an electrolyzer and method therefor
US8016996B2 (en) 2006-02-10 2011-09-13 Tennant Company Method of producing a sparged cleaning liquid onboard a mobile surface cleaner
US8025787B2 (en) 2006-02-10 2011-09-27 Tennant Company Method and apparatus for generating, applying and neutralizing an electrochemically activated liquid
US8025786B2 (en) 2006-02-10 2011-09-27 Tennant Company Method of generating sparged, electrochemically activated liquid
US8046867B2 (en) 2006-02-10 2011-11-01 Tennant Company Mobile surface cleaner having a sparging device
US8236147B2 (en) 2008-06-19 2012-08-07 Tennant Company Tubular electrolysis cell and corresponding method
US8319654B2 (en) 2008-06-19 2012-11-27 Tennant Company Apparatus having electrolysis cell and indicator light illuminating through liquid
US8337690B2 (en) 2007-10-04 2012-12-25 Tennant Company Method and apparatus for neutralizing electrochemically activated liquids
US8485140B2 (en) 2008-06-05 2013-07-16 Global Patent Investment Group, LLC Fuel combustion method and system
JP2017013001A (en) * 2015-07-01 2017-01-19 シャープ株式会社 Functional water generator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046867B2 (en) 2006-02-10 2011-11-01 Tennant Company Mobile surface cleaner having a sparging device
US8012339B2 (en) 2006-02-10 2011-09-06 Tennant Company Hand-held spray bottle having an electrolyzer and method therefor
US8719999B2 (en) 2006-02-10 2014-05-13 Tennant Company Method and apparatus for cleaning surfaces with high pressure electrolyzed fluid
US8012340B2 (en) 2006-02-10 2011-09-06 Tennant Company Method for generating electrochemically activated cleaning liquid
US8156608B2 (en) 2006-02-10 2012-04-17 Tennant Company Cleaning apparatus having a functional generator for producing electrochemically activated cleaning liquid
US8016996B2 (en) 2006-02-10 2011-09-13 Tennant Company Method of producing a sparged cleaning liquid onboard a mobile surface cleaner
US8025787B2 (en) 2006-02-10 2011-09-27 Tennant Company Method and apparatus for generating, applying and neutralizing an electrochemically activated liquid
US8603320B2 (en) 2006-02-10 2013-12-10 Tennant Company Mobile surface cleaner and method for generating and applying an electrochemically activated sanitizing liquid having O3 molecules
US8007654B2 (en) 2006-02-10 2011-08-30 Tennant Company Electrochemically activated anolyte and catholyte liquid
US7891046B2 (en) 2006-02-10 2011-02-22 Tennant Company Apparatus for generating sparged, electrochemically activated liquid
US8025786B2 (en) 2006-02-10 2011-09-27 Tennant Company Method of generating sparged, electrochemically activated liquid
US8337690B2 (en) 2007-10-04 2012-12-25 Tennant Company Method and apparatus for neutralizing electrochemically activated liquids
EP2078701A1 (en) 2007-11-15 2009-07-15 Permelec Electrode Ltd. Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
US8485140B2 (en) 2008-06-05 2013-07-16 Global Patent Investment Group, LLC Fuel combustion method and system
US8319654B2 (en) 2008-06-19 2012-11-27 Tennant Company Apparatus having electrolysis cell and indicator light illuminating through liquid
US8236147B2 (en) 2008-06-19 2012-08-07 Tennant Company Tubular electrolysis cell and corresponding method
JP2017013001A (en) * 2015-07-01 2017-01-19 シャープ株式会社 Functional water generator

Also Published As

Publication number Publication date
JP4256383B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
JP4256383B2 (en) Ozone water generator
US8329024B2 (en) Electrochemical device and method for long-term measurement of hypohalites
KR102168258B1 (en) Membrane electrode assembly and electrolyzed water production device using the same
JP4801877B2 (en) Stirrer for hydrogen water production
JP2005105289A (en) Hydrogen water feeder
JP3616079B2 (en) Electrolytic ozone water production system
JP2009052105A (en) Ozone water production apparatus
JP4373984B2 (en) Hybrid ozone water generator
JP2007080769A (en) Method for generating plasma and plasma generator
JP4217233B2 (en) Ozone water generator
JP5004173B2 (en) Humidifier
JP4373985B2 (en) Ozone water generator
JP6391659B2 (en) Hydrogen water generator
JP4922508B2 (en) ELECTROLYTIC WATER GENERATION DEVICE FOR EMPTY BOTTLE AND METHOD FOR PRODUCING ELECTROLYTIC WATER FOR EMPTY BOTTLE
JP3914871B2 (en) Water purifier
JP2006346672A (en) Batch-type apparatus for producing acidic electrolytic water and method using the same
JP4291320B2 (en) Ozone water generator
JPH10328667A (en) Method for making sterilized water
JP4464362B2 (en) Ozone water generation method
JP2008136996A (en) Apparatus and method for deodorizing paint booth circulating water
RU2440930C2 (en) Method of obtaining anolyte and apparatus for realising said method
JP3676775B2 (en) Method and apparatus for oxidative decomposition of sludge
JP2012075973A (en) Method of generating ion water, and ion water generator
JP4035463B2 (en) Water purification equipment in water ecosystem
JP4645936B2 (en) Water sterilization method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081201

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees