JP2007134308A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2007134308A
JP2007134308A JP2006204996A JP2006204996A JP2007134308A JP 2007134308 A JP2007134308 A JP 2007134308A JP 2006204996 A JP2006204996 A JP 2006204996A JP 2006204996 A JP2006204996 A JP 2006204996A JP 2007134308 A JP2007134308 A JP 2007134308A
Authority
JP
Japan
Prior art keywords
battery
heat
negative electrode
positive electrode
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204996A
Other languages
Japanese (ja)
Inventor
Yosuke Nishiyama
陽介 西山
Yosuke Konishi
陽介 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006204996A priority Critical patent/JP2007134308A/en
Publication of JP2007134308A publication Critical patent/JP2007134308A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery which has an improved heat radiation property and can demonstrate a high stability even in a case of an internal heat generation due to a misuse. <P>SOLUTION: Inside an outer package member 10 is provided a battery element 20. A side surface of a battery can 11 made of stainless steel or the like of the outer package member 10 is coated with a coating member 18 composed of a thermoplastic sheet such as polypropylene. A side surface of the outer package member 10, namely, 70% or more of an area of the outer surface of the coated member 18 is set to have a radiant ratio of 0.6 or more to improve a heat radiation property by radiation and a temperature rise is prevented to delay starting of a thermorunaway. If necessary, a character or a pattern can be written on the outer surface of the coated member 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池素子を電池缶などの外装部材に収納した電池に関する。   The present invention relates to a battery in which a battery element is housed in an exterior member such as a battery can.

近年、カメラ一体型VTR(ビデオテープレコーダ),携帯電話あるいはノートパソコンなどのポータブル電子機器が多く登場し、その小型軽量化が図られている。これらの電子機器のポータブル電源として用いられている電池、特に二次電池はキーデバイスとして、エネルギー密度の向上を図る研究開発が活発に進められている。中でも、非水電解質二次電池(例えば、リチウムイオン二次電池)は、従来の水系電解液二次電池である鉛電池、ニッケルカドミウム電池と比較して大きなエネルギー密度が得られるので、その改良に関する検討が各方面で行われている。   In recent years, many portable electronic devices such as a camera-integrated VTR (video tape recorder), a mobile phone, or a notebook personal computer have appeared, and their size and weight have been reduced. Batteries used as portable power sources for these electronic devices, particularly secondary batteries, are actively used as key devices for research and development aimed at improving energy density. Among them, non-aqueous electrolyte secondary batteries (for example, lithium ion secondary batteries) can provide a larger energy density than conventional lead batteries and nickel cadmium batteries, which are conventional aqueous electrolyte secondary batteries. Considerations are being made in various directions.

従来のリチウムイオン電池に関する安全性の技術開発は、様々な誤使用時の状況を想定して行われてきた。発熱抑制の観点では、さらに大きく二つに分けられて、電池材料物性の改善と、電池の構造・機構の利用とがある。難燃性の電解液の開発、発熱量の小さい正極・負極活物質の採用などが前者の領域に入り、外部の保護回路による過充電・過放電の防止、安全弁によるガス噴出時の内圧減少などが後者に入る。
特開2002−208439号公報 ティ.ディ.ハッチャー(T.D.Hatchard )著「熱濫用時のリチウムイオン電池における放射による熱伝達の重要性(Importance of Heat Transfer by Radiation in Li-ion Batteries during Thermal Abuse)」、エレクトロケミカル アンド ソリッド ステート レターズ(Electro Chemical and Solid State Letters )、2000年、第3巻、第7号、p.305−308 特開昭62−119859号公報
Development of safety technology related to conventional lithium-ion batteries has been performed assuming various misuse situations. From the viewpoint of suppressing heat generation, it can be further divided into two categories: improvement of the physical properties of the battery material and utilization of the structure / mechanism of the battery. Development of flame retardant electrolytes, adoption of positive and negative electrode active materials with low calorific value, etc. entered the former domain, prevention of overcharge and overdischarge by external protection circuit, reduction of internal pressure at gas ejection by safety valve, etc. Goes into the latter.
JP 2002-208439 A Tee. Di. Hatcher (TDHatchard) “Importance of Heat Transfer by Radiation in Li-ion Batteries during Thermal Abuse”, Electro Chemical and Solid State Letters State Letters), 2000, Vol. 3, No. 7, p. 305-308 JP-A-62-119859

しかしながら、安全性の高い電池材料の採用は、電池の容量といった性能面とのトレードオフの関係や新物質探索にかかる期間を考えるとなかなか難しいのが現状であった。一方、新たな電池構造・機構による発熱の防止も次の一手が待たれていた。   However, it is currently difficult to adopt battery materials with high safety considering the trade-off relationship with performance such as battery capacity and the period for searching for new substances. On the other hand, prevention of heat generation by a new battery structure / mechanism has been waiting for the next step.

安全性技術開発のもう一つのアプローチである放熱促進という観点では、熱伝導率の良い電池材料を採用することがこの目的につながると考えられる。しかし、これも性能面とのトレードオフ関係のため、そうたやすく変更することはできなかった。   From the viewpoint of heat dissipation, which is another approach to safety technology development, it is considered that the adoption of battery materials with good thermal conductivity leads to this purpose. However, because of this trade-off relationship with performance, it could not be changed easily.

熱伝導を改善するための構造に関し、陽極および陰極の一方を金属パッケージと熱接触させるようにしたものがある(特許文献1参照。)。放熱促進に関しては、従来ではもっぱら電池内部の熱伝導および電池外表面と外部雰囲気との熱伝達のみ目が向けられていたため、新たな一手が出せずじまいの状況であった。また、電池の耐久性、電池能力、電池の製造におけるコストダウン等を目的として、電池外装材の改良が行われていた。(特許文献2参照。)   Regarding a structure for improving heat conduction, there is one in which one of an anode and a cathode is in thermal contact with a metal package (see Patent Document 1). With regard to heat radiation promotion, conventionally, only the heat conduction inside the battery and the heat transfer between the outer surface of the battery and the external atmosphere have been focused on, so that no new action has been taken out. In addition, battery exterior materials have been improved for the purpose of battery durability, battery capacity, cost reduction in battery production, and the like. (See Patent Document 2.)

ところで、放熱には、熱伝導および熱伝達という、温度差に比例した熱流束によって熱を逃がすほかに、温度の4乗の差に比例した熱流束を与える熱輻射という現象が知られているが、この現象を利用しようとする試みはほとんどなされてこなかった。その背景には、熱輻射は問題としている温度が室温に比べて極めて大きい数千度という場合に支配的になるので、せいぜい数百度の電池の内部発熱には効果がないのではないかという先入観があったと推測される。ちなみに、非特許文献1では、リチウムイオン電池の外缶にラベルがある場合とステンレス缶むき出しの状態とでは輻射率(熱輻射の効率を示す指標:0から1の値をとる)、ラベルがある方がホットボックス試験において熱暴走しにくかったことが報告されている。また、黒いインクをステンレス缶に塗布した場合の輻射率は0.9程度、であることも併せて報告されている。しかし、黒いインクを外缶に塗布することは、製造工程上難しいという問題があった。   By the way, for heat dissipation, heat conduction and heat transfer, in addition to releasing heat by a heat flux proportional to the temperature difference, a phenomenon of heat radiation giving a heat flux proportional to the fourth power of the temperature is known. There have been few attempts to take advantage of this phenomenon. Behind that, heat radiation becomes dominant when the temperature in question is several thousand degrees, which is extremely large compared to room temperature, so prejudice that the internal heat generation of batteries at most several hundred degrees is not effective. It is speculated that there was. By the way, in Non-Patent Document 1, there is a label with an emissivity (an index indicating the efficiency of heat radiation: taking a value from 0 to 1) when the outer can of the lithium ion battery has a label and when the stainless steel can is exposed. It was reported that it was harder to run out of heat in the hot box test. It has also been reported that the emissivity when black ink is applied to a stainless steel can is about 0.9. However, it has been difficult to apply black ink to the outer can in terms of the manufacturing process.

本発明はかかる問題点に鑑みてなされたもので、その目的は、電池の放熱性を向上させることができ、誤使用による内部発熱の場合にも高い安全性を発揮することができる電池を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide a battery that can improve the heat dissipation of the battery and can exhibit high safety even in the case of internal heat generation due to misuse. There is to do.

本発明による電池は、上下面に外部接続端子を有する電池素子と、電池素子の側面を覆うと共にその側表面の面積の70%以上が輻射率0.6以上持つ外装部材とを備えたものである。   A battery according to the present invention includes a battery element having external connection terminals on the upper and lower surfaces, and an exterior member that covers the side surface of the battery element and has 70% or more of the area of the side surface of which has an emissivity of 0.6 or more. is there.

また、輻射率は外装部材(主に高分子の熱収縮チューブ)の材料組成・厚みによって変わり、この輻射率の値自体は反射測定法で測定した値を採用する。   The emissivity varies depending on the material composition and thickness of the exterior member (mainly polymer heat-shrinkable tube), and the emissivity value itself is a value measured by a reflection measurement method.

本発明の電池によれば、外装部材の側表面の面積の70%以上を輻射率0.6以上としたので、側表面からの熱輻射で外気へ熱を効率的に逃がすことができる。よって、誤使用により何らかの内部発熱が発生した場合でも、熱暴走によるガス噴出や破裂などの危険性を抑制し、高い安全性を得ることができる。   According to the battery of the present invention, since 70% or more of the area of the side surface of the exterior member is set to an emissivity of 0.6 or more, heat can be efficiently released to the outside air by heat radiation from the side surface. Therefore, even if some internal heat generation occurs due to misuse, it is possible to suppress the risk of gas ejection or rupture due to thermal runaway and to obtain high safety.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, each component schematically shows the shape, size, and arrangement relationship to the extent that the present invention can be understood, and is different from the actual size.

図1は本発明の一実施の形態に係る電池の外観を表し、図2はその断面構造を表すものである。この電池は、いわゆる円筒型のリチウムイオン二次電池であり、ほぼ中空円柱状の外装部材10の内部に、電池素子20を有している。   FIG. 1 shows the appearance of a battery according to an embodiment of the present invention, and FIG. 2 shows its cross-sectional structure. This battery is a so-called cylindrical lithium ion secondary battery, and has a battery element 20 inside a substantially hollow cylindrical exterior member 10.

外装部材10は、電池缶11の側面を被覆部材18で覆ったものである。電池缶11は、電池素子20を収納するためのものであり、例えばステンレス鋼により構成され、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、電池素子20を挟むように巻回周面に対して垂直に一対の絶縁板12,13がそれぞれ配置されている。電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、ガスケット17を間にしてかしめられることにより取り付けられており、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板15Aが反転して電池蓋14と電池素子20との電気的接続を切断するようになっている。熱感抵抗素子16は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。   The exterior member 10 is obtained by covering the side surface of the battery can 11 with a covering member 18. The battery can 11 is for housing the battery element 20 and is made of, for example, stainless steel, and has one end closed and the other end open. Inside the battery can 11, a pair of insulating plates 12 and 13 are arranged perpendicular to the winding peripheral surface so as to sandwich the battery element 20. At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 and a thermal resistance element (Positive Temperature Coefficient; PTC element) 16 provided inside the battery lid 14, have a gasket 17 in between. The battery can 11 is attached by being caulked, and the inside of the battery can 11 is sealed. The battery lid 14 is made of, for example, the same material as the battery can 11. The safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16, and the disk plate 15A is reversed when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating. Thus, the electrical connection between the battery lid 14 and the battery element 20 is cut off. When the temperature rises, the heat sensitive resistance element 16 limits the current by increasing the resistance value and prevents abnormal heat generation due to a large current. The gasket 17 is made of, for example, an insulating material, and asphalt is applied to the surface.

なお、ここでは、電池缶11の開放端部の端面、すなわち電池蓋14で閉鎖された端面を上面、電池缶11の閉鎖端部の端面、すなわち電池蓋14に対向する端面を下面とし、これら電池缶11の上面および下面に直交するすべての面を側面という。   Here, the end surface of the open end of the battery can 11, that is, the end surface closed by the battery lid 14 is the upper surface, and the end surface of the closed end of the battery can 11, that is, the end surface facing the battery lid 14 is the lower surface. All surfaces orthogonal to the upper and lower surfaces of the battery can 11 are referred to as side surfaces.

被覆部材18は、例えばポリ塩化ビニルなどの熱可塑性シートにより構成されている。なお、被覆部材18は、脱落などを防ぐため、電池缶11の側面全体を覆い、上面および下面の縁に少しかかるように設けられていてもよい。   The covering member 18 is made of a thermoplastic sheet such as polyvinyl chloride. Note that the covering member 18 may be provided so as to cover the entire side surface of the battery can 11 and slightly cover the edges of the upper surface and the lower surface in order to prevent dropping.

外装部材10の側表面、すなわち被覆部材18の外表面は、電池素子20の温度上昇を効果的に抑制するために、その面積の70%以上が例えば黒色となっており、輻射率0.6以上となっている。これにより、この電池では、熱輻射性を向上させて安全性を高めることができるようになっている。ここで、外装部材10の側表面とは電池素子20から最も遠い側面をいい、被覆部材18の外表面とは電池缶11との接触面の反対側の面をいう。   In order to effectively suppress an increase in the temperature of the battery element 20, the side surface of the exterior member 10, that is, the outer surface of the covering member 18, is 70% or more of the area, for example, black and has an emissivity of 0.6. That's it. Thereby, in this battery, heat radiation property can be improved and safety can be improved. Here, the side surface of the exterior member 10 refers to the side surface farthest from the battery element 20, and the outer surface of the covering member 18 refers to the surface opposite to the contact surface with the battery can 11.

このような被覆部材18としては、例えば、外表面の面積の70%以上が黒色に着色されているものが好ましい。輻射は表面の性質が大きく効く物理現象だからである。また、被覆部材18自体が黒色樹脂などの黒色の材料により構成され、かつ被覆部材18の外表面はなめらかで凹凸がない面であることが望ましい。   As such a covering member 18, for example, a member in which 70% or more of the area of the outer surface is colored black is preferable. This is because radiation is a physical phenomenon whose surface properties are highly effective. Further, it is desirable that the covering member 18 itself is made of a black material such as a black resin, and that the outer surface of the covering member 18 is smooth and has no unevenness.

黒色であるということは、CMYカラーモデルにおいて、C(cyan),M(magenta),Y(yellow)のいずれも70以上である色をいう。   Being black means a color in which all of C (cyan), M (magenta), and Y (yellow) are 70 or more in the CMY color model.

被覆部材18の外表面には必要に応じて文字や模様などが記載されていてもよい。文字や模様の色,形状あるいは配置は特に限定されず、文字や模様が外表面の一部に集中している必要もない。これらの文字や模様の態様にかかわらず、外表面全体の面積の70%が輻射率0.6以上であればよい。   Characters, patterns, and the like may be written on the outer surface of the covering member 18 as necessary. The color, shape, or arrangement of the characters and patterns is not particularly limited, and the characters and patterns do not need to be concentrated on a part of the outer surface. Regardless of the form of these letters and patterns, 70% of the area of the entire outer surface may be an emissivity of 0.6 or more.

電池素子20は、正極21と負極22とをセパレータ23を間にして積層し、渦巻き状に巻回したものであり、中心にはセンターピン24が挿入されている。正極21は、例えば、アルミニウム箔等よりなる正極集電体にリチウム含有化合物等の正極活物質を含む電極層が設けられたものであり、負極22は、例えば、銅箔等よりなる負極集電体にリチウムを吸蔵・離脱可能な炭素材料等の負極活物質を含む電極層が設けられたものである。また、セパレータ23は、例えば、ポリプロピレン(PP)等の多孔質膜により構成されており、セパレータには、例えば、リチウム塩などの電解質塩を炭酸エステルなどの非水溶媒に溶解させた電解液が含浸されている。電池素子20の正極21にはアルミニウム(Al)などよりなる正極リード25が接続されており、負極22にはニッケル(Ni)などよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11Aに溶接され電気的に接続されている。すなわち、この電池素子20では、上面の電池蓋14が正極側の外部接続端子、電池缶11Aの下面すなわち裏面部分が負極側の外部接続端子となっている。   The battery element 20 is formed by laminating a positive electrode 21 and a negative electrode 22 with a separator 23 therebetween and winding them in a spiral shape, and a center pin 24 is inserted in the center. The positive electrode 21 is a positive electrode current collector made of, for example, an aluminum foil, and an electrode layer containing a positive electrode active material such as a lithium-containing compound, and the negative electrode 22 is made of, for example, a negative electrode current collector made of copper foil or the like. The body is provided with an electrode layer including a negative electrode active material such as a carbon material capable of inserting and extracting lithium. Moreover, the separator 23 is comprised by porous membranes, such as a polypropylene (PP), for example, The electrolyte solution which dissolved electrolyte salt, such as lithium salt, in non-aqueous solvents, such as carbonate ester, is used for a separator, for example. Impregnated. A positive electrode lead 25 made of aluminum (Al) or the like is connected to the positive electrode 21 of the battery element 20, and a negative electrode lead 26 made of nickel (Ni) or the like is connected to the negative electrode 22. The positive electrode lead 25 is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15, and the negative electrode lead 26 is welded and electrically connected to the battery can 11A. That is, in this battery element 20, the battery lid 14 on the upper surface is an external connection terminal on the positive electrode side, and the lower surface of the battery can 11A, that is, the back surface portion is an external connection terminal on the negative electrode side.

この電池は、例えば、次のようにして製造することができる。   This battery can be manufactured, for example, as follows.

まず、上述した熱可塑性シートよりなる被覆部材18を用意し、例えばプリントにより、外表面の面積の70%以上を黒色に着色し、輻射率0.6以上にすると共に必要に応じて文字や模様などを記載する。あるいは、黒色樹脂などの高輻射率の樹脂材料よりなる被覆部材18を用いる場合には、プリントにより必要に応じて文字や模様などを記載し、その際、外表面の面積の70%以上を高輻射率の樹脂のままにしておき、輻射率0.6以上とする。   First, the covering member 18 made of the above-described thermoplastic sheet is prepared. For example, by printing, 70% or more of the area of the outer surface is colored black so that the emissivity is 0.6 or more, and characters and patterns are used as necessary. Describe etc. Alternatively, when using the covering member 18 made of a high emissivity resin material such as a black resin, a letter or a pattern is described as necessary by printing, and at that time, 70% or more of the area of the outer surface is increased. The resin with the emissivity is left as it is, and the emissivity is 0.6 or more.

次いで、この被覆部材18を、例えば熱収縮により、上述した材料よりなる電池缶11の側面に被せ、外装部材10を形成する。   Next, the covering member 18 is placed on the side surface of the battery can 11 made of the above-described material, for example, by heat shrinkage, and the exterior member 10 is formed.

また、電池素子20を作製する。例えば、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドン(NMP)などの溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、この正極合剤スラリーを正極集電体にドクタブレードあるいはバーコーターなどを用いて均一に塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮、加熱成型して正極活物質層を形成し、正極21を作製する。   Moreover, the battery element 20 is produced. For example, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) to form a paste. The positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is uniformly applied to the positive electrode current collector using a doctor blade or a bar coater, and the solvent is dried. Then, the positive electrode active material layer is formed by compression and heat molding using a roll press machine or the like. Then, the positive electrode 21 is produced.

次いで、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーとする。続いて、この負極合剤スラリーを負極集電体にドクタブレードあるいはバーコーターなどを用いて均一に塗布し溶剤を乾燥させたのち、ロールプレス機により圧縮、加熱成型して負極合剤層を形成し、負極22を作製する。ロールプレス機は加熱して用いてもよい。また、目的の物性値になるまで複数回圧縮成型してもよい。更に、ロールプレス機以外のプレス機を用いてもよい。   Next, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like negative electrode mixture slurry. And Subsequently, the negative electrode mixture slurry is uniformly applied to the negative electrode current collector using a doctor blade or a bar coater, and the solvent is dried. Then, the negative electrode mixture layer is formed by compression and heat molding with a roll press machine. Then, the negative electrode 22 is produced. The roll press machine may be used by heating. Moreover, you may compression-mold several times until it becomes the target physical-property value. Furthermore, you may use press machines other than a roll press machine.

正極21および負極22を作製したのち、正極21に正極リード25を溶接などにより取り付けると共に、負極22に負極リード26を溶接などにより取り付ける。そののち、正極21と負極22とをセパレータ23を間にして積層し多数回巻回して電池素子20を作製する。   After producing the positive electrode 21 and the negative electrode 22, the positive electrode lead 25 is attached to the positive electrode 21 by welding or the like, and the negative electrode lead 26 is attached to the negative electrode 22 by welding or the like. After that, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween and wound many times to produce the battery element 20.

電池素子20を作製したのち、電池素子20を一対の絶縁板12,13で挟み、負極リード26を電池缶11に溶接すると共に、正極リード25を安全弁機構15に溶接して、電池素子20を電池缶11の内部に収容し、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。そののち、電池缶11の開口端部に電池蓋14,安全弁機構15および熱感抵抗素子16をガスケット17の間にしてかしめることにより固定する。これにより、図1に示した電池が完成する。   After the battery element 20 is manufactured, the battery element 20 is sandwiched between the pair of insulating plates 12 and 13, the negative electrode lead 26 is welded to the battery can 11, and the positive electrode lead 25 is welded to the safety valve mechanism 15. The battery can 11 is accommodated in the battery can 11, and the electrolytic solution is injected into the battery can 11 and impregnated in the separator 23. Thereafter, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking between the gaskets 17. Thereby, the battery shown in FIG. 1 is completed.

この電池では、充電を行うと、正極21からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して負極22に吸蔵される。放電を行うと、負極22からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して正極21に吸蔵される。このとき、電池外部への熱の移動は、熱伝達と熱輻射との2種類があり、熱伝達は雰囲気の種類や流動状態に依存し、電池自体が持つパラメータにより制御することはできない。一方、熱輻射は外装部材10の側表面、すなわち電池缶11の側面を覆う被覆部材18の外表面の材料や形状に依存する。熱伝達と熱輻射による外部への熱の移動は、熱輻射が最も効率の良い黒体放射の場合を仮定すると熱伝達と同程度の大きさがあるので、熱輻射を効率良く利用することにより安全性が向上する。   In this battery, when charged, lithium ions are released from the positive electrode 21 and inserted in the negative electrode 22 through the electrolytic solution impregnated in the separator 23. When discharging is performed, lithium ions are released from the negative electrode 22 and inserted in the positive electrode 21 through the electrolytic solution impregnated in the separator 23. At this time, there are two types of heat transfer to the outside of the battery, heat transfer and heat radiation. The heat transfer depends on the type of atmosphere and the flow state, and cannot be controlled by parameters of the battery itself. On the other hand, thermal radiation depends on the material and shape of the outer surface of the covering member 18 that covers the side surface of the exterior member 10, that is, the side surface of the battery can 11. The heat transfer to the outside by heat transfer and heat radiation is as large as heat transfer, assuming that heat radiation is the most efficient black body radiation, so by using heat radiation efficiently Safety is improved.

ここでは、外装部材10の側表面、すなわち被覆部材18の外表面の面積の70%以上が輻射率0.6以上とされているので、側表面からの熱輻射で外気へ熱が効率的に逃がされる。また、誤使用により何らかの内部発熱が発生した場合でも、電池内部に発生した熱がより多く逃がされ、熱暴走の開始が遅くなり、ガス噴出や破裂などの危険性が抑制される。   Here, 70% or more of the area of the side surface of the exterior member 10, that is, the outer surface of the covering member 18, is set to have an emissivity of 0.6 or more, so that heat is efficiently transferred to the outside air by heat radiation from the side surface. Escaped. Also, even if some internal heat generation occurs due to misuse, more heat generated inside the battery is released, the start of thermal runaway is delayed, and the risk of gas ejection and rupture is suppressed.

このように本実施の形態によれば、外装部材10の側表面の面積の70%以上を輻射率0.6以上としたので、熱輻射性を向上させることができ、誤使用による内部発熱の場合にも高い安全性を発揮することができる。   As described above, according to the present embodiment, since 70% or more of the area of the side surface of the exterior member 10 is set to an emissivity of 0.6 or more, the heat radiation can be improved, and internal heat generation due to misuse can be improved. Even in the case, high safety can be exhibited.

なお、上記実施の形態では、電池缶11の側面を被覆部材18で覆い、この被覆部材18の外表面の面積の70%以上を輻射率0.6以上とするようにしたが、被覆部材18は必ずしも設けられていなくてもよい。この場合、外装部材10の側表面、すなわち電池缶11の側表面の面積の70%以上が輻射率0.6以上であれば、側表面の熱輻射性が増大し、上記実施の形態と同様の効果を得ることができる。この場合、電池缶11の側表面を輻射率0.6以上とするには、例えばスプレーを塗布して着色するなどの方法が可能である。   In the above embodiment, the side surface of the battery can 11 is covered with the covering member 18, and 70% or more of the area of the outer surface of the covering member 18 is set to have an emissivity of 0.6 or more. May not necessarily be provided. In this case, if 70% or more of the area of the side surface of the exterior member 10, that is, the side surface of the battery can 11, has an emissivity of 0.6 or more, the heat radiation property of the side surface is increased and is the same as in the above embodiment. The effect of can be obtained. In this case, in order to make the side surface of the battery can 11 have an emissivity of 0.6 or more, for example, a method of coloring by applying a spray is possible.

更に、本発明の具体的な実施例について詳細に説明する。   Further, specific embodiments of the present invention will be described in detail.

(実施例1〜3)
上記実施の形態で説明した電池を作製した。実施例1では、ステンレス鋼よりなる電池缶11の側表面の全体に黒色スプレーを塗布した。実施例2では、側表面の面積の70%に黒色スプレーを塗布した。実施例3では、緑色のポリプロピレン/ポリエチレン混合のチューブよりなる被覆部材18を電池缶11に被せることで、側表面の面積の70%を輻射率0.6以上にした。輻射率の値は反射測定により、実施例1,2のスプレー塗布部分において0.91、実施例3のチューブ被覆部において0.6であった。電池の寸法・形状は、直径18mm、高さ65mmの円筒形とした。
(Examples 1-3)
The battery described in the above embodiment was manufactured. In Example 1, black spray was applied to the entire side surface of the battery can 11 made of stainless steel. In Example 2, black spray was applied to 70% of the side surface area. In Example 3, 70% of the area of the side surface was made emissivity 0.6 or more by covering the battery can 11 with the covering member 18 made of a green polypropylene / polyethylene mixed tube. The value of the emissivity was 0.91 in the spray coating part of Examples 1 and 2 and 0.6 in the tube coating part of Example 3 by reflection measurement. The size and shape of the battery was a cylindrical shape with a diameter of 18 mm and a height of 65 mm.

実施例1〜3に対する比較例1として、ステンレス鋼よりなる電池缶の側表面にスプレーを塗布せず、むき出しの状態にしたことを除いては、上記実施例1,2と同様にして電池を作製した。比較例1の輻射率を反射測定法により測定したところ、0.12であった。   As Comparative Example 1 with respect to Examples 1 to 3, a battery was prepared in the same manner as in Examples 1 and 2 except that the spray was not applied to the side surface of the battery can made of stainless steel and the surface was exposed. Produced. The emissivity of Comparative Example 1 was measured by a reflection measurement method and found to be 0.12.

また、比較例2および3として、ステンレス鋼よりなる電池缶の側表面に黒色スプレーを塗布することにより、比較例3では側表面の面積の60%、比較例4では50%を黒色としたことを除いては、上記実施例1および2と同様にして電池を作成した。   Further, as Comparative Examples 2 and 3, by applying black spray to the side surface of the battery can made of stainless steel, 60% of the side surface area was made black in Comparative Example 3, and 50% was made black in Comparative Example 4. A battery was prepared in the same manner as in Examples 1 and 2 except for the above.

得られた実施例1〜3および比較例1〜3の電池について、電池電圧が4.35Vに達するまで充電した後、130℃のホットボックス試験を行い、電池の表面温度の変化を測定した。この表面温度の変化の測定は、安立計器株式会社製の表面用温度センサを用いて、センサのヘッド部(熱電対)を電池表面に押し当てることで、電池の表面温度を測定した。オーブン内における電池の配置は、図3に示すようにした。実施例1,3および比較例1の結果を図4に、実施例1,2と比較例2,3の結果を図5に示す。   About the obtained battery of Examples 1-3 and Comparative Examples 1-3, after charging until a battery voltage reached 4.35V, the 130 degreeC hot box test was done and the change of the surface temperature of a battery was measured. The change in the surface temperature was measured by pressing the sensor head (thermocouple) against the battery surface using a surface temperature sensor manufactured by Anritsu Keiki Co., Ltd. The arrangement of the batteries in the oven was as shown in FIG. The results of Examples 1 and 3 and Comparative Example 1 are shown in FIG. 4, and the results of Examples 1 and 2 and Comparative Examples 2 and 3 are shown in FIG.

図4から分かるように、実施例1および3では、比較例1よりも温度上昇が抑えられて熱暴走が回避されている。つまり、輻射率を0.6以上とすれば、温度上昇が抑えられる。さらに、図5から側表面積が黒色に塗布してある部分の割合を50%〜70%で変化させたところ、70%以上であれば、電池表面温度の上昇が始まり出す時の経過時間が、実施例と比較例の間で約10分間位の差がある。つまり、側表面積の70%以上を黒色にすることで、温度上昇が抑えることができる。以上のことから、側表面の面積の70%以上を輻射率0.6以上となるようにすれば、電池の熱暴走を抑え、安全性を向上させることができることが分かった。   As can be seen from FIG. 4, in Examples 1 and 3, the temperature rise is suppressed more than in Comparative Example 1, and thermal runaway is avoided. That is, if the emissivity is 0.6 or more, the temperature rise can be suppressed. Furthermore, when the ratio of the portion where the side surface area is applied in black is changed from 50% to 70% from FIG. 5, if it is 70% or more, the elapsed time when the battery surface temperature starts to rise, There is a difference of about 10 minutes between the example and the comparative example. That is, the temperature rise can be suppressed by making 70% or more of the side surface area black. From the above, it was found that if 70% or more of the area of the side surface has an emissivity of 0.6 or more, thermal runaway of the battery can be suppressed and safety can be improved.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例では、被覆部材18が、電池缶11の側面全体を覆い、上面および下面の縁に少しかかるように設けられている場合について説明したが、電池缶11の側面の一部だけを覆うようにしてもよい。その場合、被覆部材18は電池缶11の側面のうち少なくとも電池素子の下端に対応する位置からかしめ部分の下端までを覆っていれば足りる。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples, and various modifications can be made. For example, in the above-described embodiments and examples, the case where the covering member 18 is provided so as to cover the entire side surface of the battery can 11 and slightly cover the edges of the upper surface and the lower surface has been described. You may make it cover only a part of. In that case, it is sufficient that the covering member 18 covers at least the position corresponding to the lower end of the battery element from the side surface of the battery can 11 to the lower end of the caulking portion.

また、上記実施の形態および実施例では、被覆部材18自体に文字や模様などを記載する場合について説明したが、被覆部材18は、文字や模様などを記載したラベルとは別に設けられていてもよい。   Moreover, although the said embodiment and Example demonstrated the case where a character, a pattern, etc. were described on the covering member 18 itself, the covering member 18 may be provided separately from the label which described the character, the pattern, etc. Good.

更に、例えば、上記実施の形態において説明した各構成要素の材料および厚み、または製造方法および条件などは限定されるものではなく、他の材料および厚みとしてもよく、または他の製造方法および条件としてもよい。例えば、電池缶11はステンレス以外の他の材料、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されていてもよいし、被覆部材18の文字または模様は、プリント以外の他の方法で記載されていてもよい。   Further, for example, the material and thickness of each component described in the above embodiment, the manufacturing method and conditions, etc. are not limited, and may be other materials and thicknesses, or other manufacturing methods and conditions. Also good. For example, the battery can 11 may be made of a material other than stainless steel, for example, iron (Fe) plated with nickel (Ni), and the character or pattern of the covering member 18 may be other than printing. It may be described in a method.

加えて、上記実施の形態および実施例では、円筒型の電池缶11を用いた二次電池を具体的に挙げて説明したが、本発明は、角型の電池缶11を有する二次電池についても同様に適用することができる。また、上記実施の形態では、二次電池について説明したが、一次電池などの他の電池についても同様に適用することができる。更に、本発明は充電電圧によらず効果があり、実施例によって規定されるものではない。   In addition, in the above-described embodiments and examples, the secondary battery using the cylindrical battery can 11 has been specifically described, but the present invention relates to a secondary battery having the square battery can 11. Can be applied similarly. Moreover, although the secondary battery has been described in the above embodiment, the present invention can be similarly applied to other batteries such as a primary battery. Furthermore, the present invention is effective regardless of the charging voltage, and is not defined by the examples.

更にまた、上記実施の形態および実施例では、正極21および負極22を巻回するようにしたが、正極および負極を折り畳むあるいは積み重ねてもよい。   Furthermore, in the above embodiment and example, the positive electrode 21 and the negative electrode 22 are wound, but the positive electrode and the negative electrode may be folded or stacked.

加えて、また、例えば、上記実施の形態および実施例では、溶媒に液状の電解質である電解液を用いる場合について説明したが、電解液に代えて、他の電解質を用いるようにしてもよい。他の電解質としては、例えば、電解液を高分子化合物に保持させたゲル状の電解質、イオン伝導性を有する固体電解質、固体電解質と電解液とを混合したもの、あるいは固体電解質とゲル状の電解質とを混合したものが挙げられる。   In addition, for example, in the embodiments and examples described above, the case where an electrolytic solution that is a liquid electrolyte is used as a solvent has been described, but another electrolyte may be used instead of the electrolytic solution. Other electrolytes include, for example, a gel electrolyte in which an electrolyte is held in a polymer compound, a solid electrolyte having ionic conductivity, a mixture of a solid electrolyte and an electrolyte, or a solid electrolyte and a gel electrolyte. And a mixture thereof.

更にまた、上記実施の形態および実施例では、電極反応物質としてリチウムを用いる場合について説明したが、ナトリウム(Na)あるいはカリウム(K)などの長周期型周期表における他の1族の元素、またはマグネシウムあるいはカルシウム(Ca)などの長周期型周期表における2族の元素、またはアルミニウムなどの他の軽金属、またはリチウムあるいはこれらの合金を用いる場合についても、本発明を適用することができ、同様の効果を得ることができる。その際、電極反応物質を吸蔵および放出することが可能な負極活物質、正極活物質あるいは溶媒などは、その電極反応物質に応じて選択される。   Furthermore, in the above embodiments and examples, the case where lithium is used as the electrode reactant has been described. However, other group 1 elements in the long-period periodic table such as sodium (Na) or potassium (K), or The present invention can also be applied to the case of using elements of Group 2 in the long-period periodic table such as magnesium or calcium (Ca), other light metals such as aluminum, lithium, or alloys thereof. An effect can be obtained. At that time, a negative electrode active material, a positive electrode active material, a solvent, or the like that can occlude and release the electrode reactant is selected according to the electrode reactant.

本発明の一実施の形態に係る電池の外観を表す斜視図である。It is a perspective view showing the external appearance of the battery which concerns on one embodiment of this invention. 図1に示した電池の縦断面図である。It is a longitudinal cross-sectional view of the battery shown in FIG. 本発明の実施例および比較例におけるオーブン内の電池の配置を表す斜視図である。It is a perspective view showing arrangement | positioning of the battery in oven in the Example and comparative example of this invention. 電池の被覆部材に係る温度上昇の結果を表す図である。It is a figure showing the result of the temperature rise which concerns on the coating | coated member of a battery. 電池の側表面面積に対する黒色面積に係る温度上昇の結果を表す図である。It is a figure showing the result of the temperature rise which concerns on the black area with respect to the side surface area of a battery.

符号の説明Explanation of symbols

10…外装部材、11…電池缶、12,13…絶縁板、14…電池蓋、15…安全弁機構、16…熱感抵抗素子、17…ガスケット、18…被覆部材、20…電池素子、21…正極、22…負極、23…セパレータ、24…センターピン、25…正極リード、26…負極リード。   DESCRIPTION OF SYMBOLS 10 ... Exterior member, 11 ... Battery can, 12, 13 ... Insulating plate, 14 ... Battery cover, 15 ... Safety valve mechanism, 16 ... Heat sensitive resistance element, 17 ... Gasket, 18 ... Cover member, 20 ... Battery element, 21 ... Positive electrode, 22 ... negative electrode, 23 ... separator, 24 ... center pin, 25 ... positive electrode lead, 26 ... negative electrode lead.

Claims (2)

上下面に外部接続端子を有する電池素子と、
前記電池素子の側面を覆うと共に、当該側表面の面積の70%以上が輻射率0.6以上持つ外装部材と
を備えたことを特徴とする電池。
A battery element having external connection terminals on the upper and lower surfaces;
A battery comprising: an exterior member that covers a side surface of the battery element and has 70% or more of the area of the side surface having an emissivity of 0.6 or more.
前記外装部材は、電池缶の側面を被覆部材により覆ったものであり、
前記被覆部材の外表面積の70%以上が輻射率0.6以上もつ
ことを特徴とする請求項1記載の電池。
The exterior member is obtained by covering the side surface of the battery can with a covering member,
The battery according to claim 1, wherein 70% or more of the outer surface area of the covering member has an emissivity of 0.6 or more.
JP2006204996A 2005-10-14 2006-07-27 Battery Pending JP2007134308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204996A JP2007134308A (en) 2005-10-14 2006-07-27 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005299640 2005-10-14
JP2006204996A JP2007134308A (en) 2005-10-14 2006-07-27 Battery

Publications (1)

Publication Number Publication Date
JP2007134308A true JP2007134308A (en) 2007-05-31

Family

ID=38155778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204996A Pending JP2007134308A (en) 2005-10-14 2006-07-27 Battery

Country Status (1)

Country Link
JP (1) JP2007134308A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142884A1 (en) 2007-05-21 2008-11-27 Takata Corporation Air-bag device for walker and car with the same
JP2010262899A (en) * 2009-05-11 2010-11-18 Toyota Motor Corp Secondary battery and battery case
CN102055009A (en) * 2009-10-30 2011-05-11 索尼公司 Nonaqueous electrolyte battery
WO2012111231A1 (en) * 2011-02-16 2012-08-23 日産自動車株式会社 Cell case, and structure for attaching cell case
CN105514485A (en) * 2015-12-29 2016-04-20 东莞新能源科技有限公司 Columnar lithium ion battery
JP2016171091A (en) * 2016-06-29 2016-09-23 ソニー株式会社 Outer packaging material and battery
JP2019071284A (en) * 2018-12-27 2019-05-09 株式会社村田製作所 Exterior material and battery
WO2020017237A1 (en) * 2018-07-17 2020-01-23 三洋電機株式会社 Cylindrical battery and battery module
DE102018219433A1 (en) 2018-11-14 2020-05-14 Robert Bosch Gmbh Electrical energy storage cell, electrical energy storage and device
US10862083B2 (en) 2011-05-27 2020-12-08 Murata Manufacturing Co., Ltd. Battery unit, battery module, power storage system, electronic device, electric power system, and electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785847A (en) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd Unit cell and battery system of sealed type alkaline storage battery
JPH10214604A (en) * 1997-01-31 1998-08-11 Toshiba Battery Co Ltd Battery and nickel hydrogen secondary battery
JP2002231192A (en) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd Battery
JP2005285723A (en) * 2004-03-29 2005-10-13 Kenkoku Ryu Highly active battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785847A (en) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd Unit cell and battery system of sealed type alkaline storage battery
JPH10214604A (en) * 1997-01-31 1998-08-11 Toshiba Battery Co Ltd Battery and nickel hydrogen secondary battery
JP2002231192A (en) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd Battery
JP2005285723A (en) * 2004-03-29 2005-10-13 Kenkoku Ryu Highly active battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142884A1 (en) 2007-05-21 2008-11-27 Takata Corporation Air-bag device for walker and car with the same
JP2010262899A (en) * 2009-05-11 2010-11-18 Toyota Motor Corp Secondary battery and battery case
CN105355805B (en) * 2009-10-30 2019-07-19 株式会社村田制作所 Nonaqueous electrolyte battery
CN102055009A (en) * 2009-10-30 2011-05-11 索尼公司 Nonaqueous electrolyte battery
CN105355805A (en) * 2009-10-30 2016-02-24 索尼公司 Nonaqueous electrolyte battery
JP2011096552A (en) * 2009-10-30 2011-05-12 Sony Corp Nonaqueous electrolyte battery
US10305071B2 (en) 2009-10-30 2019-05-28 Murata Manufacturing Co., Ltd. Battery package including blackbody material layer and nonaqueous electrolyte battery including the same
US9431639B2 (en) 2009-10-30 2016-08-30 Sony Corporation Battery and a package for a battery
CN102055009B (en) * 2009-10-30 2015-11-25 索尼公司 Nonaqueous electrolyte battery
US9224991B2 (en) 2009-10-30 2015-12-29 Sony Corporation Nonaqueous electrolyte battery
US9236584B2 (en) 2009-10-30 2016-01-12 Sony Corporation Nonaqueous electrolyte battery including package member having blackbody material layer
CN105261805A (en) * 2009-10-30 2016-01-20 索尼公司 Nonaqueous electrolyte battery
CN103380533A (en) * 2011-02-16 2013-10-30 日产自动车株式会社 Cell case, and structure for attaching cell case
WO2012111231A1 (en) * 2011-02-16 2012-08-23 日産自動車株式会社 Cell case, and structure for attaching cell case
US8808899B2 (en) 2011-02-16 2014-08-19 Nissan Motor Co., Ltd. Cell case and structure for attaching cell case
JP2012169213A (en) * 2011-02-16 2012-09-06 Nissan Motor Co Ltd Battery case and attachment structure of the same
US10862083B2 (en) 2011-05-27 2020-12-08 Murata Manufacturing Co., Ltd. Battery unit, battery module, power storage system, electronic device, electric power system, and electric vehicle
CN105514485A (en) * 2015-12-29 2016-04-20 东莞新能源科技有限公司 Columnar lithium ion battery
JP2016171091A (en) * 2016-06-29 2016-09-23 ソニー株式会社 Outer packaging material and battery
WO2020017237A1 (en) * 2018-07-17 2020-01-23 三洋電機株式会社 Cylindrical battery and battery module
JP7250792B2 (en) 2018-07-17 2023-04-03 三洋電機株式会社 Cylindrical batteries and battery modules
JPWO2020017237A1 (en) * 2018-07-17 2021-08-02 三洋電機株式会社 Cylindrical battery and battery module
DE102018219433A1 (en) 2018-11-14 2020-05-14 Robert Bosch Gmbh Electrical energy storage cell, electrical energy storage and device
WO2020099227A1 (en) 2018-11-14 2020-05-22 Robert Bosch Gmbh Electric energy storage cell, electric energy store, and device
CN112956066A (en) * 2018-11-14 2021-06-11 罗伯特·博世有限公司 Electrical energy storage unit, electrical energy storage and device
JP2019071284A (en) * 2018-12-27 2019-05-09 株式会社村田製作所 Exterior material and battery

Similar Documents

Publication Publication Date Title
JP2007134308A (en) Battery
JP4470124B2 (en) battery
CN101032044B (en) Cylindrical lithium secondary battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
CN101312244B (en) Electrode assembly and secondary battery using the electrode assembly
JP4173674B2 (en) Electrochemical device module
KR101362322B1 (en) Cylindrical-type secondary battery
US7419743B2 (en) Cylindrical lithium battery resistant to breakage of the porous heat resistant layer
WO2015146077A1 (en) Cylindrical hermetically sealed battery
JP4839111B2 (en) Lithium secondary battery
CN107039682B (en) Secondary battery
US8557433B2 (en) Secondary battery
WO2009144919A1 (en) Cylindrical nonaqueous electrolytic secondary battery
JP2004063343A (en) Lithium ion secondary battery
JP2006318892A (en) Square lithium secondary battery
KR20110040931A (en) Battery and battery pack
JP4949022B2 (en) Secondary battery and battery packaging material
JP2015211004A (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2008027668A (en) Battery
JP2006310283A (en) Cylindrical lithium secondary battery and its manufacturing method
JP4053802B2 (en) Electrochemical devices
KR102425711B1 (en) Lithium secondary battery including short induction device
JP2008251187A (en) Sealed battery
JP2009059571A (en) Current collector for battery, and battery using this
JP2009259749A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120628