JP2007132815A - Wheel longitudinal force calculating device and lateral force calculating device - Google Patents

Wheel longitudinal force calculating device and lateral force calculating device Download PDF

Info

Publication number
JP2007132815A
JP2007132815A JP2005326356A JP2005326356A JP2007132815A JP 2007132815 A JP2007132815 A JP 2007132815A JP 2005326356 A JP2005326356 A JP 2005326356A JP 2005326356 A JP2005326356 A JP 2005326356A JP 2007132815 A JP2007132815 A JP 2007132815A
Authority
JP
Japan
Prior art keywords
wheel
lateral
longitudinal
force
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005326356A
Other languages
Japanese (ja)
Inventor
Ryuichi Kawanaka
竜一 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005326356A priority Critical patent/JP2007132815A/en
Publication of JP2007132815A publication Critical patent/JP2007132815A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely calculate a longitudinal force and a lateral force of a wheel with a simple structure. <P>SOLUTION: Longitudinal acceleration XG parallel to a rotation surface of the wheel and lateral acceleration YG to orthogonal to the rotation surface of the wheel are detected by a longitudinal acceleration sensor and a lateral acceleration sensor provided in a spring lower member having a knuckle shape. A longitudinal force FX parallel to a movement direction and a lateral force FY orthogonal to the movement direction are respectively calculated by the formulas, FX=K×(XG×cos β+YG×sin β) and FY=K×(YG×cos β+XG×sin β). However, β is a slip angle of the wheel and expressed by the formula of β=tan<SP>-1</SP>(∫YG/∫XG). Where K is a coefficient of a vehicle wheel ground load. In the longitudinal acceleration sensor and the lateral acceleration sensor, restrictions in a mounting method and a mounting position thereof are negligible unlike a distortion sensor. Accordingly, machining for mounting thereof will not reduce the strength of a spring lower member. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車体にサスペンション装置を介して懸架した車輪に作用する前後力FXを算出する車輪の前後力算出装置と、車体にサスペンション装置を介して懸架した車輪に作用する横力FYを算出する車輪の横力算出装置とに関する。   The present invention calculates a longitudinal force calculation device for a wheel that calculates a longitudinal force FX acting on a wheel suspended from a vehicle body via a suspension device, and a lateral force FY that acts on a wheel suspended from the vehicle body via a suspension device. The present invention relates to a wheel lateral force calculation device.

従来、走行中の車両の車輪に加わる荷重(車輪の回転面に平行な方向の前後力および車輪の回転面に直交する方向の横力)を検出するために、荷重により発生する車輪のホイールやハブベアリングの歪みを歪みセンサで検出する手法や、タイヤのサイドウオールに多極磁着し、タイヤの変形に伴う磁着部の位相変化を検出する手法が知られている。   Conventionally, in order to detect a load applied to a wheel of a traveling vehicle (a longitudinal force in a direction parallel to the wheel rotation surface and a lateral force in a direction perpendicular to the wheel rotation surface), There are known a technique for detecting the strain of the hub bearing with a strain sensor, and a technique for detecting the phase change of the magnetized portion due to the multi-polar magnetic attachment on the tire sidewall and the deformation of the tire.

しかしながら上記前者の手法は、所望の方向の歪みを検出するために歪みセンサの取付位置が大きな制約を受けるだけでなく、歪みセンサの取付孔を加工する必要があるためにホイールやハブベアリングの強度低下が懸念され、しかも発生する歪みを歪みセンサに伝達する接合部に特殊な技術を必要とする問題があった。また上記後者の手法は、特殊なタイヤを使用する必要があるために汎用性に乏しいという問題があった。   However, in the former method, not only the mounting position of the strain sensor is greatly restricted in order to detect strain in a desired direction, but also the strength of the wheel and hub bearing is required because the mounting hole of the strain sensor must be processed. There has been a problem that a reduction is required, and a special technique is required for the joint that transmits the generated strain to the strain sensor. In addition, the latter method has a problem that it has poor versatility because a special tire needs to be used.

本発明は前述の事情に鑑みてなされたもので、簡単な構造で車輪の前後力や横力を精度良く算出することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to accurately calculate the longitudinal force and lateral force of a wheel with a simple structure.

上記目的を達成するために、請求項1に記載された発明によれば、車体にサスペンション装置を介して懸架した車輪に作用する進行方向に平行な前後力FXを算出する車輪の前後力算出装置であって、車輪を回転自在に支持するばね下部材に、車輪の回転面に平行な前後加速度XGを検出する前後加速度センサと、車輪の回転面に直交する横加速度YGを検出する横加速度センサとを設け、前記前後力FXを、前記前後加速度XG、前記横加速度YGおよび車輪接地荷重を示す係数Kを用いて、
FX=K×(XG×cosβ+YG×sinβ)
但し、βは車輪のスリップ角で、β=tan-1(∫YG/∫XG)
により算出することを特徴とする車輪の前後力算出装置が提案される。
In order to achieve the above object, according to the first aspect of the present invention, a longitudinal force calculation device for a wheel that calculates a longitudinal force FX parallel to a traveling direction acting on a wheel suspended from a vehicle body via a suspension device. A longitudinal acceleration sensor for detecting longitudinal acceleration XG parallel to the rotational surface of the wheel and a lateral acceleration sensor for detecting lateral acceleration YG orthogonal to the rotational surface of the wheel on an unsprung member that rotatably supports the wheel. And using the coefficient K indicating the longitudinal acceleration XG, the lateral acceleration YG and the wheel contact load,
FX = K × (XG × cos β + YG × sin β)
Where β is the slip angle of the wheel and β = tan −1 (∫YG / ∫XG)
A device for calculating the longitudinal force of a wheel is proposed.

また請求項2に記載された発明によれば、車体にサスペンション装置を介して懸架した車輪に作用する進行方向に直交する横力FYを算出する車輪の横力算出装置であって、車輪を回転自在に支持するばね下部材に、車輪の回転面に平行な前後加速度XGを検出する前後加速度センサと、車輪の回転面に直交する横加速度YGを検出する横加速度センサとを設け、前記横力FYを、前記前後加速度XG、前記横加速度YGおよび車輪接地荷重を示す係数Kを用いて、
FY=K×(YG×cosβ+XG×sinβ)
但し、βは車輪のスリップ角で、β=tan-1(∫YG/∫XG)
により算出することを特徴とする車輪の横力算出装置が提案される。
According to a second aspect of the present invention, there is provided a wheel lateral force calculating device for calculating a lateral force FY perpendicular to a traveling direction acting on a wheel suspended from a vehicle body via a suspension device, the wheel rotating the wheel. The unsprung member that is freely supported is provided with a longitudinal acceleration sensor for detecting longitudinal acceleration XG parallel to the rotational surface of the wheel and a lateral acceleration sensor for detecting lateral acceleration YG orthogonal to the rotational surface of the wheel, and the lateral force FY is calculated using the longitudinal acceleration XG, the lateral acceleration YG, and the coefficient K indicating the wheel contact load.
FY = K × (YG × cos β + XG × sin β)
Where β is the slip angle of the wheel and β = tan −1 (∫YG / ∫XG)
A wheel lateral force calculating device is proposed, which is characterized by the following calculation.

尚,実施例のナックル13は本発明のばね下部材に対応する。   In addition, the knuckle 13 of an Example respond | corresponds to the unsprung member of this invention.

上記構成によれば、車輪を回転自在に支持するばね下部材に、車輪の回転面に平行な前後加速度XGを検出する前後加速度センサと、車輪の回転面に直交する横加速度YGを検出する横加速度センサとを設けるだけの簡単な構造で、車輪に作用する進行方向に平行な前後力FXや車輪に作用する進行方向に直交する横力FYを、車輪のスリップ角をも考慮して精度良く算出することができる。しかも前後加速度センサや横加速度センサは、歪みセンサと異なって取付方法や取付位置の制約が小さいため、その取付のための加工でばね下部材の強度を損なうことがない。またサイドウオールに多極磁着した特殊なタイヤを必要としないので、どのような車輪にも適用可能となって汎用性が向上する。   According to the above configuration, the unsprung member that rotatably supports the wheel, the longitudinal acceleration sensor that detects the longitudinal acceleration XG parallel to the rotation surface of the wheel, and the lateral acceleration YG that is orthogonal to the rotation surface of the wheel. With a simple structure that only provides an acceleration sensor, the longitudinal force FX acting parallel to the traveling direction acting on the wheel and the lateral force FY acting on the wheel perpendicular to the traveling direction are accurately taken into account with respect to the slip angle of the wheel. Can be calculated. In addition, since the longitudinal acceleration sensor and the lateral acceleration sensor are different from the strain sensor in terms of attachment method and attachment position, the strength of the unsprung member is not impaired by the processing for attachment. In addition, since a special tire that is magnetically poled on the side wall is not required, it can be applied to any wheel and the versatility is improved.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図3は本発明の一実施例を示すものであり、図1は左後輪のダブルウイッシュボーン式サスペンションの斜視図、図2は図1の2方向矢視図、図3は車輪に加わる前後力および横力の説明図である。   1 to 3 show an embodiment of the present invention. FIG. 1 is a perspective view of a double wishbone suspension of a left rear wheel, FIG. 2 is a view taken in the direction of the arrow in FIG. 1, and FIG. It is explanatory drawing of the longitudinal force and lateral force which are added to.

図1および図2に示すように、ダブルウイッシュボーン式のサスペンション装置Sは、アッパーアーム11およびロアアーム12によって車体に支持されたナックル13を備える。ナックル13はナックル本体14と、その下部に締結されたロアアーム支持ブラケット15とで構成される。ナックル本体14は、車輪Wの車軸を回転自在に支持する車軸支持部14aと、車軸支持部14aから上方に延びるアッパーアーム支持部14bとを備えており、アッパーアーム支持部14bの上端にボールジョイント16を介してアッパーアーム11の車幅方向外端が枢支される。ナックル本体14の下部にボルト17,18で締結されたロアアーム支持ブラケット15に固定されたボールジョイント19にロアアーム12の車幅方向外端が枢支される。ロアアーム12の車幅方向外端近傍と車体とが、同軸に配置された油圧シリンダおよびサスペンションばねよりなるダンパー20によって接続される。   As shown in FIGS. 1 and 2, the double wishbone suspension device S includes a knuckle 13 supported by the vehicle body by an upper arm 11 and a lower arm 12. The knuckle 13 includes a knuckle body 14 and a lower arm support bracket 15 fastened to the lower part thereof. The knuckle body 14 includes an axle support portion 14a that rotatably supports the axle of the wheel W, and an upper arm support portion 14b that extends upward from the axle support portion 14a, and a ball joint at the upper end of the upper arm support portion 14b. 16, the outer end of the upper arm 11 in the vehicle width direction is pivotally supported. The outer end in the vehicle width direction of the lower arm 12 is pivotally supported by a ball joint 19 fixed to a lower arm support bracket 15 fastened to the lower part of the knuckle body 14 by bolts 17 and 18. The vicinity of the outer end in the vehicle width direction of the lower arm 12 and the vehicle body are connected by a damper 20 including a hydraulic cylinder and a suspension spring arranged coaxially.

サスペンション装置Sのばね下部材であるナックル13に、前後加速度センサ21および横加速度センサ22が設けられる。前後加速度センサ21は車輪Wの回転面に平行な前後方向の加速度(前後加速度XG)を検出し、横加速度センサ22は車輪Wの回転面に直交する横方向の加速度(横加速度YG)を検出する。前後加速度センサ21および横加速度センサ22は小型であるため、例えば車輪速センサをナックル13に取り付ける取付部材に支持することができる。   A longitudinal acceleration sensor 21 and a lateral acceleration sensor 22 are provided on the knuckle 13 which is an unsprung member of the suspension device S. The longitudinal acceleration sensor 21 detects longitudinal acceleration (longitudinal acceleration XG) parallel to the rotating surface of the wheel W, and the lateral acceleration sensor 22 detects lateral acceleration (lateral acceleration YG) orthogonal to the rotating surface of the wheel W. To do. Since the longitudinal acceleration sensor 21 and the lateral acceleration sensor 22 are small in size, for example, the wheel speed sensor can be supported by an attachment member attached to the knuckle 13.

図3に示すように、車輪Wに固定した直交座標系をX−Y座標系とすると、前後加速度センサ21で検出される前後加速度XGはX−Y座標系のX方向の加速度となり、横加速度センサ22で検出される横加速度YGはX−Y座標系のY方向の加速度となる。車輪Wの進行方向(車両の進行方向)はX−Y座標系のX方向と必ずしも一致せず、車輪Wの進行方向とX方向との成す角度がスリップ角βとなる。即ち、X方向の速度をuとし、Y方向の速度をvとすると、スリップ角βは、
β=tan-1(v/u)
で与えられる。
As shown in FIG. 3, when the orthogonal coordinate system fixed to the wheel W is an XY coordinate system, the longitudinal acceleration XG detected by the longitudinal acceleration sensor 21 is the acceleration in the X direction of the XY coordinate system, and the lateral acceleration. The lateral acceleration YG detected by the sensor 22 is the acceleration in the Y direction of the XY coordinate system. The traveling direction of the wheel W (the traveling direction of the vehicle) does not necessarily coincide with the X direction of the XY coordinate system, and the angle formed by the traveling direction of the wheel W and the X direction is the slip angle β. That is, when the velocity in the X direction is u and the velocity in the Y direction is v, the slip angle β is
β = tan −1 (v / u)
Given in.

本願発明は前後加速度センサ21および横加速度センサ22で検出した前後加速度XGおよび横加速度YGに基づいて、車輪Wに加わる進行方向の力である前後力FXと、車輪Wに加わる進行方向と直交する方向の力である横力FYとを算出するものである。   In the present invention, based on the longitudinal acceleration XG and the lateral acceleration YG detected by the longitudinal acceleration sensor 21 and the lateral acceleration sensor 22, the longitudinal force FX, which is the force in the traveling direction applied to the wheel W, is orthogonal to the traveling direction applied to the wheel W. A lateral force FY, which is a directional force, is calculated.

前後加速度XGを積分するとX方向の速度uが得られ、横加速度YGを積分するとY方向の速度vが得られることから、スリップ角βは、
β=tan-1(v/u)=tan-1(∫YG/∫XG)
で与えられる。
When the longitudinal acceleration XG is integrated, the velocity u in the X direction is obtained, and when the lateral acceleration YG is integrated, the velocity v in the Y direction is obtained.
β = tan −1 (v / u) = tan −1 (∫YG / ∫XG)
Given in.

mを初期状態における車輪Wの接地荷重の設定値、cを図示しないサスペンションのストロークセンサの検出値から定めたサスペンションストローク変化に応じた補正係数(初期状態では1であり、サスペンションのバンプ側で1よりも大きく、サスペンションのリバウンド側で1よりも小さい正の値をとる)とすると、車輪接地荷重を示す係数Kは、
K=m×c
で与えられる。従って、車輪Wに加わる進行方向の力である前後力FXは、
FX=K×(XG×cosβ+YG×sinβ)
で与えられ、車輪Wに加わる横方向の力である横力FYは、
FY=K×(YG×cosβ+XG×sinβ)
で与えられる。
m is a set value of the ground contact load of the wheel W in the initial state, c is a correction coefficient corresponding to a change in suspension stroke determined from a detection value of a suspension stroke sensor (not shown) (1 in the initial state, 1 on the bump side of the suspension) Larger, and a positive value smaller than 1 on the rebound side of the suspension)
K = m × c
Given in. Therefore, the longitudinal force FX, which is the force in the traveling direction applied to the wheel W, is
FX = K × (XG × cos β + YG × sin β)
The lateral force FY, which is a lateral force applied to the wheel W, is given by
FY = K × (YG × cos β + XG × sin β)
Given in.

以上のように、車輪Wを回転自在に支持するばね下部材であるナックル13に前後加速度センサ21および横加速度センサ22を設けるだけの安価かつ簡単な構造で、車輪Wに作用する進行方向に平行な前後力FXおよび車輪Wに作用する進行方向に直交する横力FYを、車輪のスリップ角βをも考慮して精度良く算出することができる。しかも前後加速度センサ21や横加速度センサ22は、従来用いられていた歪みセンサと異なって取付方法や取付位置の制約が小さいため、適宜の位置に適宜の方法で取り付けることが可能となり、取り付けのための加工でナックル13の強度を損なうことがない。またサイドウオールに多極磁着した特殊なタイヤや、歪みセンサを埋め込んだ特殊なホイールにを必要としないので、どのような車輪にも適用可能となって汎用性が向上する。   As described above, the knuckle 13, which is an unsprung member that rotatably supports the wheel W, has an inexpensive and simple structure in which the longitudinal acceleration sensor 21 and the lateral acceleration sensor 22 are provided, and is parallel to the traveling direction acting on the wheel W. The longitudinal force FX and the lateral force FY perpendicular to the traveling direction acting on the wheel W can be accurately calculated in consideration of the wheel slip angle β. In addition, the longitudinal acceleration sensor 21 and the lateral acceleration sensor 22 are different from the conventionally used strain sensors in that there are few restrictions on the mounting method and mounting position, so that it can be mounted at an appropriate position by an appropriate method. In this process, the strength of the knuckle 13 is not impaired. In addition, since it does not require special tires that are magnetically poled on the side walls or special wheels with strain sensors embedded, it can be applied to any type of wheel, improving versatility.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例では前後加速度センサ21および横加速度センサ22を取り付けるばね下部材としてナックル13を採用しているが、ナックル13の代わりにサスペンションアーム等を用いることができる。   For example, in the embodiment, the knuckle 13 is employed as the unsprung member to which the longitudinal acceleration sensor 21 and the lateral acceleration sensor 22 are attached, but a suspension arm or the like can be used instead of the knuckle 13.

また実施例では非転舵輪である後輪について説明したが、本発明を前輪などの転舵輪に適用する場合には、前述の車輪Wのスリップ角βに車輪転舵角を含めるようにすれば良い。車輪転舵角は、運転者が操作する操舵角を検出することで、その操舵角から一義的に求めることができる。   In the embodiment, the rear wheel which is a non-steered wheel has been described. However, when the present invention is applied to a steered wheel such as a front wheel, the wheel steered angle is included in the slip angle β of the wheel W described above. good. The wheel turning angle can be uniquely obtained from the steering angle by detecting the steering angle operated by the driver.

左後輪のダブルウイッシュボーン式サスペンションの斜視図Perspective view of the left wish wheel double wishbone suspension 図1の2方向矢視図2 direction view of FIG. 車輪に加わる前後力および横力の説明図Illustration of longitudinal force and lateral force applied to wheels

符号の説明Explanation of symbols

S サスペンション装置
W 車輪
13 ナックル(ばね下部材)
21 前後加速度センサ
22 横加速度センサ
S suspension device W wheel 13 knuckle (unsprung member)
21 Longitudinal acceleration sensor 22 Lateral acceleration sensor

Claims (2)

車体にサスペンション装置(S)を介して懸架した車輪(W)に作用する進行方向に平行な前後力FXを算出する車輪の前後力算出装置であって、
車輪(W)を回転自在に支持するばね下部材(13)に、車輪(W)の回転面に平行な前後加速度XGを検出する前後加速度センサ(21)と、車輪(W)の回転面に直交する横加速度YGを検出する横加速度センサ(22)とを設け、
前記前後力FXを、前記前後加速度XG、前記横加速度YGおよび車輪接地荷重を示す係数Kを用いて、
FX=K×(XG×cosβ+YG×sinβ)
但し、βは車輪のスリップ角で、β=tan-1(∫YG/∫XG)
により算出することを特徴とする車輪の前後力算出装置。
A wheel longitudinal force calculating device for calculating a longitudinal force FX parallel to a traveling direction acting on a wheel (W) suspended on a vehicle body via a suspension device (S),
The unsprung member (13) that rotatably supports the wheel (W), the longitudinal acceleration sensor (21) that detects the longitudinal acceleration XG parallel to the rotational surface of the wheel (W), and the rotational surface of the wheel (W) A lateral acceleration sensor (22) for detecting a lateral acceleration YG orthogonal to each other;
Using the coefficient K indicating the longitudinal acceleration XG, the lateral acceleration YG, and the wheel contact load, the longitudinal force FX is
FX = K × (XG × cos β + YG × sin β)
Where β is the slip angle of the wheel and β = tan −1 (∫YG / ∫XG)
A longitudinal force calculation device for a wheel, characterized by:
車体にサスペンション装置(S)を介して懸架した車輪(W)に作用する進行方向に直交する横力FYを算出する車輪の横力算出装置であって、
車輪(W)を回転自在に支持するばね下部材(13)に、車輪(W)の回転面に平行な前後加速度XGを検出する前後加速度センサ(21)と、車輪(W)の回転面に直交する横加速度YGを検出する横加速度センサ(22)とを設け、
前記横力FYを、前記前後加速度XG、前記横加速度YGおよび車輪接地荷重を示す係数Kを用いて、
FY=K×(YG×cosβ+XG×sinβ)
但し、βは車輪のスリップ角で、β=tan-1(∫YG/∫XG)
により算出することを特徴とする車輪の横力算出装置。
A wheel lateral force calculation device for calculating a lateral force FY perpendicular to a traveling direction acting on a wheel (W) suspended on a vehicle body via a suspension device (S),
The unsprung member (13) that rotatably supports the wheel (W), the longitudinal acceleration sensor (21) that detects the longitudinal acceleration XG parallel to the rotational surface of the wheel (W), and the rotational surface of the wheel (W) A lateral acceleration sensor (22) for detecting a lateral acceleration YG orthogonal to each other;
The lateral force FY is determined by using the longitudinal acceleration XG, the lateral acceleration YG, and a coefficient K indicating a wheel contact load,
FY = K × (YG × cos β + XG × sin β)
Where β is the slip angle of the wheel and β = tan −1 (∫YG / ∫XG)
A lateral force calculation device for a wheel, characterized by:
JP2005326356A 2005-11-10 2005-11-10 Wheel longitudinal force calculating device and lateral force calculating device Pending JP2007132815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326356A JP2007132815A (en) 2005-11-10 2005-11-10 Wheel longitudinal force calculating device and lateral force calculating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326356A JP2007132815A (en) 2005-11-10 2005-11-10 Wheel longitudinal force calculating device and lateral force calculating device

Publications (1)

Publication Number Publication Date
JP2007132815A true JP2007132815A (en) 2007-05-31

Family

ID=38154600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326356A Pending JP2007132815A (en) 2005-11-10 2005-11-10 Wheel longitudinal force calculating device and lateral force calculating device

Country Status (1)

Country Link
JP (1) JP2007132815A (en)

Similar Documents

Publication Publication Date Title
JP4586962B2 (en) Vehicle attitude control device
JP2008537521A (en) Wheel suspension for automobile
JP4655913B2 (en) Wheel vertical acceleration detection device for posture correction of detection value of vertical acceleration sensor
JP2010012903A5 (en)
JP2004270832A (en) Vibration control device for suspension and suspension mechanism using it
JP2008543636A (en) Hall suspension for automobiles
WO2017183639A1 (en) Leaning vehicle
JP2005289076A (en) Rollover preventive device for vehicle
JP2006007865A (en) Vehicle control device
JP2007132815A (en) Wheel longitudinal force calculating device and lateral force calculating device
JP2006327561A (en) Method of reducing attitude change of vehicle
JP5867131B2 (en) Steering wheel axle weight estimation device
JP5549542B2 (en) Wheel angle adjustment device
JP7492364B2 (en) Vehicle lean factor estimation device and steering device
JP2007106207A (en) Rolling speed detection device
JP5870811B2 (en) Steering angle acquisition device
JP2009052918A (en) Apparatus for detecting force acting on tire
JP5787023B2 (en) Vehicle suspension system
JP5110055B2 (en) Vehicle control device
JP2011073542A (en) Control device for vehicle
JP2008302848A (en) Tire condition estimating device, and automobile and tire condition estimating method
JP2005306249A (en) Vehicle steering control device
JP2005106596A (en) Wheel load detection device
KR101316425B1 (en) Camber Angle Control System for a Vehicle
JP2011106941A (en) Device and method for detecting wheel speed