JP2007132259A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2007132259A
JP2007132259A JP2005325694A JP2005325694A JP2007132259A JP 2007132259 A JP2007132259 A JP 2007132259A JP 2005325694 A JP2005325694 A JP 2005325694A JP 2005325694 A JP2005325694 A JP 2005325694A JP 2007132259 A JP2007132259 A JP 2007132259A
Authority
JP
Japan
Prior art keywords
block
hermetic compressor
bearing
shaft portion
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005325694A
Other languages
Japanese (ja)
Inventor
Takashi Kakiuchi
隆志 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005325694A priority Critical patent/JP2007132259A/en
Publication of JP2007132259A publication Critical patent/JP2007132259A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To keep deformation of a compression chamber and an auxiliary bearing small, improving reliability and efficiency of a compressor by keeping fastening torque of bolt fixing the auxiliary bearing low. <P>SOLUTION: In a hermetic compressor, friction coefficient in a piston reciprocating direction can be kept high, fastening torque of a bolt 131 can be kept relatively low, and deformation of the compression chamber 123a can be kept small by forming a wave shape mark on one of a surface of abutting block 123 or a surface of abutting auxiliary bearing 132. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主に家庭用冷蔵庫に用いられる密閉型圧縮機に関するものである。   The present invention relates to a hermetic compressor mainly used for a household refrigerator.

従来、密閉型圧縮機のブロックに副軸受を固定する副軸受取付面はラッピング加工または研削加工により得られる表面としたものがある(例えば、特許文献1参照)。   Conventionally, there is a secondary bearing mounting surface for fixing a secondary bearing to a block of a hermetic compressor, which is a surface obtained by lapping or grinding (see, for example, Patent Document 1).

以下、図面を参照しながら従来の密閉型圧縮機を説明する。   Hereinafter, a conventional hermetic compressor will be described with reference to the drawings.

図7は従来の密閉型圧縮機の縦断面図、図8は従来の密閉型圧縮機の密閉容器の上部平面図、図9は従来の密閉型圧縮機の要部斜視図を示すものである。   7 is a longitudinal sectional view of a conventional hermetic compressor, FIG. 8 is a top plan view of a hermetic container of the conventional hermetic compressor, and FIG. 9 is a perspective view of a main part of the conventional hermetic compressor. .

図7、図8、図9において、密閉容器1内には冷媒2を充填するとともに、冷凍機油3を貯留している。   7, 8, and 9, the airtight container 1 is filled with the refrigerant 2 and the refrigerating machine oil 3 is stored.

電動要素11は、外部電源(図示せず)と繋がっている固定子12と、固定子12の内側と所定の間隙を有して配置された回転子13から構成されている。   The electric element 11 includes a stator 12 connected to an external power source (not shown), and a rotor 13 arranged with a predetermined gap from the inside of the stator 12.

圧縮要素21は、偏心軸部22bと偏心軸部を挟んで上下に同軸状に設けた副軸部22cおよび主軸部22aとを有するシャフト22と、固定子12の上方に固定され、圧縮室23aを形成するブロック23と、ブロック23に設けられ主軸部22aを軸支する主軸受24と、ブロック23に固定された副軸部22cを軸支する副軸受32と、圧縮室23a内で往復運動するピストン25と、ピストン25と偏芯軸部22bとを連結する連結手段26とを備え、レシプロ式の圧縮機構を形成している。   The compression element 21 is fixed above the stator 12 and the shaft 22 having the eccentric shaft portion 22b and the auxiliary shaft portion 22c and the main shaft portion 22a that are coaxially provided above and below the eccentric shaft portion, and the compression chamber 23a. , A main bearing 24 that is provided on the block 23 and supports the main shaft portion 22a, a sub bearing 32 that supports the sub shaft portion 22c fixed to the block 23, and a reciprocating motion in the compression chamber 23a. And a connecting means 26 for connecting the piston 25 and the eccentric shaft portion 22b to form a reciprocating compression mechanism.

副軸受32はシャフト22の軸心に垂直な面同士を当接しブロック23にボルト31にて固定されている。   The auxiliary bearing 32 abuts the surfaces perpendicular to the axis of the shaft 22 and is fixed to the block 23 with bolts 31.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

固定子12に外部電源より通電がされると、回転子13はシャフト22と共に回転する。これに伴い偏芯軸部22bの偏芯運動は連結手段26を介してピストン25を圧縮室23a内で往復運動させ、吸入ガスを圧縮する所定の圧縮動作を行う。   When the stator 12 is energized from an external power source, the rotor 13 rotates with the shaft 22. Accordingly, the eccentric movement of the eccentric shaft portion 22b causes the piston 25 to reciprocate in the compression chamber 23a via the connecting means 26 to perform a predetermined compression operation for compressing the suction gas.

主軸受24および副軸受32は、ピストン25から連結手段26を介して偏芯軸部22bに作用する圧縮加重を軸支している。
実開昭53−11710号公報
The main bearing 24 and the sub-bearing 32 pivotally support a compression load that acts on the eccentric shaft portion 22b from the piston 25 via the connecting means 26.
Japanese Utility Model Publication No. 53-11710

しかしながら、上記従来の構成では、ブロック23と副軸受32の当接する面同士の平面度を上げるため、双方の当接面にラッピング加工または研削加工を施していた。そのため当接する面の表面粗度が小さく摩擦係数が小さくなってしまい、ピストン25の圧縮動作から生ずる圧縮荷重の反力を副軸受32が受けてもずれが生じないよう、高い締付トルクでボルト31を締め付ける必要がある。   However, in the conventional configuration described above, in order to increase the flatness of the abutting surfaces of the block 23 and the sub-bearing 32, both abutting surfaces are lapped or ground. Therefore, the surface roughness of the abutting surface is small and the friction coefficient is small, and the bolts are tightened with a high tightening torque so that no slippage occurs even if the secondary bearing 32 receives the reaction force of the compression load resulting from the compression operation of the piston 25. It is necessary to tighten 31.

ところが、特にボルト31の締結部をブロック23の圧縮室23a付近に設けている場合はボルト31の締付力によって圧縮室23aの内側に部分的に大きな歪みが発生してしまうことが分かった。これはボルトを締め付ける前にピストン25と圧縮室23aの間のクリアランスを所定の値に管理しても、ピストン25と圧縮室23aの特定の箇所に接触痕が発生することから判明したものである。   However, it has been found that particularly when the fastening portion of the bolt 31 is provided in the vicinity of the compression chamber 23a of the block 23, a large distortion is partially generated inside the compression chamber 23a by the tightening force of the bolt 31. This has been found from the fact that even if the clearance between the piston 25 and the compression chamber 23a is controlled to a predetermined value before tightening the bolt, a contact mark is generated at a specific portion of the piston 25 and the compression chamber 23a. .

従ってピストン25と圧縮室23aの間のクリアランスを歪み分余計に大きくしなければならず、その結果、全体のクリアランスが広がってしまい、冷媒ガスの漏れが増加し、効率が悪化してしまう。また圧縮室23aの歪みはピストン25の摺動に悪影響を与えるので信頼性も損ねてしまう。   Therefore, the clearance between the piston 25 and the compression chamber 23a has to be increased by an excessive amount of distortion. As a result, the overall clearance is widened, the refrigerant gas leaks and the efficiency is deteriorated. Further, since the distortion of the compression chamber 23a adversely affects the sliding of the piston 25, the reliability is also impaired.

また、ボルト31の締結部をブロック23の圧縮室23a付近に設けていない場合でも、ボルト31の締付力によって副軸受32に歪みを生じさせ、同様に高効率化および高信頼性を損ねてしまう。   Even if the fastening portion of the bolt 31 is not provided in the vicinity of the compression chamber 23a of the block 23, the secondary bearing 32 is distorted by the fastening force of the bolt 31, and the high efficiency and high reliability are similarly lost. End up.

本発明は、上記従来の課題を解決するもので、信頼性が高く高効率の密閉型圧縮機を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a highly reliable and highly efficient hermetic compressor.

上記従来の課題を解決するために本発明の密閉型圧縮機は、ブロックと副軸受が当接する面のどちらか一方に、波状痕を形成したもので、ブロックと副軸受が当接する面のピストンの往復運動方向の摩擦係数が大きくなるため、副軸受を固定するボルトの締付トルクを低くできるという作用を有する。   In order to solve the above-described conventional problems, the hermetic compressor according to the present invention is formed by forming a wavy mark on one of the surfaces where the block and the auxiliary bearing abut, and the piston on the surface where the block and the auxiliary bearing abut. Since the coefficient of friction in the reciprocating motion direction increases, the tightening torque of the bolt for fixing the auxiliary bearing can be reduced.

本発明の密閉型圧縮機は、副軸受を固定するボルトの締付トルクを低くできるので、圧縮室や副軸受の歪みを小さく抑えることができるので、信頼性が高く高効率の密閉型圧縮機を提供することができる。   The hermetic compressor of the present invention can reduce the tightening torque of the bolt for fixing the sub-bearing, so that the distortion of the compression chamber and the sub-bearing can be kept small. Can be provided.

請求項1に記載の発明は、密閉容器内に潤滑油を貯溜するとともに電動要素と前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、圧縮室を備えたブロックと、前記ブロックに備えられ前記主軸部を軸支する主軸受と、前記ブロックに固定された前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏心軸部とを連結する連結手段とを備えており、前記副軸受は前記シャフトの軸心に垂直な面同士を当接し前記ブロックにボルトにて固定されると共に、当接する前記ブロックの面または当接する前記副軸受の面のどちらか一方に、波状痕を形成したもので、前記ブロックと前記副軸受が当接する面の前記ピストンの往復運動方向の摩擦係数が大きくなるので、前記副軸受を固定する前記ボルトの締付トルクを低くでき、前記圧縮室や前記副軸受の歪みを小さく抑えることができるので、信頼性が高く高効率の密閉型圧縮機を提供することができる。   According to the first aspect of the present invention, lubricating oil is stored in a sealed container and an electric element and a compression element driven by the electric element are accommodated. The compression element sandwiches the eccentric shaft portion and the eccentric shaft portion. A shaft having a sub-shaft portion and a main shaft portion provided coaxially in the vertical direction, a block having a compression chamber, a main bearing provided in the block and supporting the main shaft portion, and fixed to the block A secondary bearing that pivotally supports the secondary shaft portion; a piston that reciprocates in the compression chamber; and a connecting means that connects the piston and the eccentric shaft portion, wherein the secondary bearing is an axis of the shaft. The surface perpendicular to each other is fixed to the block with bolts, and wavy marks are formed on either the surface of the block that contacts or the surface of the auxiliary bearing that contacts, The secondary bearing Since the friction coefficient of the abutting surface in the reciprocating direction of the piston is increased, the tightening torque of the bolt for fixing the auxiliary bearing can be reduced, and the distortion of the compression chamber and the auxiliary bearing can be reduced. A highly reliable and highly efficient hermetic compressor can be provided.

請求項2に記載の発明は、請求項1記載の発明に加えて、前記波状痕を前記ピストンの往復運動方向と垂直の方向に形成したもので、前記ブロックと前記副軸受が当接する面のピストンの往復運動方向の摩擦係数が最大になるので、前記副軸受を固定するボルトの締付トルクを更に低くでき圧縮室や副軸受の歪みを小さく抑えることができるので、請求項1に記載の発明の効果に加えてさらに、信頼性が高く高効率の密閉型圧縮機を提供することができる。   According to a second aspect of the present invention, in addition to the first aspect of the present invention, the wavy trace is formed in a direction perpendicular to the reciprocating motion direction of the piston, and the surface of the surface where the block and the sub-bearing contact each other. The friction coefficient in the reciprocating direction of the piston is maximized, so that the tightening torque of the bolt for fixing the auxiliary bearing can be further reduced, and the distortion of the compression chamber and the auxiliary bearing can be reduced. In addition to the effects of the invention, a highly reliable and highly efficient hermetic compressor can be provided.

請求項3に記載の発明は、請求項1または請求項2に記載の発明に加えて、波状痕を切削加工によって形成したものであり、ブロックまたは副軸受の当接する面を加工するときに同時に形成することができるので、特別な工程を追加する必要がないため、請求項1または請求項2に記載の発明の効果に加えてさらに、生産性を良くすることができる。   In addition to the invention of claim 1 or 2, the invention of claim 3 is formed by forming wavy marks by cutting, and at the same time when machining the contact surface of the block or the auxiliary bearing. Since it can be formed, it is not necessary to add a special process, so that productivity can be further improved in addition to the effects of the invention described in claim 1 or claim 2.

請求項4に記載の発明は、請求項3に記載の発明に加えて、波状痕は円弧状に形成したものであり、フライス加工機などの汎用加工機械で加工できるので、特別な設備を導入する必要がないため、請求項3に記載の発明の効果に加えてさらに、設備費用を抑えることができる。   In addition to the invention described in claim 3, the invention described in claim 4 has a wavy mark formed in an arc shape and can be processed by a general-purpose processing machine such as a milling machine. Since there is no need to do this, in addition to the effect of the invention of claim 3, the facility cost can be further reduced.

請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明に加えて、前記ブロックおよび前記副軸受は鋳鉄製で形成したものであり、当接する面同士に同種金属を使用するので、凝着効果により前記ブロックと前記副軸受が当接する面の前記ピストンの往復運動方向の摩擦係数が更に大きくなるので、前記副軸受を固定するボルトの締付トルクを更に低くでき圧縮室や副軸受の歪みを小さく抑えることができるので、請求項1から請求項4のいずれか一項に記載の発明の効果に加えてさらに、信頼性が高く高効率の密閉型圧縮機を提供することができる。   According to a fifth aspect of the present invention, in addition to the first aspect of the present invention, the block and the auxiliary bearing are made of cast iron, and are in contact with each other. Since the same kind of metal is used, the friction coefficient in the reciprocating direction of the piston on the surface where the block and the sub-bearing come into contact with each other is further increased due to the adhesion effect, so that the tightening torque of the bolt for fixing the sub-bearing is further increased. In addition to the effects of the invention according to any one of claims 1 to 4, in addition to the effects of the invention according to any one of claims 1 to 4, it is possible to reduce the distortion of the compression chamber and the sub-bearing. Machine can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における密閉型圧縮機の縦断面図、図2は、同実施の形態における密閉型圧縮機の上部平面図、図3は同実施の形態における密閉型圧縮機の要部斜視図、図4は同実施の形態における密閉型圧縮機のブロックの要部拡大図、図5は同実施の形態における密閉型圧縮機のブロックの要部断面図、図6は同実施の形態における密閉型圧縮機のブロックの加工図を示すものである。
(Embodiment 1)
1 is a longitudinal sectional view of a hermetic compressor according to the first embodiment of the present invention, FIG. 2 is a top plan view of the hermetic compressor according to the first embodiment, and FIG. 3 is a hermetic compression according to the same embodiment. 4 is an enlarged view of the main part of the block of the hermetic compressor according to the embodiment, FIG. 5 is a cross-sectional view of the main part of the block of the hermetic compressor according to the same embodiment, and FIG. The processing drawing of the block of the hermetic compressor in the embodiment is shown.

図1から図6において、密閉容器101内には冷媒102を充填するとともに、冷凍機油103を貯留している。ここで冷媒102は炭化水素系冷媒であるR600a、冷凍機油103は冷媒102と相溶性のある、例えば合成油や鉱油、ポリオールエステル油である。   1 to 6, the airtight container 101 is filled with the refrigerant 102 and the refrigerating machine oil 103 is stored. Here, the refrigerant 102 is R600a which is a hydrocarbon refrigerant, and the refrigerating machine oil 103 is compatible with the refrigerant 102, for example, synthetic oil, mineral oil, or polyol ester oil.

電動要素111は、外部電源(図示せず)と繋がっている固定子112と、固定子112の内側と所定の間隙を有して配置された回転子113から構成している。   The electric element 111 includes a stator 112 connected to an external power source (not shown), and a rotor 113 arranged with a predetermined gap from the inside of the stator 112.

圧縮要素121は、偏心軸部122bと偏心軸部を挟んで上下に同軸状に設けた副軸部122cおよび主軸部122aとを有するシャフト122と、固定子112の上方に固定され、圧縮室123aを形成する鋳鉄製のブロック123と、ブロック123に設けられ主軸部122aを軸支する主軸受124と、ブロック123に固定され副軸部122cを軸支する鋳鉄製の副軸受132と、圧縮室123a内で往復運動するピストン125と、ピストン125と偏芯軸部122bとを連結する連結手段126とを備え、レシプロ式の圧縮機構を形成している。   The compression element 121 is fixed above the stator 112 and the shaft 122 having the auxiliary shaft portion 122c and the main shaft portion 122a that are coaxially provided above and below the eccentric shaft portion 122b and the eccentric shaft portion, and the compression chamber 123a. A cast iron block 123 that forms a shaft, a main bearing 124 that is provided on the block 123 and supports the main shaft portion 122a, a cast iron sub bearing 132 that is fixed to the block 123 and supports the sub shaft portion 122c, and a compression chamber A reciprocating compression mechanism is formed by including a piston 125 that reciprocates within 123a and a connecting means 126 that connects the piston 125 and the eccentric shaft portion 122b.

副軸受132は、ブロック123に当接する面132aが研磨加工で仕上げられており、当接する面132aを基準にして副軸部122cを軸支する穴が当接する面132aに対して直角に加工されている。   The auxiliary bearing 132 has a surface 132a that contacts the block 123 finished by polishing, and is processed at a right angle to the surface 132a that the hole that supports the auxiliary shaft portion 122c contacts with respect to the contacting surface 132a. ing.

一方、ブロック123に設けた副軸受132が当接する複数の面123bには、ピストン125の往復運動方向と垂直の方向に波状痕141が形成されている。   On the other hand, wavy marks 141 are formed on the plurality of surfaces 123b with which the sub bearings 132 provided on the block 123 abut in a direction perpendicular to the reciprocating direction of the piston 125.

波状痕141はフライス加工機により切削加工することで形成したもので、フライスカッター151の半径方向に三角形の山と谷が波状に連続して現れ、それぞれの三角形の山と谷はフライスカッター151の軸中心と同軸回転に連続形成されている。具体的には山の頂点と谷の底の差を50μmとし、山の頂点のピッチを50μmとしている。   The wavy trace 141 is formed by cutting with a milling machine. Triangular peaks and troughs appear continuously in the radial direction of the milling cutter 151, and each triangular peak and trough of the milling cutter 151. It is continuously formed coaxially with the shaft center. Specifically, the difference between the peak of the mountain and the bottom of the valley is 50 μm, and the pitch of the peak of the mountain is 50 μm.

なお表面粗度がRmax5μm以下の場合は摩擦係数が小さく、Rmax100μm以上の場合は当接する面123bがシャフト122の軸心に垂直に加工することが困難になってしまうことから、当接する面123bは表面粗度Rmax5μmから100μmの範囲が望ましい。   When the surface roughness is Rmax 5 μm or less, the coefficient of friction is small, and when Rmax is 100 μm or more, the abutting surface 123b is difficult to be machined perpendicular to the axis of the shaft 122. The surface roughness Rmax is preferably in the range of 5 μm to 100 μm.

副軸受132とブロック123は、当接する面132aと当接する面123bで当接し、ボルト131にて固定される。なおボルト131はM5であり、冷媒102にR600aを用いた密閉型圧縮機の場合の副軸受132が軸支する圧縮荷重は約980Nであり、締付トルクを従来の980N・cmから490N・cmへと半分に落している。   The auxiliary bearing 132 and the block 123 abut on the abutting surface 132 a and the abutting surface 123 b and are fixed by the bolt 131. The bolt 131 is M5, and the compression load supported by the auxiliary bearing 132 in the case of a hermetic compressor using R600a as the refrigerant 102 is about 980 N, and the tightening torque is changed from the conventional 980 N · cm to 490 N · cm. It has dropped in half.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

固定子112に外部電源より通電がされると、回転子113はシャフト122と共に回転する。これに伴い偏芯軸部122bの偏芯運動は連結手段126を介してピストン125を圧縮室123a内で往復運動させ、吸入ガスを圧縮する所定の圧縮動作を行う。   When the stator 112 is energized from an external power source, the rotor 113 rotates with the shaft 122. Accordingly, the eccentric movement of the eccentric shaft portion 122b causes the piston 125 to reciprocate in the compression chamber 123a via the connecting means 126 to perform a predetermined compression operation for compressing the suction gas.

主軸受124および副軸受132は、ピストン125から連結手段126を介して偏芯軸部122bに作用する圧縮加重の反力を軸支している。   The main bearing 124 and the sub-bearing 132 pivotally support the reaction force of the compression load that acts on the eccentric shaft portion 122b from the piston 125 through the connecting means 126.

副軸受132に作用する圧縮荷重は、ブロック123と副軸受132が当接する面のピストン125の往復運動方向の摩擦力で支持されており、その摩擦力が副軸受132に作用する荷重よりも大きいとき副軸受132はずれることなく、主軸受124と副軸受132は同軸を維持する。   The compressive load acting on the secondary bearing 132 is supported by the frictional force in the reciprocating direction of the piston 125 on the surface where the block 123 and the secondary bearing 132 abut, and the frictional force is greater than the load acting on the secondary bearing 132. When the secondary bearing 132 is not displaced, the main bearing 124 and the secondary bearing 132 remain coaxial.

本実施の形態においては波状痕141によりブロック123と副軸受132が当接する面のピストン125の往復運動方向の摩擦係数が大きくなり、その結果、ボルト131の締付トルクを従来の980N・cmから490N・cmへと半分に落しているにもかかわらず、圧縮荷重によって副軸受132がずれることは無かった。   In the present embodiment, the friction coefficient in the reciprocating direction of the piston 125 on the surface where the block 123 and the auxiliary bearing 132 abut is increased by the wavy trace 141, and as a result, the tightening torque of the bolt 131 is reduced from the conventional 980 N · cm. The sub-bearing 132 did not shift due to the compressive load despite being halved to 490 N · cm.

一方で締付トルクを従来の半分に落したことで圧縮室123aの内側にはほとんど歪みが発生せず、ピストン25と圧縮室23aの間のクリアランスを従来のクリアランスより2.5μm狭めることによって、圧縮機の性能を約3%向上させることができ、効率を約1.5%向上させることができた。   On the other hand, by reducing the tightening torque to half that of the prior art, almost no distortion occurs inside the compression chamber 123a, and by narrowing the clearance between the piston 25 and the compression chamber 23a by 2.5 μm from the conventional clearance, The compressor performance was improved by about 3%, and the efficiency was improved by about 1.5%.

また、運転試験や過酷試験を行ってもピストン125と圧縮室123aの特定の箇所に接触痕が発生することは無かった。   Moreover, even if an operation test or a severe test was performed, contact marks did not occur at specific locations of the piston 125 and the compression chamber 123a.

以上のように圧縮室123aや副軸受132の歪みを小さく抑えることができるので、信頼性が高く高効率の密閉型圧縮機を提供することができる。   As described above, since the distortion of the compression chamber 123a and the sub-bearing 132 can be suppressed, a highly reliable and highly efficient hermetic compressor can be provided.

なお、本実施の形態において、波状痕141はフライス加工機により切削されたもので、フライスカッター151の半径方向に三角形の山と谷が波状に連続して現れ、それぞれの三角形の山と谷はフライスカッター151の軸中心と同軸回転に連続形成されているものを例示したが、例えば円筒研削機を用いて三角形の山と谷を直線状に連続形成しても同様の作用と効果が得られる。   In the present embodiment, the wavy trace 141 is cut by a milling machine, and triangular peaks and valleys appear continuously in the radial direction of the milling cutter 151, and each triangular peak and valley is Although an example in which the milling cutter 151 is continuously formed coaxially with the axial center of the milling cutter 151 is illustrated, the same operation and effect can be obtained even if triangular crests and valleys are continuously formed linearly using, for example, a cylindrical grinding machine. .

また、本実施の形態において、副軸受132のブロック123に当接する面132aは研磨加工で仕上げられているものを例示したが、ブロック123の当接する面123bに設けた波状痕141に対して直角、つまりピストン125の往復運動方向と平行にブロック123と同様の波状痕を設けることで、ボルト131を締付けると波状痕同士が直角にかみ合い、更に高い摩擦力を得ることができる。従ってより高い圧縮荷重が生ずる、例えば冷媒にR290(プロパン)やR404a等の高圧冷媒を使用した場合等には特に有効である。   Further, in the present embodiment, the surface 132a that contacts the block 123 of the sub-bearing 132 is illustrated as being finished by polishing, but is perpendicular to the wavy trace 141 provided on the surface 123b that contacts the block 123. That is, by providing the same wavy marks as the block 123 in parallel with the reciprocating direction of the piston 125, when the bolt 131 is tightened, the wavy marks are engaged with each other at a right angle, and a higher frictional force can be obtained. Therefore, it is particularly effective when a higher compressive load is generated, for example, when a high-pressure refrigerant such as R290 (propane) or R404a is used as the refrigerant.

以上のように、本発明にかかる密閉型圧縮機は、高効率および信頼性の高いものを備えることが可能となるので、エアーコンディショナーや自動販売機等の冷凍サイクル装置等に用いられる密閉型圧縮機にも適用できる。   As described above, since the hermetic compressor according to the present invention can be provided with a highly efficient and reliable one, the hermetic compressor used in a refrigeration cycle apparatus such as an air conditioner or a vending machine. It can also be applied to machines.

本発明の実施の形態1における密閉型圧縮機の縦断面図1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention. 同実施の形態における密閉型圧縮機の上部平面図Top plan view of hermetic compressor in the same embodiment 同実施の形態における密閉型圧縮機の要部斜視図The principal part perspective view of the hermetic compressor in the embodiment 同実施の形態における密閉型圧縮機のブロックの要部拡大図The principal part enlarged view of the block of the hermetic compressor in the embodiment 同実施の形態における密閉型圧縮機のブロックの要部断面図Sectional drawing of the principal part of the block of the hermetic compressor in the same embodiment 同実施の形態における密閉型圧縮機のブロックの加工図Processing drawing of block of hermetic compressor in the same embodiment 従来の密閉型圧縮機の縦断面図Vertical section of a conventional hermetic compressor 従来の密閉型圧縮機の密閉容器の上部平面図Top plan view of a sealed container of a conventional hermetic compressor 従来の密閉型圧縮機の要部斜視図Main part perspective view of a conventional hermetic compressor

符号の説明Explanation of symbols

101 密閉容器
103 潤滑油
111 電動要素
121 圧縮要素
122 シャフト
122a 主軸部
122b 偏芯軸部
122c 副軸部
123 ブロック
123a 圧縮室
124 主軸受
125 ピストン
126 連結手段
131 ボルト
132 副軸受
141 波状痕
DESCRIPTION OF SYMBOLS 101 Airtight container 103 Lubricating oil 111 Electric element 121 Compression element 122 Shaft 122a Main shaft part 122b Eccentric shaft part 122c Sub shaft part 123 Block 123a Compression chamber 124 Main bearing 125 Piston 126 Connecting means 131 Bolt 132 Sub bearing 141 Wave-like trace

Claims (5)

密閉容器内に潤滑油を貯溜するとともに電動要素と前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、圧縮室を備えたブロックと、前記ブロックに備えられ前記主軸部を軸支する主軸受と、前記ブロックに固定された前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏心軸部とを連結する連結手段とを備えており、前記副軸受は前記シャフトの軸心に垂直な面同士を当接し前記ブロックにボルトにて固定されると共に、当接する前記ブロックの面または当接する前記副軸受の面の少なくとも一方に、波状痕を形成した密閉型圧縮機。   Lubricating oil is stored in a sealed container and an electric element and a compression element driven by the electric element are accommodated, and the compression element is provided with an eccentric shaft portion and a countershaft provided coaxially vertically with the eccentric shaft portion interposed therebetween. A shaft having a portion and a main shaft portion, a block having a compression chamber, a main bearing provided in the block for supporting the main shaft portion, and a sub shaft supporting the auxiliary shaft portion fixed to the block A bearing, a piston that reciprocates in the compression chamber, and a coupling means that couples the piston and the eccentric shaft portion, wherein the auxiliary bearing abuts surfaces perpendicular to the shaft center of the shaft, and A hermetic compressor in which a wavy mark is formed on at least one of the surface of the abutting block or the abutting sub-bearing surface while being fixed to the block with a bolt. 前記波状痕は、前記ピストンの往復運動方向と垂直の方向に形成した請求項1に記載の密閉型圧縮機。   The hermetic compressor according to claim 1, wherein the wavy trace is formed in a direction perpendicular to a reciprocating direction of the piston. 前記波状痕は切削加工によって形成した請求項1または請求項2に記載の密閉型圧縮機。   The hermetic compressor according to claim 1, wherein the wavy trace is formed by cutting. 前記波状痕は円弧状に形成した請求項3に記載の密閉型圧縮機。   The hermetic compressor according to claim 3, wherein the wavy trace is formed in an arc shape. 前記ブロックおよび前記副軸受は鋳鉄製で形成した請求項1から請求項4のいずれか一項に記載の密閉型圧縮機。   The hermetic compressor according to any one of claims 1 to 4, wherein the block and the auxiliary bearing are made of cast iron.
JP2005325694A 2005-11-10 2005-11-10 Hermetic compressor Pending JP2007132259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325694A JP2007132259A (en) 2005-11-10 2005-11-10 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325694A JP2007132259A (en) 2005-11-10 2005-11-10 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2007132259A true JP2007132259A (en) 2007-05-31

Family

ID=38154122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325694A Pending JP2007132259A (en) 2005-11-10 2005-11-10 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2007132259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053652A1 (en) 2006-11-02 2008-05-08 Shionogi & Co., Ltd. Process for production of hydroxyadamantaneamine
WO2009041470A1 (en) 2007-09-27 2009-04-02 Shionogi & Co., Ltd. Method for producing hydroxylated adamantane using cytochrome p450

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053652A1 (en) 2006-11-02 2008-05-08 Shionogi & Co., Ltd. Process for production of hydroxyadamantaneamine
EP2610241A1 (en) 2006-11-02 2013-07-03 Shionogi & Co., Ltd. Process for production of hydroxyadamantaneamine
WO2009041470A1 (en) 2007-09-27 2009-04-02 Shionogi & Co., Ltd. Method for producing hydroxylated adamantane using cytochrome p450
US8383381B2 (en) 2007-09-27 2013-02-26 Shjonogi & Co., Ltd. Method for producing hydroxylated adaivjantane using cytochrome P450
US8614080B2 (en) 2007-09-27 2013-12-24 Shionogi & Co., Ltd. Method for producing hydroxylated adamantane using cytochrome P450

Similar Documents

Publication Publication Date Title
US20090136369A1 (en) Hermetic compressor
US20080247890A1 (en) Recriprocating Compressor
US7422423B2 (en) Refrigerant compressor, and refrigerating machine using the same
KR20060087521A (en) Compressor
JP2007132259A (en) Hermetic compressor
JP4429769B2 (en) Hermetic compressor
CN100453806C (en) Hermetic compressor
US20120020817A1 (en) Reciprocating compressor
US20210340967A1 (en) Refrigerant compressor and refrigeration apparatus using the same
JP2007292016A (en) Hermetic compressor
KR20060065471A (en) Enclosed type compressor
JP2010025075A (en) Sliding member and hermetic compressor
JP2009085191A (en) Sealed compressor
KR20110132940A (en) Reciprocating compressor and refrigerating machine having the same
JP4750561B2 (en) Scotch yoke reciprocating compressor and refrigerator / refrigerator using the same
JP4844092B2 (en) Compressor
WO2018154716A1 (en) Rotary compressor and manufacturing method for rotary compressor
CN101900099B (en) Hermetic type compressor and fridge-freezer
JP2010077863A (en) Refrigerant compressor and refrigerating cycle device
JP2005133634A (en) Refrigerant compressor
JP3977223B2 (en) Hermetic compressor
JP2014034898A (en) Sealed compressor, and refrigerator or air conditioner including the same
JP6348298B2 (en) Hermetic compressor and refrigeration system
JP4687605B2 (en) Hermetic compressor
JP2010185286A (en) Sliding member and compressor