JP2007130634A - Deodorization catalyst and its manufacturing method - Google Patents

Deodorization catalyst and its manufacturing method Download PDF

Info

Publication number
JP2007130634A
JP2007130634A JP2006344567A JP2006344567A JP2007130634A JP 2007130634 A JP2007130634 A JP 2007130634A JP 2006344567 A JP2006344567 A JP 2006344567A JP 2006344567 A JP2006344567 A JP 2006344567A JP 2007130634 A JP2007130634 A JP 2007130634A
Authority
JP
Japan
Prior art keywords
catalyst
component
harmful gas
metal
odor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344567A
Other languages
Japanese (ja)
Inventor
Teiichi Usami
禎一 宇佐見
Kenkichi Kagawa
謙吉 香川
Masanori Kawazoe
政宣 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006344567A priority Critical patent/JP2007130634A/en
Publication of JP2007130634A publication Critical patent/JP2007130634A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which can efficiently decompose an odor component or a harmful gas component by oxidation even at a low temperature. <P>SOLUTION: In this deodorization catalyst, a composite oxide composed of CeO<SB>2</SB>and Fe<SB>3</SB>O<SB>4</SB>is provided as a carrier, and Mn is supported as a catalyst component on the carrier. The deodorization catalyst can efficiently decompose an odor component or a harmful gas component by oxidation even at a low temperature, can realize an enhanced performance of the catalyst, can reduce the deterioration of the catalyst, and has prolonged service life. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、店舗、家庭、オフィスなどで発生し空気中に存在する体臭、建築臭、ペット臭、たばこ臭、その他の臭気成分、又は一酸化炭素、その他の有害ガス成分を分解除去するための脱臭触媒及びその製造方法に関するものであり、空気清浄装置、エアコンディショナー、生ごみ処理機、排気処理機などに利用することができる。   The present invention is for decomposing and removing body odor, architectural odor, pet odor, cigarette odor, other odor components, carbon monoxide, and other harmful gas components that are generated in stores, homes, offices, etc. in the air. The present invention relates to a deodorizing catalyst and a method for producing the same, and can be used for an air cleaning device, an air conditioner, a garbage disposal machine, an exhaust treatment machine, and the like.

近年、高気密・高断熱性の住宅やビルディングに代表されるように、建物の機密性が高くになるつれて悪臭や有害ガス成分が問題となることが多く、臭気や有害ガスの除去に対する関心が高くなっている。すなわち、除去対象となるガス成分は、暮らしの4大悪臭であるアンモニア、アセトアルデヒド、トリメチルアミン、メチルメルカプタンをはじめとして、一酸化炭素、ホルムアルデヒドのような有害ガス成分も含まれる。   In recent years, as represented by highly airtight and highly heat-insulating houses and buildings, bad smells and harmful gas components often become a problem as the confidentiality of buildings increases, and interest in removing odors and harmful gases is increasing. Is high. That is, the gas components to be removed include ammonia, acetaldehyde, trimethylamine, and methyl mercaptan, which are the four major odors in daily life, and harmful gas components such as carbon monoxide and formaldehyde.

これらの臭気や有害ガスの除去には、活性炭やゼオライトなどの吸着剤がよく用いられるが、吸着した臭気成分等を処理する有効な手段がないため、吸着剤自体の寿命の点で問題がある。一方、臭気成分等を触媒によって酸化分解して無害なものにする方法は、所謂クリーンな処理であり、かつ長寿命になる点から注目されており、種々の検討が行われている。例えば、特許文献1には臭気成分を触媒によって高温で酸化分解する方法が記載されている。また、低温での触媒による分解についても提案されているが、多種の臭気成分等を満足できる程度に十分に分解除去するには時間がかかり、その酸化分解速度に問題があった。
特開昭61−8116号公報
Adsorbents such as activated carbon and zeolite are often used to remove these odors and harmful gases, but there is a problem in terms of the life of the adsorbent itself because there is no effective means for treating adsorbed odor components. . On the other hand, a method for oxidatively decomposing odor components and the like with a catalyst to make them harmless is a so-called clean process and has been attracting attention because of its long life, and various studies have been conducted. For example, Patent Document 1 describes a method of oxidizing and decomposing odor components at a high temperature using a catalyst. In addition, although decomposition by a catalyst at a low temperature has been proposed, it takes time to sufficiently decompose and remove various odor components and the like, and there is a problem in the oxidative decomposition rate.
Japanese Patent Laid-Open No. 61-8116

このように、従来の触媒では、臭気成分又は有害ガス成分を短時間で酸化分解除去する、という要求を満足するには、高温条件で触媒を働かせ、しかも多量の触媒を用いる量が必要である。そこで、本発明は、このような能力不足、装置の構成及び上限温度制約の問題、コスト高などの課題を解決する触媒及びその製造方法を提供するものである。   As described above, in the conventional catalyst, in order to satisfy the requirement of oxidative decomposition and removal of odorous components or harmful gas components in a short time, an amount that uses the catalyst at a high temperature and a large amount of catalyst is required. . Therefore, the present invention provides a catalyst and a method for producing the same that can solve such problems as insufficient capacity, problems of apparatus configuration and upper temperature limit, and high cost.

生活空間等に存在する上述の如き臭気成分又は有害ガス成分を酸化分解させるための触媒の構成に関し、その触媒金属成分、担体成分、添加成分、製造方法を次に述べる。   Regarding the structure of the catalyst for oxidatively decomposing the above-mentioned odor components or harmful gas components present in the living space, the catalyst metal component, carrier component, additive component, and production method will be described below.

すなわち、触媒金属成分はMn金属、該金属を含有する合金もしくは該金属の酸化物、又は該金属、合金及び金属酸化物のうちから選ばれた2種以上の混合物の形態とすることができ、さらにはこれらとCo、Ni等と混合して用いることもできる。   That is, the catalytic metal component can be in the form of a Mn metal, an alloy containing the metal or an oxide of the metal, or a mixture of two or more selected from the metal, alloy and metal oxide, Furthermore, these can be mixed with Co, Ni or the like.

担体成分としては、CeOとFeとの複合酸化物とし、これに上記触媒成分を担持させることになる。添加成分としては、Pr、La、Bi、MgO、CoO、NiO、CuO、ZnO等を採用することができる。 As the carrier component, a complex oxide of CeO 2 and Fe 3 O 4 is used, and the catalyst component is supported on this. As the additive component, Pr 2 O 3 , La 2 O 3 , Bi 2 O 3 , MgO, CoO, NiO, CuO, ZnO or the like can be employed.

このような触媒は、共沈法、析出沈殿法等を利用して調製することができる。すなわち、共沈法を利用する場合は、上記複合酸化物担体を形成するための金属の化合物と、上記触媒成分を形成するための金属の化合物とを溶媒に溶かしてなる原料溶液を調製し、この原料溶液とアルカリ溶液とを混合することによって、上記担体を形成するための金属を該担体の前駆体である水酸化物として沈殿させると同時に、上記触媒成分を形成するための金属を該触媒成分の前駆体である水酸化物として共沈させ、得られた沈澱物を乾燥・焼成すればよい。また、焼成後に必要に応じて当該触媒の還元処理を施すようにすることもできる。   Such a catalyst can be prepared using a coprecipitation method, a precipitation method, or the like. That is, when using the coprecipitation method, prepare a raw material solution obtained by dissolving a metal compound for forming the composite oxide support and a metal compound for forming the catalyst component in a solvent, By mixing the raw material solution and the alkaline solution, the metal for forming the support is precipitated as a hydroxide as a precursor of the support, and at the same time, the metal for forming the catalyst component is added to the catalyst. What is necessary is just to co-precipitate as the hydroxide which is a precursor of a component, and to dry and bake the obtained precipitate. In addition, the catalyst may be subjected to reduction treatment as necessary after calcination.

上記添加成分については、上記共沈と同時に水酸化物として沈澱させることによって添加し、あるいは当該共沈後に水酸化物として添加して、上記焼成等を施せばよい。   About the said addition component, it may add by making it precipitate as a hydroxide simultaneously with the said coprecipitation, or may be added as a hydroxide after the said coprecipitation, and the said baking etc. may be given.

また、析出沈澱法を利用する場合は、上記複合酸化物担体を分散させ、且つ上記触媒成分を形成するための金属の化合物を溶かしてなる原料溶液を調製し、この原料溶液とアルカリ溶液とを混合することによって、上記複合酸化物担体の上に上記触媒成分の金属をその前駆体である水酸化物として沈殿させ、得られた固形分を乾燥・焼成し、必要に応じて還元処理を施すようにすればよい。   In the case of using the precipitation method, a raw material solution prepared by dispersing the composite oxide carrier and dissolving the metal compound for forming the catalyst component is prepared. By mixing, the catalyst component metal is precipitated as a precursor hydroxide on the composite oxide support, and the resulting solid is dried and fired, and subjected to reduction treatment as necessary. What should I do?

この析出沈澱法による場合、上記添加成分については、触媒成分の析出沈澱と同時に水酸化物として沈澱させることによって添加することができ、あるいは上記複合酸化物担体に添加成分を析出沈澱法によって担持させ、若しくは含浸法によって担持させた後に、これに上記触媒成分を析出沈澱法によって担持させることもできる。   In the case of this precipitation method, the additive component can be added by precipitation as a hydroxide simultaneously with the precipitation of the catalyst component, or the additive component is supported on the composite oxide support by the precipitation method. Alternatively, after the catalyst component is supported by the impregnation method, the catalyst component may be supported by the precipitation method.

また、上記触媒成分は一度に担持せず2回に分けて担持させるようにすることができる。すなわち、その方法は、上記複合酸化物担体を形成するための金属の化合物と、上記触媒成分を形成するためのPd金属の化合物とを溶媒に溶かしてなる原料溶液を調製し、この原料溶液とアルカリ溶液とを混合することによって、上記担体を形成するための金属を該担体の前駆体である水酸化物として沈殿させると同時に、Pd水酸化物として共沈させ、得られた沈澱物を乾燥・焼成し、得られた焼成物に、Pd金属と同一又は異なる第2の触媒成分を形成するための金属を含浸法又は析出沈澱法によって担持させる、というものである。この場合も、その後に還元処理を施すようにすることができる。   Further, the catalyst component may not be supported at a time but may be supported in two portions. That is, the method prepares a raw material solution obtained by dissolving a metal compound for forming the composite oxide support and a Pd metal compound for forming the catalyst component in a solvent, By mixing with an alkaline solution, the metal for forming the carrier is precipitated as a hydroxide that is a precursor of the carrier and simultaneously coprecipitated as a Pd hydroxide, and the resulting precipitate is dried. The calcined product and the obtained calcined product are loaded with a metal for forming a second catalyst component that is the same as or different from the Pd metal by an impregnation method or a precipitation method. Also in this case, a reduction process can be performed thereafter.

上記触媒の比表面積に関しては、上記共沈法の条件の調整により、あるいは高比表面積な担体を用いることにより、100m/g以上の高比表面積にすることが好適であり、このことが臭気成分や有害ガス成分の酸化分解反応において低温でも高活性を得るうえで有利になる。 With respect to the specific surface area of the catalyst, it is preferable that the specific surface area is 100 m 2 / g or more by adjusting the conditions of the coprecipitation method or by using a carrier having a high specific surface area. This is advantageous in obtaining high activity even at low temperatures in the oxidative decomposition reaction of components and harmful gas components.

触媒金属成分の重量比は0.1〜30wt%の範囲であればよく、さらに望ましくは、性能などの点から2〜15wt%の範囲がよい。   The weight ratio of the catalyst metal component may be in the range of 0.1 to 30 wt%, and more preferably in the range of 2 to 15 wt% from the viewpoint of performance.

このようにして製造された脱臭触媒は、空気清浄装置、エアコンディショナー、生ごみ処理機、排気処理機などで特に有効に利用することができ、例えば、本発明触媒に対し、基材としてハニカム形状、粒子形状、繊維形状等のものを用い、さらにヒーターと組み合わせて、触媒構造体を作製し、上記空気清浄装置等に設置することにより低温加熱付与のみで触媒表面上で臭気成分等の酸化分解作用を発現させ、生活空間の脱臭が可能となる。また、吸着剤に臭気成分等を吸着させた後に、これを加熱することによって、吸着成分を脱離させて吸着剤を再生する一方、この脱離した臭気成分等を当該触媒によって酸化分解させるようにすることができる。   The deodorization catalyst thus produced can be used particularly effectively in an air cleaning device, an air conditioner, a garbage treatment machine, an exhaust treatment machine, and the like. In addition, the catalyst structure is prepared using a particle shape, fiber shape, etc., and combined with a heater. The effect is expressed and the deodorization of the living space becomes possible. Also, after adsorbing the odor component etc. to the adsorbent, the adsorbent component is desorbed by heating it to regenerate the adsorbent, while the desorbed odor component etc. is oxidized and decomposed by the catalyst. Can be.

本発明に係る触媒によれば、CeOとFeとの複合酸化物担体に、触媒成分としてMnを担持させてなるから、臭気成分又は有害ガス成分を低温でも効率良く酸化分解させることができ、触媒の高性能化が図れるとともに、触媒の劣化が少なくなってその長寿命化が図れる。 According to the catalyst of the present invention, Mn is supported as a catalyst component on a composite oxide support of CeO 2 and Fe 3 O 4 , so that odorous components or harmful gas components can be efficiently oxidized and decomposed even at low temperatures. As a result, the catalyst performance can be improved and the deterioration of the catalyst can be reduced to extend its life.

また、本発明に係る触媒の製造方法によれば、上述の如き優れた特性を有する触媒を製造することができる。   In addition, according to the method for producing a catalyst according to the present invention, a catalyst having the excellent characteristics as described above can be produced.

以下に、本発明を実施例と比較例との比較によって説明する。   Below, this invention is demonstrated by the comparison with an Example and a comparative example.

<触媒の種類>
実施例は次の発明触媒であり、比較例は次の比較触媒1〜3の3種類である。ここに、下記の各触媒において、「/」の左側は触媒成分を示し、右側は担体成分を示す。
<Catalyst type>
An Example is the following invention catalyst, and a comparative example is three types of the following comparative catalysts 1-3. Here, in each of the following catalysts, the left side of “/” indicates a catalyst component, and the right side indicates a carrier component.

発明触媒 Mn/CeO−Fe
比較触媒1 Ni/Al
比較触媒2 Ag/Al
比較触媒3 Ru/Al
Invention catalyst Mn / CeO 2 —Fe 3 O 4
Comparative catalyst 1 Ni / Al 2 O 3
Comparative catalyst 2 Ag / Al 2 O 3
Comparative catalyst 3 Ru / Al 2 O 3

<触媒の調製>
発明触媒
マンガン化合物として硝酸マンガンの水溶液を準備し、これにセリウム化合物として硝酸セリウムを加え、さらに所定量の硝酸鉄を加えてA液とした。一方、沈殿試薬としてアルカリ溶液を水に溶かしたB液を作製した。そして、このB液を撹拌しながら、これに上記A液に流し込むことによって、共沈物を生成させた。その後、1時間の熟成、洗浄、乾燥、焼成、還元の工程を経て、Mnが主としてMnOの形態で担体に担持されてなる当該触媒を完成した。
<Preparation of catalyst>
Invention catalyst An aqueous solution of manganese nitrate was prepared as a manganese compound, cerium nitrate was added as a cerium compound, and a predetermined amount of iron nitrate was further added to prepare solution A. On the other hand, a liquid B was prepared by dissolving an alkaline solution in water as a precipitation reagent. Then, while the B liquid was stirred, it was poured into the A liquid to produce a coprecipitate. Thereafter, through the steps of aging, washing, drying, firing, and reduction for 1 hour, the catalyst in which Mn was supported on the support mainly in the form of MnO 2 was completed.

比較触媒1、2、3
比較触媒1については、含浸法により酸化アルミニウム粉末の上に硝酸ニッケルの水溶液を用いてニッケルを付着させ、熟成、乾燥、洗浄、焼成、還元の工程を経て当該触媒を完成した。
Comparative catalyst 1, 2, 3
For the comparative catalyst 1, nickel was deposited on the aluminum oxide powder by an impregnation method, and the catalyst was completed through the steps of aging, drying, washing, firing and reduction.

また、比較触媒2については、硝酸銀を用いて比較触媒1と同様にして調製した。また、比較触媒3については、塩化ルテニウムを用いて比較触媒1と同様にして調製した。   Comparative catalyst 2 was prepared in the same manner as comparative catalyst 1 using silver nitrate. Comparative catalyst 3 was prepared in the same manner as comparative catalyst 1 using ruthenium chloride.

<触媒の評価>
上記発明触媒及び比較触媒1〜3の各触媒を固定床流通式反応装置に組み込み、この触媒に水素還元処理を施した後、トリメチルアミン200ppmを含む、酸素20%とヘリウム80%の混合ガスを200℃、空間速度30000ml/h/gで通し、生成物を測定することにより、各触媒の臭気酸化分解特性を評価した。結果は、表1に記されている。
<Evaluation of catalyst>
Each catalyst of the invention catalyst and comparative catalysts 1 to 3 was incorporated in a fixed bed flow reactor, and after this catalyst was subjected to hydrogen reduction treatment, a mixed gas of 20% oxygen and 80% helium containing 200 ppm trimethylamine was added. The odor oxidative degradation characteristics of each catalyst were evaluated by passing the product at a temperature of 30000 ml / h / g at 0 ° C. and measuring the product. The results are listed in Table 1.

Figure 2007130634
Figure 2007130634

表1によれば、発明触媒はその活性が非常に高いことがわかる。また、いずれの触媒についてもCO、N、NOの3種類の無害なガスのみが生成し、有害ガスの出ないクリーンな酸化反応が起こっていることを確認した。 According to Table 1, it can be seen that the inventive catalyst has very high activity. In addition, it was confirmed that for each catalyst, only three kinds of harmless gases of CO 2 , N 2 , and N 2 O were generated, and a clean oxidation reaction in which no harmful gas was generated occurred.

Claims (2)

臭気成分又は有害ガス成分を分解するための脱臭触媒であって、
CeOとFeとの複合酸化物担体に、触媒成分としてMnが担持されていることを特徴とする脱臭触媒。
A deodorization catalyst for decomposing odor components or harmful gas components,
A deodorizing catalyst characterized in that Mn is supported as a catalyst component on a composite oxide support of CeO 2 and Fe 3 O 4 .
請求項1に記載されている脱臭触媒の製造方法であって、
Ce化合物とFe化合物とMn化合物とを溶媒に溶かしてなる原料溶液を調製し、
上記原料溶液とアルカリ溶液とを混合することによって、上記Ce及びFeをその前駆体である水酸化物として沈殿させると同時に、上記Mnをその前駆体である水酸化物として共沈させ、得られた沈澱物を焼成することを特徴とする脱臭触媒の製造方法。
It is a manufacturing method of the deodorizing catalyst described in Claim 1,
A raw material solution prepared by dissolving a Ce compound, an Fe compound and a Mn compound in a solvent;
By mixing the raw material solution and the alkali solution, the Ce and Fe are precipitated as the precursor hydroxide, and at the same time, the Mn is co-precipitated as the precursor hydroxide. A method for producing a deodorizing catalyst, which comprises calcining a precipitate.
JP2006344567A 2006-12-21 2006-12-21 Deodorization catalyst and its manufacturing method Pending JP2007130634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344567A JP2007130634A (en) 2006-12-21 2006-12-21 Deodorization catalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344567A JP2007130634A (en) 2006-12-21 2006-12-21 Deodorization catalyst and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9112177A Division JPH10296087A (en) 1997-04-30 1997-04-30 Deodorizing catalyst and its manufacture

Publications (1)

Publication Number Publication Date
JP2007130634A true JP2007130634A (en) 2007-05-31

Family

ID=38152714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344567A Pending JP2007130634A (en) 2006-12-21 2006-12-21 Deodorization catalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007130634A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584441A (en) * 1991-09-26 1993-04-06 Hitachi Ltd Deodorizing catalyst and apparatus using that
WO1996021506A1 (en) * 1995-01-13 1996-07-18 Rhone-Poulenc Chimie Catalytic composition based on cerium oxide and manganese, iron or praseodymium oxide, method for preparing same and use thereof in motor vehicle post-combustion catalysis
JPH09271634A (en) * 1996-04-09 1997-10-21 Yamaha Motor Co Ltd Fuel gas deodorizing method in gas engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584441A (en) * 1991-09-26 1993-04-06 Hitachi Ltd Deodorizing catalyst and apparatus using that
WO1996021506A1 (en) * 1995-01-13 1996-07-18 Rhone-Poulenc Chimie Catalytic composition based on cerium oxide and manganese, iron or praseodymium oxide, method for preparing same and use thereof in motor vehicle post-combustion catalysis
JPH09271634A (en) * 1996-04-09 1997-10-21 Yamaha Motor Co Ltd Fuel gas deodorizing method in gas engine

Similar Documents

Publication Publication Date Title
CN109107567B (en) M-MnOX-CeO2Catalyst and application thereof
JP7203110B2 (en) Catalyst for catalyzing formaldehyde oxidation and its preparation and use
Mu et al. Research progress in catalytic oxidation of volatile organic compound acetone
US9399208B2 (en) Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
JP5486497B2 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
CN108940304B (en) Mn/Ce/Cu-based low-temperature plasma catalyst and preparation and application thereof
JP4759739B2 (en) Ethylene decomposition catalyst
JP5441380B2 (en) Formaldehyde oxidation catalyst and method for producing the same
Li et al. Simple thermocatalytic oxidation degradation of VOCs
JPH10296087A (en) Deodorizing catalyst and its manufacture
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
JP2010058074A (en) Catalyst for oxidizing formaldehyde, method of producing the same, and method of cleaning air using the same catalyst
Li et al. High-yield synthesis of Ce modified Fe–Mn composite oxides benefitting from catalytic destruction of chlorobenzene
JP2008006353A (en) Co oxidation method
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
JP5503155B2 (en) Carbon monoxide removal filter
JP2007130634A (en) Deodorization catalyst and its manufacturing method
JP4780490B2 (en) Activated carbon filter
JP3546766B2 (en) Deodorizing catalyst
WO2019239936A1 (en) Porous iron oxide catalyst body
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
KR20030023344A (en) Method for Removing Ozone Using Natural Manganese Ore as a Catalyst
JP2002306581A (en) Deodorant and method of preparation for the same
JP2015202440A (en) Catalyst for voc decomposition removal, production method thereof, and voc decomposition removal method using the same
JP2017148764A (en) Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102