JP2007130622A - Mercury removal apparatus of waste fluorescent lamp - Google Patents

Mercury removal apparatus of waste fluorescent lamp Download PDF

Info

Publication number
JP2007130622A
JP2007130622A JP2005356920A JP2005356920A JP2007130622A JP 2007130622 A JP2007130622 A JP 2007130622A JP 2005356920 A JP2005356920 A JP 2005356920A JP 2005356920 A JP2005356920 A JP 2005356920A JP 2007130622 A JP2007130622 A JP 2007130622A
Authority
JP
Japan
Prior art keywords
mercury
waste fluorescent
vacuum
temperature
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005356920A
Other languages
Japanese (ja)
Other versions
JP4348552B2 (en
Inventor
Tatsuo Go
龍夫 郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005356920A priority Critical patent/JP4348552B2/en
Publication of JP2007130622A publication Critical patent/JP2007130622A/en
Application granted granted Critical
Publication of JP4348552B2 publication Critical patent/JP4348552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of a devolatization method of mercury in a waste fluorescent lamp by vacuum high temperature heating, wherein an apparatus can be made in the smallest and simplest structure, obtaining high vacuum by making crushed glass pieces of the waste fluorescent lamp a stationary packed layer, but a space between packed layers obstructs heat transfer to a central part of the layer. <P>SOLUTION: After evacuating inside the packed layers, only a small amount hydrogen or helium of high heat conductivity is charged into the layer during heating period of the packed layers; thus heat transfer is promoted and temperature raising time can be shortened. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は廃蛍光管の水銀除去装置に関するものである。詳しくは、廃蛍光管のガラス破砕物から真空高温加熱により水銀を蒸発除去する方法に関する。  The present invention relates to a mercury removal apparatus for waste fluorescent tubes. Specifically, the present invention relates to a method for evaporating and removing mercury from a crushed glass of a waste fluorescent tube by vacuum high temperature heating.

水銀汚染は水俣湾および阿賀野川流域がよく知られており、また、無機水銀であっても水俣病の原因物質である有機水銀に変わり得ることも知られている。
家庭や工場において広く使用されている蛍光管も、微量の水銀が封入されており、廃蛍光管は長い間、処理困難物としてほとんど適正処理、処分がなされなかった。 従って、この廃蛍光管から水銀を回収し処理する安価な方法が必要とされている。
従来から廃蛍光管の処理技術がないわけではない。以下にその方法を示す。
1)直管用エンドカットマシン(両端切断、口金除去)→分別(蛍光粉、ガラス)→破砕→(蛍光粉)水銀回収蒸留設備
(ガラス)付着水銀除去設備(湿式法:ガラス洗浄装置→乾燥、洗浄液処理設備)
(乾式法:回転型高温真空加熱装置)
2)密閉型破砕機→低温間接加熱水銀回収装置→分別用磁選機(口金、ガラス、蛍光粉)
前者は、ガラス、口金、蛍光粉を分別し、蛍光粉から水銀回収を行い、ガラスからも付着水銀除去を行うので、ほぼ完全に水銀の除去ができる方法である。
しかし、直管、丸管、破損管別のカットマシンや破砕機、口金部分用の破砕機と磁選機、粉塵排気処理設備等が必要で、水銀回収除去を蛍光粉とガラスの両方について行うことから工程が多く、特にガラスの付着水銀除去における湿式法は、洗浄、乾燥、廃液処理等、さらに多くの工程が必要となる。設備費も非常に多額となる。
水銀の多くが蛍光粉側にあることと、ガラスカレットの方が遙かにその量が多いことから、蛍光粉からの水銀回収装置だけの方法も用いられているが、ガラスカレットに付着水銀が残り不完全な処理であり、将来的に採用される方法ではない。
後者は、分別しないでロータリーキルン型水銀回収装置で処理するので、全ての部分について水銀除去ができる。
しかし、装置内圧力が常圧で、かつ、処理温度が300℃と低温で、水銀の沸点以下の温度であるため、効率よく除去を完全に行うことができない。
Mercury contamination is well known in Minamata Bay and the Agano River basin, and it is also known that even inorganic mercury can be converted to organic mercury, the causative agent of Minamata disease.
Fluorescent tubes widely used in homes and factories also contain a very small amount of mercury, and waste fluorescent tubes have been hardly treated and disposed of as difficult-to-treat materials for a long time. Therefore, there is a need for an inexpensive method for recovering and processing mercury from this waste fluorescent tube.
Traditionally, there is no lack of waste fluorescent tube processing technology. The method is shown below.
1) End cutting machine for straight pipes (both ends cutting, base removal) → separation (fluorescent powder, glass) → crushing → (fluorescent powder) mercury recovery distillation equipment (glass) attached mercury removal equipment (wet method: glass cleaning equipment → drying, Cleaning liquid processing equipment)
(Dry method: Rotating high temperature vacuum heating device)
2) Sealed crusher → Low-temperature indirect heating mercury recovery device → Magnetic separator for separation (base, glass, fluorescent powder)
The former is a method in which mercury can be removed almost completely because glass, a base, and fluorescent powder are separated, mercury is recovered from the fluorescent powder, and adhering mercury is also removed from the glass.
However, it is necessary to have a straight pipe, round pipe, broken pipe cutting machine and crusher, crusher and magnetic separator for the cap part, dust exhaust treatment equipment, etc., and to collect and remove mercury for both fluorescent powder and glass In particular, the wet method for removing mercury adhering to glass requires more steps such as washing, drying, and waste liquid treatment. Equipment costs are also very large.
Since most of the mercury is on the fluorescent powder side and the amount of glass cullet is much larger, a method using only a mercury recovery device from fluorescent powder is also used. The remaining process is incomplete and is not a method to be adopted in the future.
Since the latter is processed by a rotary kiln type mercury recovery apparatus without separation, mercury can be removed from all parts.
However, since the internal pressure of the apparatus is normal pressure, the processing temperature is as low as 300 ° C., and the temperature is lower than the boiling point of mercury, the removal cannot be performed efficiently and completely.

このように廃蛍光管の水銀の除去には大掛かりな設備と工程が必要とされていることが、これを処理困難物としている原因となっている。このため、廃蛍光管を非常に簡単な装置で、その全量を完全に処理し、水銀溶出の環境基準0.0005mg/lを達成できる廃蛍光管の処理方法が必要である。  Thus, the removal of mercury from the waste fluorescent tube requires large-scale equipment and processes, which is a cause of difficulty in processing. For this reason, there is a need for a waste fluorescent tube processing method that can completely process the entire amount of waste fluorescent tubes with a very simple device and achieve the environmental standard of 0.0005 mg / l for mercury elution.

最も簡単な処理工程として次の方法とした。
密閉型破砕機→充填層型水銀回収装置→分別用磁選機(口金、ガラス、蛍光粉)
まず、廃蛍光管は直管、丸管、破損管を問わず、そのまま密閉型破砕機で破砕し、コンテナに充填する。このコンテナを水銀回収装置に装入し、水銀を除去する。ここまで付着水銀の破砕物の大気暴露がないので、作業環境用の排気処理設備が不要になる。また、可動部のない充填層型の水銀回収装置であるから、装置として最も単純かつ小型のものとなる。摺動部がないので高真空も得られる。なお、密閉型破砕機と磁選機は既存の安価な市販装置が使用できる。
この方法では、廃蛍光管を各部分別なく全量破砕し、その破砕物を充填層に充填し、これを真空中で加熱し水銀を蒸発分離する。装置の全体を図1に示す。
金属製真空容器中にガラスカレットを入れた内部容器(コンテナ)を装入し、これを電気炉で外部加熱する。真空容器のフランジ部は水冷でバイトン製Oリングでシールされているので、容易に0.133Pa(0.001Torr)程度の高真空にすることができる。蒸発した水銀蒸気を水冷凝縮器で回収し、排気ガスは真空ポンプから活性炭吸着槽を経て排出される。
水銀の沸点は357℃であるが、高温ほど水銀は除去し易い。この装置では容易に1000℃まで上げることができるが、混合破砕物のためこの温度にも制限がある。口金のアルミニウムの融点は660℃のため、これ以上に昇温すると溶解し、後工程で分別が困難になる。そこで、温度はこの温度以下とする。
しかしながら、充填層は極めて装置が小さくできる反面、この充填層型加熱装置において、最大の欠点は伝熱律速にある。すなわち、ガラス自身の熱伝導度が低い上、カレットであるため空隙により伝熱が阻害され、さらに真空断熱が加わることから、充填層内部の温度上昇が遅いという欠点がある。そこで、伝熱媒体ガスとして水素又はヘリウムを注入する。
水素とヘリウムは、図2に示すように、窒素やアルゴンなど他の一般的なガスに比べ桁違いに熱伝導度が高い特異なガスである。従って、水素とヘリウムのどちらでも熱媒体として適当である。水素は爆発範囲(空気中4〜75vol%)が広く危険性はあるが、安価で入手し易く都合がよい。
また、アルミニウムは少しでも酸化すると、溶解時ノロが発生し再利用することが困難になるので、昇温は水素による還元雰囲気中で行うことはこの意味でも都合がよい。
水銀に関しては、常温では安定で酸化せず金属のままであり、破損蛍光管において酸化水銀が存在したとしても、500℃で熱分解するので、これ以上では分解し、再び水銀に戻り除去される。従って、このような条件下では、水素ガスによる還元雰囲気は意味がない。実験においても、昇温時の酸化雰囲気か還元雰囲気かにかかわらず、真空下600℃で完全に水銀を除去できる。
水素では、このような副次的な効果もあるが、主目的は伝熱媒体である。図2から分かるようにガスの一般的性質として、高温ほど熱伝導度が高くなり有利となるが、一方、圧力依存性はほとんどない。これを水素ガスについて図3に示す。従って、添加する水素は、高圧である必要は全くなく、低圧で僅かであっても伝熱効果は著しい。
その結果、真空加熱に比べ、水素添加加熱は、昇温時間が短縮される。
充填層加熱におけるカレットの水銀溶出量は、温度の上昇と共に低減するが、大気圧下では、水銀蒸気のガス中の拡散が律速となり不完全である。しかし、真空充填層加熱では、133Pa(1Torr)以下でカレット温度が600℃に達すれば、水銀溶出量は廃棄物処理基準の0.005mg/lのみならず、環境基準の0.0005mg/l以下となり、水銀が完全に除去される。
The following method was used as the simplest processing step.
Sealed crusher → packed bed type mercury recovery device → magnetic separator for separation (base, glass, fluorescent powder)
First, waste fluorescent tubes, whether straight tubes, round tubes, or broken tubes, are crushed as they are by a closed crusher and filled into containers. The container is loaded into a mercury recovery device to remove mercury. Since there is no atmospheric exposure to the mercury crushed material so far, there is no need for an exhaust treatment facility for the work environment. Moreover, since it is a packed bed type mercury recovery device having no moving parts, it is the simplest and compact device. Since there is no sliding part, a high vacuum can be obtained. In addition, the existing crusher and the magnetic separator can use the existing inexpensive commercial apparatus.
In this method, the entire amount of the waste fluorescent tube is crushed independently of each part, the crushed material is filled in a packed bed, and this is heated in a vacuum to evaporate and separate mercury. The whole apparatus is shown in FIG.
An internal container (container) in which glass cullet is placed in a metal vacuum container is charged, and this is externally heated in an electric furnace. Since the flange portion of the vacuum vessel is sealed with water-cooled Viton O-rings, a high vacuum of about 0.133 Pa (0.001 Torr) can be easily achieved. The evaporated mercury vapor is recovered with a water-cooled condenser, and the exhaust gas is discharged from the vacuum pump through an activated carbon adsorption tank.
The boiling point of mercury is 357 ° C., but mercury is easier to remove at higher temperatures. Although this apparatus can easily raise the temperature to 1000 ° C., there is a limit to this temperature because of the mixed crushed material. Since the melting point of aluminum in the die is 660 ° C., it melts when the temperature is raised beyond this, and separation becomes difficult in the subsequent process. Therefore, the temperature is set below this temperature.
However, while the packed bed can be made extremely small, the biggest drawback of this packed bed type heating apparatus is the heat transfer rate limiting. In other words, since the thermal conductivity of the glass itself is low, heat transfer is hindered by the voids because of the cullet, and further vacuum insulation is added, so that the temperature rise inside the packed bed is slow. Therefore, hydrogen or helium is injected as the heat transfer medium gas.
As shown in FIG. 2, hydrogen and helium are unique gases having a thermal conductivity that is orders of magnitude higher than other general gases such as nitrogen and argon. Therefore, either hydrogen or helium is suitable as a heat medium. Hydrogen has a wide explosion range (4 to 75 vol% in air) and is dangerous, but it is inexpensive and easily available.
Further, if aluminum is oxidized even a little, it will be difficult to reuse because it generates noro at the time of dissolution. Therefore, it is convenient to raise the temperature in a reducing atmosphere with hydrogen.
As for mercury, it is stable at room temperature and does not oxidize and remains a metal. Even if mercury oxide is present in a broken fluorescent tube, it is thermally decomposed at 500 ° C. . Therefore, under such conditions, a reducing atmosphere with hydrogen gas is meaningless. In the experiment, mercury can be completely removed at 600 ° C. under vacuum regardless of whether the temperature is an oxidizing atmosphere or a reducing atmosphere.
Hydrogen has such a secondary effect, but its main purpose is a heat transfer medium. As can be seen from FIG. 2, as a general property of gas, the higher the temperature, the higher the thermal conductivity and the more advantageous, but on the other hand, there is almost no pressure dependence. This is shown in FIG. 3 for hydrogen gas. Therefore, the hydrogen to be added does not need to be at a high pressure at all, and the heat transfer effect is remarkable even at a low pressure.
As a result, the heating time is shortened in the hydrogenation heating as compared with the vacuum heating.
The mercury elution amount of cullet in packed bed heating decreases with increasing temperature, but under atmospheric pressure, the diffusion of mercury vapor in the gas is rate limiting and is incomplete. However, in vacuum packed bed heating, if the cullet temperature reaches 600 ° C. at 133 Pa (1 Torr) or less, the mercury elution amount is not only 0.005 mg / l of the waste treatment standard, but 0.0005 mg / l or less of the environmental standard. Thus, mercury is completely removed.

廃蛍光管のカレットからの水銀除去装置において、真空充填層型加熱装置が最も小型で確実に水銀を完全に除去できる方法である。しかしながら、この真空充填層を実用的にスケールアップする上で最大の欠点は伝熱律速であり、層内の中心部まで昇温するのに時間が掛かることである。
しかし、加熱時にこの充填層内に高熱伝導度である水素又はヘリウムを僅かに注入することで、昇温時間を短縮し、充分実用規模の装置にすることができることを見出した。
従って、この装置は次の特徴が付与される。
1) 酸化水銀の分解温度以上の高温、かつ真空中で水銀除去を行うので除去が完全に行われる。摺動可動部がないので、高真空が得られる。
2) 処理温度がアルミニウムの融点以下なので、処理後分別ができる。
3) 充填層内伝熱律速にも関わらず、少量の水素ガス添加により昇温時間が短縮され、生産性が高い。
4) 充填層型のため装置が著しく小型。
5) 小型かつ断熱構造が容易のため、エネルギー消費が小さい。
6) 水銀の大気暴露が全くない。水銀付着カレットはコンテナごとの移し替えで、大気中での空け替えはない。このため、環境集塵、排気処理等の設備が必要ない。
7) 直管、丸管、破損管等の分別や蛍光管各部の分別を必要とせず、全量破砕して処理できる。
また、工程が極めて簡単で設備費も安い。乾式のため、廃液処理等の必要もない。
8) 分別が水銀除去後のため、大気開放中で磁選分別を行うことができる。蛍光粉回収率は低い。
9) 水銀を回収するので、再利用ができる。磁選分別すれば、ガラスカレットは無害化されているので、発泡ガラスやバラスの原料として再利用できる。還元雰囲気での加熱のため、アルミニウムは酸化されておらず再利用できる。蛍光粉からは希土類元素を回収し再利用できる。
In the mercury removing device from the cullet of the waste fluorescent tube, the vacuum packed bed type heating device is the smallest and can completely remove mercury reliably. However, the greatest drawback in practically scaling up this vacuum packed layer is the heat transfer rate limiting, and it takes time to raise the temperature to the center of the layer.
However, it has been found that by slightly injecting hydrogen or helium having high thermal conductivity into the packed bed during heating, the temperature rise time can be shortened and a sufficiently practical scale apparatus can be obtained.
Therefore, this device is given the following characteristics.
1) Since the mercury is removed in a vacuum at a temperature higher than the decomposition temperature of mercury oxide, it is completely removed. Since there is no sliding movable part, a high vacuum is obtained.
2) Since the treatment temperature is below the melting point of aluminum, it can be separated after treatment.
3) Despite the heat transfer rate limiting in the packed bed, the heating time is shortened by adding a small amount of hydrogen gas, and the productivity is high.
4) Due to the packed bed type, the device is extremely small.
5) Small energy consumption due to its small size and easy heat insulation structure.
6) No mercury exposure to the atmosphere. Mercury-adhered cullet is transferred from container to container and is not replaced in the atmosphere. For this reason, facilities such as environmental dust collection and exhaust treatment are not required.
7) It is not necessary to separate straight tubes, round tubes, broken tubes, etc. or fluorescent tube parts, and the entire amount can be crushed and processed.
In addition, the process is extremely simple and the equipment costs are low. Because it is dry, there is no need for waste liquid treatment.
8) Since the separation is after mercury removal, magnetic separation can be performed in the open air. Fluorescent powder recovery rate is low.
9) Since mercury is collected, it can be reused. If the magnetic separation is performed, the glass cullet is rendered harmless and can be reused as a raw material for foam glass and ballast. Because of heating in a reducing atmosphere, aluminum is not oxidized and can be reused. Rare earth elements can be recovered from the fluorescent powder and reused.

以下、本発明の実施の形態について、図1で説明する。
廃蛍光管を直管、丸管、破損管等の分別やガラス、蛍光粉、口金等蛍光管各部の分別をせず、全量を密閉型破砕機で破砕する。この破砕物は下部の円筒型コンテナに落下し、充填層を形成する。
このコンテナを内部容器2とし、金属製真空容器3中に装入する。
真空ポンプ8を運転し、真空容器内3を133Pa(1Torr)以下の真空とした後、排気を停止し、水素を装入し10kPa(76Torr)とする。この後、電気炉(加熱ヒーター4)で加熱昇温する。
真空容器表面温度が650℃に達したら、この温度を維持する。直径400mmの内部容器4では、7.5h後にこの中心温度が600℃に達する。ここで再び真空排気し、容器内圧力が133Pa(1Torr)以下の真空となったら、真空引きを停止し、大気により真空容器の圧力を常圧まで復圧する。真空容器3内が常圧になったら、コンテナ2を取り出し、大気中で放冷する。連続的に処理する場合は、直ちに次のコンテナを装入し、同様の操作を行う。
この条件では、冷却したコンテナ内のカレットはどの部分をサンプリングしても、水銀溶出量は環境基準0.0005mg/l以下となり、水銀が完全に除去される。
比較のため、水素を装入せず真空のまま昇温した場合、中心が同じ温度の600℃に達するのに10.5hと長時間掛かる。
真空容器3の排気管には水冷凝縮器6を設け、蒸発した水銀蒸気の凝縮回収を行う。
なお、廃蛍光管の全量破砕カレットであるため、僅かのプラスチック部分が混入するが、その炭化あるいは乾留の悪影響は特に観察されなかった。
ここで、円筒型コンテナが直径400mm、長さ1800mmでは、そのカレットのパッチ量は250kgである。この装置では、3バッチ/日が可能であるから、この処理容量は750kg/日となる。
蛍光管の日本における生産量は、年間約4億本であるから、これを人口1億3千万人で割ると、一般家庭や事業場全部含めて1人当たり年間約3本使用していることになる。富山県の人口は約百十万人であるから、年間3百万本の廃蛍光管が発生していると考えられる。廃蛍光管の発生量の内、その7割が家庭系(自治体)で、3割が事業系(民間)である。事業系は年間百万本であり、産業廃棄物として収集が比較的に容易である。1本の重量は、平均的な40W直管で250gであるから、その重量は年間250tとなる。これは日量約700kgであるから、ここで示した装置の容量で、この全量をほぼ処理できることになる。従って、この装置容量でも充分実用性のある規模といえる。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
The waste fluorescent tube is crushed with a closed crusher without separating the fluorescent tube, such as straight tube, round tube, broken tube, etc. or glass, fluorescent powder, cap, etc. This crushed material falls into the lower cylindrical container to form a packed bed.
This container is used as the inner container 2 and charged into the metal vacuum container 3.
After the vacuum pump 8 is operated and the inside of the vacuum chamber 3 is evacuated to 133 Pa (1 Torr) or less, the exhaust is stopped and hydrogen is charged to reach 10 kPa (76 Torr). Thereafter, the temperature is raised by an electric furnace (heater 4).
When the vacuum vessel surface temperature reaches 650 ° C., this temperature is maintained. In the inner container 4 having a diameter of 400 mm, the center temperature reaches 600 ° C. after 7.5 hours. Here, evacuation is performed again, and when the internal pressure of the container becomes 133 Pa (1 Torr) or less, evacuation is stopped and the pressure of the vacuum container is returned to normal pressure by the atmosphere. When the inside of the vacuum vessel 3 reaches normal pressure, the container 2 is taken out and allowed to cool in the atmosphere. When processing continuously, immediately insert the next container and perform the same operation.
Under this condition, no matter what part of the cullet in the cooled container is sampled, the mercury elution amount becomes 0.0005 mg / l or less of the environmental standard, and mercury is completely removed.
For comparison, when the temperature is raised while charging without adding hydrogen, it takes a long time of 10.5 h for the center to reach the same temperature of 600 ° C.
A water-cooled condenser 6 is provided in the exhaust pipe of the vacuum vessel 3 to condense and recover the evaporated mercury vapor.
In addition, since it is a crushed cullet of the waste fluorescent tube, a slight amount of plastic is mixed, but no particular adverse effect of carbonization or dry distillation was observed.
Here, when the cylindrical container has a diameter of 400 mm and a length of 1800 mm, the patch amount of the cullet is 250 kg. Since this apparatus can perform 3 batches / day, this processing capacity is 750 kg / day.
The production volume of fluorescent tubes in Japan is about 400 million per year. When this is divided by the population of 130 million, about 3 per year are used per person, including all households and workplaces. become. Since Toyama Prefecture has a population of about 1 million people, it is thought that 3 million waste fluorescent tubes are generated annually. Of the amount of waste fluorescent tubes generated, 70% are household (local government) and 30% are business (private). There are 1 million business lines per year, which are relatively easy to collect as industrial waste. Since the weight of one piece is 250 g with an average 40 W straight pipe, the weight is 250 t per year. Since this is about 700 kg per day, this total amount can be almost processed with the capacity of the apparatus shown here. Therefore, it can be said that this apparatus capacity is sufficiently practical.

本発明の全体図である。1 is an overall view of the present invention. ガスの熱伝導度を示す。Indicates the thermal conductivity of the gas. 水素ガスの熱伝導度の圧力依存性を示す。The pressure dependence of the thermal conductivity of hydrogen gas is shown.

符号の説明Explanation of symbols

1 廃蛍光管破砕物 2 内部容器 3 真空容器 4 加熱ヒーター
5 冷却水 6 凝縮器 7 水銀溜め 8 真空ポンプ
9 オイルイリミネータ 10 活性炭吸着槽 11 水素ボンベ
1 Waste fluorescent tube crushed material 2 Internal container 3 Vacuum container 4 Heater 5 Cooling water 6 Condenser 7 Mercury reservoir 8 Vacuum pump 9 Oil liminator 10 Activated carbon adsorption tank 11 Hydrogen cylinder

Claims (7)

廃蛍光管のガラス破砕物から真空高温加熱により水銀を蒸発除去する方法において、このガラス破砕物を静置した充填層とし、加熱時にこの充填層内を水素又はヘリウム雰囲気にすることを特徴とする廃蛍光管の水銀除去装置。  In a method of evaporating and removing mercury from a crushed glass of a waste fluorescent tube by heating at high temperature in a vacuum, the crushed glass is made a stationary bed, and the inside of the packed bed is made into a hydrogen or helium atmosphere during heating. Equipment for removing mercury from waste fluorescent tubes. 圧力を133Pa(1Torr)以下の真空にすることを特徴とする請求項1の廃蛍光管の水銀除去装置。  2. The apparatus for removing mercury from a waste fluorescent tube according to claim 1, wherein the pressure is set to a vacuum of 133 Pa (1 Torr) or less. 真空容器内すなわち充填層内を真空にした後、水素又はヘリウムを装入し、昇温後、再び真空にすることを特徴とする請求項1の廃蛍光管の水銀除去装置。  2. The mercury removing apparatus for waste fluorescent tubes according to claim 1, wherein the inside of the vacuum vessel, that is, the inside of the packed bed is evacuated, then hydrogen or helium is charged, and the temperature is raised and then evacuated again. 廃蛍光管の全量を分別なく破砕して得られた破砕物を充填層とすることを特徴とする請求項1の廃蛍光管の水銀除去装置。  The mercury removing device for a waste fluorescent tube according to claim 1, wherein a crushed material obtained by crushing the entire amount of the waste fluorescent tube without discrimination is used as a packed bed. 充填層内温度をアルミニウムの融点(660℃)以下の温度で加熱することを特徴とする請求項4の廃蛍光管の水銀除去装置。  The mercury removal apparatus for waste fluorescent tubes according to claim 4, wherein the temperature in the packed bed is heated at a temperature not higher than the melting point (660 ° C) of aluminum. 水素又はヘリウムの装入時、その圧力が29300Pa(220Torr)以下であることを特徴とする請求項4の廃蛍光管の水銀除去装置。  The apparatus for removing mercury from a waste fluorescent tube according to claim 4, wherein the pressure of hydrogen or helium is 29300 Pa (220 Torr) or less when hydrogen or helium is charged. 廃蛍光管の破砕物を内部容器に充填し、それを真空容器内に装入することを特徴とする請求項4の廃蛍光管の水銀除去装置。  The mercury removal device for waste fluorescent tubes according to claim 4, wherein the crushed material of the waste fluorescent tubes is filled in an inner container and is charged in a vacuum container.
JP2005356920A 2005-11-10 2005-11-10 Method of removing mercury from waste fluorescent tubes Expired - Fee Related JP4348552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356920A JP4348552B2 (en) 2005-11-10 2005-11-10 Method of removing mercury from waste fluorescent tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356920A JP4348552B2 (en) 2005-11-10 2005-11-10 Method of removing mercury from waste fluorescent tubes

Publications (2)

Publication Number Publication Date
JP2007130622A true JP2007130622A (en) 2007-05-31
JP4348552B2 JP4348552B2 (en) 2009-10-21

Family

ID=38152705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356920A Expired - Fee Related JP4348552B2 (en) 2005-11-10 2005-11-10 Method of removing mercury from waste fluorescent tubes

Country Status (1)

Country Link
JP (1) JP4348552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042346A (en) * 2008-08-12 2010-02-25 Jfe Mineral Co Ltd Pretreatment method for recovering rare earth element from disposed fluorescent lamp and method of recovering rare earth element using solid matter obtained by the pretreatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042346A (en) * 2008-08-12 2010-02-25 Jfe Mineral Co Ltd Pretreatment method for recovering rare earth element from disposed fluorescent lamp and method of recovering rare earth element using solid matter obtained by the pretreatment method

Also Published As

Publication number Publication date
JP4348552B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
US5569154A (en) Method and apparatus for removing mercury from mercury-contaminated soils
JP4348552B2 (en) Method of removing mercury from waste fluorescent tubes
WO2010026712A1 (en) Device and method for distilling mercury from waste fluorescent powder
JP2011037653A (en) Expanded-graphite sheet
JP2008178791A (en) Method of and apparatus for treating waste fluorescent tube
KR101542001B1 (en) Mercury Collecting Method from Waste
US11059020B2 (en) Electronic waste processing method and apparatus thereof
JPH07138009A (en) Device for producing fullerene and method for recovering the same
JP2006055679A (en) Efficient purification method of soil polluted with volatile organic compound
JP2014018787A (en) Sublimation refining recovery method and sublimation refining recovery device
JP3368558B2 (en) Harmful insulating oil recovery method
JP3659569B2 (en) Method for decomposing persistent organic compounds
JP2004230372A (en) Mercury removal method from mercury-containing waste such as fluorescent tube, and apparatus therefor
CN106824978A (en) It is a kind of from waste refrigerator hard bubble insulation material in separate and recover freon method
JPH0978148A (en) Disposal method by destructing waste structure
CN106807723A (en) It is a kind of from waste refrigerators hard bubble insulation material in reclaim freon method
JP4781555B2 (en) Collection method of valuable metals
CN106827302A (en) The recovery and treatment method of polyurethane waste material in a kind of waste refrigerators
JP2005342630A (en) Extraction treatment method
JP2006198454A (en) Steam cleaning method for pcb-contaminated matter
JP2015100737A (en) Sublimable substance recovery device
JP2004075471A (en) Method for producing gaseous halogen, apparatus for producing gaseous halogen and recovery/circulation system for gaseous halogen
JP2003010826A (en) Vacuum heat treatment apparatus for environmentally harmful organic chemical substance residue and activated carbon manufacturing method using vacuum heat treatment apparatus
JP2001176731A (en) Method for reproducing of transformer
JP2001170572A (en) Method for cleaning pcb-contaminated equipment

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees