JP2005342630A - Extraction treatment method - Google Patents

Extraction treatment method Download PDF

Info

Publication number
JP2005342630A
JP2005342630A JP2004165731A JP2004165731A JP2005342630A JP 2005342630 A JP2005342630 A JP 2005342630A JP 2004165731 A JP2004165731 A JP 2004165731A JP 2004165731 A JP2004165731 A JP 2004165731A JP 2005342630 A JP2005342630 A JP 2005342630A
Authority
JP
Japan
Prior art keywords
rotary kiln
superheated steam
extraction
boiling point
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004165731A
Other languages
Japanese (ja)
Other versions
JP4745623B2 (en
Inventor
Tomohiro Nomura
奉弘 野邑
Hiroshi Iyoda
浩志 伊與田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004165731A priority Critical patent/JP4745623B2/en
Publication of JP2005342630A publication Critical patent/JP2005342630A/en
Application granted granted Critical
Publication of JP4745623B2 publication Critical patent/JP4745623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means, as the method for treating the soil containing a low-boiling point polluted substance, which is capable of efficiently removing the low-boiling point substance by transferring without oxidizing the substance to a vapor phase by a heating system using a rotary kiln, making the exhaust released in the atmosphere zero or very little, making treating equipment decreased in size and closed, and remarkably reducing equipment cost and treatment cost. <P>SOLUTION: A treating object D<SB>1</SB>containing the low-boiling point substance is continuously fed into the rotary kiln 1 to be carried to the side of an outlet 1b and the rotary kiln 1 is heated at inside by filling it with superheated steam S1 being supplied continuously from outside so as to extract the low-boiling point substance in the treating object D<SB>1</SB>to the vapor phase side, and a treating object D<SB>2</SB>undergone the extraction is continuously taken out. The exhaust S2 from the rotary kiln 1 is cooled to a temperature lower than that of the treating object D<SB>1</SB>fed to the rotary kiln 1 and condensed so as to take the extracted low-boiling point substance into a condensate W2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば水銀及びその化合物や低沸点有機物にて汚染された土壌を始めとして、低沸点物質を含む種々の被処理物より低沸点物質を抽出する処理方法に関する。   The present invention relates to a treatment method for extracting low-boiling substances from various objects to be treated including low-boiling substances such as soil contaminated with mercury and its compounds and low-boiling organic substances.

従来、汚染土壌等の浄化処理として、直接加熱型や間接加熱型のロータリーキルン等による熱処理が一般的に行われているが、大量の排気を生じるために高度な排ガス処理を必要とし、それだけ設備も大型で複雑になり、処理コスト及び設備コストが高くつくと共に、汚染発生地域から処理場へ汚染土壌等を搬送するための搬送コストも嵩むという問題があった。また、直接加熱は無論のこと、間接加熱の場合でも処理空間が酸化性雰囲気になり易く、汚染物質が酸化して回収困難になる上に回収のための処理工程が複雑になるという難点もあった。   Conventionally, heat treatment using a direct heating or indirect heating rotary kiln is generally used as a purification treatment for contaminated soil, etc., but it requires advanced exhaust gas treatment to generate a large amount of exhaust gas, and there are also facilities. There is a problem in that it is large and complicated, the processing cost and the equipment cost are high, and the transportation cost for transporting the contaminated soil from the contaminated area to the treatment plant is increased. Of course, direct heating is a matter of course, and even in indirect heating, the processing space tends to be in an oxidizing atmosphere, which makes it difficult to recover due to oxidation of contaminants and complicates the processing process for recovery. It was.

本発明は、上述の情況に鑑み、前記の汚染土壌を始めとする低沸点物質を含む種々の被処理物の処理方法として、ロータリーキルンを利用した加熱方式によって被処理物中の低沸点物質を酸化させることなく気相中に移行させて効率よく除去すると共に、大気中への放出排気をゼロ又は僅少とし、もって処理設備の小型化及びクローズ化を可能にし、設備コスト及び処理コストを著しく低減し得る手段を提供することを目的としている。   In view of the above circumstances, the present invention oxidizes low-boiling substances in an object to be processed by a heating method using a rotary kiln as a method for treating various objects including low-boiling substances including the contaminated soil. The gas can be transferred to the gas phase without being removed and efficiently removed, and the exhaust emission to the atmosphere is reduced to zero or minimal, enabling the processing equipment to be downsized and closed, thereby significantly reducing equipment costs and processing costs. It aims to provide a means to obtain.

上記目的を達成するために、請求項1の発明は、図面の参照符号を付して示せば、低沸点物質を含む被処理物D1 をロータリーキルン1内に連続的に送り込んで出口1b側へ搬送すると共に、該ロータリーキルン1内を外部から連続供給される過熱水蒸気S1で満たして加熱することにより、被処理物D1中の低沸点物質を気相側へ抽出し、抽出後の被処理物D2を連続的に取り出す一方、ロータリーキルン1からの排気S2を当該ロータリーキルン1へ供給する被処理物D1の温度以下に冷却して凝縮させることにより、抽出された低沸点物質を凝縮液W2中に取り込むことを特徴とする抽出処理方法を要旨としている。 In order to achieve the above object, according to the first aspect of the present invention, the object to be treated D 1 containing a low-boiling substance is continuously fed into the rotary kiln 1 to the outlet 1b side. While being conveyed, the rotary kiln 1 is filled with the superheated steam S1 continuously supplied from the outside and heated to extract low-boiling substances in the object D1 to the gas phase side, and the object D2 after extraction is extracted. The exhaust gas S2 from the rotary kiln 1 is cooled to a temperature equal to or lower than the temperature of the workpiece D1 supplied to the rotary kiln 1 to condense the extracted low-boiling substances into the condensate W2. The summary is an extraction processing method characterized by the above.

請求項2の発明は、上記請求項1の抽出処理方法において、前記排気の凝縮に伴って発生する負圧を前記ロータリーキルン1への過熱水蒸気S1の導入動力として利用する構成としている。   According to a second aspect of the present invention, in the extraction processing method of the first aspect, the negative pressure generated along with the condensation of the exhaust gas is used as power for introducing the superheated steam S1 into the rotary kiln 1.

請求項3の発明は、上記請求項1又は2の抽出処理方法において、ロータリーキルン1が多孔構造の内筒11と外筒12との二重筒構造をなし、この内外筒11,12間に導入した過熱水蒸気S1を内筒11の孔部(通気孔14)を通してロータリーキルン1の処理空間10内へ供給する構成としている。   According to a third aspect of the present invention, in the extraction method of the first or second aspect, the rotary kiln 1 has a double cylinder structure of a porous inner cylinder 11 and an outer cylinder 12, and is introduced between the inner and outer cylinders 11 and 12. The heated superheated steam S1 is supplied into the processing space 10 of the rotary kiln 1 through the hole (the vent hole 14) of the inner cylinder 11.

請求項4の発明は、上記請求項3の抽出処理方法において、二重筒構造をなすロータリーキルン1の処理空間10内に軸心に沿って配設された過熱水蒸気供給管路20を備え、この過熱水蒸気供給管路20と前記内外筒11,12間とに過熱水蒸気S1を導入することにより、処理空間10内に過熱水蒸気S1を周囲部及び中心部の両方から供給すると共に、周囲部からの過熱水蒸気供給量がロータリーキルン出口1b側よりも入口1a側で多くなり、中心部からの過熱水蒸気供給量がロータリーキルン入口1a側よりも出口1b側で多くなるように設定する構成としている。   The invention of claim 4 is the extraction processing method of claim 3, further comprising a superheated steam supply pipe line 20 disposed along the axis in the processing space 10 of the rotary kiln 1 having a double cylinder structure. By introducing the superheated steam S1 between the superheated steam supply conduit 20 and the inner and outer cylinders 11 and 12, the superheated steam S1 is supplied into the processing space 10 from both the peripheral part and the central part, and from the peripheral part. The superheated steam supply amount is set to be larger on the inlet 1a side than the rotary kiln outlet 1b side, and the superheated steam supply amount from the center is set to be larger on the outlet 1b side than on the rotary kiln inlet 1a side.

請求項5の発明は、上記請求項1〜4のいずれかの抽出処理方法における被処理物D1が水銀又は/及び低沸点有機物による汚染物であるものとしている。   The invention of claim 5 is such that the object to be processed D1 in the extraction processing method of any one of claims 1 to 4 is a contaminant due to mercury or / and a low boiling point organic substance.

請求項6の発明は、上記請求項1〜5のいずれかの抽出処理方法において、ロータリーキルン1内の温度を110〜350℃に設定する構成としている。   Invention of Claim 6 is set as the structure which sets the temperature in the rotary kiln 1 to 110-350 degreeC in the extraction processing method in any one of the said Claims 1-5.

請求項1の発明に係る抽出処理方法では、被処理物中の低沸点物質を気相中に移行させるための熱源として過熱水蒸気を用い、この過熱水蒸気でロータリーキルンの処理空間内を満たした状態で熱処理を行い、ロータリーキルンからの排気を当該ロータリーキルンへ供給する被処理物の温度以下に冷却して凝縮させることにより、排気の主成分である水蒸気中に含まれていた低沸点物質が全て液化ないし固化(非水溶性の昇華性物質の場合)して凝縮水と共に液状形態で回収できるから、従来の熱処理におけるような高度な排ガス処理が不要であり、もって処理設備全体の小型化が可能であり、従来に比較して処理コスト及び設備コストを大幅に低減できる上、残留する気相成分が殆どなくなるためにシステム全体のクローズド化も可能となり、しかも抽出物質は高温空気による酸化を受けないので後段の処理も容易になる。従って、被処理物が水銀及びその化合物や低沸点有機物にて汚染された土壌等である場合、その汚染成分を効率よく低コストで除去できると共に、該汚染成分の環境への再飛散を確実に防止でき、且つ抽出した汚染成分は酸化変質がないので再資源化も容易になり、また処理残渣は酸化による変質がなく汚染前に近い状態に戻るので再利用に支障を生じず、加えて被処理物中に含まれていた水分も気化して除去されてロータリーキルンから乾燥状態として取り出されるため、その搬送や保管等の取り扱いが容易になると共に、再利用に際して前処理としての乾燥を省略できる。   In the extraction processing method according to the first aspect of the present invention, superheated steam is used as a heat source for transferring the low boiling point substance in the object to be processed into the gas phase, and the processing space of the rotary kiln is filled with the superheated steam. By performing heat treatment and cooling and condensing the exhaust from the rotary kiln below the temperature of the workpiece to be supplied to the rotary kiln, all the low-boiling substances contained in the water vapor that is the main component of the exhaust are liquefied or solidified. Since it can be recovered in liquid form with condensed water (in the case of a non-water-soluble sublimable substance), advanced exhaust gas treatment as in conventional heat treatment is unnecessary, and thus the entire treatment facility can be downsized. Compared to the conventional method, the processing cost and equipment cost can be greatly reduced, and since the remaining gas phase components are almost eliminated, the entire system can be closed. , Yet extractant is downstream of the process is also easy since not subject to oxidation by hot air. Therefore, when the object to be treated is soil contaminated with mercury and its compounds or low-boiling organic substances, the contaminated components can be removed efficiently and at low cost, and the re-scattering of the contaminated components to the environment is ensured. The extracted contaminated components can be easily recycled because they are not oxidized, and the processing residue is not deteriorated by oxidation and returns to the state before contamination. Moisture contained in the processed material is also vaporized and removed and taken out from the rotary kiln as a dry state. Therefore, handling such as transportation and storage is facilitated, and drying as a pretreatment can be omitted at the time of reuse.

請求項2の発明によれば、前記排気の凝縮に伴って発生する負圧をロータリーキルンへの過熱水蒸気の導入動力として利用するから、過熱水蒸気を強制的に給排するためのファン等の機械的設備を省略ないし小型化できると共に、ロータリーキルン内の処理空間に負圧が働いて抽出効率が向上し、しかもロータリーキルン内と凝縮を行う冷却部の連通によって全体の処理空間の圧力が平衡状態になるため、過熱水蒸気の供給温度と冷却温度とで抽出速度を制御することが可能となり、また処理空間が非加圧状態になるので処理装置を簡素に且つ安全に設計できる。   According to the invention of claim 2, since the negative pressure generated as the exhaust gas condenses is used as the power for introducing superheated steam into the rotary kiln, a mechanical device such as a fan for forcibly supplying and discharging superheated steam is used. Equipment can be omitted or reduced in size, and negative pressure is applied to the processing space in the rotary kiln to improve the extraction efficiency, and the pressure in the entire processing space is balanced by the communication between the rotary kiln and the cooling unit that performs condensation. In addition, the extraction speed can be controlled by the supply temperature and the cooling temperature of the superheated steam, and the processing space is in a non-pressurized state, so that the processing apparatus can be designed simply and safely.

請求項3の発明によれば、ロータリーキルンの処理空間内に過熱水蒸気を周囲部の全体から供給するため、被処理物の堆積層中を多量の過熱水蒸気が通過して昇温を速め、高い抽出効率が得られる。   According to invention of Claim 3, in order to supply superheated steam from the whole surrounding part in the processing space of a rotary kiln, a large amount of superheated steam passes through the deposition layer of a to-be-processed object, speeding up temperature rising and high extraction Efficiency is obtained.

請求項4の発明によれば、ロータリーキルンの処理空間内に過熱水蒸気を周囲部及び中心部の両方から供給するため、該処理空間全体を低沸点物質の抽出に最適な雰囲気により容易に設定できる上、周囲部からの供給量を入口側で多く、中心部からの供給量を逆に出口側で多くすることから、被処理物の温度が低い入口側では周囲部から供給されて被処理物中を通過する過熱水蒸気が多くなり、それだけ被処理物は早く昇温して低沸点物質の抽出効率が高まる一方、抽出が進んだ出口側では中心部からの多い過熱水蒸気供給によって雰囲気温度を一定に維持できるため、雰囲気温度の低下で抽出成分の一部が被処理物中に戻るのを防止できる。   According to the invention of claim 4, since superheated steam is supplied from both the peripheral part and the central part into the processing space of the rotary kiln, the entire processing space can be easily set in an atmosphere optimal for extraction of low-boiling substances. Since the supply amount from the surrounding part is large at the inlet side and the supply amount from the central part is conversely increased at the outlet side, the material to be processed is supplied from the peripheral part at the inlet side where the temperature of the object is low. The amount of superheated steam that passes through the chamber increases, and the extraction temperature of the low-boiling substances increases as the temperature of the material to be processed increases faster. Since it can maintain, it can prevent that a part of extraction component returns in a to-be-processed object by the fall of atmospheric temperature.

請求項5の発明によれば、水銀や低沸点有機物による汚染物を処理対象として、効率よく汚染成分を抽出除去できる。   According to the fifth aspect of the present invention, it is possible to efficiently extract and remove the pollutant components by using the pollutants due to mercury or low boiling point organic substances as a treatment target.

請求項6の発明によれば、ロータリーキルン内を特定の温度範囲に設定するため、被処理物中の低沸点物質の抽出効率を高めて、且つ他の成分の不要な熱分解や熱変質を抑えることができる。   According to the invention of claim 6, since the inside of the rotary kiln is set to a specific temperature range, the extraction efficiency of low-boiling substances in the object to be processed is increased, and unnecessary thermal decomposition and thermal alteration of other components are suppressed. be able to.

以下、本発明の実施形態について、図面を参照して具体的に説明する。図1は本発明の一実施形態に係る抽出処理方法を適用する処理装置の概略構成図、図2は同処理装置の側面図、図3は同処理装置のロータリーキルン部分の縦断側面図、図4は図3におけるA−A線の断面矢視図である。   Embodiments of the present invention will be specifically described below with reference to the drawings. 1 is a schematic configuration diagram of a processing apparatus to which an extraction processing method according to an embodiment of the present invention is applied, FIG. 2 is a side view of the processing apparatus, FIG. 3 is a longitudinal side view of a rotary kiln portion of the processing apparatus, FIG. FIG. 4 is a sectional view taken along line AA in FIG. 3.

図1において、1は抽出処理を行うロータリーキルンであって、モーターM1を介して回転駆動する内筒11と、この内筒11の両端部を除く外周部に套嵌した非回転の外筒12とで構成され、内筒11の内部にはその軸線方向に沿う攪拌軸2が配設されている。このロータリーキルン1の入口1a側には、ホッパー31に投入された被処理物D1を連続的に内筒11内へ送り込むスクリューフィーダ3が付設され、同出口1b側には、排気S2と抽出処理後の処理残渣D2を分離する排気分離槽4が設けられている。32はホッパー31の下流側に位置してスクリューフィーダ3に付設された薬剤注入口、5は水道水等の原水W1より高温の過熱水蒸気S1を生成させる過熱水蒸気発生装置、6はロータリーキルン1からの排気S2を冷却して凝縮させる冷却装置、7は活性炭充填槽である。   In FIG. 1, reference numeral 1 denotes a rotary kiln that performs an extraction process, an inner cylinder 11 that is rotationally driven via a motor M <b> 1, and a non-rotating outer cylinder 12 that is fitted on the outer peripheral portion excluding both ends of the inner cylinder 11. A stirring shaft 2 is disposed in the inner cylinder 11 along the axial direction thereof. A screw feeder 3 that continuously feeds the workpiece D1 charged into the hopper 31 into the inner cylinder 11 is provided on the inlet 1a side of the rotary kiln 1, and on the outlet 1b side, exhaust S2 and after extraction processing are provided. An exhaust separation tank 4 for separating the processing residue D2 is provided. 32 is a chemical injection port attached to the screw feeder 3 located downstream of the hopper 31, 5 is a superheated steam generator for generating superheated steam S 1 higher than raw water W 1 such as tap water, and 6 is from the rotary kiln 1. A cooling device 7 for cooling and condensing the exhaust S2 is an activated carbon filling tank.

図3に示すように、ロータリーキルン1の外筒12の両端部には、内筒11に対して気密状態で摺接するシール材13が嵌装され、これによって内外筒11,12間に外部に対して封鎖した環状空間15が構成されており、この環状空間15に過熱水蒸気発生装置5からの水蒸気導入管5aが図2の如く入口1a側と中間部との2本に分岐して連通接続されている。また、内筒11における外筒12に包囲された周面領域には多数の通気孔14…が設けられており、環状空間15に導入された過熱水蒸気S1を通気孔14…より内筒11内の処理空間10へ放出するようになっている。なお、外筒12の外周面には断熱材層16が設けられている。   As shown in FIG. 3, sealing members 13 that are in sliding contact with the inner cylinder 11 in an airtight state are fitted to both ends of the outer cylinder 12 of the rotary kiln 1. An annular space 15 sealed is formed, and a steam introduction pipe 5a from the superheated steam generator 5 is branched into and communicated with the annular space 15 into an inlet 1a side and an intermediate portion as shown in FIG. ing. Further, a large number of vent holes 14 are provided in a peripheral surface region of the inner cylinder 11 surrounded by the outer cylinder 12, and the superheated steam S1 introduced into the annular space 15 is introduced into the inner cylinder 11 from the vent holes 14. Are discharged into the processing space 10. A heat insulating material layer 16 is provided on the outer peripheral surface of the outer cylinder 12.

しかして、内筒11は、外部に露呈した両端部の外周面にそれぞれ環状レール17が固設され、図2及び図4に示すように各環状レール17で各一対のローラ18,18によって遊転自在に支承されており、ロータリーキルン1出口側の端部の外周面に設けた従動スプロケット19とモーターM1の駆動スプロケットとの間に巻装されたチェーン8を介して回転駆動する。なお、ロータリーキルン1は、図1〜図3では水平姿勢として図示しているが、実際には出口1b側が低くなる傾斜状態に設置され、内筒11の回転に伴って処理空間10内の被処理物D1が該傾斜に基づく重力作用によって出口1b側へ搬送されるようになっている。   Thus, the inner cylinder 11 has annular rails 17 fixed to the outer peripheral surfaces of both end portions exposed to the outside, and each annular rail 17 is free to play by a pair of rollers 18 and 18 as shown in FIGS. The rotary kiln 1 is rotatably supported and is driven to rotate via a chain 8 wound between a driven sprocket 19 provided on the outer peripheral surface of the end portion on the outlet side of the rotary kiln 1 and a driving sprocket of the motor M1. Although the rotary kiln 1 is illustrated as a horizontal posture in FIGS. 1 to 3, the rotary kiln 1 is actually installed in an inclined state in which the outlet 1 b side is lowered, and the object to be processed in the processing space 10 is rotated with the rotation of the inner cylinder 11. The object D1 is conveyed to the exit 1b side by the gravitational action based on the inclination.

攪拌軸2は、図3に示すように中空のパイプ状をなし、長手方向の複数箇所(図では4箇所)に半径方向へ突出する筒状の攪拌羽根21…を備えており、一端2a側がスクリューフィーダ3のフィーダ軸3aと一体化し、図1及び図2に示すモーターM2を介して該スクリューフィーダ3と一体に回転駆動するようになされている。そして、この攪拌軸2の他端2b側が排気分離槽4を貫通して外部へ突出し、この突出した他端2bは過熱水蒸気発生装置5からの水蒸気導入管5bに相対回転可能に連通接続され、また各攪拌羽根21の周面には図3に示すように多数の通気孔22…が形成されており、これによって攪拌軸2は導入した過熱水蒸気S1を攪拌羽根21…の通気孔22…からロータリーキルン1の処理空間10へ放出する過熱水蒸気供給管路20を構成している。   As shown in FIG. 3, the agitation shaft 2 has a hollow pipe shape and is provided with cylindrical agitation blades 21... Protruding in a radial direction at a plurality of locations in the longitudinal direction (4 locations in the figure). It is integrated with the feeder shaft 3a of the screw feeder 3 and is driven to rotate integrally with the screw feeder 3 via a motor M2 shown in FIGS. And the other end 2b side of the stirring shaft 2 penetrates the exhaust separation tank 4 and protrudes to the outside, and the protruded other end 2b is connected to the steam introduction pipe 5b from the superheated steam generator 5 so as to be relatively rotatable, Further, as shown in FIG. 3, a large number of vent holes 22 are formed on the peripheral surface of each stirring blade 21, and the stirring shaft 2 causes the superheated steam S1 introduced from the vent holes 22 of the stirring blade 21 to pass through. A superheated steam supply pipe 20 that discharges to the processing space 10 of the rotary kiln 1 is configured.

ここで、ロータリーキルン1の内筒11の通気孔14…と、攪拌軸2の各攪拌羽根21の通気孔22…は、いずれも電子ビーム穿孔加工によって形成されたものであり、器壁内外を直線状に透通している。しかして、両通気孔14…,22…の孔径は一般的に0.1〜3mm程度の範囲であるが、内筒11の通気孔14…の孔径は連続的もしくは段階的にロータリーキルン1の入口1a側ほど大きくなるように設定される一方、攪拌羽根21の通気孔22…の孔径は逆にロータリーキルン1の出口1b側の攪拌羽根21ほど大きくなるように設定されている。   Here, the air holes 14 in the inner cylinder 11 of the rotary kiln 1 and the air holes 22 in the respective stirring blades 21 of the stirring shaft 2 are both formed by electron beam drilling, and straight inside and outside the vessel wall. It is transparent to the shape. Therefore, the hole diameters of the two air holes 14..., 22... Are generally in the range of about 0.1 to 3 mm, but the hole diameter of the air holes 14 of the inner cylinder 11 is the inlet of the rotary kiln 1 continuously or stepwise. On the other hand, the diameter of the vent holes 22 of the stirring blade 21 is set so as to increase toward the stirring blade 21 on the outlet 1b side of the rotary kiln 1.

排気分離槽4は、図3に示すように、攪拌軸2が貫通する中間の分離室4aと、バグフィルター41を装填した上部のガス収集室4bと、下部の処理残渣ダクト4cとから構成されている。そして、分離室4aには、ロータリーキルン1の出口1b側の端部つまり内筒11の開口端部11aがシール材13を介して突入配置すると共に、攪拌軸2に固設された円板状の邪魔板42が該内筒11の端部開口11aに対向するように配置しており、処理空間10からの排気S2の流れを邪魔板42で遮って一旦は下向きにし、次いで上向きに転じて背面より上昇するように誘導し、もって排気S2に付随する処理残渣D1の粉体粒子を少なくして上方のガス収集室4bへ向かわせる。なお、邪魔板42の前面に付着する処理残渣D1の粉体粒子は、分離室4aに付設されたスクレーパ43が回転する邪魔板42の該前面と接触することによって掻き落とされる。   As shown in FIG. 3, the exhaust separation tank 4 includes an intermediate separation chamber 4a through which the stirring shaft 2 passes, an upper gas collection chamber 4b loaded with a bag filter 41, and a lower processing residue duct 4c. ing. In the separation chamber 4a, the end of the rotary kiln 1 on the outlet 1b side, that is, the opening end 11a of the inner cylinder 11 is plunged through the sealing material 13 and is a disk-shaped member fixed to the stirring shaft 2. The baffle plate 42 is disposed so as to face the end opening 11a of the inner cylinder 11, and the flow of the exhaust gas S2 from the processing space 10 is blocked by the baffle plate 42 and once turned downward, and then turned upward and turned back. It is guided so as to rise further, so that the powder particles of the processing residue D1 accompanying the exhaust S2 are reduced and directed to the upper gas collection chamber 4b. The powder particles of the processing residue D1 adhering to the front surface of the baffle plate 42 are scraped off by coming into contact with the front surface of the baffle plate 42 where the scraper 43 attached to the separation chamber 4a rotates.

処理残渣ダクト4cは下方側へ窄んだ形状であり、図1に示すように、その下部がダンパー44を介してスクリューフィーダ45の導入口45aに連通接続されている。このスクリューフィーダ45は、上向き傾斜の筒状搬出路を構成すると共に、外周に冷却水等の冷媒Cを流通させる冷却用ジャケット46が設けてある。   The processing residue duct 4c has a shape narrowed downward, and its lower part is connected to an introduction port 45a of the screw feeder 45 through a damper 44 as shown in FIG. The screw feeder 45 constitutes an upwardly inclined cylindrical carry-out path, and is provided with a cooling jacket 46 for circulating a refrigerant C such as cooling water on the outer periphery.

冷却装置6は、図1に示すように、ガス収集室4bのバグフィルター41を通して塵埃を除去した排気を排気導入管61より冷却室6a内へ導入し、該冷却室6a内の冷却配管62を流通する冷却水等の冷媒Cとの熱交換によって凝縮させるものであり、その凝縮液W2が下端に設けたバルブV1付き排出管63を通して下方のオーバーフロータンクT1に導出され、更に該オーバーフロータンクT1から溢流して側方の凝縮液回収タンクT2に貯留されるようになっている。なお、排出管63の下端はオーバーフロータンクT1内の溢流レベルよりも下方に位置しており、これによってバルブV1の開放状態で冷却室6aの出口側が水封される。また、冷却室6aの頂部はバルブV2を介装した排気管9aによって活性炭充填槽7に接続され、更に該活性炭充填槽7からファンF付きの排気管9bが導出している。   As shown in FIG. 1, the cooling device 6 introduces the exhaust gas from which dust has been removed through the bag filter 41 of the gas collection chamber 4b into the cooling chamber 6a through the exhaust introduction pipe 61, and connects the cooling pipe 62 in the cooling chamber 6a. It is condensed by heat exchange with the refrigerant C such as circulating water, and the condensate W2 is led to the lower overflow tank T1 through the discharge pipe 63 with a valve V1 provided at the lower end, and further from the overflow tank T1. It overflows and is stored in the condensate recovery tank T2 on the side. Note that the lower end of the discharge pipe 63 is located below the overflow level in the overflow tank T1, and the outlet side of the cooling chamber 6a is sealed with water when the valve V1 is opened. Further, the top of the cooling chamber 6a is connected to the activated carbon filling tank 7 by an exhaust pipe 9a having a valve V2, and an exhaust pipe 9b with a fan F is led out from the activated carbon filling tank 7.

上記構成の処理装置を用いた本発明の抽出処理方法では、水銀等の低沸点金属やその化合物、低沸点有機物の如き低沸点汚染物質を含む土壌等の被処理物D1をホッパー31に投入し、スクリューフィーダ3によって連続的にロータリーキルン1の内筒11内へ送り込む一方、過熱水蒸気発生装置5で生成した過熱水蒸気S1を内外筒11,12間の環状空間15と攪拌軸2の過熱水蒸気供給管路20とに連続的に導入する。これにより、内筒11内の処理空間10は、内筒11の通気孔14…と攪拌羽根21の通気孔22…から放出される過熱水蒸気S1にて常時満たされた状態となる。なお、過熱水蒸気S1の温度は、一般に150〜350℃の範囲で被処理物D1の種類に応じて設定すればよく、被処理物D1が前記土壌である場合は300℃前後に設定するのがよい。   In the extraction processing method of the present invention using the processing apparatus having the above-described configuration, an object to be processed D1 such as soil containing low-boiling point contaminants such as low-boiling point metals such as mercury and its compounds and low-boiling point organic substances is charged into the hopper 31. The superheated steam S1 generated by the superheated steam generator 5 is continuously fed into the inner cylinder 11 of the rotary kiln 1 by the screw feeder 3 while the superheated steam supply pipe of the annular space 15 between the inner and outer cylinders 11 and 12 and the stirring shaft 2 is used. Introduce into the road 20 continuously. Thus, the processing space 10 in the inner cylinder 11 is always filled with the superheated steam S1 released from the vent holes 14 of the inner cylinder 11 and the vent holes 22 of the stirring blade 21. In addition, what is necessary is just to set the temperature of superheated steam S1 according to the kind of to-be-processed object D1 in the range of 150-350 degreeC generally, and when the to-be-processed object D1 is the said soil, it is set to about 300 degreeC. Good.

内筒11内へ送り込まれた被処理物D1は、過熱水蒸気S1で満たされた処理空間10を内筒11の回転による堆積・落下の反復と、回転する攪拌軸2の攪拌羽根21による攪拌作用とで表面更新されながら、ロータリーキルン1の傾斜に沿って出口1a側へ搬送されてゆくが、この過程で過熱水蒸気S1の熱によって昇温するため、含まれていた低沸点汚染物質が含有水分と共に気化抽出されて気相側へ移行する。   The workpiece D1 sent into the inner cylinder 11 is repeatedly accumulated and dropped by the rotation of the inner cylinder 11 in the processing space 10 filled with the superheated steam S1, and the stirring action by the stirring blade 21 of the rotating stirring shaft 2 As the surface is renewed, it is transported along the inclination of the rotary kiln 1 to the outlet 1a side. In this process, the temperature is raised by the heat of the superheated steam S1, so the contained low-boiling contaminants together with the contained moisture It is vaporized and extracted and moves to the gas phase side.

しかして、この抽出処理においては、既述した通気孔14…及び通気孔22…の孔径変化により、周囲部から処理空間10内への過熱水蒸気S1の放出がロータリーキルン1の入口1a側で多くなり、中心部から処理空間10内への過熱水蒸気S1の放出が逆に出口1b側で多くなるように設定している。従って、被処理物D1の温度が低い入口1a側では、通気孔14…を出て被処理物D1中を通過する過熱水蒸気S1が多く、それだけ被処理物D1は早く昇温して低沸点物質の抽出効率が高まることになる。一方、抽出が進んだ出口1b側では、抽出のために必要な周辺部からの過熱水蒸気S1の放出は少なくなるが、その代わりに中心部から多く供給される過熱水蒸気S1によって雰囲気温度が一定の高温に維持されるから、抽出成分の一部が雰囲気温度の低下で被処理物D1中に戻るのを確実に防止できる。   Therefore, in this extraction process, the release of superheated steam S1 from the surroundings into the processing space 10 increases on the inlet 1a side of the rotary kiln 1 due to the change in the diameter of the vent holes 14 and 22 described above. The discharge of the superheated steam S1 from the central portion into the processing space 10 is set so as to increase on the outlet 1b side. Accordingly, on the inlet 1a side where the temperature of the object to be treated D1 is low, there is a large amount of superheated steam S1 that exits the vent holes 14 and passes through the object to be treated D1. The extraction efficiency of will increase. On the other hand, on the outlet 1b side where the extraction has progressed, the release of superheated steam S1 from the peripheral portion necessary for extraction is reduced, but instead the ambient temperature is constant due to the superheated steam S1 supplied more from the central portion. Since the temperature is maintained at a high temperature, it is possible to reliably prevent a part of the extraction component from returning to the workpiece D1 due to a decrease in the atmospheric temperature.

なお、汚染土壌等に含まれる水銀の如き低沸点金属は酸化が進んでいることが多いため、これを含む被処理物D1の処理では、スクリューフィーダ3の薬剤注入口32より塩化第一スズやヒドラジン等の適当な還元剤を注入し、ロータリーキルン1の処理空間10内での還元反応によって金属に転化させて気化抽出するようにすればよい。   In addition, since low boiling point metals such as mercury contained in the contaminated soil are often oxidized, in the treatment of the object to be treated D1 including this, stannous chloride or A suitable reducing agent such as hydrazine may be injected, converted to metal by a reduction reaction in the treatment space 10 of the rotary kiln 1 and vaporized and extracted.

かくしてロータリーキルン1の出口1bに至った抽出成分を含む排気S2と処理残渣D1とは排気分離槽4で分離され、処理残渣D1は落下して処理残渣ダクト4cに堆積する一方、排気S2は冷却装置6の冷却室6a内へ導入される。そして、処理残渣ダクト4cに堆積した処理残渣D2は、ある程度溜まった段階でダンパー44を開放してモーターM3を駆動させることにより、スクリューフィーダ45の導入口45aに流入して上部の導出口45bへ搬送されるが、この搬送過程で冷却用ジャケット46を流通する冷媒Cと熱交換して温度が低下した状態で取り出される。   Thus, the exhaust S2 containing the extracted components reaching the outlet 1b of the rotary kiln 1 and the processing residue D1 are separated in the exhaust separation tank 4, and the processing residue D1 falls and accumulates in the processing residue duct 4c, while the exhaust S2 is a cooling device. 6 is introduced into the cooling chamber 6a. Then, when the processing residue D2 accumulated in the processing residue duct 4c is accumulated to some extent, the damper 44 is opened and the motor M3 is driven to flow into the inlet 45a of the screw feeder 45 and to the upper outlet 45b. Although it is transported, it is taken out in a state where the temperature is lowered by heat exchange with the refrigerant C flowing through the cooling jacket 46 during this transporting process.

冷却室6a内へ導入された排気S2は冷却配管62を流通する冷媒Cとの熱交換によって冷却して凝縮させるが、本発明の処理方法では、この冷却温度をロータリーキルン1へ供給する被処理物D1の温度以下に設定することにより、排気の主成分である水蒸気中に含まれていた抽出成分を全て凝縮液化ないし凝固させて凝縮水中に持ち込ませる。   The exhaust S2 introduced into the cooling chamber 6a is cooled and condensed by heat exchange with the refrigerant C flowing through the cooling pipe 62. In the processing method of the present invention, the object to be processed that supplies this cooling temperature to the rotary kiln 1 is used. By setting the temperature to be equal to or lower than the temperature of D1, all the extracted components contained in the water vapor that is the main component of the exhaust gas are condensed or liquefied and brought into the condensed water.

すなわち、上記の冷却温度がロータリーキルン1へ供給する被処理物D1の温度より高い場合、該ロータリーキルン1内において被処理物D1が元の温度から冷却温度に対応する温度まで昇温する過程で気化した抽出成分は、冷却室6a内で凝縮せずに気体として残ることになるが、冷却温度が元の被処理物D1の温度以下であれば、抽出成分は処理前の当該被処理物D1中で気化せずに含有されていた状態つまり液状や固体状に戻る。   That is, when the above cooling temperature is higher than the temperature of the workpiece D1 supplied to the rotary kiln 1, the workpiece D1 is vaporized in the process of raising the temperature from the original temperature to the temperature corresponding to the cooling temperature in the rotary kiln 1. The extracted component remains as a gas without being condensed in the cooling chamber 6a. However, if the cooling temperature is equal to or lower than the temperature of the original workpiece D1, the extracted component is present in the workpiece D1 before processing. It returns to the state of being contained without being vaporized, that is, liquid or solid.

このように、本処理方法では、被処理物D1より抽出した低沸点物質の全量を凝縮水と共に回収できるから、従来の熱処理におけるような高度な排ガス処理が不要であり、もって処理設備全体の小型化が可能であり、従来に比較して処理コスト及び設備コストを大幅に低減できる上、汚染土壌等の汚染物を処理対象とする場合に、システム全体のクローズド化によって汚染物質の環境への再飛散を確実に防止できる。更に、この処理方法によれば、抽出成分は高温空気による酸化を受けないから、後段の処理が容易になる上、酸化変質がないので水銀や低沸点有機物等の汚染物質の再資源化も容易になる。また、処理残渣D2は、酸化による変質がなく、汚染土壌等の汚染物も汚染前に近い状態に戻るので再利用に支障を生じず、加えて被処理物D1中に含まれていた水分も気化して排気S2に付随して除去され、乾燥状態として取り出されるため、その搬送や保管等の取り扱いが容易になると共に、再利用に際して前処理としての乾燥を省略できるという利点もある。   In this way, in this treatment method, the entire amount of the low boiling point substance extracted from the workpiece D1 can be recovered together with the condensed water, so that an advanced exhaust gas treatment as in the conventional heat treatment is unnecessary, and thus the entire treatment facility is small. In addition to significantly reducing processing costs and equipment costs compared to conventional methods, when pollutants such as contaminated soil are to be treated, the entire system can be closed to restore the pollutants to the environment. Spattering can be reliably prevented. Furthermore, according to this processing method, the extracted components are not oxidized by high-temperature air, so that subsequent processing is easy, and since there is no oxidative change, it is easy to recycle contaminants such as mercury and low-boiling organic substances. become. Further, the treatment residue D2 is not deteriorated due to oxidation, and contaminants such as contaminated soil return to a state close to that before the contamination, so that there is no hindrance to reuse, and in addition, moisture contained in the object to be treated D1 Since it is vaporized and removed along with the exhaust S2 and taken out as a dry state, handling such as transportation and storage becomes easy, and there is an advantage that drying as a pretreatment can be omitted at the time of reuse.

しかして、抽出処理中においては、冷却装置6における排気管9aのバルブV2が閉止され、排出管63はバルブV1が開放されるが、その出口が水封されているから、冷却室6aは排気導入管61を介して排気分離槽4のフィルター室4bにのみ連通した状態となる。これにより、冷却室6aでは排気S2の凝縮に伴う体積減少によって負圧が発生するが、この負圧は排気S2を当該冷却室6aへ引き込む吸引力として作用し、ひいては過熱水蒸気S1をロータリーキルン1の処理空間10へ導入する動力として機能する。従って、この構成においては、過熱水蒸気S1及び排気S2を強制的に給排するためのファン等の機械的設備を省略できると共に、ロータリーキルン1内の処理空間10に働く負圧によって被処理物D1中の抽出成分の気化が促進され、もって抽出効率がより向上し、しかもロータリーキルン1内部から冷却装置6の冷却室6aまでが連通して全体の処理空間の圧力が平衡状態になるため、過熱水蒸気S1の供給温度と冷却温度とで抽出速度を容易に制御でき、これによって複雑な制御機構が不要になる上、全体の処理空間が非加圧状態で器壁に大きな耐圧強度を必要としないから、処理装置を簡素に且つ安全に設計できる。   Thus, during the extraction process, the valve V2 of the exhaust pipe 9a in the cooling device 6 is closed and the valve V1 of the exhaust pipe 63 is opened, but its outlet is sealed with water, so that the cooling chamber 6a is exhausted. Only the filter chamber 4b of the exhaust separation tank 4 communicates with the inlet pipe 61. As a result, a negative pressure is generated in the cooling chamber 6a due to a decrease in volume accompanying the condensation of the exhaust S2, and this negative pressure acts as a suction force that draws the exhaust S2 into the cooling chamber 6a. It functions as power to be introduced into the processing space 10. Therefore, in this configuration, mechanical equipment such as a fan for forcibly supplying and discharging the superheated steam S1 and the exhaust gas S2 can be omitted, and the negative pressure acting on the processing space 10 in the rotary kiln 1 can be used in the workpiece D1. Since the vaporization of the extracted components is promoted, the extraction efficiency is further improved, and the pressure inside the rotary kiln 1 communicates with the cooling chamber 6a of the cooling device 6 so that the pressure in the entire processing space is in an equilibrium state. The extraction speed can be easily controlled by the supply temperature and the cooling temperature, and this eliminates the need for a complicated control mechanism, and the entire processing space is in a non-pressurized state and does not require large pressure resistance on the vessel wall. The processing device can be designed simply and safely.

冷却室6a内で生成した凝縮水W2は抽出成分の液化又は固化物を含んだ状態でオーバーフロータンクT1に流入し、抽出成分中の水銀Hg等の高比重物質が該タンクT1の底部に溜まるから、処理後に該タンクT1のドレンバルブV3を開いて水銀Hg等を抜き出して回収できる。一方、低比重の抽出成分を含む凝縮水W2はオーバーフロータンクT1から溢流して凝縮液回収タンクT2に貯留されるから、処理後あるいは所定液量に達した段階でドレンバルブV4を開いて抜き出せばよい。   The condensed water W2 generated in the cooling chamber 6a flows into the overflow tank T1 in a state containing liquefied or solidified extract components, and high specific gravity substances such as mercury Hg in the extract components are accumulated at the bottom of the tank T1. After the treatment, the drain valve V3 of the tank T1 can be opened to extract and collect mercury Hg and the like. On the other hand, the condensed water W2 containing the low-specific gravity extraction component overflows from the overflow tank T1 and is stored in the condensate recovery tank T2. Therefore, if the drain valve V4 is opened after being processed or at a stage where the liquid amount reaches a predetermined level, the water is extracted. Good.

なお、処理の過程では被処理物D1中に空気や有機物質の熱分解等によって生じたガス成分が排気S2に付随し、これら非凝縮ガス成分が冷却装置6の冷却室6a内に次第に蓄積することになるが、被処理物D1の単位量当たりの非凝縮ガス成分発生量は僅かであるため、その蓄積による冷却効率の低下を招くまでに大量の被処理物D1を連続処理することが可能である。しかして、このような非凝縮ガス成分については、被処理物D1の種類や性状(混在する空気量、有機物の種類と量等)に応じて経験的に一回の連続処理量を定めておき、その処理が終了した際、一時的に排気管9aのバルブV2を開放して排気管9bのファンFを駆動することより、冷却室6a内に蓄積した分を排出すればよい。このとき、非凝縮ガス成分中に何らかの要因で微量の有害物質が混在していても、活性炭充填槽7を通す過程で吸着除去されるから、空気主体の無害な浄化ガスGとして大気中へ放出される。   Note that in the process, gas components generated by thermal decomposition of air or organic substances in the workpiece D1 accompany the exhaust S2, and these non-condensed gas components gradually accumulate in the cooling chamber 6a of the cooling device 6. However, since the amount of non-condensable gas components generated per unit amount of the workpiece D1 is small, it is possible to continuously process a large amount of the workpiece D1 until the cooling efficiency is reduced due to the accumulation. It is. For such a non-condensable gas component, a continuous treatment amount is determined empirically according to the type and properties of the object to be processed D1 (the amount of mixed air, the type and amount of organic matter, etc.). When the processing is completed, the valve V2 of the exhaust pipe 9a is temporarily opened and the fan F of the exhaust pipe 9b is driven to discharge the amount accumulated in the cooling chamber 6a. At this time, even if a trace amount of harmful substances is mixed in the non-condensed gas component for some reason, it is adsorbed and removed in the process of passing through the activated carbon filling tank 7, and thus released into the atmosphere as a harmless purified gas G mainly composed of air. Is done.

上述した実施形態では過熱水蒸気S1をロータリーキルン1の処理空間10へ周囲部と中心部とから放出する構成としたが、本発明の抽出処理方法は、外部から連続供給される過熱水蒸気S1で該処理空間10を満たして低沸点物質を気化抽出させる種々の方式を包含する。例えば、前記攪拌軸2の過熱水蒸気供給管路20を設けず、ロータリーキルン1の内外筒11,12間に導入した過熱水蒸気S1の周囲部からの放出のみで処理空間10を満たすようにしてもよい。また逆に、ロータリーキルン1の内筒11に通気孔14…を設けず、この内筒11と外筒12との間に加熱空気を流通させることにより、周囲部から加熱を間接加熱で行う一方、過熱水蒸気S1を前記攪拌軸2の過熱水蒸気供給管路20やロータリーキルン1の入口1a側から処理空間10内へ送給することもできる。ただし、過熱水蒸気S1を処理空間10の周囲部と中心部のいずれか一方のみから放出する方式の比較では、周囲部からの放出方式の方が高い抽出効率が得られる。しかして、該処理空間10内に過熱水蒸気S1を周囲部及び中心部の両方から供給する方式とすることにより、処理空間10全体を汚染物質の抽出に最適な雰囲気に設定することが容易になる。   In the above-described embodiment, the superheated steam S1 is discharged from the peripheral portion and the central portion into the processing space 10 of the rotary kiln 1, but the extraction processing method of the present invention uses the superheated steam S1 continuously supplied from the outside. Various methods for vaporizing and extracting low-boiling substances by filling the space 10 are included. For example, the superheated steam supply line 20 of the stirring shaft 2 may not be provided, and the processing space 10 may be filled only by releasing the superheated steam S1 introduced between the inner and outer cylinders 11 and 12 of the rotary kiln 1 from the peripheral portion. . On the other hand, the inner cylinder 11 of the rotary kiln 1 is not provided with the air holes 14... And the heated air is circulated between the inner cylinder 11 and the outer cylinder 12, so that heating is performed from the surrounding portion by indirect heating. The superheated steam S1 can also be fed into the processing space 10 from the superheated steam supply conduit 20 of the stirring shaft 2 or the inlet 1a side of the rotary kiln 1. However, in the comparison of the method in which the superheated steam S1 is released from only one of the peripheral part and the central part of the processing space 10, the extraction efficiency from the peripheral part is higher. Therefore, by adopting a system in which the superheated steam S1 is supplied from both the peripheral portion and the central portion into the processing space 10, it becomes easy to set the entire processing space 10 to an optimum atmosphere for extracting contaminants. .

また、上述した実施形態では処理空間10へ中心部から過熱水蒸気S1を放出する過熱水蒸気供給管路20が攪拌軸2を兼用しているが、該供給管路20を攪拌機能のない単なるパイプ状として、その全体あるいは要所に設けた通気孔22…より過熱水蒸気S1を放出する構成としてもよいし、攪拌軸2を兼用する場合の通気孔22…を攪拌羽根21の代わりに該攪拌軸2自体の周面に設けたり、該攪拌軸2と攪拌羽根21の両方に設ける構成としてもよい。更に、処理空間10への過熱水蒸気S1を周囲部と中心部とから放出する構成において、周囲部からの過熱水蒸気供給量をロータリーキルン1の出口1b側よりも入口1a側で多くし、中心部からの過熱水蒸気供給量を同入口1a側よりも出口1bで多くするように設定する手段として、上述した実施形態では通気孔14…及び通気孔22…の孔径を変化させているが、この孔径変化の代わりに両通気孔14…,21…の密度を変えたり、この密度変化と孔径変化を組み合わせてもよい。   In the above-described embodiment, the superheated steam supply pipe 20 that discharges the superheated steam S1 from the center to the processing space 10 also serves as the stirring shaft 2, but the supply pipe 20 has a simple pipe shape without a stirring function. As an alternative, the superheated steam S1 may be discharged from the whole or a major portion of the vent holes 22. Alternatively, the agitator shaft 2 may be used instead of the stirring blade 21. It is good also as a structure provided in both the surrounding surface of itself, and this stirring shaft 2 and the stirring blade 21. Furthermore, in the structure which discharge | releases the superheated steam S1 to the process space 10 from a peripheral part and a center part, the superheated steam supply amount from a peripheral part is increased on the inlet 1a side rather than the outlet 1b side of the rotary kiln 1, and from the center part. As a means for setting the superheated steam supply amount to be larger at the outlet 1b than at the inlet 1a side, the hole diameters of the vent holes 14 and 22 are changed in the above-described embodiment. Instead of this, the density of the two air holes 14... 21 may be changed, or this density change and hole diameter change may be combined.

ロータリーキルン1については、前記実施形態では出口1b側を低く傾斜配置するものとして説明したが、内筒11の内周面に回転に伴って被処理物D1を出口側へ移送する機能を持つスパイラルフィンや一定間隔置きに配置する環状傾斜板等を設けることにより、水平姿勢での処理も可能となる。また、外筒12を非回転とせずに内筒11に一体化することも可能であり、この場合でも内外筒11,12間の環状空間15への過熱水蒸気S1の供給を端部中心側の供給口からの適当な内部流路構成によって行える。更に、加熱水蒸気を処理空間の周囲部からのみ放出する構成では、ロータリーキルン1を傾斜型にして攪拌軸2を省略したり、攪拌軸2に代えて内筒11側に前記スパイラルフィンや環状傾斜板あるいは他の攪拌機能を有する突起物等を設けてもよい。   In the embodiment, the rotary kiln 1 has been described as having the outlet 1b side disposed at a low slope. However, the spiral fin having a function of transferring the workpiece D1 to the outlet side as it rotates on the inner peripheral surface of the inner cylinder 11. In addition, by providing an annular inclined plate or the like arranged at regular intervals, processing in a horizontal posture is also possible. Further, the outer cylinder 12 can be integrated with the inner cylinder 11 without non-rotating, and even in this case, the superheated steam S1 is supplied to the annular space 15 between the inner and outer cylinders 11 and 12 on the center side of the end. This can be achieved by an appropriate internal flow path configuration from the supply port. Further, in the configuration in which the heated steam is discharged only from the peripheral portion of the processing space, the rotary kiln 1 is inclined and the stirring shaft 2 is omitted, or the spiral fin or the annular inclined plate is provided on the inner cylinder 11 side instead of the stirring shaft 2. Or you may provide the protrusion etc. which have another stirring function.

なお、本発明の抽出処理方法は、汚染土壌等の汚染成分の抽出処理に限らず、工業用原材料や中間原料等の製造における各種の抽出処理にも広く適用可能である。また、この抽出処理方法を適用する処理装置は既述のように小型化が容易であるから、処理装置全体を移動車両に搭載し、汚染発生地域へ処理装置を持ち込んで現地処理を行うことが可能となる。   The extraction processing method of the present invention is not limited to extraction processing of contaminating components such as contaminated soil, but can be widely applied to various extraction processing in manufacturing industrial raw materials and intermediate raw materials. In addition, since the processing apparatus to which this extraction processing method is applied can be easily downsized as described above, the entire processing apparatus can be mounted on a moving vehicle, and the processing apparatus can be brought into the contaminated area for on-site processing. It becomes possible.

本発明の一実施形態に係る抽出処理方法を適用する処理装置の概略構成図である。It is a schematic block diagram of the processing apparatus to which the extraction processing method which concerns on one Embodiment of this invention is applied. 同処理装置の側面図である。It is a side view of the processing apparatus. 同処理装置のロータリーキルン部分の縦断側面図である。It is a vertical side view of the rotary kiln part of the processing apparatus. 図3におけるA−A線の断面矢視図である。It is a cross-sectional arrow view of the AA line in FIG.

符号の説明Explanation of symbols

1 ロータリーキルン
1a 入口
1b 出口
10 処理空間
11 内筒
12 外筒
14 通気孔
15 環状空間(内外筒間)
20 過熱水蒸気供給管路
21 通気孔
6 冷却装置
6a 冷却室
C 冷媒
D1 被処理物
D2 処理残渣
S1 過熱水蒸気
S2 排気
W2 凝縮液
DESCRIPTION OF SYMBOLS 1 Rotary kiln 1a Inlet 1b Outlet 10 Processing space 11 Inner cylinder 12 Outer cylinder 14 Ventilation hole 15 Annular space (between inner and outer cylinders)
20 Superheated steam supply line 21 Ventilation hole 6 Cooling device 6a Cooling chamber C Refrigerant D1 Processed object D2 Process residue S1 Superheated steam S2 Exhaust W2 Condensate

Claims (6)

低沸点物質を含む被処理物をロータリーキルン内に連続的に送り込んで出口側へ搬送すると共に、該ロータリーキルン内を外部から連続供給される過熱水蒸気で満たして加熱することにより、被処理物中の低沸点物質を気相側へ抽出し、抽出後の被処理物を連続的に取り出す一方、ロータリーキルンからの排気を当該ロータリーキルンへ供給する被処理物の温度以下に冷却して凝縮させることにより、抽出された低沸点物質を凝縮液中に取り込むことを特徴とする抽出処理方法。   The object to be treated containing low-boiling substances is continuously fed into the rotary kiln and conveyed to the outlet side, and the inside of the rotary kiln is filled with heated superheated steam continuously supplied from the outside and heated. The boiling point substance is extracted to the gas phase side, and the processed material after extraction is continuously taken out, while the exhaust from the rotary kiln is extracted by cooling to the temperature of the processed material supplied to the rotary kiln and condensing it. An extraction method characterized in that a low boiling point substance is taken into the condensate. 前記排気の凝縮に伴って発生する負圧を前記ロータリーキルンへの過熱水蒸気の導入動力として利用する請求項1記載の抽出処理方法。   The extraction processing method according to claim 1, wherein a negative pressure generated as the exhaust gas condenses is used as power for introducing superheated steam into the rotary kiln. ロータリーキルンが多孔構造の内筒と外筒との二重筒構造をなし、この内外筒間に導入した過熱水蒸気を内筒の孔部を通してロータリーキルンの処理空間内へ供給する請求項1又は2に記載の抽出処理方法。   The rotary kiln has a double cylinder structure of an inner cylinder and an outer cylinder having a porous structure, and superheated steam introduced between the inner and outer cylinders is supplied into the processing space of the rotary kiln through a hole in the inner cylinder. Extraction processing method. 二重筒構造をなすロータリーキルンの処理空間内に軸心に沿って配設された過熱水蒸気供給管路を備え、この過熱水蒸気供給管路と前記内外筒間とに過熱水蒸気を導入することにより、処理空間内に過熱水蒸気を周囲部及び中心部の両方から供給すると共に、周囲部からの過熱水蒸気供給量がロータリーキルン出口側よりも入口側で多くなり、中心部からの過熱水蒸気供給量がロータリーキルン入口側よりも出口側で多くなるように設定する請求項3記載の抽出処理方法。   By providing a superheated steam supply pipe disposed along the axis in the processing space of the rotary kiln having a double cylinder structure, by introducing superheated steam between the superheated steam supply pipe and the inner and outer cylinders, While supplying superheated steam from both the peripheral part and the central part in the processing space, the superheated steam supply amount from the peripheral part is larger on the inlet side than the rotary kiln outlet side, and the superheated steam supply amount from the central part is on the rotary kiln inlet The extraction processing method according to claim 3, wherein the extraction processing method is set so as to be larger on the exit side than on the side. 被処理物が水銀又は/及び低沸点有機物による汚染物である請求項1〜4のいずれかに記載の抽出処理方法。   The extraction processing method according to any one of claims 1 to 4, wherein the object to be processed is a contaminant due to mercury or / and a low boiling point organic substance. ロータリーキルン内の温度を110〜350℃に設定する請求項1〜5のいずれかに記載の抽出処理方法。   The extraction processing method according to any one of claims 1 to 5, wherein the temperature in the rotary kiln is set to 110 to 350 ° C.
JP2004165731A 2004-06-03 2004-06-03 Extraction processing method Expired - Fee Related JP4745623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165731A JP4745623B2 (en) 2004-06-03 2004-06-03 Extraction processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165731A JP4745623B2 (en) 2004-06-03 2004-06-03 Extraction processing method

Publications (2)

Publication Number Publication Date
JP2005342630A true JP2005342630A (en) 2005-12-15
JP4745623B2 JP4745623B2 (en) 2011-08-10

Family

ID=35495484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165731A Expired - Fee Related JP4745623B2 (en) 2004-06-03 2004-06-03 Extraction processing method

Country Status (1)

Country Link
JP (1) JP4745623B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055275A (en) * 2006-08-30 2008-03-13 Chem Grouting Co Ltd Method and apparatus for purifying polluted soil
JP2009213999A (en) * 2008-03-10 2009-09-24 Taiheiyo Cement Corp Apparatus and method of treating mercury-containing waste
CN104289513A (en) * 2014-10-14 2015-01-21 中节能大地环境修复有限公司 Device and method applied to thermal desorption treatment of mercury-contaminated soil
EP3015535A1 (en) * 2014-10-31 2016-05-04 Tokuden Co., Ltd. Oil purifying apparatus
CN114870430A (en) * 2022-06-20 2022-08-09 信阳农林学院 Continuous extraction device and extraction method for traditional Chinese medicine raw materials

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210017A (en) * 1988-06-29 1990-01-12 Mitsubishi Heavy Ind Ltd Refuse incinerator
JPH05192648A (en) * 1991-07-22 1993-08-03 Linde Ag Method for decontaminating contaminated soil
JPH06190357A (en) * 1992-08-21 1994-07-12 Westinghouse Electric Corp <We> Bench scale method and device for obtaining performance parameter of thermally detaching and attaching process
JPH10267535A (en) * 1997-03-28 1998-10-09 Kubota Corp Rotary drum heat treating apparatus
JP2000079381A (en) * 1998-06-24 2000-03-21 Nippon Kankyo System:Kk Method and apparatus for treating burned ash
JP2001504382A (en) * 1995-12-01 2001-04-03 イースタン パワー リミテッド Apparatus and method for recycling and conversion of garbage
JP2003148868A (en) * 2001-11-12 2003-05-21 Mitsubishi Heavy Ind Ltd Continuous waste disposal device
JP2003214768A (en) * 2002-01-23 2003-07-30 Stm:Kk Thermal treatment equipment using superheated steam
JP2003253267A (en) * 2002-03-01 2003-09-10 Jfe Soldec Corp Apparatus for continuous carbonization of solid waste
JP2004230372A (en) * 2002-12-04 2004-08-19 Daiso Co Ltd Mercury removal method from mercury-containing waste such as fluorescent tube, and apparatus therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210017A (en) * 1988-06-29 1990-01-12 Mitsubishi Heavy Ind Ltd Refuse incinerator
JPH05192648A (en) * 1991-07-22 1993-08-03 Linde Ag Method for decontaminating contaminated soil
JPH06190357A (en) * 1992-08-21 1994-07-12 Westinghouse Electric Corp <We> Bench scale method and device for obtaining performance parameter of thermally detaching and attaching process
JP2001504382A (en) * 1995-12-01 2001-04-03 イースタン パワー リミテッド Apparatus and method for recycling and conversion of garbage
JPH10267535A (en) * 1997-03-28 1998-10-09 Kubota Corp Rotary drum heat treating apparatus
JP2000079381A (en) * 1998-06-24 2000-03-21 Nippon Kankyo System:Kk Method and apparatus for treating burned ash
JP2003148868A (en) * 2001-11-12 2003-05-21 Mitsubishi Heavy Ind Ltd Continuous waste disposal device
JP2003214768A (en) * 2002-01-23 2003-07-30 Stm:Kk Thermal treatment equipment using superheated steam
JP2003253267A (en) * 2002-03-01 2003-09-10 Jfe Soldec Corp Apparatus for continuous carbonization of solid waste
JP2004230372A (en) * 2002-12-04 2004-08-19 Daiso Co Ltd Mercury removal method from mercury-containing waste such as fluorescent tube, and apparatus therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055275A (en) * 2006-08-30 2008-03-13 Chem Grouting Co Ltd Method and apparatus for purifying polluted soil
JP4518504B2 (en) * 2006-08-30 2010-08-04 ケミカルグラウト株式会社 Contaminated soil purification method and equipment
JP2009213999A (en) * 2008-03-10 2009-09-24 Taiheiyo Cement Corp Apparatus and method of treating mercury-containing waste
CN104289513A (en) * 2014-10-14 2015-01-21 中节能大地环境修复有限公司 Device and method applied to thermal desorption treatment of mercury-contaminated soil
EP3015535A1 (en) * 2014-10-31 2016-05-04 Tokuden Co., Ltd. Oil purifying apparatus
US10011775B2 (en) 2014-10-31 2018-07-03 Tokuden Co., Ltd. Oil purifying apparatus
CN114870430A (en) * 2022-06-20 2022-08-09 信阳农林学院 Continuous extraction device and extraction method for traditional Chinese medicine raw materials

Also Published As

Publication number Publication date
JP4745623B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
US5746987A (en) Apparatus for physical amd chemical separation and reaction
CZ117994A3 (en) Process and apparatus for removing volatile and semi-volatile contaminants from contaminated materials
WO2003055615A1 (en) Thermal remediation process
US20020192030A1 (en) Plasma process and appropriate equipment for the removal of hydrocarbons contained in the sludge from the petroleum storage tanks and/or the treatment of residues containing hydrocarbons
ES2354706T3 (en) METHOD OF REMEDIATION OF SOILS CONTAMINATED WITH POLYHALOGENATED HYDROCARBONS.
EA000220B1 (en) Method and apparatus for treatment of organic waste material
JP4745623B2 (en) Extraction processing method
JP3335870B2 (en) Rotary drum type heat treatment equipment
JP2005345012A (en) Rotary kiln type heat treatment device
JP3626459B2 (en) Organohalogen compound processing apparatus and processing method thereof
JP2008049207A (en) Heat treatment apparatus of contaminant
US6416567B1 (en) Removal of mercury from waste materials
JP4734649B2 (en) Decomposition processing apparatus and decomposition processing method of hardly decomposable organic compound
JP4908914B2 (en) Processing equipment such as aluminum chips
JP4431025B2 (en) Organohalogen compound processing apparatus and processing method thereof
JP2006055679A (en) Efficient purification method of soil polluted with volatile organic compound
JP5958797B2 (en) Volatile substance removal apparatus and removal method
JP3692325B2 (en) Soil purification equipment
JP2004225935A (en) Horizontal type rotary heating device for heat treatment of metal waste
JP3626456B2 (en) Organochlorine compound processing apparatus and processing method
JP2004238250A (en) Method of processing carbonized material containing harmful material, method of recovering processed carbonized material and harmful material and method of treating dehydrated sludge
JP5550932B2 (en) Heat treatment method for contaminated soil
JP4899027B2 (en) Soil conveyor
KR20020063891A (en) Plasma process and appropriate equipment for the removal of hydrocarbons contained in the sludge from petroleum storage tanks and/or for the treatment of residues containing hydrocarbons
JP2007263503A (en) Heating treatment apparatus for contaminant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees