JP2007130525A - Inclusion catalyst and its manufacturing method - Google Patents

Inclusion catalyst and its manufacturing method Download PDF

Info

Publication number
JP2007130525A
JP2007130525A JP2005323669A JP2005323669A JP2007130525A JP 2007130525 A JP2007130525 A JP 2007130525A JP 2005323669 A JP2005323669 A JP 2005323669A JP 2005323669 A JP2005323669 A JP 2005323669A JP 2007130525 A JP2007130525 A JP 2007130525A
Authority
JP
Japan
Prior art keywords
catalyst
shell
inclusion
mesopores
clathrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005323669A
Other languages
Japanese (ja)
Inventor
Fumihiro Haga
史浩 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005323669A priority Critical patent/JP2007130525A/en
Publication of JP2007130525A publication Critical patent/JP2007130525A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inclusion catalyst provided with a shell having a plurality of mesopores and a catalyst material included by the shell, and its manufacturing method. <P>SOLUTION: The inclusion catalyst is provided with the shell having a plurality of mesopores, and the catalyst material included in the shell. The inclusion catalyst provided with the shell having a plurality of mesopores and the catalyst material included in the shell has an average mesopore diameter of 2-30 nm. The manufacturing method of the inclusion catalyst is provided. The method comprises a step of carrying out a synthesis using a precursor of the catalyst material and a water-in-oil (W/O) emulsion containing raw materials of the shell to obtain the inclusion catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、包接触媒及びその製造方法に係り、更に詳細には、複数のメソ細孔を有する殻とその殻に包接された触媒物質を備える包接触媒及びその製造方法に関する。   The present invention relates to an inclusion catalyst and a method for manufacturing the same, and more particularly, to an inclusion catalyst including a shell having a plurality of mesopores and a catalyst material included in the shell, and a method for manufacturing the same.

従来より、触媒を高活性化する方法として、金属の粒子サイズを小さくし、金属酸化物担体上に高分散担持する方法が一般に知られている。
一方で、金属と金属酸化物担体との親和性が良くないために、触媒の焼成、還元や反応過程において、金属の凝集が起こることによって粒子サイズが大きくなり、触媒の反応活性や選択性が低下するという問題が起きることも知られている。
この問題を解決する手段として、金属超微粒子をマイクロエマルションを利用して金属酸化物で包接、固定化する方法が提案されている(特許文献1及び非特許文献1参照。)。
特開平7−246343 「触媒」,触媒学会,Vol.39,No.4,1997,p268−273
Conventionally, as a method for highly activating a catalyst, a method in which a metal particle size is reduced and highly dispersed on a metal oxide carrier is generally known.
On the other hand, since the affinity between the metal and the metal oxide carrier is not good, the particle size increases due to the aggregation of the metal during the firing, reduction or reaction of the catalyst, and the reaction activity and selectivity of the catalyst are reduced. It is also known that the problem of decline occurs.
As means for solving this problem, a method has been proposed in which ultrafine metal particles are included and immobilized with a metal oxide using a microemulsion (see Patent Document 1 and Non-Patent Document 1).
JP-A-7-246343 “Catalyst”, Catalysis Society of Japan, Vol. 39, no. 4, 1997, p268-273

しかしながら、上記従来の触媒にあっては、金属粒子が金属酸化物により殆んど被覆されているため、活性金属粒子と反応物とが接触し難く、触媒としての反応活性が低いという問題があった。   However, in the above conventional catalyst, since the metal particles are almost covered with the metal oxide, there is a problem that the active metal particles and the reactant are difficult to contact and the reaction activity as a catalyst is low. It was.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、複数のメソ細孔を有する殻とその殻に包接された触媒物質とを備える包接触媒及びその製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a package including a shell having a plurality of mesopores and a catalytic material enclosed by the shell. It is an object of the present invention to provide a catalytic catalyst and a production method thereof.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、殻の原料を含有する油中水(W/O)エマルジョンと触媒物質の前駆体を用いて合成を行うことなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor conducted synthesis using a water-in-oil (W / O) emulsion containing a shell raw material and a precursor of a catalyst substance, and the like. The present inventors have found that the object can be achieved and have completed the present invention.

即ち、本発明の包接触媒は、複数のメソ細孔を有する殻と、その殻に包接された触媒物質を備えるものである。   That is, the clathrate catalyst of the present invention comprises a shell having a plurality of mesopores and a catalyst material clathrated in the shell.

また、本発明の包接触媒の製造方法は、上記本発明の包接触媒を製造する方法であって、殻の原料を含有する油中水(W/O)エマルジョンと触媒物質の前駆体を用いて合成を行い、所望の包接触媒を得る方法である。   The clathrate catalyst production method of the present invention is a method for producing the clathrate catalyst of the present invention, wherein a water-in-oil (W / O) emulsion containing a shell material and a precursor of a catalyst material are provided. It is a method of obtaining a desired clathrate catalyst by performing synthesis.

本発明によれば、殻の原料を含有する油中水(W/O)エマルジョンと触媒物質の前駆体を用いて包接触媒を合成することなどとしたため、複数のメソ細孔を有する殻と、その殻に包接された触媒物質を備える包接触媒及びその製造方法を提供することができる。   According to the present invention, since a clathrate catalyst is synthesized using a water-in-oil (W / O) emulsion containing a shell raw material and a precursor of a catalytic material, a shell having a plurality of mesopores is obtained. In addition, it is possible to provide a clathrate catalyst comprising a catalyst material clathrated in its shell and a method for producing the same.

以下、本発明の包接触媒について詳細に説明する。なお、本明細書及び特許請求の範囲において、「%」は特記しない限り質量百分率を表すものとする。
上述の如く、本発明の包接触媒は、複数のメソ細孔を有する殻と、その殻に包接された触媒物質を備えるものである。
ここで、「メソ細孔」とは、IUPACが定義している直径2〜50nmの細孔を意味する。
Hereinafter, the inclusion catalyst of the present invention will be described in detail. In the present specification and claims, “%” represents mass percentage unless otherwise specified.
As described above, the inclusion catalyst of the present invention includes a shell having a plurality of mesopores and a catalyst material included in the shell.
Here, “mesopore” means a pore having a diameter of 2 to 50 nm as defined by IUPAC.

図1に、本発明の包接触媒の構造を概念的に示す。同図(a)は斜視図であり、同図(b)は部分断面図であり、同図(c)は拡大図である。
同図において、この包接触媒10は殻12と、触媒物質14を有しており、この殻12は中空部Hに触媒物質14を包接している。また、殻12はその表面にほぼ均一に分布する複数個のメソ細孔12pを有し、このメソ細孔12pは殻12を貫通しており、中空部Hと外部とを連通させている。
なお、殻12に包接される触媒物質14は、通常は殻12の内壁に付着しているが、内壁と離れて中空部Hに包接されている場合も本発明の範囲に含まれる。
FIG. 1 conceptually shows the structure of the inclusion catalyst of the present invention. (A) is a perspective view, (b) is a partial cross-sectional view, and (c) is an enlarged view.
In this figure, the inclusion catalyst 10 has a shell 12 and a catalyst material 14, and the shell 12 encloses the catalyst material 14 in the hollow portion H. The shell 12 has a plurality of mesopores 12p distributed almost uniformly on the surface thereof. The mesopores 12p penetrate the shell 12 and communicate the hollow portion H with the outside.
The catalyst material 14 included in the shell 12 is usually attached to the inner wall of the shell 12, but the case where the catalyst material 14 is included in the hollow portion H apart from the inner wall is also included in the scope of the present invention.

このような構造を有する本発明の包接触媒においては、触媒物質14が殻12に包接されているため、例えば、触媒物質12が典型的な活性金属粒子の場合において、凝集が起こり難くなり、包接触媒の耐久性を向上させることができる。
また、メソ細孔12pを介して外部から中空部Hへの反応物の移動が可能となり、更には触媒物質14の表面積が増加するため、反応物と触媒物質14との接触が容易となり、包接触媒10の反応活性を向上させることもできる。
更にまた、メソ細孔12pを有する殻12を備えるため、分子篩効果により、包接触媒における反応の選択性を向上させることができ、メソ細孔12pの細孔径を制御することができるため、包接触媒10の中空部Hにおける反応を制御することも可能である。
In the inclusion catalyst of the present invention having such a structure, since the catalyst material 14 is included in the shell 12, for example, in the case where the catalyst material 12 is typical active metal particles, aggregation hardly occurs. The durability of the clathrate catalyst can be improved.
Further, the reactant can be transferred from the outside to the hollow portion H through the mesopores 12p, and the surface area of the catalyst substance 14 is increased, so that the reactant and the catalyst substance 14 can be easily contacted with each other. The reaction activity of the contact catalyst 10 can also be improved.
Furthermore, since the shell 12 having the mesopores 12p is provided, the selectivity of the reaction in the inclusion catalyst can be improved by the molecular sieve effect, and the pore diameter of the mesopores 12p can be controlled. It is also possible to control the reaction in the hollow portion H of the catalytic catalyst 10.

本発明の包接触媒は、典型的には、上記の図1に示すような構造を有するが、メソ細孔12pの大きさは、平均細孔径で2〜30nmであることが好ましく、2〜10nmであることがより好ましい。
細孔径が2nm未満では、デカリンなどの大きな分子の出入りが十分ではなく、殻12に包接された触媒物質14を有効に利用することが困難であり、30nmを超えると、機械的強度が不十分になり易く、中空部Hの破壊を招くことがある。
The clathrate catalyst of the present invention typically has a structure as shown in FIG. 1, but the mesopores 12p preferably have an average pore diameter of 2 to 30 nm, More preferably, it is 10 nm.
If the pore diameter is less than 2 nm, large molecules such as decalin do not enter and exit sufficiently, and it is difficult to effectively use the catalyst substance 14 included in the shell 12, and if it exceeds 30 nm, the mechanical strength is poor. This is likely to be sufficient, and the hollow portion H may be destroyed.

また、本発明の包接触媒においては、総数の80%以上のメソ細孔が、上述の平均細孔径の±1nmの範囲内に存在していることが好ましい。
このように、本発明の包接触媒では、メソ細孔径分布が狭い範囲に集中しているため、分子篩効果がより期待できる。例えば、サイズが小さい分子のみを中空部内に導入し、大きい分子は導入しない効果、又は直鎖炭化水素は中空部内に導入されるが、側鎖を有する炭化水素は導入されないなどの効果を活用し、触媒反応の選択性の向上や吸着物質の選択性の向上が可能となる。
In the inclusion catalyst of the present invention, it is preferable that 80% or more of the total number of mesopores exist within the range of ± 1 nm of the average pore diameter.
Thus, in the clathrate catalyst of the present invention, since the mesopore diameter distribution is concentrated in a narrow range, the molecular sieve effect can be expected more. For example, the effect of introducing only small molecules into the hollow part and not introducing large molecules, or introducing linear hydrocarbons into the hollow part but not hydrocarbons having side chains, is utilized. Thus, it is possible to improve the selectivity of the catalytic reaction and the selectivity of the adsorbent.

更に、本発明の包接触媒は、その平均粒子径が0.1〜5μmであることが好ましい。
平均粒子径が0.1μm未満では、機械的強度が不十分になり易く、5μmを超えると、比表面積を有意に向上することが困難になる。
なお、本発明の包接触媒において、殻の厚さは10〜1000nmであることが好ましく、10〜500nmであることがより好ましい。
厚さが10nm未満では、機械的強度が不十分になり易く、中空部の破壊を招きやすくなり、1000nmを超えると、メソ細孔が形成できなくなる可能性がある。
Furthermore, the inclusion catalyst of the present invention preferably has an average particle size of 0.1 to 5 μm.
If the average particle diameter is less than 0.1 μm, the mechanical strength tends to be insufficient, and if it exceeds 5 μm, it is difficult to significantly improve the specific surface area.
In the inclusion catalyst of the present invention, the thickness of the shell is preferably 10 to 1000 nm, and more preferably 10 to 500 nm.
If the thickness is less than 10 nm, the mechanical strength tends to be insufficient, and the hollow portion tends to be broken. If the thickness exceeds 1000 nm, mesopores may not be formed.

本発明の包接触媒の殻の材質については、上述の構造や特性を満足する限り特に限定されるものではないが、ケイ素(Si)、アルミニウム(Al)、チタン(Ti)又はジルコニウム(Zr)、及びこれらの任意の混合元素を含む金属酸化物を好適に用いることができる。
このように金属酸化物で殻を形成することにより、機械的強度を向上させることができる。また、上記金属酸化物は、助触媒としても機能できるので、反応活性や選択性を向上させることが可能となる。
The clad catalyst shell material of the present invention is not particularly limited as long as it satisfies the above-mentioned structure and characteristics, but silicon (Si), aluminum (Al), titanium (Ti) or zirconium (Zr). And metal oxides containing any of these mixed elements can be suitably used.
Thus, mechanical strength can be improved by forming a shell with a metal oxide. Moreover, since the said metal oxide can function also as a promoter, it becomes possible to improve reaction activity and selectivity.

本発明の包接触媒の触媒物質の材質については、反応物に対して反応活性を示せば有機物や無機物など特に限定されるものではないが、例えば白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、ニッケル(Ni)、コバルト(Co)、銅(Cu)、銀(Ag)、鉄(Fe)及びレニウム(Re)、及びこれらの任意の混合元素を含有するものを挙げることができ、このような元素を含有する金属や金属酸化物を好適に用いることができる。
かかる触媒物質は、燃料改質反応やCO選択酸化反応をはじめとする触媒反応に特に顕著な効果を示し、反応活性や耐久性を向上させることができる。
The material of the catalyst material of the clathrate catalyst of the present invention is not particularly limited as long as it shows a reaction activity with respect to the reactant, and it is not particularly limited. For example, platinum (Pt), palladium (Pd), rhodium ( Rh), ruthenium (Ru), nickel (Ni), cobalt (Co), copper (Cu), silver (Ag), iron (Fe) and rhenium (Re), and those containing any mixed elements thereof The metal and metal oxide containing such an element can be used suitably.
Such a catalyst substance has a particularly remarkable effect on a catalytic reaction including a fuel reforming reaction and a CO selective oxidation reaction, and can improve reaction activity and durability.

次に、本発明の包接触媒の製造方法について詳細に説明する。
本発明の包接触媒の製造方法は、上記本発明の包接触媒を製造する方法であって、殻の原料を含有する油中水エマルジョン(W/O型エマルジョン)と触媒物質の前駆体を用いて合成を行うものである。
より具体的には、例えば触媒物質の前駆体である触媒金属の水溶性塩を、例えば殻の原料である殻を構成する元素を含む金属アルコキシドや有機金属ハロゲン化物が溶解している油中水エマルジョンに溶解し、加水分解等により合成を行うことによって、所望の包接触媒を得ることができる。
なお、例えば触媒金属がロジウムである場合には上記水溶性塩として硝酸ロジウムを用いることができ、例えば殻がシリカである場合には上記殻を構成する元素であるケイ素を含むクロロシラン誘導体などを用いることができる。
かかるW/O型エマルジョンは、製造条件を調整することによって、エマルジョンサイズを制御し易く、従って、これと触媒物質の前駆体を用いることにより、目的に応じた粒子サイズの包接触媒を製造することができる。
更には、殻の原料や触媒物質の前駆体を適宜選択することによって、種々の目的に応じた包接触媒を製造することができる。
Next, the manufacturing method of the clathrate catalyst of this invention is demonstrated in detail.
The clathrate catalyst production method of the present invention is a method for producing the clathrate catalyst of the present invention, wherein a water-in-oil emulsion (W / O emulsion) containing a shell material and a precursor of a catalyst substance are used. It is used to synthesize.
More specifically, for example, a water-in-oil salt of a catalytic metal that is a precursor of a catalytic substance, a water-in-oil in which a metal alkoxide or an organometallic halide containing an element constituting the shell that is a raw material of the shell is dissolved. A desired inclusion catalyst can be obtained by dissolving in an emulsion and synthesizing by hydrolysis or the like.
For example, when the catalyst metal is rhodium, rhodium nitrate can be used as the water-soluble salt. For example, when the shell is silica, a chlorosilane derivative containing silicon as an element constituting the shell is used. be able to.
Such W / O type emulsion is easy to control the emulsion size by adjusting the production conditions. Therefore, by using this and the precursor of the catalyst material, an inclusion catalyst having a particle size suitable for the purpose is produced. be able to.
Furthermore, by appropriately selecting the raw material of the shell and the precursor of the catalyst substance, it is possible to produce an inclusion catalyst corresponding to various purposes.

また、本発明の包接触媒の製造方法においては、油中水エマルジョンを生成する過程で有機テンプレートを添加することが望ましい。
かかる有機テンプレートを添加することにより、均一な径のメソ細孔を殻に有する中空粒子を合成することが可能になる。また、有機テンプレートの種類を変えることにより、細孔径を制御することも可能である。
In the method for producing an inclusion catalyst of the present invention, it is desirable to add an organic template in the process of producing a water-in-oil emulsion.
By adding such an organic template, it is possible to synthesize hollow particles having mesopores of uniform diameter in the shell. It is also possible to control the pore diameter by changing the type of organic template.

このような有機テンプレートとしては、一般的なメソ細孔材料で使用するテンプレート剤でさえあれば特に限定されるものではないが、非イオン系界面活性剤のソルビタン酸モノステアレート及びアルキルトリメチルアンモニウムなどを挙げることができる。   Such an organic template is not particularly limited as long as it is a template agent used in general mesoporous materials, but nonionic surfactants such as sorbitan acid monostearate and alkyltrimethylammonium Can be mentioned.

更に、本発明の包接触媒の製造方法においては、油中水エマルジョン中で有機金属ハロゲン化物を加水分解する工程を実施することが好ましい。
有機金属ハロゲン化物を油中水エマルジョン中で加水分解することにより、より安定した球状の包接触媒を合成することが可能となる。
Furthermore, in the method for producing an inclusion catalyst of the present invention, it is preferable to carry out a step of hydrolyzing the organometallic halide in a water-in-oil emulsion.
By hydrolyzing the organometallic halide in a water-in-oil emulsion, a more stable spherical inclusion catalyst can be synthesized.

以下、本発明を若干の実施例により更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to some examples.

(実施例1)
トルエン100ml、蒸留水1.5ml、硝酸Rh0.075g、オクチルトリクロロシラン24mmol、ソリビタン酸モノステアレート0.24mmolを混合し、超音波攪拌することにより、油中水エマルジョンを調製した。
次いで、生成したエマルジョンにメチルトリクロロシランを24mmol添加し、空気中で攪拌、ろ過、洗浄、乾燥、焼成することにより、本例の包接触媒を得た。
Example 1
A water-in-oil emulsion was prepared by mixing 100 ml of toluene, 1.5 ml of distilled water, 0.075 g of nitric acid Rh, 24 mmol of octyltrichlorosilane, and 0.24 mmol of sorbitan acid monostearate and stirring ultrasonically.
Next, 24 mmol of methyltrichlorosilane was added to the resulting emulsion, and the inclusion catalyst of this example was obtained by stirring, filtering, washing, drying and firing in air.

更に、図2に、本例で得られた包接触媒の細孔径分布(メソ細孔径の分布)を示す。平均細孔径が約4nmのシャープなピークが観察され、均一なメソ細孔が存在していることが確認された。   Further, FIG. 2 shows the pore size distribution (mesopore size distribution) of the clathrate catalyst obtained in this example. A sharp peak with an average pore diameter of about 4 nm was observed, confirming the presence of uniform mesopores.

(実施例2)
トルエン100ml、蒸留水1.5ml、硝酸Rh0.075g、オクチルトリクロロシラン24mmolを混合し、超音波攪拌することにより、油中水エマルジョンを調製した。
次いで、生成したエマルジョンにメチルトリクロロシランを24mmol添加し、空気中で攪拌、ろ過、洗浄、乾燥、焼成することにより、本例の包接触媒を得た。
(Example 2)
100 ml of toluene, 1.5 ml of distilled water, 0.075 g of nitric acid Rh and 24 mmol of octyltrichlorosilane were mixed and ultrasonically stirred to prepare a water-in-oil emulsion.
Next, 24 mmol of methyltrichlorosilane was added to the resulting emulsion, and the inclusion catalyst of this example was obtained by stirring, filtering, washing, drying and firing in air.

更に、図3に、本例で得られた包接触媒の細孔径分布(メソ細孔径の分布)を示す。5nm以下に細孔径のピークが複数観察され、大部分が1nm以下の細孔で、均一のメソ細孔が存在しないことが確認された。   Further, FIG. 3 shows the pore size distribution (mesopore size distribution) of the clathrate catalyst obtained in this example. A plurality of pore diameter peaks were observed at 5 nm or less, and it was confirmed that most of the pores were 1 nm or less and no uniform mesopores were present.

(実施例3)
トルエン100ml、蒸留水1.5ml、ジニトロジアミンPt0.075g、オクチルトリクロロシラン24mmol、ソリビタン酸モノステアレート0.24mmolを混合し、超音波攪拌することにより、油中水エマルジョンを調製した。
次いで、生成したエマルジョンにメチルトリクロロシランを24mmol添加し、空気中で攪拌、ろ過、洗浄、乾燥、焼成することにより、本例の包接触媒を得た。
(Example 3)
A water-in-oil emulsion was prepared by mixing 100 ml of toluene, 1.5 ml of distilled water, 0.075 g of dinitrodiamine Pt, 24 mmol of octyltrichlorosilane, and 0.24 mmol of sorbitan acid monostearate, and stirring them ultrasonically.
Next, 24 mmol of methyltrichlorosilane was added to the resulting emulsion, and the inclusion catalyst of this example was obtained by stirring, filtering, washing, drying and firing in air.

(実施例4)
トルエン100ml、蒸留水1.5ml、ジニトロジアミンPt0.075g、オクチルトリクロロシラン24mmolを混合し、超音波攪拌することにより、油中水エマルジョンを調製した。
次いで、生成したエマルジョンに、メチルトリクロロシランを24mmol添加し、空気中で攪拌、ろ過、洗浄、乾燥、焼成することにより本例の包接触媒を得た。
Example 4
A water-in-oil emulsion was prepared by mixing 100 ml of toluene, 1.5 ml of distilled water, 0.075 g of dinitrodiamine Pt, and 24 mmol of octyltrichlorosilane, and stirring them ultrasonically.
Next, 24 mmol of methyltrichlorosilane was added to the produced emulsion, and the clathrate catalyst of this example was obtained by stirring, filtering, washing, drying and firing in air.

[性能評価]
(エタノール水蒸気改質特性評価)
上記実施例1及び2で得られた包接触媒を32−42メッシュに整粒し、この触媒0.3gを固定層常圧流通式反応装置を用いてエタノール水蒸気反応特性を評価した。
なお、反応ガスに含まれるエタノールの分圧は1.7kPaであり、水の分圧は7.2kPaであり、ヘリウムをキャリアガスとして40ml/minの流速で触媒に供給した。また、触媒温度は400℃であった。得られた結果(エタノール転化率と生成物組成)を表1に示す。表1中の「C2生成物」とは炭素数2の生成物であり、代表的にはエチレン、アセトアルデヒド、未反応のエタノールなどが挙げられる。
[Performance evaluation]
(Ethanol steam reforming characteristics evaluation)
The clathrate catalysts obtained in Examples 1 and 2 were sized to 32-42 mesh, and 0.3 g of this catalyst was evaluated for ethanol water vapor reaction characteristics using a fixed bed normal pressure flow reactor.
The partial pressure of ethanol contained in the reaction gas was 1.7 kPa, the partial pressure of water was 7.2 kPa, and helium was supplied as a carrier gas to the catalyst at a flow rate of 40 ml / min. The catalyst temperature was 400 ° C. The obtained results (ethanol conversion and product composition) are shown in Table 1. The “C2 product” in Table 1 is a product having 2 carbon atoms, and typically includes ethylene, acetaldehyde, unreacted ethanol, and the like.

Figure 2007130525
Figure 2007130525

表1に示すように、実施例1は均一のメソ細孔が存在しない実施例2と比べて反応活性が向上し、エタノール転化率が増加していることが分かる。また、H及びC1生成物(CO、CO、CH)の生成割合も増加しており、選択性が向上していることが分かる。 As shown in Table 1, it can be seen that Example 1 has improved reaction activity and increased ethanol conversion compared to Example 2 in which no uniform mesopores exist. Moreover, H 2 and C1 products (CO 2, CO, CH 4 ) production ratio also increased, and it is understood that selectivity is improved.

(CO選択酸化反応特性評価)
上記実施例3及び4で得られた包接触媒を32−42メッシュに整粒し、この触媒0.3gを固定層常圧流通式反応装置を用いて、各触媒温度におけるCO選択酸反応特性を評価した。
なお、評価に用いたガスの組成は、CO:0.5vol%、H:30vol%、CO:15vol%、HO:27vol%、O:0.5vol%、N:27vol%であり、50ml/minの流速で触媒に供給した。得られた結果(CO転化率)を表2に示す。
(Characteristic evaluation of CO selective oxidation reaction)
The clathrate catalyst obtained in Examples 3 and 4 above was sized to 32-42 mesh, and 0.3 g of this catalyst was subjected to CO selective acid reaction characteristics at each catalyst temperature using a fixed bed normal pressure flow reactor. Evaluated.
The composition of the gas used in the evaluation, CO: 0.5vol%, H 2 : 30vol%, CO 2: 15vol%, H 2 O: 27vol%, O 2: 0.5vol%, N 2: 27vol% And was supplied to the catalyst at a flow rate of 50 ml / min. The obtained results (CO conversion) are shown in Table 2.

Figure 2007130525
Figure 2007130525

表2に示すように、実施例3は均一のメソ細孔が存在しない実施例4と比べて反応活性及び選択性が向上し、CO転化率が増加していることが分かる。   As shown in Table 2, it can be seen that Example 3 has improved reaction activity and selectivity and increased CO conversion compared to Example 4 in which no uniform mesopores exist.

以上、本発明を若干の実施例により詳細に説明したが、本発明はこれら実施例に限定されるものではなく、本発明の要旨の範囲で種々の変形が可能である。
例えば、上記実施例では、エタノール水蒸気改質触媒や、燃料改質ガスとして典型的なモデルガスを用いたCO選択酸化触媒を例にとって説明したが、本発明の包接触媒の用途はこれら燃料改質に限定されるものではなく、本発明の包接触媒は、かかる触媒の優れた耐久性や選択性などが有効に発揮される分野への適用が考えられ、そのような観点からは、自動車用排気ガス浄化触媒や燃料電池用電極触媒、更には、石油精製や有機合成の不均一系化学反応における触媒としても使用可能である。
Although the present invention has been described in detail with reference to some examples, the present invention is not limited to these examples, and various modifications can be made within the scope of the gist of the present invention.
For example, in the above embodiment, an ethanol steam reforming catalyst or a CO selective oxidation catalyst using a model gas typical as a fuel reforming gas has been described as an example. The inclusion catalyst of the present invention is not limited to the quality, and it can be applied to fields where the excellent durability and selectivity of such a catalyst are effectively exhibited. It can be used as an exhaust gas purification catalyst for fuel, an electrode catalyst for fuel cells, and a catalyst in heterogeneous chemical reactions of petroleum refining and organic synthesis.

本発明の包接触媒の構造を概念的に示す説明図である。It is explanatory drawing which shows notionally the structure of the clathrate catalyst of this invention. 実施例1で得られた包接触媒の細孔径分布を示すグラフである。2 is a graph showing the pore size distribution of the clathrate catalyst obtained in Example 1. FIG. 実施例2で得られた包接触媒の細孔径分布を示すグラフである。3 is a graph showing the pore size distribution of an inclusion catalyst obtained in Example 2. FIG.

符号の説明Explanation of symbols

H 中空部
10 包接触媒
12 殻
12p メソ細孔
14 触媒物質
H hollow part 10 inclusion catalyst 12 shell 12p mesopore 14 catalyst substance

Claims (10)

複数のメソ細孔を有する殻と、その殻に包接された触媒物質を備えることを特徴とする包接触媒。   An inclusion catalyst comprising: a shell having a plurality of mesopores; and a catalyst material included in the shell. 上記メソ細孔の平均細孔径が2〜30nmであることを特徴とする請求項1に記載の包接触媒。   The inclusion catalyst according to claim 1, wherein the mesopores have an average pore diameter of 2 to 30 nm. 上記メソ細孔の全個数の80%以上が、上記平均細孔径の±1nmの範囲内に包含されることを特徴とする請求項2に記載の包接触媒。   The inclusion catalyst according to claim 2, wherein 80% or more of the total number of mesopores is included within a range of ± 1 nm of the average pore diameter. 平均粒子径が0.1〜5μmであることを特徴とする請求項1〜3のいずれか1つの項に記載の包接触媒。   The inclusion catalyst according to any one of claims 1 to 3, wherein an average particle diameter is 0.1 to 5 µm. 上記殻の厚さが10〜1000nmであることを特徴とする請求項1〜4のいずれか1つの項に記載の包接触媒。   The clathrate catalyst according to any one of claims 1 to 4, wherein the shell has a thickness of 10 to 1000 nm. 上記殻がケイ素、アルミニウム、チタン及びジルコニウムから成る群より選ばれた少なくとも1種の元素を含む金属酸化物から成ることを特徴とする請求項1〜5のいずれか1つの項に記載の包接触媒。   6. The clathrate according to claim 1, wherein the shell is made of a metal oxide containing at least one element selected from the group consisting of silicon, aluminum, titanium and zirconium. catalyst. 上記触媒物質が白金、パラジウム、ロジウム、ルテニウム、ニッケル、コバルト、銅、銀、鉄及びレニウムから成る群より選ばれた少なくとも1種の元素を含むことを特徴とする請求項1〜6のいずれか1つの項に記載の包接触媒。   The catalyst material contains at least one element selected from the group consisting of platinum, palladium, rhodium, ruthenium, nickel, cobalt, copper, silver, iron and rhenium. The inclusion catalyst according to one item. 請求項1〜7のいずれか1つの項に記載の包接触媒を製造するに当たり、殻の原料を含有する油中水エマルジョンと触媒物質の前駆体を用いて合成を行うことを特徴とする包接触媒の製造方法。   A clath characterized in that, in the production of the clathrate catalyst according to any one of claims 1 to 7, a synthesis is carried out using a water-in-oil emulsion containing a shell material and a precursor of a catalyst substance. A method for producing a catalytic catalyst. 上記油中水エマルジョンを生成する過程で有機テンプレートを添加することを特徴とする請求項8に記載の包接触媒の製造方法。   The method for producing an inclusion catalyst according to claim 8, wherein an organic template is added in the process of forming the water-in-oil emulsion. 上記油中水エマルジョン中で有機金属ハロゲン化物を加水分解する工程を含むことを特徴とする請求項8又は9に記載の包接触媒の製造方法。   The method for producing an inclusion catalyst according to claim 8 or 9, comprising a step of hydrolyzing the organometallic halide in the water-in-oil emulsion.
JP2005323669A 2005-11-08 2005-11-08 Inclusion catalyst and its manufacturing method Pending JP2007130525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323669A JP2007130525A (en) 2005-11-08 2005-11-08 Inclusion catalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323669A JP2007130525A (en) 2005-11-08 2005-11-08 Inclusion catalyst and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007130525A true JP2007130525A (en) 2007-05-31

Family

ID=38152616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323669A Pending JP2007130525A (en) 2005-11-08 2005-11-08 Inclusion catalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007130525A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209059A (en) * 2008-03-03 2009-09-17 Metawater Co Ltd Method for producing acetone from bio-ethanol
JP2009241061A (en) * 2008-03-11 2009-10-22 Tokyo Institute Of Technology Catalyst for hydrogen production, process for producing hydrogen, and fuel cell system
JP2014139158A (en) * 2012-12-18 2014-07-31 Kao Corp Method for manufacturing aldehyde
JP2015167887A (en) * 2014-03-05 2015-09-28 国立大学法人山梨大学 Co selection methanation catalyst
WO2016047503A1 (en) * 2014-09-24 2016-03-31 三井金属鉱業株式会社 Steam reforming catalyst composition and steam reforming catalyst
WO2018221697A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Catalyst structure for syngas production, syngas production device provided with said catalyst structure for syngas production, and production method of catalyst structure for syngas production
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US12030041B2 (en) 2017-05-31 2024-07-09 Furukawa Electric Co., Ltd. Structured catalyst for steam reforming, reforming apparatus provided with structured catalyst for steam reforming, and method for manufacturing structured catalyst for steam reforming

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209059A (en) * 2008-03-03 2009-09-17 Metawater Co Ltd Method for producing acetone from bio-ethanol
JP2009241061A (en) * 2008-03-11 2009-10-22 Tokyo Institute Of Technology Catalyst for hydrogen production, process for producing hydrogen, and fuel cell system
JP2014139158A (en) * 2012-12-18 2014-07-31 Kao Corp Method for manufacturing aldehyde
JP2015167887A (en) * 2014-03-05 2015-09-28 国立大学法人山梨大学 Co selection methanation catalyst
WO2016047503A1 (en) * 2014-09-24 2016-03-31 三井金属鉱業株式会社 Steam reforming catalyst composition and steam reforming catalyst
JPWO2016047503A1 (en) * 2014-09-24 2017-04-27 三井金属鉱業株式会社 Steam reforming catalyst composition and steam reforming catalyst
WO2018221697A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Catalyst structure for syngas production, syngas production device provided with said catalyst structure for syngas production, and production method of catalyst structure for syngas production
JPWO2018221697A1 (en) * 2017-05-31 2020-04-02 古河電気工業株式会社 Synthetic gas producing catalyst structure, syngas producing apparatus including the syngas producing catalyst structure, and method for producing syngas producing catalyst structure
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
JP7382828B2 (en) 2017-05-31 2023-11-17 古河電気工業株式会社 Synthesis gas production catalyst structure, synthesis gas production apparatus including the synthesis gas production catalyst structure, and method for manufacturing the synthesis gas production catalyst structure
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
US12030041B2 (en) 2017-05-31 2024-07-09 Furukawa Electric Co., Ltd. Structured catalyst for steam reforming, reforming apparatus provided with structured catalyst for steam reforming, and method for manufacturing structured catalyst for steam reforming
US12115523B2 (en) 2017-05-31 2024-10-15 National University Corporation Hokkaido University Functional structural body and method for making functional structural body

Similar Documents

Publication Publication Date Title
JP2007130525A (en) Inclusion catalyst and its manufacturing method
Zhao et al. Recent progress in Pd-based nanocatalysts for selective hydrogenation
RU2414296C1 (en) Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
US9463444B2 (en) Preparation process of nanocatalysts with (111) crystal facet exposed and process for vapour-phase CO oxidative coupling to oxalate
CN113522287B (en) Carbon-supported metal catalyst with hierarchical pore structure, preparation method and application thereof
Yuan et al. Recent progress in chemoselective hydrogenation of α, β-unsaturated aldehyde to unsaturated alcohol over nanomaterials
Mohire et al. Selective synthesis of hydrocinnamaldehyde over bimetallic Ni–Cu nanocatalyst supported on graphene oxide
TW200803978A (en) Temperature-stable catalysts for gas phase oxidation, and processes for using the same
KR20180041794A (en) Formic acid dehydrogenation catalysts supported by 3-dimensional interconnected mesoporous silica, preparation method thereof
KR20200076404A (en) Ruthenium based zeolite based catalysts for ammonia dehydrogenation, method of forming the same and method of producing hydrogen gas from ammonia using the same
Jian et al. Ni@ Pd core-shell nanoparticles supported on a metal-organic framework as highly efficient catalysts for nitroarenes reduction
Hosseini et al. Au-Pd nanoparticles enfolded in coil-like TiO2 immobilized on carbon fibers felt as recyclable nanocatalyst for benzene oxidation under mild conditions
CN115999629B (en) Heterogeneous catalyst for preparing aldehyde by hydroformylation of alpha-olefin, preparation method and application thereof
Donphai et al. Reactivity of Ni–carbon nanofibers/mesocellular silica composite catalyst for phenylacetylene hydrogenation
Narani et al. Pd-Nanoparticles immobilized organo-functionalized SBA-15: An efficient heterogeneous catalyst for selective hydrogenation of CC double bonds of α, β-unsaturated carbonyl compounds
CN113751054A (en) SiO (silicon dioxide)2Coated molecular sieve supported bimetallic catalyst and preparation method and application thereof
Amirsardari et al. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone
JP2005238131A (en) Methanization catalyst, production method thereof, and method for methanizing carbon monoxide with the catalyst
Zhao et al. In situ growth route to fabricate ternary Co–Ni–Al mixed-metal oxide film as a promising structured catalyst for the oxidation of benzyl alcohol
JP5473306B2 (en) Catalyst for producing carbon nanotube, method for producing carbon nanotube using the same, and method for producing the catalyst
TWI261533B (en) Nano-gold catalyst and preparation of nano-gold catalyst
Kusumawati et al. Highly Active Pt–Co Bimetallic Nanoparticles on Ionic Liquid-Modified SBA-15 for Solvent-Free Selective Hydrogenation of Cinnamaldehyde
CN106256427B (en) Multi-layer nanometer box-shaped CuO-CeO synthesized by one-step method and used for preferential oxidation reaction of CO in hydrogen-rich gas2Process for preparing catalyst
CN107185525B (en) Octahedral Pt nanoparticle loaded gamma-Al2O3Process for preparing form catalyst
KR102408100B1 (en) Synthesis method of 2-dimensional Nickel silicate molecular sieve catalyst for dry reforming of methane and 2-dimensional Nickel silicate molecular sieve catalyst for dry reforming of methane made thereby