JP2007129898A - 電力供給システム - Google Patents

電力供給システム Download PDF

Info

Publication number
JP2007129898A
JP2007129898A JP2007006383A JP2007006383A JP2007129898A JP 2007129898 A JP2007129898 A JP 2007129898A JP 2007006383 A JP2007006383 A JP 2007006383A JP 2007006383 A JP2007006383 A JP 2007006383A JP 2007129898 A JP2007129898 A JP 2007129898A
Authority
JP
Japan
Prior art keywords
voltage
charging
lithium ion
ion battery
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007006383A
Other languages
English (en)
Inventor
Shinya Takagi
晋也 高木
Toshio Matsushima
敏雄 松島
Kiyoshi Murooka
清 室岡
Kenichi Nemoto
健一 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
NTT Facilities Inc
Original Assignee
Shindengen Electric Manufacturing Co Ltd
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd, NTT Facilities Inc filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2007006383A priority Critical patent/JP2007129898A/ja
Publication of JP2007129898A publication Critical patent/JP2007129898A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection

Abstract

【課題】過充電による単電池の保護あるいはリチウムイオン組電池の容量低下を防ぎ、リチウムイオン組電池の接続切替えまたは切り離しを不要とした常時接続を実現した電力供給システムを提供する。
【解決手段】リチウムイオン組電池に直列に接続される充電電流制限回路が、リチウムイオン組電池の充電経路に負荷変動に依存しない任意の値の充電電流を供給し、スイッチにより、リチウムイオン組電池を直流出力供給装置もしくは負荷装置からの切り離し、もしくは接続を行う。また、リチウムイオン電池を構成する直列接続された複数個の単電池毎並列に接続された電圧調整回路により、それぞれの単電池の満充電電圧を検出して充電流をバイパスし、充電時におけるリチウムイオン組電池内の個々の単電池の充電電圧のばらつきを調整する。
【選択図】図1

Description

本発明は、バックアップ用のリチウムイオン電池が直流出力供給装置と負荷装置に並列に接続されて成る電力供給システムに関する。
通信機器等の負荷装置に電力を供給する電力供給システムに、バックアップ用としてシール鉛蓄電池が主に使用されている。このシール鉛蓄電池が通信機器のために広く使われてきた理由として、価格が安いことに加え、一定電圧に維持することで容量保存に必要な維持充電や停電後の回復充電も行えるというシステム構成上のメリットがあげられる。
一方、近年、電源システムの小型化やバックアップ時間の短縮化といた要求がある。このような要求に対応するために従来から使用されているシール鉛蓄電池を用いた場合、大電流放電時の電流値に制限があるため電池の小型化に限界があった。このため電力供給システムの小型化にも制限が生じていた。
シール鉛蓄電池の小型化のためには、高エネルギー密度であると共に、大電流放電にも耐えうる特徴を持つ二次電池の適用が有効である。リチウムイオン電池は、上記のような特徴を備えると共に、シール鉛蓄電池のように定電圧充電にも適するという特徴を有している。従って、リチウムイオン電池を使用することで、小型化、大容量化が可能となる電力供給システムが実現できる。
リチウムイオン電池を使用する場合、電池を充電する際に充電装置に接続し、満充電時には充電装置から切り離す、または負荷装置に接続を切替えることで電力を供給していた(例えば、特許文献1参照)。
特開平4−331425号公報
ところで、通信機器等へ電力供給するシステムには無瞬断が要求されており、上記した特許文献1による充電方法では、充電装置である直流出力供給装置および負荷装置からリチウムイオン電池の接続の切替え、または切り離しが必要となり、無瞬断で電力供給を行う電力供給システムを実現することができなかった。
一方、図10に示す電力供給システム内に、単にリチウムイオン電池111を配置することが考えられるが、停電後に整流器等の直流電力供給装置112から負荷装置113に対し電力供給が行われた際に、リチウムイオン電池111に電池の許容電流値を越える電流が流れ、電池の破損が生じることがあった。また、リチウムイオン電池111は、電池の安全上の観点から内蔵のセル電圧を監視し、上限値を越える場合には電池容量の低下等を来たすため電池の保護が必要であった。しかしながら従来この様な対策を採った電力供給システムは実現されていなかった。
本発明は上記事情に鑑みてなされたものであり、過充電による電池の保護あるいはリチウムイオン電池の容量低下を防ぎ、リチウムイオン電池の接続切替えまたは切り離しを不要とした常時接続を実現した電力供給システムを提供することを目的とする。また、個々のリチウムイオン電池に対する充電中のセル電圧のばらつき防止をはかった電力供給システムを提供することも目的とする。
上述した課題を解決するために、本発明は、バックアップ用のリチウムイオン組電池が直流出力供給装置と負荷装置に並列に接続され、前記直流出力供給装置の出力電圧と等しい電圧で前記リチウムイオン組電池が浮動充電方式で充電される電力供給システムであって、前記リチウムイオン組電池に直列に接続され、当該リチウムイオン組電池の充電経路に供給される充電電流の最大値を電池容量の値以下に定める充電電流制限回路と、前記リチウムイオン組電池を、前記直流出力供給装置もしくは負荷装置から切り離し、もしくは接続を行うスイッチと、前記リチウムイオン組電池を構成する直列接続された複数個の単電池毎に接続され、直流出力供給装置の出力電圧を単電池数で除した値を、満充電電圧とし、前記それぞれの単電池の電圧が、前記直流電圧出力供給装置の出力電圧を単電池全数で除した値と等しくなったら、これを検出して前記で定められた充電電流の最大値以下の電流をバイパスさせる機能を有する電圧調整回路と、前記充電経路の電圧値および電流値を監視し、前記充電電流制限回路に対して前記で定められた任意の値の充電電流の最大値を設定するための基準電圧および前記電圧調整回路に対する満充電の基準電圧の設定、ならびに充電中に所定の電圧値を越えたときに前記スイッチの開放をする制御回路と、を備えたことを特徴とする。
本発明によれば、リチウムイオン組電池に直列に接続される充電電流制限回路が、リチウムイオン組電池の充電経路に負荷変動に依存しない任意の値を最大値とする充電電流を供給し、スイッチにより、リチウムイオン組電池を直流出力供給装置もしくは負荷装置からの切り離し、もしくは接続を行うことで、直流出力供給装置および負荷装置からリチウムイオン組電池の接続を切替えまたは切り離しを不要とした常時接続が可能となり、リチウムイオン組電池の充電電流を任意の電流値に制限し、設置したリチウムイオン組電池の容量に合わせた最適な充電電流で回復充電を行うことができる。
また、本発明によれば、複数個の単電池が直列に接続されて成るリチウムイオン組電池の単電池毎並列に接続された電圧調整回路により、それぞれの単電池の満充電電圧を検出して充電電流をバイパスし、充電時におけるリチウムイオン組電池を構成する単電池の個々の充電電圧のばらつきを調整し、過充電を回避することができ、過充電による容量低下を回避することができる。
更に、リチウムイオン組電池は、直流出力供給装置および負荷装置に常時接続されているが、リチウムイオン組電池が満充電時において、単電池の内部インピーダンスの変化により個々の単電池の充電電圧にばらつきが生じた場合、電圧調整回路が動作して全ての単電池の充電電圧を均一な充電電圧に調整することができる。
図1は、本発明の電力供給システムの一実施形態を示すブロック図である。本発明の電力供給システムは、バックアップ用のリチウムイオン電池1が直流出力供給装置2と負荷装置3に並列に接続され、更に、充電電流制限回路4と、複数の電圧調整回路5と、スイッチ6と、制御回路7で構成される。ここでは、直流出力供給装置2は、複数台設けられ、リチウムイオン電池1については、組電池が適用される。
充電電流制限回路4はリチウムイオン電池1に直列に接続され、リチウムイオン電池1の充電経路に、負荷変動に依存しない一定の値を最大値とする充電電流で充電するために充電電流を制限する。スイッチ6は、リチウムイオン電池1を直流出力供給装置2もしくは負荷装置3から切り離しもしくは接続を行う。また、電圧調整回路5は、複数直列に接続されて成るリチウムイオン電池1の単セル(単電池)毎並列に接続され、それぞれの単セルの満充電電圧を検出して充電電流をバイパスさせる機能を持つ。
制御回路7はマイコンで構成され、充電経路の電圧値および電流値を電流計測部8および電圧計測部9を介して監視し、充電電流制限回路4に対して任意の充電電流値を設定するための基準電圧、および電圧調整回路5に対する満充電の基準電圧の設定、ならびに充電時に所定の電圧値を越えたときにスイッチ6を切替える機能を持つ。
上記したリチウムイオン電池1の過充電または過放電の保護用に用いられるスイッチ6は、リチウムイオン電池1の充放電経路に直列に接続されている。スイッチ6は、リチウムイオン電池1保護のための回路切離しが主目的であり、セル電圧が電池の破損につながるような電圧まで上昇した際に“開”となる。また、過放電によるリチウムイオン電池1の保護にも使用可能であり、放電中、任意の単セルの電圧が所定の値まで低下すると、リチウムイオン電池1の保護のために“開”となる。
過充電で動作する電圧としては、例えば4.5V等が挙げられ、過放電で動作する電圧値としては、例えば3.0V等が挙げられる。これらの電圧は、使用するリチウムイオン電池の種類によって変化するため、使用するリチウムイオン電池に必要となる値を設定すればよい。
なお、スイッチ6が動作した場合の復帰につき、過充電の場合のスイッチ6は手動復帰、過放電の場合は自動復帰される。
なお、直流出力供給装置2は1台構成でも良いが、ここでは、通信機器のシステムとして冗長構成をとっている。また、電圧調整回路5の基準電圧や充電電流制限回路4の限界電流値は、マイコンで構成される制御回路7から設定される。更に、制御回路7は、電力供給システムの各部位の電圧および電流を計測する機能も備え、例えば、電流計測部8はシャント抵抗器などを使用して電流を検出し、制御回路7で監視している。
また、制御回路7は、各セル電圧の監視が可能であるため、充電時にセル電圧がリチウムイオン電池1の安全範囲を越えた場合にはこれを検出し、リチウムイオン電池1の充放電経路に設置されたスイッチ6を“開”とし、このことにより、リチウムイオン電池1の安全性の確保が可能である。
上記構成により、リチウムイオン電池1を直流出力供給装置2および負荷装置3から切替え、あるいは切り離すことなく常時接続を実現し、リチウムイオン電池1の充電電流を任意の電流値に制限し、設置したリチウムイオン電池1の容量に合わせた最適な充電電流で回復充電を行うことができる。
また、複数のリチウムイオン電池1を直列に接続して充電する場合、リチウムイオン電池1の充電状態のばらつきにより何れかのリチウムイオン電池1が早く満充電状態となるが、単セル毎並列に接続された電圧調整回路5を動作させ、充電電流をバイパスさせることで、充電時のリチウムイオン電池1における個々の充電電圧のばらつきを調整し、過充電状態から回避することができる。
更に、リチウムイオン電池1は、直流出力供給装置2および負荷装置3に常時接続されているが、リチウムイオン電池1が満充電時において、リチウムイオン電池1の内部インピーダンスの変化により個々のリチウムイオン電池1の充電電圧にばらつきが生じた場合、電圧調整回路5が動作して全てのリチウムイオン電池1の充電電圧を均一な充電電圧に調整することができる。
図4に組電池が放電した後に充電を行った際の電力供給システムの電力供給状態をグラフで示してある。図4からわかるように、直流出力供給装置2は、負荷装置3に電力を供給するとともにリチウムイオン電池1を充電するが、負荷装置3の電力供給状態によってリチウムイオン電池1への充電電流が変動してしまう。
リチウムイオン電池1の充電は、定電流定電圧充電が充電方法として一般的であり、リチウムイオン電池1に許容された電流値以上の電流が流れたり、時間変動した電流による充電は、リチウムイオン電池1の性能低下を誘引することになる。また負荷装置3への供給電力が微小の場合に、直流出力供給装置2の出力最大電流がリチウムイオン電池1の充電電流となり過大な電流で充電されてしまい、やはりリチウムイオン電池1の性能低下を誘引する。
このため、本発明では、リチウムイオン電池1の充電経路に充電電流制限回路4を接続し、任意の充電電流を最大値とする電流値を設定し、負荷装置3の電力供給状態が変動しても前記の一定の充電電流値を最大値として充電できるようにした。図5に充電電流制限回路持つ電力供給システムの充電時の電力供給状態をグラフ表示してある。
図5に示されるように、負荷装置3への供給電力が微小であっても充電電流は充電電流制限回路4で設定された任意の最大電流値以上は流れない。充電電流制限回路4の充電電流値は、リチウムイオン電池1の状態または容量によって任意に設定できる。一般的に、リチウムイオン電池の場合、大電流放電が可能であり、公称容量の5〜6倍の電流での放電も可能である(蓄電池容量が50Ahの場合、おのおの、250A〜300A)が、充電の場合、公称容量の0.1〜1倍の電流値が許容される最大値になる(蓄電池容量が50Ahの場合、おのおの、5A〜50A)。そこで、上記した充電電流制限回路4の充電電流値は、設置したリチウムイオン電池1の容量に基づいて設定される。
図2に、図1に示す充電電流制限回路4の一実施形態を示す。充電電流制御回路4は、誤差増幅器A(41)と、当該誤差増幅器A(41)出力と任意の充電電流を設定する基準電圧とを入力とする誤差増幅器B(42)と、例えばトランジスタ等の充電電流制御素子43と、例えば抵抗等の充電電流検出素子44とで構成される。
上記した構成において、充電電流を充電電流検出素子44で検出し、その値を誤差増幅器A(41)で所定の値に増幅したあと、任意に設定する電流値の基準になるように誤差増幅器B(42)に入力し、その出力で充電電流制御素子43を制御することで一定の電流値となる。
当然のことながらリチウムイオン電池1が満充電状態に近づいて充電電流が任意に設定した電流値以下になった場合、充電電流制御素子43は電流を制限しなくなる。また、放電時は、負荷装置3に必要とされる電流がリチウムイオン電池1から放電されるが、そのとき充電電流制限回路4は、放電電流を制限することはない。放電時は、図2に示す充電電流制限回路4をバイパスする、例えばダイオード等を接続すれば良い。
なお、停電後、リチウムイオン組電池1が放電した状態で復電すると、充電電流制限回路4でリチウムイオン電池1の充電電流を制限しながら充電するが、その充電過程において、複数のリチウムイオン電池1は、個々の充電状態がばらつくことが予測される。その様子が図6に充示す充電時および満充電時におけるリチウムイオン電池1の電流電圧の状態図として示されている。ここでは、簡単のためにリチウムイオン電池1に単セル2個を用いた場合が例示されている。詳細は、図3に示す電圧調整回路5の構成と共に説明する。
図3に、電圧調整回路の一実施形態を示す。電圧調整回路5は、誤差増幅器C(51)と、バイパス電流制御素子521およびバイパス電流制限素子522が直列に接続される充電電流バイパス回路52で構成される。
図6において、個々のリチウムイオン電池(A、B)に並列に接続された電圧調整回路5は充電電圧を検出し、例えば、リチウムイオン電池Aが早く満充電状態になった場合、電圧調整回路5内の充電電流バイパス回路52で満充電になったリチウムイオン電池Aの充電電流をバイパスさせて過充電状態を回避している。
充電電流バイパス回路52は、バイパス電流最大値を決定するバイパス電流制限素子522である、例えば、抵抗等と、バイパス電流の電流値を制御するバイパス電流制御素子521例えばトランジスタ等で構成されている。ここで、トランジスタが完全にオンしていれば、バイパス電流は電流制限素子522で決定される最大電流が流れる。また完全にオフしていればバイパス電流は流れない。
更に、トランジスタを増幅領域(不飽和領域)で使用することでトランジスタが可変抵抗と同じ状態となり、この場合、バイパス電流値は連続の値で変動できる。バイパス電流制御素子521を連続で使用できることは、リチウムイオン電池1が満充電に近づいた場合に充電電流は微小な電流値になるが、微小な充電電流もバイパスできることを意味している。
バイパス電流の量は電圧調整回路5で制御される。すなわち、満充電の基準電圧と個々のリチウムイオン電池1における充電電圧の検出値を誤差増幅器C(51)に入力することで、充電電流バイパス回路52の電流制御素子521を制御する。このように、個々のリチウムイオン電池1が満充電電圧以上の電圧にならないように充電電流バイパス回路52で充電電流を必要量だけ連続的にバイパスさせる。
このように、複数のリチウムイオン電池1の充電電圧にばらつきがあった場合でも全てのリチウムイオン電池が満充電になるまで充電電流制限回路4で設定された充電電流が流れ、早く満充電になったリチウムイオン電池Aは、全てのリチウムイオン電池1が満充電になるまで電圧調整回路5が動作し、充電電流バイパス回路52で充電電流をバイパスさせる。
全てのリチウムイオン電池が満充電になった場合でも、リチウムイオン電池1は直流出力供給回路2および負荷装置3と接続されている。この状態でリチウムイオン電池1は、充電および放電をしていないが、直流出力供給装置2に接続されていることで、満充電状態を維持している。電圧調整回路5も個々のリチウムイオン電池1から切り離すことなく接続されているため、全てのリチウムイオン電池1は均一な充電電圧で維持されている。
リチウムイオン電池1が均一な充電電圧で維持されている状態で、個々のリチウムイオン電池1に何らかの原因で内部インピーダンスに変動が生じた場合、充電電圧は均一でなくなる可能性がある。この場合も、電圧調整回路5が動作することで、充電電圧は均一に維持される。
図6では、リチウムイオン電池Aが満充電状態時に内部インピーダンスが変動し大きくなってしまった場合、充電電圧が上昇してしまうが満充電電圧を基準としている電圧調整回路5が動作し、充電電流バイパス回路52を動作させ上昇した分だけバイパス電流で放電する。そのため、充電電圧が上昇しようとしたリチウムイオン電池Aは、満充電電圧に維持され、個々のリチウムイオン電池の充電電圧は均一状態を維持できる。リチウムイオン電池1が常に均一な充電電圧であることは、負荷装置3に電力を供給する場合でも、リチウムイオン電池1の性能を最大限利用することができる。
図7に充電電流制限回路4の実施例を示す。充電電流検出素子44には抵抗器R100、充電電流制御素子43にはQ100(FET:電界効果トランジスタ)を使用している。Q100は、損失に応じて複数個並列接続され用いられる。また、放電時は、Q100を完全にON状態にするか、Q100をOFF状態にしてQ100が持つ寄生ダイオードD100を使用することで放電経路としている。
具体的に、抵抗器R100で検出した充電電流は、抵抗器R1〜R4および誤差増幅器Aで構成される差動増幅器に入力され、あらかじめ決められた値に増幅する。その出力を、抵抗器R7を通して誤差増幅器Bの反転入力端子に入力する。誤差増幅器Bの非反転入力には充電電流を設定する基準電圧が制御回路7から抵抗器R5、R6で分割され入力される。抵抗器R8、R9およびコンデンサC1は、充電電流の制御を安定にするために誤差増幅器Bに接続される。誤差増幅器Bの出力は抵抗器R10を通してトランジスタQ1のベースに入力される。また、トランジスタQ1は、抵抗器R11を介して充電電流制御素子Q100のゲートに信号を与え、Q100で充電電流を制御する。抵抗器R12およびコンデンサC2はQ100を安定に動作させるためにQ100のゲートおよびソース間に接続する。またダイオードD1は誤差増幅器Bの入力保護用のダイオードである。
図8に電圧調整回路5の実施例を示す。ここでは、電圧調整回路5内の充電電流バイパス回路52で、バイパス電流制限素子522に抵抗器、バイパス電流制御素子521に電界効果トランジスタQ200を使用している。
ここでは、リチウムイオン電池1の電圧を検出し、抵抗器R15を通して誤差増幅器Cの反転入力に入力し、制御回路7からの基準電圧を抵抗器R13、R14およびコンデンサC3を通して誤差増幅器Cの非反転入力端子に入力している。ここで、誤差増幅器Cは、2つの入力が同じ値になるように出力信号を出す。出力信号は、抵抗器R18を通してトランジスタQ2のべースに入力される。
トランジスタQ2は、バイパス電流制御素子Q200のゲートに抵抗器R19を通して信号を与え、バイパス電流を制御し、リチウムイオン電池の電圧が設定された基準電圧に同じになるように制御する。また、誤差増幅器Cには制御を安定にするための抵抗器R16、R17およびコンデンサC4が接続されている。なお、ダイオードD2は誤差増幅器Cの入力保護用に用いられる。また、抵抗器R20およびコンデンサC5は、電界効果型トセンジスタQ200を安定に動作させるためにQ200のゲートおよびソース間に接続するものとする。
以上の説明は、負荷装置3が通信機器であることを想定して本発明の電力供給システムを適用する場合について説明したが、負荷装置3がノート型パソコン(PC)である場合にも同様に適用できる。図9にその構成が示されている。
図9に示されるように、ACアダプタ90は、外部から100V商用電源の供給を受け、AC/DCコンバータ91を介して16.4Vの直流電圧に変換し、DC/DCコンバータ102によりCPU等負荷装置103に応じた電圧(5〜15V)を作り出し、PC本体100における負荷装置103に供給する。
一方、充電装置92は、PC本体100内に無く、ACアダプタ90内に設けることでPC本体100の重量の増加を防いでいる。PC本体100に内蔵されるリチウムイオン電池101は、単三電池のような円筒状の単セルがここでは4本直列接続され(4.1V×4本)、それぞれ充電装置92から充電を受け、負荷装置103に対して電力供給を行う。また、リチウムイオン電池101のそれぞれに上記した電圧調整回路(図示せず)が並列に接続されており、このため繰り返し充電されても過充電されることはなく、リチウムイオン電池101の容量が減少することを防げるため、連続使用によるパソコン駆動時間の短縮を回避できる。
以上説明のように本発明は、リチウムイオン電池1に直列に接続された充電電流制限回路4が、負荷変動に依存しない一定の電流で充電されるためにリチウムイオン電池の充電経路に任意の値の充電電流を流し、スイッチ6により、リチウムイオン電池1を直流出力供給装置2もしくは負荷装置3から切り離しもしくは接続を行うことで、直流出力供給装置2および負荷装置3からリチウムイオン電池1の接続を切替えまたは切り離しが不要で常時接続が可能となり、リチウムイオン電池1の充電電流を任意の電流値に制限し、かつ、リチウムイオン電池1の容量に合わせた最適な充電電流で回復充電を行うことができる。
以上説明のように本発明は、リチウムイオン電池1(101)に直列に接続された充電電流制限回路4が、負荷変動に依存しない一定の電流で充電されるためにリチウムイオン電池の充電経路に任意の値の充電電流を流し、スイッチ6により、リチウムイオン電池1を直流出力供給装置2もしくは負荷装置3から切り離しもしくは接続を行うことで、直流出力供給装置2および負荷装置3からリチウムイオン電池1(101)の接続を切替えまたは切り離しが不要で常時接続が可能となり、リチウムイオン電池1(101)の充電電流を任意の電流値に制限し、かつ、リチウムイオン電池1(101)の容量に合わせた最適な充電電流で回復充電を行うことができる。
また、本発明は、複数直列に接続されて成るリチウムイオン電池1(101)の単セル毎並列に接続された電圧調整回路5により、それぞれの単セルの満充電電圧を検出して充電流をバイパスすることによって充電時におけるリチウムイオン電池1における単セルの個々の充電電圧のばらつきを調整し、過充電を回避することができる。更に、リチウムイオン電池1(101)は、直流出力供給装置2および負荷装置3に常時接続されているが、リチウムイオン電池1(101)が満充電時において、リチウムイオン電池1(101)の内部インピーダンスの変化により個々のリチウムイオン電池1(101)の充電電圧にばらつきが生じた場合、電圧調整回路5が動作して全てのリチウムイオン電池1(101)の充電電圧を均一な充電電圧に調整することができる。
本発明の電力供給システムの一実施形態を示すブロック図である。 図1に示す充電電流制限回路の一実施形態を示す図である。 図1に示す電圧調整回路の一実施形態を示す図である。 充電時の電力供給状態を説明するために引用した図である。 充電電流制限回路を持つ場合の電力供給状態を説明するために引用した図である。 充電時、満充電時の電圧電流の状態を説明するために引用した図である。 図2に示す充電電流制限回路の回路実施例を示す図である。 図3に示す電圧調整回路の回路実施例を示す図である。 本発明の電力供給システムの他の実施形態を示すブロック図である。 従来の電力供給システムの一例を示す図である。
符号の説明
1(101)…リチウムイオン電池、2…直流出力供給装置、3…負荷装置、4…充電電流制限回路、5…電圧調整回路、6…スイッチ、7…制御回路、41…誤差増幅器A、42…誤差増幅器B、43…充電電流制御素子、44…充電電流検出素子、51…誤差増幅器C、52…充電電流バイパス回路、521…バイパス電流制御素子、522…バイパス電流制限素子

Claims (1)

  1. バックアップ用のリチウムイオン組電池が直流出力供給装置と負荷装置に並列に接続され、前記直流出力供給装置の出力電圧と等しい電圧で前記リチウムイオン組電池が浮動充電方式で充電される電力供給システムであって、
    前記リチウムイオン組電池に直列に接続され、当該リチウムイオン組電池の充電経路に供給される充電電流の最大値を電池容量の値以下に定める充電電流制限回路と、
    前記リチウムイオン組電池を、前記直流出力供給装置もしくは負荷装置から切り離し、もしくは接続を行うスイッチと、
    前記リチウムイオン組電池を構成する直列接続された複数個の単電池毎に接続され、直流出力供給装置の出力電圧を単電池数で除した値を、満充電電圧とし、前記それぞれの単電池の電圧が、前記直流電圧出力供給装置の出力電圧を単電池全数で除した値と等しくなったら、これを検出して前記で定められた充電電流の最大値以下の電流をバイパスさせる機能を有する電圧調整回路と、
    前記充電経路の電圧値および電流値を監視し、前記充電電流制限回路に対して前記で定められた任意の値の充電電流の最大値を設定するための基準電圧および前記電圧調整回路に対する満充電の基準電圧の設定、ならびに充電中に所定の電圧値を越えたときに前記スイッチの開放をする制御回路と、
    を備えたことを特徴とする電力供給システム。
JP2007006383A 2003-11-27 2007-01-15 電力供給システム Pending JP2007129898A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006383A JP2007129898A (ja) 2003-11-27 2007-01-15 電力供給システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003397489A JP2005160251A (ja) 2003-11-27 2003-11-27 電力供給システム
JP2007006383A JP2007129898A (ja) 2003-11-27 2007-01-15 電力供給システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003397489A Division JP2005160251A (ja) 2003-11-27 2003-11-27 電力供給システム

Publications (1)

Publication Number Publication Date
JP2007129898A true JP2007129898A (ja) 2007-05-24

Family

ID=34631539

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003397489A Pending JP2005160251A (ja) 2003-11-27 2003-11-27 電力供給システム
JP2007006383A Pending JP2007129898A (ja) 2003-11-27 2007-01-15 電力供給システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003397489A Pending JP2005160251A (ja) 2003-11-27 2003-11-27 電力供給システム

Country Status (6)

Country Link
US (1) US20070103118A1 (ja)
EP (1) EP1689063A1 (ja)
JP (2) JP2005160251A (ja)
KR (1) KR100825512B1 (ja)
CN (1) CN100433498C (ja)
WO (1) WO2005053132A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127715A (ja) * 2015-01-05 2016-07-11 東芝三菱電機産業システム株式会社 二次電池充電システム

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060119320A1 (en) * 2004-12-03 2006-06-08 Linear Technology Corporation Current control circuitry and methodology for controlling current from current source
US7733061B2 (en) * 2004-12-29 2010-06-08 Linear Technology Corporation Current control circuitry and methodology for controlling current from current constrained source
US7710079B2 (en) * 2005-07-19 2010-05-04 Linear Technology Corporation Power manager and power managing method for battery-powered application
US20070235783A9 (en) * 2005-07-19 2007-10-11 Micron Technology, Inc. Semiconductor constructions, memory arrays, electronic systems, and methods of forming semiconductor constructions
US7772672B2 (en) 2005-09-01 2010-08-10 Micron Technology, Inc. Semiconductor constructions
US7799694B2 (en) 2006-04-11 2010-09-21 Micron Technology, Inc. Methods of forming semiconductor constructions
KR100855984B1 (ko) * 2007-02-27 2008-09-02 삼성전자주식회사 향상된 셋업 전압 특성을 갖는 기준전압 발생기 및 이를제어하는 방법
FR2926934B1 (fr) * 2008-01-29 2010-09-17 Saft Groupe Sa Systeme electronique pour batterie
US20100016034A1 (en) * 2008-06-10 2010-01-21 Telefonaktiebolaget L M Ericsson (Publ) Power supply method and apparatus for radio access network nodes/sites
JP4766095B2 (ja) * 2008-10-09 2011-09-07 ソニー株式会社 充電装置
CN101621214B (zh) * 2009-07-28 2012-09-19 成都市华为赛门铁克科技有限公司 电池备份模块、电池备份模块的供电方法及存储系统
JP5432761B2 (ja) * 2010-02-12 2014-03-05 株式会社マキタ 複数のバッテリパックを電源とする電動工具
JP5461221B2 (ja) 2010-02-12 2014-04-02 株式会社マキタ 複数のバッテリパックを電源とする電動工具
DE102010003703A1 (de) * 2010-04-08 2011-11-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Aufladen einer Batterie
WO2011142369A2 (ja) * 2010-05-11 2011-11-17 国立大学法人徳島大学 電源装置及び充電回路
JP6030066B2 (ja) * 2011-10-27 2016-11-24 三洋電機株式会社 電池ユニット、電動車両、移動体、電源装置及び電池制御装置
TWI477017B (zh) * 2012-07-24 2015-03-11 Lite On Technology Corp 避免電池浮充之控制系統、供電系統及方法
WO2016044931A1 (en) * 2014-09-22 2016-03-31 Polyvalor, Limited Partnership Energy storage device and modular circuit
RU2625456C1 (ru) * 2016-03-15 2017-07-14 Алексей Николаевич Ворошилов Система эксплуатации литий-ионной аккумуляторной батареи в режиме поддерживающего заряда
US10992144B2 (en) * 2017-05-17 2021-04-27 Galley Power LLC Battery balancing and current control with bypass circuit for load switch
CN112993422A (zh) * 2019-12-18 2021-06-18 致茂电子(苏州)有限公司 储能单元充电方法
JP2021164258A (ja) * 2020-03-31 2021-10-11 Fdk株式会社 電池電圧均等化装置
DE102022100612A1 (de) * 2022-01-12 2023-07-13 Miele & Cie. Kg Akkumulator mit Batteriemanagementsystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253463A (ja) * 1993-02-25 1994-09-09 Sanyo Electric Co Ltd 電池の充電方法
JP2000354335A (ja) * 1999-06-10 2000-12-19 Nec Mobile Energy Kk シリーズ接続電池用保護回路及び該保護回路を備えた電池パック並びにバックアップ電源装置
JP2002010505A (ja) * 2000-06-16 2002-01-11 Fuji Electric Co Ltd 充電制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579636A (en) * 1978-12-12 1980-06-16 Yuasa Battery Co Ltd Dc power supply
US5402055A (en) * 1992-09-30 1995-03-28 Compaq Computer Corporation AC adapter including differential comparator for tracking battery voltage during trickle charge
DE69331492T2 (de) * 1992-10-23 2002-08-29 Sony Corp Batteriesatz
JPH08265987A (ja) * 1995-03-20 1996-10-11 Integuran Kk 直列電池の充電電圧分配装置
JPH1066276A (ja) * 1996-08-21 1998-03-06 Japan Tobacco Inc 充電保護装置および充電装置
US5952815A (en) * 1997-07-25 1999-09-14 Minnesota Mining & Manufacturing Co. Equalizer system and method for series connected energy storing devices
US6501249B1 (en) * 1999-10-13 2002-12-31 Xicor, Inc. Battery management system
JP3892812B2 (ja) * 2001-02-01 2007-03-14 日立マクセル株式会社 電源装置
JP3665574B2 (ja) * 2001-02-09 2005-06-29 セイコーインスツル株式会社 充放電制御回路と充電式電源装置
US6583603B1 (en) * 2002-02-08 2003-06-24 Peco Ii, Inc. Back-up battery management apparatus and method for charging and testing battery cells in a string of battery cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253463A (ja) * 1993-02-25 1994-09-09 Sanyo Electric Co Ltd 電池の充電方法
JP2000354335A (ja) * 1999-06-10 2000-12-19 Nec Mobile Energy Kk シリーズ接続電池用保護回路及び該保護回路を備えた電池パック並びにバックアップ電源装置
JP2002010505A (ja) * 2000-06-16 2002-01-11 Fuji Electric Co Ltd 充電制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127715A (ja) * 2015-01-05 2016-07-11 東芝三菱電機産業システム株式会社 二次電池充電システム

Also Published As

Publication number Publication date
KR20060107532A (ko) 2006-10-13
CN100433498C (zh) 2008-11-12
US20070103118A1 (en) 2007-05-10
JP2005160251A (ja) 2005-06-16
CN1883098A (zh) 2006-12-20
EP1689063A1 (en) 2006-08-09
KR100825512B1 (ko) 2008-04-25
WO2005053132A1 (ja) 2005-06-09

Similar Documents

Publication Publication Date Title
JP2007129898A (ja) 電力供給システム
US7969119B2 (en) Overvoltage protection
KR101973054B1 (ko) 배터리 팩 및 배터리 팩의 제어 방법
KR101418129B1 (ko) 과-전류 및 단락 보호에서의 전력 서지 필터링
US6329796B1 (en) Power management circuit for battery systems
KR100303927B1 (ko) 충방전 제어장치 및 정전압 정전류 제어회로
US7045990B2 (en) Portable device having a charging circuit and semiconductor device for use in the charging circuit of the same
US6037750A (en) Battery pack controller
KR100885291B1 (ko) 충전 장치
JP2872365B2 (ja) 充電式の電源装置
JP4783759B2 (ja) 電池管理システム及び電池管理方法
JPH10136578A (ja) バッテリ充電装置
KR20070105220A (ko) 배터리 팩의 보호 회로
JP7203091B2 (ja) 電池パック及びその充電制御方法
JP2006223050A (ja) 電力供給システム
JP4015126B2 (ja) 直流電力供給システム
JPH09289738A (ja) 電池監視回路
JP5489779B2 (ja) リチウムイオン組電池の充電システムおよび充電方法
JP2009044923A (ja) 電源システム
JP4440717B2 (ja) 直流電圧供給装置
US20040251877A1 (en) Voltage adapter circuit for a lithium ion rechargeable battery
JP2005020866A (ja) 電池充電装置
KR100574037B1 (ko) 개별 충전이 가능한 배터리 충전장치
EP3772153B1 (en) Battery protection system
JP6947999B1 (ja) 二次電池保護回路、電池パック、電池システム及び二次電池保護方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101220