JP2007129848A - Inverter - Google Patents

Inverter Download PDF

Info

Publication number
JP2007129848A
JP2007129848A JP2005320946A JP2005320946A JP2007129848A JP 2007129848 A JP2007129848 A JP 2007129848A JP 2005320946 A JP2005320946 A JP 2005320946A JP 2005320946 A JP2005320946 A JP 2005320946A JP 2007129848 A JP2007129848 A JP 2007129848A
Authority
JP
Japan
Prior art keywords
voltage
reverse
mosfet
circuit
voltage application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005320946A
Other languages
Japanese (ja)
Other versions
JP4300209B2 (en
Inventor
Naoyoshi Uesugi
通可 植杉
Harunobu Nukushina
治信 温品
Koji Noda
浩二 野田
Keiichi Ishida
圭一 石田
Takahisa Endo
隆久 遠藤
Hiroshi Mochikawa
宏 餅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Carrier Corp
Original Assignee
Toshiba Corp
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Carrier Corp filed Critical Toshiba Corp
Priority to JP2005320946A priority Critical patent/JP4300209B2/en
Publication of JP2007129848A publication Critical patent/JP2007129848A/en
Application granted granted Critical
Publication of JP4300209B2 publication Critical patent/JP4300209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inverter in which a reverse current flowing through a circulation diode can be suppressed sufficiently, and efficiency can be enhanced significantly by significantly reducing power loss. <P>SOLUTION: When circulation currents flow, respectively, through the circulation diodes Du-, Dv- and Dw- on the MOSFETs 4u, 4v and 4w side, reverse voltages are applied from reverse voltage application circuits 5u, 5v and 5w to the circulation diodes Du-, Dv- and Dw-, respectively, before the switching elements of IGBTs 3u, 3v and 3w are turned on. In particular, a voltage V2(=5V) of level lower than the drive voltage V1(=15V) of the IGBT and MOSFET is employed as the operating voltage of the reverse voltage application circuits 5u, 5v and 5w. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、誘導性負荷たとえばモータへの駆動電力を出力するインバータ装置に関する。   The present invention relates to an inverter device that outputs driving power to an inductive load such as a motor.

誘導成分を含む負荷たとえばブラシレスDCモータの駆動用電力を出力するインバータ装置は、電圧の印加方向に沿って上流側および下流側となる2つのスイッチング素子の直列回路を複数有し、これら直列回路の各スイッチング素子にそれぞれ逆並列接続された還流ダイオードを有し、各スイッチング素子の相互接続点がブラシレスDCモータの各相巻線に接続される。   An inverter device that outputs driving power for a load including an inductive component, for example, a brushless DC motor, has a plurality of series circuits of two switching elements that are upstream and downstream along the voltage application direction. Each switching element has a free-wheeling diode connected in antiparallel, and an interconnection point of each switching element is connected to each phase winding of the brushless DC motor.

スイッチング素子としては、最近、IGBTやMOSFETが多く採用されている。   Recently, many IGBTs and MOSFETs have been adopted as switching elements.

IGBTを用いている場合、IGBTのオン時の両端間電圧が一定となるため、高電圧、高電流出力時のロスが小さく、トランジスタを用いる場合に比べて駆動回路が簡単となる。   When the IGBT is used, the voltage between both ends when the IGBT is turned on is constant, so that the loss at the time of high voltage and high current output is small, and the driving circuit is simpler than the case where a transistor is used.

MOSFETを用いている場合、MOSFETのオン,オフ速度が速いため高周波スイッチングが可能というメリットがあり、また低電圧、低電流出力時のロスが小さいことからファンモータ等の出力の小さいモータを駆動する場合に多用される。   When a MOSFET is used, there is a merit that high-frequency switching is possible because the on / off speed of the MOSFET is fast, and a motor with a small output such as a fan motor is driven because loss at low voltage and low current output is small. Often used in cases.

ただし、スイッチング素子がMOSFETである場合、素子製造の過程において逆回復特性の悪い還流(寄生)ダイオードが素子上に作られてしまう。さらに近年開発されているスイッチング素子の特性を高めたオン時低抵抗のスーパージャンクションMOSFETの場合、素子上に形成される還流ダイオードの逆回復特性はさらに悪いものであった。このため、誘導負荷に蓄えられたエネルギによる順方向電流が還流ダイオードに流れる際に、他方のスイッチング素子のオンに伴い、還流ダイオードに大きな逆方向電流が流れ、大きな電力損失を生じることになり、ファンモータよりも大電流を必要とする空気調和機のコンプレッサ駆動用インバータ等への採用が難しかった。   However, when the switching element is a MOSFET, a reflux (parasitic) diode having a bad reverse recovery characteristic is formed on the element in the process of manufacturing the element. Further, in the case of a super-junction MOSFET having a low on-resistance and improved characteristics of a switching element developed in recent years, the reverse recovery characteristic of a freewheeling diode formed on the element is even worse. For this reason, when the forward current due to the energy stored in the inductive load flows to the freewheeling diode, a large reverse current flows to the freewheeling diode as the other switching element is turned on, resulting in a large power loss. It has been difficult to adopt in air conditioner compressor drive inverters that require a larger current than fan motors.

そこで、従来、他方のスイッチング素子のオンに先立って還流ダイオードに逆電圧を印加する逆電圧印加回路を設け、この逆電圧の印加によって他方のスイッチング素子のオン時に還流ダイオードに流れる逆方向電流を防止し、電力損失の低減を図るものがある(例えば、特許文献1)。この文献によれば、還流ダイオードに印加する逆電圧の元になる電源とMOSFETのゲート駆動電源とは同じ電源で構成されており、それぞれの印加電圧は同一となっている。
特開平10−327585号公報
Therefore, conventionally, a reverse voltage application circuit for applying a reverse voltage to the freewheeling diode prior to turning on the other switching element is provided, and this reverse voltage prevents the reverse current flowing in the freewheeling diode when the other switching element is on. However, there is one that reduces power loss (for example, Patent Document 1). According to this document, the power source that is the source of the reverse voltage applied to the freewheeling diode and the gate drive power source of the MOSFET are composed of the same power source, and the applied voltages are the same.
Japanese Patent Laid-Open No. 10-327585

逆電圧印加回路によって還流ダイオードに流れる逆方向電流を抑制するに際しては、その抑制効果のさらなる向上が望まれる。   When the reverse current flowing through the freewheeling diode is suppressed by the reverse voltage application circuit, further improvement of the suppression effect is desired.

この発明は、上記の事情を考慮したもので、還流ダイオードに流れる逆方向電流を抑制する際の電力損失をさらに低減して効率の向上が図れるインバータ装置を提供することを目的とする。   The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an inverter device that can further reduce power loss when suppressing a reverse current flowing in a freewheeling diode and improve efficiency.

請求項1に係る発明のインバータ装置は、電圧の印加方向に沿って上流側および下流側となる2つのスイッチング素子で、少なくとも一方の素子がMOSFETからなる直列回路を有し、この直列回路の各スイッチング素子にそれぞれ逆並列接続された還流ダイオードを有し、各スイッチング素子の相互接続点が誘導負荷に接続されるスイッチング回路と、上記各スイッチング素子を交互にオン,オフ駆動する制御部と、上記MOSFETと対となるスイッチング素子のオンに先立ち、前記MOSFETの還流ダイオードに逆電圧を印加する逆電圧印加回路と、上記MOSFETの還流ダイオードに印加する逆電圧が、上記MOSFETの駆動用電圧より低い電圧となるように前記逆電圧印加回路に低電圧を供給する電源回路と、を備えている。   The inverter device according to the first aspect of the present invention includes a series circuit in which at least one of the two switching elements is upstream and downstream along the voltage application direction, and at least one of which is a MOSFET. A switching circuit having free-wheeling diodes connected in reverse parallel to the switching elements, the interconnection point of each switching element being connected to an inductive load, a controller for alternately turning on and off the switching elements, and Prior to turning on the switching element paired with the MOSFET, a reverse voltage applying circuit for applying a reverse voltage to the free wheel diode of the MOSFET, and a reverse voltage applied to the free wheel diode of the MOSFET is lower than the driving voltage for the MOSFET. And a power supply circuit for supplying a low voltage to the reverse voltage application circuit. .

この発明のインバータ装置によれば、還流ダイオードに流れる逆方向電流を抑制する際に電力損失を低減して、効率の向上が図れる。   According to the inverter device of the present invention, when the reverse current flowing through the freewheeling diode is suppressed, the power loss is reduced and the efficiency can be improved.

以下、この発明の一実施形態について図面を参照して説明する。
図1において、Mは空気調和機のコンプレッサモータとして使用されるブラシレスDCモータ(負荷)で、中性点Cを中心に星形結線された3つの相巻線Lu,Lv,Lwを有する固定子、および永久磁石を有する回転子により構成されている。相巻線Lu,Lv,Lwに電流が流れることにより生じる磁界と永久磁石が作る磁界との相互作用により、回転子が回転する。このブラシレスDCモータMに、本発明のインバータ装置1が接続されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, M is a brushless DC motor (load) used as a compressor motor of an air conditioner, and has a stator having three phase windings Lu, Lv, and Lw that are star-connected around a neutral point C. , And a rotor having permanent magnets. The rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field created by the permanent magnet. The brushless DC motor M is connected with the inverter device 1 of the present invention.

インバータ装置1は、直流電圧Vd(=280V)が印加される入力端子P,N、この入力端子P,N間の直流電圧Vdを受けて上記相巻線Lu,Lv,Lwに対する通電およびその通電切換を行うスイッチング回路2、このスイッチング回路2を駆動制御する制御部10、商用交流電源30の交流電圧を整流する整流回路31、この整流回路31の出力電圧(直流電圧)を平滑して上記入力端子P,N間に印加する平滑コンデンサ32、および電源回路11を備えている。電源回路11は、商用交流電源30の交流電圧から、上記スイッチング回路2を駆動するための直流電圧V1(=15V)を生成するとともに、制御部10およびスイッチング回路2を動作させるための直流電圧V2(=5V)を生成して出力する。   Inverter device 1 receives input terminals P and N to which DC voltage Vd (= 280 V) is applied, receives DC voltage Vd between input terminals P and N, and supplies current to and from the phase windings Lu, Lv, and Lw. The switching circuit 2 that performs switching, the control unit 10 that drives and controls the switching circuit 2, the rectifier circuit 31 that rectifies the AC voltage of the commercial AC power supply 30, and the output voltage (DC voltage) of the rectifier circuit 31 that is smoothed A smoothing capacitor 32 applied between the terminals P and N and a power supply circuit 11 are provided. The power supply circuit 11 generates a DC voltage V1 (= 15V) for driving the switching circuit 2 from an AC voltage of the commercial AC power supply 30, and a DC voltage V2 for operating the control unit 10 and the switching circuit 2. (= 5V) is generated and output.

上記スイッチング回路2は、直流電圧Vdの印加方向に沿って上流側となるスイッチング素子たとえばIGBT(Insulated Gate Bipolar Transistor)および下流側となるスイッチング素子たとえば低損失パワーMOSFETの直列回路をU,V,Wの三相分有するもので、U相の上流側にIGBT3u、下流側にMOSFET4uを備え、V相の上流側にIGBT3v、下流側にMOSFET4vを備え、W相の上流側にIGBT3w、下流側にMOSFET4wを備えている。そして、IGBT3u,3v,3wに対し、還流ダイオードDu+,Dv+,Dw+がそれぞれ逆並列接続されている。MOSFET4u,4v,4wに対し、還流ダイオードDu−,Dv−,Dw−がそれぞれ逆並列接続されている。   The switching circuit 2 includes a series circuit of a switching element on the upstream side, for example, an IGBT (Insulated Gate Bipolar Transistor), and a switching element on the downstream side, for example, a low-loss power MOSFET, along the application direction of the DC voltage Vd. The IGBT 3u is provided upstream of the U phase, the MOSFET 4u is provided downstream, the IGBT 3v is provided upstream of the V phase, the MOSFET 4v is provided downstream, the IGBT 3w is upstream of the W phase, and the MOSFET 4w is downstream. It has. The free-wheeling diodes Du +, Dv +, and Dw + are connected in reverse parallel to the IGBTs 3u, 3v, and 3w, respectively. The free-wheeling diodes Du−, Dv−, and Dw− are connected in reverse parallel to the MOSFETs 4u, 4v, and 4w, respectively.

IGBT3uとMOSFET4uの相互接続点が出力端子Quとなり、IGBT3vとMOSFET4vの相互接続点が出力端子Qvとなり、IGBT3wとMOSFET4wの相互接続点が出力端子Qwとなる。そして、出力端子Quに上記相巻線Luの非結線端が接続され、出力端子Qvに上記相巻線Lvの非結線端が接続され、出力端子Qwに上記相巻線Lwの非結線端が接続されている。   The interconnection point between the IGBT 3u and the MOSFET 4u becomes the output terminal Qu, the interconnection point between the IGBT 3v and the MOSFET 4v becomes the output terminal Qv, and the interconnection point between the IGBT 3w and the MOSFET 4w becomes the output terminal Qw. Then, the non-connection end of the phase winding Lu is connected to the output terminal Qu, the non-connection end of the phase winding Lv is connected to the output terminal Qv, and the non-connection end of the phase winding Lw is connected to the output terminal Qw. It is connected.

また、スイッチング回路2は、誘導負荷である相巻線Lu,Lv,Lwに蓄えられたエネルギによって還流ダイオードDu−,Dv−,Dw−に順方向電流(還流電流)が流れた場合に、上流側のIGBT3u,3v,3wのオンに伴って還流ダイオードDu−,Dv−,Dw−に流れる逆方向電流を抑制するため、IGBT3u,3v,3wのそれぞれオンに先立って還流ダイオードDu−,Dv−,Dw−に逆電圧を印加する逆電圧印加回路5u,5v,5wを備えている。   Further, the switching circuit 2 is connected to the upstream when a forward current (return current) flows through the free-wheeling diodes Du−, Dv−, and Dw− by the energy stored in the phase windings Lu, Lv, and Lw that are inductive loads. In order to suppress the reverse current flowing through the free-wheeling diodes Du-, Dv-, Dw- when the IGBTs 3u, 3v, 3w on the side are turned on, the free-wheeling diodes Du-, Dv- are turned on prior to turning on the IGBTs 3u, 3v, 3w, respectively. , Dw− are provided with reverse voltage application circuits 5u, 5v, 5w for applying a reverse voltage.

スイッチング回路2における電流経路の一例を図2に示す。
IGBT3uおよびMOSFET4vが共にオンのとき、図2に実線で示すように、入力端子P、IGBT3u、相巻線Lu,Lv、MOSFET4v、および入力端子Nの経路で電流が流れる。その後、IGBT3uがオフしてMOSFET4uがオンすると、図2に破線で示すように、相巻線Lu,Lvに蓄えられたエネルギに基づく電流が、相巻線Lu,LvからMOSFET4vを経てMOSFET4u側の還流ダイオードDu−を順方向に流れる。こうして、還流ダイオードDu−に順方向電流(還流電流)が流れている状態において、上流側のIGBT3uがオンすると、IGBT3uを通して還流ダイオードDu−に端子P,N間の電圧(=280V)が加わる。このとき、還流ダイオードDu−に短絡電流のような大きな逆方向電流Irrが流れてしまう。この逆方向電流IrrはIGBT3uを介して流れるため、この際にIGBT3uで大きな電力損失を招いてしまう。そこで、この損失を抑制するために、逆電圧印加回路5uが設けられる。
An example of the current path in the switching circuit 2 is shown in FIG.
When both IGBT 3u and MOSFET 4v are on, current flows through the path of input terminal P, IGBT 3u, phase windings Lu and Lv, MOSFET 4v, and input terminal N as shown by the solid line in FIG. Thereafter, when the IGBT 3u is turned off and the MOSFET 4u is turned on, the current based on the energy stored in the phase windings Lu and Lv passes from the phase windings Lu and Lv through the MOSFET 4v to the MOSFET 4u side as shown by the broken lines in FIG. It flows through the freewheeling diode Du− in the forward direction. Thus, when the upstream IGBT 3u is turned on in a state in which a forward current (return current) flows through the freewheeling diode Du−, a voltage (= 280 V) between the terminals P and N is applied to the freewheeling diode Du− through the IGBT 3u. At this time, a large reverse current Irr such as a short-circuit current flows through the freewheeling diode Du−. Since the reverse current Irr flows through the IGBT 3u, a large power loss is caused in the IGBT 3u at this time. In order to suppress this loss, a reverse voltage application circuit 5u is provided.

逆電圧印加回路5uおよびその周辺部の構成を図3に示す。なお、図1に示す電源回路11は、高電圧V1(たとえば15V)とその電圧よりも低い電圧V2(たとえば5V)の2つの異なる直流電圧を出力することができるように構成されている。   The configuration of the reverse voltage application circuit 5u and its peripheral part is shown in FIG. The power supply circuit 11 shown in FIG. 1 is configured to be able to output two different DC voltages, a high voltage V1 (for example, 15V) and a voltage V2 (for example, 5V) lower than that voltage.

この電源回路11から出力される直流電圧V1が、端子A,N間に印加される。そして、端子Aに、ダイオード41および半導体スイッチ素子51を介してIGBT3uのベースが接続されている。さらに、ダイオード41と半導体スイッチ素子51との接続点からIGBT3uのエミッタにかけて、コンデンサ42が接続されている。また、端子Aに、半導体スイッチ素子52を介してMOSFET4uのゲートが接続されている。半導体スイッチ素子51,52は、制御部10によりオン,オフ制御される。   A DC voltage V1 output from the power supply circuit 11 is applied between the terminals A and N. The base of the IGBT 3 u is connected to the terminal A via the diode 41 and the semiconductor switch element 51. Further, a capacitor 42 is connected from the connection point between the diode 41 and the semiconductor switch element 51 to the emitter of the IGBT 3u. Further, the gate of the MOSFET 4 u is connected to the terminal A via the semiconductor switch element 52. The semiconductor switch elements 51 and 52 are ON / OFF controlled by the control unit 10.

電源回路11から出力される直流電圧V2が、端子B,N間に印加される。なお、直流電圧V2は、マイクロコンピュータ等の電子回路からなる制御部10の電源としても用いられている。この端子B,N間に、逆流防止ダイオード61を介して逆電圧印加用コンデンサ60が接続されている。そして、逆電圧印加用コンデンサ60に蓄えられる電圧が、抵抗62、逆電圧印加用MOSFET63のドレイン・ソース間、および逆流防止ダイオード64を介して、還流ダイオードDu−に逆電圧として印加される。なお、逆電圧印加用MOSFET63に、還流ダイオードDxが逆並列接続されている。また、上記端子Aにダイオード65および半導体スイッチ素子53を介してMOSFET63のゲートが接続されるとともに、そのダイオード65と半導体スイッチ素子53との接続点からMOSFET63のソースにかけてコンデンサ66が接続されている。なお、図示していないが半導体スイッチ素子53は、制御部10から出力される逆電圧印加信号により、オン,オフ制御される。   A DC voltage V2 output from the power supply circuit 11 is applied between the terminals B and N. The DC voltage V2 is also used as a power source for the control unit 10 formed of an electronic circuit such as a microcomputer. A reverse voltage application capacitor 60 is connected between the terminals B and N via a backflow prevention diode 61. The voltage stored in the reverse voltage application capacitor 60 is applied as a reverse voltage to the freewheeling diode Du− via the resistor 62, the drain-source of the reverse voltage application MOSFET 63, and the reverse current prevention diode 64. A free-wheeling diode Dx is connected in reverse parallel to the reverse voltage application MOSFET 63. The gate of the MOSFET 63 is connected to the terminal A via the diode 65 and the semiconductor switch element 53, and a capacitor 66 is connected from the connection point between the diode 65 and the semiconductor switch element 53 to the source of the MOSFET 63. Although not shown, the semiconductor switch element 53 is ON / OFF controlled by a reverse voltage application signal output from the control unit 10.

これらダイオード61、逆電圧印加用コンデンサ60、抵抗62、逆電圧印加用MOSFET63、ダイオード64、ダイオード65、半導体スイッチ素子53、およびコンデンサ66により、逆電圧印加回路5uが構成されている。   These diode 61, reverse voltage application capacitor 60, resistor 62, reverse voltage application MOSFET 63, diode 64, diode 65, semiconductor switch element 53, and capacitor 66 constitute a reverse voltage application circuit 5u.

半導体スイッチ素子53がオンすることにより、逆電圧印加用MOSFET63がオンし、逆電圧印加用コンデンサ60に蓄えられている電圧が還流ダイオードDu−に逆電圧として印加される。   When the semiconductor switch element 53 is turned on, the reverse voltage application MOSFET 63 is turned on, and the voltage stored in the reverse voltage application capacitor 60 is applied as a reverse voltage to the freewheeling diode Du−.

他の逆電圧印加回路5v,5wおよびその周辺部の構成についても、図3に示したのと同じ構成である。よって、その説明は省略する。   The other reverse voltage application circuits 5v and 5w and their peripheral parts are also the same as those shown in FIG. Therefore, the description is omitted.

つぎに、作用を説明する。
図4に示すように、制御部10ではPWM波形を発生させるために、その内部で擬似正弦波電圧Euと三角波信号Eoとが電圧比較される。なお、正弦波Euは、ブラシレスDCモータMの速度に比例して周波数が変化する。この電圧比較により、IGBT3uをオン,オフ駆動するための上素子駆動信号およびこれをほぼ反転したMOSFET4uをオン,オフ駆動するための下素子駆動信号が作成される。この上素子駆動信号は半導体スイッチ素子51に供給され、下素子駆動信号は半導体スイッチ素子52に供給される。
Next, the operation will be described.
As shown in FIG. 4, the control unit 10 compares the pseudo sine wave voltage Eu with the triangular wave signal Eo in order to generate a PWM waveform. Note that the frequency of the sine wave Eu changes in proportion to the speed of the brushless DC motor M. By this voltage comparison, an upper element driving signal for driving on / off of the IGBT 3u and a lower element driving signal for driving on / off of the MOSFET 4u which is substantially inverted from the IGBT 3u are generated. The upper element drive signal is supplied to the semiconductor switch element 51, and the lower element drive signal is supplied to the semiconductor switch element 52.

このようにして作成される上素子駆動信号および下素子駆動信号により、スイッチング回路2における少なくとも1つの直列回路のIGBTがオン,オフして別の少なくとも1つの直列回路のMOSFETがオンする複数相通電が、順次に切換えられる。この複数相通電の切換えにより、3つの相間電圧が出力端子Qu,Qv,Qwの相互間に生じ、その各相間電圧がブラシレスDCモータMの相巻線Lu,Lv,Lwに印加される。これにより、Lu,Lv,Lwに正弦波状の電流が流れ、ブラシレスDCモータMが動作する。   Multi-phase energization in which the IGBT of at least one series circuit in the switching circuit 2 is turned on and off and the MOSFET of at least one other series circuit is turned on by the upper element drive signal and the lower element drive signal thus created Are switched sequentially. As a result of the switching of the plurality of phases, three interphase voltages are generated between the output terminals Qu, Qv, and Qw, and the interphase voltages are applied to the phase windings Lu, Lv, and Lw of the brushless DC motor M. Thereby, a sinusoidal current flows through Lu, Lv, and Lw, and the brushless DC motor M operates.

なお、MOSFET4uがオフするタイミングとIGBT3uがオンするタイミングとの間に、デッドタイムtdが確保される。また、IGBT3uがオフするタイミングとMOSFET4uがオンするタイミングとの間にも、デッドタイムtdが確保される。このデッドタイムtdが確保により、IGBT3uおよびMOSFET4uの同時オンによる直列回路の短絡が防止される。他の直列回路においても、同様にデッドタイムが確保される。   A dead time td is ensured between the timing when the MOSFET 4u is turned off and the timing when the IGBT 3u is turned on. The dead time td is also ensured between the timing when the IGBT 3u is turned off and the timing when the MOSFET 4u is turned on. By securing the dead time td, a short circuit of the series circuit due to simultaneous turn-on of the IGBT 3u and the MOSFET 4u is prevented. Similarly in other series circuits, dead time is secured.

ところで、図2で説明したように、IGBT3uがオフしたとき(MOSFET4vはオンを継続)、相巻線Lu,Lvに蓄えられたエネルギに基づく電流が、相巻線Lu,LvからMOSFET4vを経てMOSFET4u側の還流ダイオードDu−を順方向に流れる。このいわゆる還流電流は、MOSFET4uがオフしている間はIaとして還流ダイオードDu−のみに流れ、MOSFET4uがオンするとIaおよびIbとして還流ダイオードDu−およびMOSFET4uに流れる。 こうして、還流電流が流れている状態において、上流側のIGBT3uのオンに先立ち、制御部10から逆電圧印加回路5uへの動作指示、すなわち半導体スイッチ素子53のオン指令が出力される。なお、事前にMOSFET4uは当然オフしている。これにより、半導体スイッチ素子53がオンし、逆電圧印加回路5uの逆電圧印加用MOSFET63がオンし、逆電圧印加用コンデンサ60に蓄えられている電圧、すなわち電源回路の出力電圧V2(約5V)が還流ダイオードDu−に逆電圧として印加される。この逆電圧印加回路5uから還流ダイオードDu−への逆電圧の印加期間は、MOSFET4uのオフタイミング後、すなわちデットタイム期間td中に開始し、IGBT3uのオンタイミングを含む所定期間であり、制御部10内で予め定められ、その時間だけ制御部10は半導体スイッチ素子53をオンする。この逆電圧印加回路5uから還流ダイオードDu−への逆電圧の印加開始のタイミングは、例えば、MOSFET4uのオフタイミング(下素子駆動信号の立下りタイミング)等を基準にして設定される。   As described with reference to FIG. 2, when the IGBT 3u is turned off (the MOSFET 4v continues to be turned on), the current based on the energy stored in the phase windings Lu and Lv passes through the MOSFET 4v from the phase windings Lu and Lv. Flows in the forward direction through the freewheeling diode Du-. This so-called return current flows as Ia only to the return diode Du− while the MOSFET 4u is turned off, and flows as Ia and Ib to the return diode Du− and the MOSFET 4u when the MOSFET 4u is turned on. Thus, in a state where the return current is flowing, prior to turning on the upstream IGBT 3u, an operation instruction from the control unit 10 to the reverse voltage application circuit 5u, that is, an on command for turning on the semiconductor switch element 53 is output. The MOSFET 4u is naturally turned off in advance. Thereby, the semiconductor switch element 53 is turned on, the reverse voltage application MOSFET 63 of the reverse voltage application circuit 5u is turned on, and the voltage stored in the reverse voltage application capacitor 60, that is, the output voltage V2 (about 5V) of the power supply circuit. Is applied to the free-wheeling diode Du− as a reverse voltage. The reverse voltage application period from the reverse voltage application circuit 5u to the free-wheeling diode Du− is a predetermined period that starts after the MOSFET 4u off timing, that is, during the dead time period td, and includes the on timing of the IGBT 3u. The control unit 10 turns on the semiconductor switch element 53 for that time. The timing for starting the application of the reverse voltage from the reverse voltage application circuit 5u to the free-wheeling diode Du− is set based on, for example, the OFF timing (falling timing of the lower element drive signal) of the MOSFET 4u.

逆電圧印加回路5uから還流ダイオードDu−に逆電圧が印加されると、還流ダイオードDu−に逆方向電流Irrが流れる。   When a reverse voltage is applied from the reverse voltage application circuit 5u to the freewheeling diode Du−, a reverse current Irr flows through the freewheeling diode Du−.

この際の逆方向電流Irrは、逆電圧印加回路5uから還流ダイオードDu−に印加される電圧が低いため、その逆方向電流Irrのレベルはきわめて小さくできる。   At this time, since the reverse current Irr is low in voltage applied from the reverse voltage application circuit 5u to the freewheeling diode Du-, the level of the reverse current Irr can be extremely small.

すなわち、図5に、還流ダイオードDu−に印加される逆電圧Va、逆電圧印加回路5uにおける逆電圧印加用MOSFET63のソース電圧Vb、逆電圧印加用MOSFET63のドレイン電圧Vc、逆電圧印加用MOSFET63のオンタイミングT1の関係を示している。逆電圧印加回路5uの端子B,N間に印加されているのが電圧V2(約5V)であることにより、逆電圧Va、ソース電圧Vb、ドレイン電圧Vcが低くなる。   That is, FIG. 5 shows the reverse voltage Va applied to the freewheeling diode Du−, the source voltage Vb of the reverse voltage application MOSFET 63 in the reverse voltage application circuit 5u, the drain voltage Vc of the reverse voltage application MOSFET 63, and the reverse voltage application MOSFET 63. The relationship of on-timing T1 is shown. Since the voltage V2 (about 5V) is applied between the terminals B and N of the reverse voltage application circuit 5u, the reverse voltage Va, the source voltage Vb, and the drain voltage Vc are lowered.

仮に、IGBT3uおよびMOSFET4uの駆動用電圧V1(約15V)と同じレベルの電圧が逆電圧印加回路5uの端子B,N間に印加されているとすると、逆電圧Va、ソース電圧Vb、ドレイン電圧Vcは図6に示すように高くなる。   If a voltage having the same level as the drive voltage V1 (about 15 V) of the IGBT 3u and the MOSFET 4u is applied between the terminals B and N of the reverse voltage application circuit 5u, the reverse voltage Va, the source voltage Vb, and the drain voltage Vc Becomes higher as shown in FIG.

逆電圧印加回路5uの端子B,N間に電圧V2(約5V)が印加される場合、還流ダイオードDu−に流れる逆方向電流Irrの値は、逆電圧印加回路5uの端子B,N間に駆動用電圧V1同じ電圧が印加される場合の約1/3と小さい。ただし、逆方向電流Irrの期間については、駆動用電圧V1と同じ電圧が印加される場合よりも、電圧V2が印加される場合の方が、約3倍と長くなる。このため、逆電圧として低い電圧を印加する場合は、より高い電圧を印加する場合よりも逆電圧印加の時間を長めに設定しておく必要がある。   When the voltage V2 (about 5V) is applied between the terminals B and N of the reverse voltage application circuit 5u, the value of the reverse current Irr flowing through the freewheeling diode Du− is between the terminals B and N of the reverse voltage application circuit 5u. Driving voltage V1 is as small as about 1/3 when the same voltage is applied. However, the reverse current Irr period is about three times longer when the voltage V2 is applied than when the same voltage as the driving voltage V1 is applied. For this reason, when applying a low voltage as a reverse voltage, it is necessary to set the reverse voltage application time longer than when applying a higher voltage.

印加電圧がV2の場合とV1の場合における逆方向電流Irrの値および期間(逆回復期間ともいう)の違いを、図7に示している。また、逆方向電流Irrの値および期間の違いに伴う、還流ダイオードDu−における電力およびその積算値である積算電力の違いを、図8に示している。   FIG. 7 shows the difference between the value and the period (also referred to as a reverse recovery period) of the reverse current Irr when the applied voltage is V2 and V1. Further, FIG. 8 shows the difference between the electric power in the freewheeling diode Du− and the integrated electric power that is an integrated value thereof according to the difference in the value and the period of the reverse current Irr.

積算電力は、消費電力と時間の積であり、この回路動作による電力ロスを表すものである。逆方向電流Irrの値が約1/3と小さくなれば、たとえ逆方向電流Irrの期間が約3倍と長くなっても、積算電力、すなわち電力ロスは大幅に低くなることが分かる。   The integrated power is the product of power consumption and time, and represents the power loss due to this circuit operation. It can be seen that if the value of the reverse current Irr is reduced to about 1/3, the integrated power, that is, the power loss is significantly reduced even if the period of the reverse current Irr is increased to about three times.

以上のように、IGBT3u,3v,3wのスイッチング素子のオンに先立ち、還流ダイオードDu−,Dv−,Dw−に逆電圧印加回路5u,5v,5wからそれぞれ逆電圧を印加することにより、還流ダイオードDu−,Dv−,Dw−に流れる逆方向電流を抑制することができる。
とくに、逆電圧印加回路5u,5v,5wの動作用電圧として、IGBTおよびMOSFETの駆動用電圧V1よりも低いレベルの電圧V2を用いることで、還流ダイオードDu−,Dv−,Dw−に流れる逆方向電流を小さな消費電力で抑制することができる。この結果、電力損失が大幅に低減して効率の向上が図れる。
As described above, by applying reverse voltages from the reverse voltage application circuits 5u, 5v, and 5w to the free-wheeling diodes Du-, Dv-, and Dw-, respectively, before turning on the switching elements of the IGBTs 3u, 3v, and 3w, the free-wheeling diodes. The reverse current flowing in Du−, Dv−, and Dw− can be suppressed.
In particular, by using a voltage V2 at a level lower than the driving voltage V1 of the IGBT and MOSFET as the operating voltage of the reverse voltage application circuits 5u, 5v, and 5w, the reverse current flowing through the freewheeling diodes Du−, Dv−, and Dw−. Directional current can be suppressed with low power consumption. As a result, power loss can be greatly reduced and efficiency can be improved.

なお、上記実施形態では、スイッチング回路2における各上流側スイッチング素子がIGBTである場合を例に説明したが、スイッチング回路2における各上流側スイッチング素子が下流側スイッチング素子と同じMOSFETである場合にも、同様に実施可能である。この場合、各上流側スイッチング素子であるMOSFETに対しても、同じ構成の逆電圧印加回路が付加される。   In the above embodiment, the case where each upstream switching element in the switching circuit 2 is an IGBT has been described as an example. However, the case where each upstream switching element in the switching circuit 2 is the same MOSFET as the downstream switching element is also described. Can be implemented as well. In this case, a reverse voltage application circuit having the same configuration is added to the MOSFET as each upstream switching element.

その他、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。   In addition, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.

この発明の一実施形態の構成および冷凍サイクルの構成を示す図。The figure which shows the structure of one Embodiment of this invention, and the structure of a refrigerating cycle. 一実施形態のスイッチング回路における電流経路の一例を示す図。The figure which shows an example of the current pathway in the switching circuit of one Embodiment. 一実施形態における逆電圧印加回路およびその周辺部の構成を示すブロック図。The block diagram which shows the structure of the reverse voltage application circuit and its peripheral part in one Embodiment. 一実施形態における各部の信号波形を示すタイムチャート。The time chart which shows the signal waveform of each part in one Embodiment. 一実施形態における逆電圧Va、ソース電圧Vb、ドレイン電圧Vcの関係を示す図。The figure which shows the relationship between the reverse voltage Va, source voltage Vb, and drain voltage Vc in one Embodiment. 一実施形態における駆動用電圧V1と同じレベルの電圧が逆電圧印加回路に印加された場合の逆電圧Va、ソース電圧Vb、ドレイン電圧Vcの関係を示す図。The figure which shows the relationship between the reverse voltage Va, the source voltage Vb, and the drain voltage Vc when the voltage of the same level as the drive voltage V1 in one Embodiment is applied to the reverse voltage application circuit. 一実施形態における印加電圧がV2の場合とV1の場合における逆方向電流Irrの値および期間の違いを示す図。The figure which shows the difference of the value and period of the reverse direction current Irr in the case where the applied voltage in one Embodiment is V2 and V1. 一実施形態における逆方向電流Irrの値および期間の違いに伴う消費電力およびその積算値の違いを示す図。The figure which shows the difference of the power consumption accompanying the difference of the value and period of the reverse direction current Irr in one Embodiment, and its integrated value.

符号の説明Explanation of symbols

1…インバータ装置、2…スイッチング回路、3u,3v,3w…IGBT、4u,4v,4w…MOSFET、5u,5v,5w…逆電圧印加回路、Du,Dv,Dw…還流ダイオード、P,N…入力端子、Qu,Qv,Qw…出力端子、10…制御部、11…電源回路、M…ブラシレスDCモータ、Lu,Lv,Lw…相巻線   DESCRIPTION OF SYMBOLS 1 ... Inverter apparatus, 2 ... Switching circuit, 3u, 3v, 3w ... IGBT, 4u, 4v, 4w ... MOSFET, 5u, 5v, 5w ... Reverse voltage application circuit, Du, Dv, Dw ... Freewheeling diode, P, N ... Input terminal, Qu, Qv, Qw ... output terminal, 10 ... control unit, 11 ... power supply circuit, M ... brushless DC motor, Lu, Lv, Lw ... phase winding

Claims (2)

電圧の印加方向に沿って上流側および下流側となる2つのスイッチング素子で、少なくとも一方の素子がMOSFETからなる直列回路を有し、この直列回路の各スイッチング素子にそれぞれ逆並列接続された還流ダイオードを有し、各スイッチング素子の相互接続点が誘導負荷に接続されるスイッチング回路と、
前記各スイッチング素子を交互にオン,オフ駆動する制御部と、
前記MOSFETと対となるスイッチング素子のオンに先立ち、前記MOSFETの還流ダイオードに逆電圧を印加する逆電圧印加回路と、
前記MOSFETの還流ダイオードに印加する逆電圧が、前記MOSFETの駆動用電圧より低い電圧となるように前記逆電圧印加回路に低電圧を供給する電源回路と、
を備えていることを特徴とするインバータ装置。
A free-wheeling diode having two switching elements upstream and downstream along the voltage application direction, at least one of which has a series circuit composed of MOSFETs, and connected in reverse parallel to each switching element of the series circuit A switching circuit in which an interconnection point of each switching element is connected to an inductive load;
A controller for alternately turning on and off each of the switching elements;
Prior to turning on the switching element paired with the MOSFET, a reverse voltage application circuit for applying a reverse voltage to the freewheeling diode of the MOSFET;
A power supply circuit for supplying a low voltage to the reverse voltage application circuit so that a reverse voltage applied to the free-wheeling diode of the MOSFET is lower than a driving voltage for the MOSFET;
An inverter device comprising:
前記電源回路は、前記MOSFETに対する駆動用電圧を供給するとともに、その駆動用電圧より低い電圧を前記制御部および前記逆電圧印加回路に供給することを特徴とする請求項1に記載のインバータ装置。   2. The inverter device according to claim 1, wherein the power supply circuit supplies a driving voltage to the MOSFET and supplies a voltage lower than the driving voltage to the control unit and the reverse voltage application circuit.
JP2005320946A 2005-11-04 2005-11-04 Inverter device Expired - Fee Related JP4300209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320946A JP4300209B2 (en) 2005-11-04 2005-11-04 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320946A JP4300209B2 (en) 2005-11-04 2005-11-04 Inverter device

Publications (2)

Publication Number Publication Date
JP2007129848A true JP2007129848A (en) 2007-05-24
JP4300209B2 JP4300209B2 (en) 2009-07-22

Family

ID=38152041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320946A Expired - Fee Related JP4300209B2 (en) 2005-11-04 2005-11-04 Inverter device

Country Status (1)

Country Link
JP (1) JP4300209B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165270A (en) * 2008-01-07 2009-07-23 Daikin Ind Ltd Power conversion circuit and air conditioner
WO2009096158A1 (en) 2008-01-31 2009-08-06 Daikin Industries, Ltd. Power transformer
WO2011117932A1 (en) 2010-03-25 2011-09-29 パナソニック株式会社 Inverter device and electric device using same
WO2020090071A1 (en) * 2018-10-31 2020-05-07 日立ジョンソンコントロールズ空調株式会社 Electric power converter and air conditioner provided with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997567B2 (en) * 2012-10-03 2016-09-28 日立アプライアンス株式会社 Motor control device and air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165270A (en) * 2008-01-07 2009-07-23 Daikin Ind Ltd Power conversion circuit and air conditioner
WO2009096158A1 (en) 2008-01-31 2009-08-06 Daikin Industries, Ltd. Power transformer
US10148197B2 (en) 2008-01-31 2018-12-04 Daikin Industries, Ltd. Power converter having switching elements formed of unipolar devices using a wideband gap semiconductor
US10931207B2 (en) 2008-01-31 2021-02-23 Daikin Industries, Ltd. Power converter having switching elements formed of unipolar devices using a wideband gap semiconductor
WO2011117932A1 (en) 2010-03-25 2011-09-29 パナソニック株式会社 Inverter device and electric device using same
JP2011205764A (en) * 2010-03-25 2011-10-13 Panasonic Corp Inverter device and vacuum cleaner using the same for driver of fan motor
WO2020090071A1 (en) * 2018-10-31 2020-05-07 日立ジョンソンコントロールズ空調株式会社 Electric power converter and air conditioner provided with same
JPWO2020090071A1 (en) * 2018-10-31 2021-10-07 日立ジョンソンコントロールズ空調株式会社 Power converter and air conditioner equipped with it
JP7116438B2 (en) 2018-10-31 2022-08-10 日立ジョンソンコントロールズ空調株式会社 POWER CONVERTER AND AIR CONDITIONER INCLUDING THE SAME
TWI810255B (en) * 2018-10-31 2023-08-01 日商日立江森自控空調有限公司 Power conversion device and air conditioner equipped with it

Also Published As

Publication number Publication date
JP4300209B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4942967B2 (en) Inverter device and refrigeration cycle device
US7321210B2 (en) Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
JP2015065742A (en) Inverter controller and control method for inverter device
KR101853600B1 (en) Charger common inverter
US20160079904A1 (en) Drive unit employing gallium nitride switches
JP4300209B2 (en) Inverter device
WO2016103328A1 (en) Switching device, motor drive device, power conversion device, and switching method
KR101012781B1 (en) A circuit for use with switched reluctance machines
JP7142609B2 (en) power converter
JP2011062039A (en) Inverter driving apparatus and refrigeration air conditioner
JP2008048503A (en) Inverter module
WO2015107867A1 (en) Motor drive device
JP6303129B2 (en) Motor drive device
JPWO2017145339A1 (en) DC power supply and refrigeration cycle equipment
JP2007209166A (en) Inverter, and refrigeration cycle device
JP2003219687A (en) Motor drive unit, blower, compressor, and refrigerating air conditioner
JP5101001B2 (en) Inverter device
JP6045203B2 (en) Motor drive device
JP2013118754A (en) Inverter device and air conditioner equipped with the same
JP2007163012A (en) Outdoor unit of refrigerating cycle device
JP2003324986A (en) Control method for three-phase brushless dc motor
JP2018121475A (en) Power conversion device
JP6518506B2 (en) POWER SUPPLY DEVICE AND AIR CONDITIONER USING SAME
JP7338071B2 (en) motor drive
JP2006158001A (en) Inverter device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Ref document number: 4300209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees