JP2007127228A - Cylindrical bearing bush and its manufacturing method - Google Patents

Cylindrical bearing bush and its manufacturing method Download PDF

Info

Publication number
JP2007127228A
JP2007127228A JP2005321603A JP2005321603A JP2007127228A JP 2007127228 A JP2007127228 A JP 2007127228A JP 2005321603 A JP2005321603 A JP 2005321603A JP 2005321603 A JP2005321603 A JP 2005321603A JP 2007127228 A JP2007127228 A JP 2007127228A
Authority
JP
Japan
Prior art keywords
diameter
bearing bush
small
cylindrical
cylindrical bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005321603A
Other languages
Japanese (ja)
Inventor
Masato Ono
正人 大野
Takashi Nakamaru
隆 中丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2005321603A priority Critical patent/JP2007127228A/en
Publication of JP2007127228A publication Critical patent/JP2007127228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical bearing bush which keeps butted end faces in an intimate contact with each other and has an extremely high roundness on the inner peripheral surface without applying machining such as cutting and grinding onto the inner peripheral surface, and which is ideal for applications requiring a high dimensional precision, in particular, such as a motor bearing, a linear solenoid valve and a compressor, and also to provide its manufacturing method. <P>SOLUTION: In a cylindrical bearing bush 1, a multiple-layer material 4 consisting of a plate-like back metal 2 made of nonferrous metals and a lubrication-coated layer 3 made of a synthetic resin composition which is coated and formed integrally on the surface of the back metal 2 is cylindrically wound with the lubrication-coated layer 3 faced inward, keeps butted end faces 5 in an intimate contact with each other, and is formed with a roundness of the inner peripheral surface between 3 and 15 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内周面の真円度が極めて高い円筒軸受ブッシュ及びその製造方法に関する。   The present invention relates to a cylindrical bearing bush having an extremely high roundness on an inner peripheral surface and a method for manufacturing the same.

特公昭53−36856号公報Japanese Patent Publication No.53-36856 特開平5−99230号公報JP-A-5-99230 特公昭61−11700号公報Japanese Patent Publication No. 61-11700

板状の金属製裏金と該裏金の表面に一体に被着形成された合成樹脂製のすべり層とからなる複層材(特許文献1参照)を、該すべり層を内側にして円筒状に捲回して形成された円筒軸受ブッシュ、所謂巻きブッシュは各種機械装置等における軸を円滑に支承する支持手段として広く使用されている。   A multi-layered material (see Patent Document 1) comprising a plate-shaped metal back metal and a synthetic resin sliding layer integrally formed on the surface of the back metal is formed into a cylindrical shape with the sliding layer inside. Cylindrical bearing bushes formed by rotation, so-called wound bushes, are widely used as support means for smoothly supporting shafts in various mechanical devices.

この円筒軸受ブッシュは複層材を円筒状に捲回する曲げ加工によって形成されるため、円筒軸受ブッシュの両端の突き合わせ端面間にスプリングバック等による比較的大きな隙間、例えば1.5mm程度の隙間の発生が余儀なくされる。この円筒軸受ブッシュのハウジングとしての軸支持体の孔への固定を圧入によって行う場合には、軸支持体の孔の寸法誤差(公差)と円筒軸受ブッシュの肉厚の寸法誤差等の累積により、圧入後、円筒軸受ブッシュの内径寸法が大きくばらつくこととなり、高い内径寸法精度をもって円筒軸受ブッシュを孔に固定することが困難となる場合がある。   Since this cylindrical bearing bush is formed by bending a multi-layered material into a cylindrical shape, a relatively large gap due to a spring back or the like, for example, a gap of about 1.5 mm is provided between the butt end faces of both ends of the cylindrical bearing bush. Occurrence is forced. When fixing the shaft support as a housing of the cylindrical bearing bush to the hole by press-fitting, due to the accumulation of the dimensional error (tolerance) of the hole of the shaft support and the thickness error of the cylindrical bearing bush, After the press-fitting, the inner diameter of the cylindrical bearing bush varies greatly, and it may be difficult to fix the cylindrical bearing bush in the hole with high inner diameter dimensional accuracy.

円筒軸受ブッシュの両端の突き合わせ端面間に生じた隙間を減少させるべく、成形時に生じた合成樹脂層の残留応力を熱処理と冷却処理とを施して除去する方法が提案されている(特許文献2参照)。しかしながら、この方法では円筒軸受ブッシュの突き合わせ端面間の隙間を無くすことはできず、高い内径寸法精度をもって円筒軸受ブッシュを軸支持体の孔に固定することが困難となる。   In order to reduce the gap generated between the butt end faces of the both ends of the cylindrical bearing bush, there has been proposed a method of removing the residual stress of the synthetic resin layer generated at the time of molding by heat treatment and cooling treatment (see Patent Document 2). ). However, this method cannot eliminate the gap between the butted end faces of the cylindrical bearing bush, and it is difficult to fix the cylindrical bearing bush to the hole of the shaft support with high inner diameter dimensional accuracy.

また、円筒軸受ブッシュの寸法精度を高める方法として、円筒軸受ブッシュをホルダの孔内に圧入すると共に該軸受ブッシュ内に基準となる軸コアを嵌合させ、さらにホルダを軸方向に圧縮してホルダの変形を介して円筒軸受ブッシュに内径方向の変形を与え、もって軸受ブッシュの内周面を軸コアになじませることにより、円筒軸受ブッシュの内径の所要の寸法精度を得るようにした方法が提案されている(特許文献3参照)。   Further, as a method for improving the dimensional accuracy of the cylindrical bearing bush, the cylindrical bearing bush is press-fitted into the hole of the holder, a reference shaft core is fitted into the bearing bush, and the holder is compressed in the axial direction. Proposed a method to obtain the required dimensional accuracy of the inner diameter of the cylindrical bearing bush by giving the inner diameter of the cylindrical bush to the inner diameter of the shaft through the deformation of the bearing and adapting the inner peripheral surface of the bearing bush to the shaft core. (See Patent Document 3).

この方法は円筒軸受ブッシュの寸法精度を高める方法としては有効であるが、それでも円筒軸受を構成する複層材のうち、板状裏金のスプリングバックを消滅させることはできず、やはり円筒軸受ブッシュを型から取り出した後には、円筒軸受ブッシュの両端の突き合わせ端面間に隙間を生じ、型内での寸法精度をそのまま維持させることはできない。とくに、曲率半径が大きい、例えば内径10mm以上の円筒軸受ブッシュにおいては顕著である。   Although this method is effective as a method for increasing the dimensional accuracy of the cylindrical bearing bush, the spring back of the plate-shaped backing metal cannot be eliminated from the multilayer material constituting the cylindrical bearing. After removal from the mold, a gap is formed between the end faces of the both ends of the cylindrical bearing bush, and the dimensional accuracy within the mold cannot be maintained as it is. This is particularly remarkable in a cylindrical bearing bush having a large curvature radius, for example, an inner diameter of 10 mm or more.

本発明者らは、上記複層材における裏金に着目し、この裏金の材料として非鉄金属、具体的には無酸素銅及びタフピッチ銅からなる純銅、リン青銅及び黄銅からなる銅合金、アルミニウム又はアルミニウム合金を使用することにより、曲げ加工を容易に行い得、アプセット加工による寸法精度の向上が図られることを確認した。   The inventors pay attention to the back metal in the multilayer material, and as the material of the back metal, non-ferrous metal, specifically copper alloy made of oxygen-free copper and tough pitch copper, copper alloy made of phosphor bronze and brass, aluminum or aluminum It was confirmed that bending can be easily performed by using an alloy, and dimensional accuracy can be improved by upsetting.

本発明は、前記知見に基づきなされたものであって、その目的とするところは、突き合わせ端面が互いに密に接触せしめられており、内周面に切削、研削等の機械加工を施すことなく極めて高い内周面の真円度を有する円筒軸受ブッシュであって、とくにモータ軸受、リニアソレノイドバルブ、コンプレッサー等の高い寸法精度が求められる用途において好適な円筒軸受ブッシュを提供することにある。   The present invention has been made on the basis of the above knowledge, and the purpose thereof is that the butt end faces are brought into close contact with each other, and the inner peripheral surface is extremely free from machining such as cutting and grinding. An object of the present invention is to provide a cylindrical bearing bush having a high roundness of an inner peripheral surface, and particularly suitable for an application requiring high dimensional accuracy such as a motor bearing, a linear solenoid valve, and a compressor.

本発明の他の目的とするところは、突き合わせ端面が密に接触し、内径面に切削、研削等の機械加工を施すことなく内周面の真円度が極めて高い円筒軸受ブッシュの製造方法を提供することにある。   Another object of the present invention is to provide a method of manufacturing a cylindrical bearing bush in which the butted end surfaces are in close contact and the inner peripheral surface has a very high roundness without machining such as cutting and grinding. It is to provide.

本発明の円筒軸受ブッシュは、非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備しており、該すべり層を内側にして円筒状に捲回されていると共に突き合わせ端面が互いに密に接触せしめられており、内周面の真円度が3〜15μmをもって形成されている。   The cylindrical bearing bush of the present invention comprises a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition formed integrally on the surface of the backing metal, with the sliding layer on the inside. The butt end faces are brought into close contact with each other and the roundness of the inner peripheral surface is 3 to 15 μm.

本発明の円筒軸受ブッシュによれば、内周面の真円度が3〜15μmと高められているので、内周面に切削、研削等の機械加工を施す必要がない。   According to the cylindrical bearing bush of the present invention, since the roundness of the inner peripheral surface is increased to 3 to 15 μm, it is not necessary to perform machining such as cutting and grinding on the inner peripheral surface.

本発明の円筒軸受ブッシュの第一の製造方法は、非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材を、該すべり層を内側にして円筒状に捲回し、突き合わせ端面に隙間を有する略円筒軸受ブッシュを形成する工程と、大径筒状内壁面によって規定される大径円孔とこの大径円孔に軸方向に隣接して配されていると共に該大径円孔よりも小径の小径円孔とを具備しており、該大径筒状内壁面と小径円孔を規定する小径筒状内壁面との間には、大径筒状内壁面から径方向であって内方に延びて小径筒状内壁面で終端する環状面が介在してなる金型を準備する工程と、略円筒軸受ブッシュの最終の内径寸法を規定する径をもった小径筒状外面とこの小径筒状外面に軸方向に隣接して配されていると共に該小径筒状外面よりも大径の大径筒状外面とを具備しており、小径筒状外面と大径筒状外面との間には、小径筒状外面から径方向であって外方に延びて大径筒状外面で終端する環状面が介在してなる芯金を準備する工程と、該芯金の小径筒状外面に略円筒軸受ブッシュを嵌着する工程と、該小径筒状外面に略円筒軸受ブッシュを嵌着した芯金の小径筒状外面の一部を金型の小径の小径円孔に、芯金の大径筒状外面を金型の大径円孔に夫々配し、該芯金に所定の圧力を掛けて小径筒状外面の残部並びに金型及び芯金の夫々の環状面によって略円筒軸受ブッシュにアプセット加工を施す工程と、アプセット加工後、突き合わせ端面が互いに密に接触した円筒軸受ブッシュを金型から取り出し、内周面の真円度が3〜15μmをもって形成された円筒軸受ブッシュを得る工程とを具備している。   The first manufacturing method of the cylindrical bearing bush of the present invention is a multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally deposited on the surface of the backing metal. Are wound in a cylindrical shape with the sliding layer inside, and a substantially cylindrical bearing bush having a gap at the butt end face, a large diameter circular hole defined by the large diameter cylindrical inner wall surface and the large diameter circle A small-diameter cylindrical hole that is arranged adjacent to the hole in the axial direction and has a small-diameter circular hole smaller in diameter than the large-diameter circular hole, and that defines the large-diameter cylindrical inner wall surface and the small-diameter circular hole A step of preparing a mold having an annular surface interposed between the wall surface and extending radially inward from the large-diameter cylindrical inner wall surface and terminating at the small-diameter cylindrical inner wall surface; and a substantially cylindrical bearing A small-diameter cylindrical outer surface with a diameter that defines the final inner diameter of the bush and an axially adjacent to this small-diameter cylindrical outer surface And a large-diameter cylindrical outer surface having a larger diameter than the small-diameter cylindrical outer surface, and a small-diameter cylindrical outer surface between the small-diameter cylindrical outer surface and the large-diameter cylindrical outer surface. A step of preparing a mandrel comprising an annular surface extending radially outward and terminating at a large-diameter cylindrical outer surface; and fitting a substantially cylindrical bearing bush on the small-diameter cylindrical outer surface of the mandrel And a part of the small-diameter cylindrical outer surface of the cored bar fitted with a substantially cylindrical bearing bush on the small-diameter cylindrical outer surface to the small-diameter small-diameter hole of the mold, and the large-diameter cylindrical outer surface of the cored bar to the mold A step of upsetting the substantially cylindrical bearing bush by placing each of the large-diameter circular holes with a predetermined pressure on the core metal and applying the predetermined pressure to the remaining portion of the small-diameter cylindrical outer surface and the annular surfaces of the mold and the core metal; After processing, the cylindrical bearing bush whose butted end faces are in close contact with each other is taken out of the mold, and the roundness of the inner peripheral surface is 3 to 15 μm. and a cylindrical bearing bush formed with m.

本発明の円筒軸受ブッシュの第一の製造方法によれば、略円筒軸受ブッシュにアプセット加工を施すことにより、略円筒軸受ブッシュはその内、外周面が芯金の小径筒状外面及び金型の大径筒状内壁面に倣って塑性流動し、突き合わせ端面が互いに密に接触せしめられる。その結果、円筒軸受ブッシュを金型から取り出した後の該円筒軸受ブッシュの内周面の真円度が3〜15μmに高められる。   According to the first manufacturing method of the cylindrical bearing bush of the present invention, by performing upsetting on the substantially cylindrical bearing bush, the substantially cylindrical bearing bush has a small-diameter cylindrical outer surface whose outer peripheral surface is a core metal and a mold. The plastic flow follows the large-diameter cylindrical inner wall surface, and the butt end surfaces are brought into close contact with each other. As a result, the roundness of the inner peripheral surface of the cylindrical bearing bush after the cylindrical bearing bush is removed from the mold is increased to 3 to 15 μm.

本発明の円筒軸受ブッシュの第一の製造方法において、大径筒状内壁面及び芯金の小径筒状外面の残部並びに金型及び芯金の夫々の環状面によって形成される環状空間の容積を、当該容積が略円筒軸受ブッシュの体積の近傍になるまで減少させてアプセット加工を行うとよい。   In the first manufacturing method of the cylindrical bearing bush of the present invention, the volume of the annular space formed by the large-diameter cylindrical inner wall surface and the remainder of the small-diameter cylindrical outer surface of the core metal and the respective annular surfaces of the mold and the core metal The upsetting process may be performed by reducing the volume until the volume is substantially close to the volume of the cylindrical bearing bush.

本発明の円筒軸受ブッシュの第二の製造方法は、非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材を、該すべり層を内側にして円筒状に捲回し、突き合わせ端面に隙間を有する略円筒軸受ブッシュを形成する工程と、略円筒軸受ブッシュの最終の外径寸法を規定する径をもった筒状内壁面によって規定される円孔を備えた金型本体と一端側に凹所を有すると共に該凹所の開口面を囲繞する環状端面及び金型本体の筒状内壁面に嵌合される筒状外面を有した受金とを具備した金型を準備する工程と、略円筒軸受ブッシュの最終の内径寸法を規定する径を有すると共に前記受金の凹所に嵌入される小径筒状外面とこの小径筒状外面に軸方向に隣接して配されていると共に該小径筒状外面よりも大径の大径筒状外面とを具備しており、小径筒状外面と大径筒状外面との間には、小径筒状外面から径方向であって外方に延びて大径筒状外面で終端する環状面が介在してなる芯金を準備する工程と、該芯金の小径筒状外面に略円筒軸受ブッシュを嵌着する工程と、該受金を金型本体の円孔の一方の開口端から円孔内に、該小径筒状外面に略円筒軸受ブッシュを嵌着した芯金の小径筒状外面の一部を金型本体の円孔の他方の開口端を介して受金の凹所に夫々配し、該受金及び芯金に所定の圧力を掛けて小径筒状外面の残部、受金の環状端面及び芯金の環状面によって略円筒軸受ブッシュにアプセット加工を施す工程と、アプセット加工後、突き合わせ端面が互いに密に接触した円筒軸受ブッシュを金型から取り出し、内周面の真円度が3〜15μmをもって形成された円筒軸受ブッシュを得る工程とを具備している。   The second manufacturing method of the cylindrical bearing bush of the present invention is a multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal. And a cylindrical shape having a diameter that defines a final outer diameter of the substantially cylindrical bearing bush, and a step of forming a substantially cylindrical bearing bush having a gap at the butt end surface. A mold body having a circular hole defined by the inner wall surface, a cylindrical end having a recess on one end side and surrounding an opening surface of the recess, and a cylindrical inner wall surface of the mold body A step of preparing a mold having a receiver having an outer surface, a small-diameter cylindrical outer surface having a diameter that defines a final inner diameter of the substantially cylindrical bearing bush, and fitted into a recess of the receiver. It is arranged adjacent to the small cylindrical outer surface in the axial direction and the A large-diameter cylindrical outer surface having a diameter larger than that of the cylindrical outer surface, and between the small-diameter cylindrical outer surface and the large-diameter cylindrical outer surface is radially outward from the small-diameter cylindrical outer surface. A step of preparing a mandrel having an annular surface extending and terminating at a large-diameter cylindrical outer surface; a step of fitting a substantially cylindrical bearing bush on the small-diameter cylindrical outer surface of the mandrel; and A part of the small-diameter cylindrical outer surface of the core metal, in which a substantially cylindrical bearing bush is fitted to the small-diameter cylindrical outer surface, is inserted into the circular hole from one open end of the circular hole of the mold main body. The cylindrical bearing is arranged in the recess of the receiving metal through the open end, and a predetermined pressure is applied to the receiving metal and the cored bar so that the remaining portion of the small-diameter cylindrical outer surface, the annular end surface of the receiving metal and the annular surface of the cored bar The process of upsetting the bush, and after the upsetting, take out the cylindrical bearing bush with the butted end surfaces in close contact with each other from the mold, Roundness is provided with a step of obtaining a cylindrical bearing bushes which are formed with 3 to 15 [mu] m.

本発明の円筒軸受ブッシュの第二の製造方法は、該受金及び芯金に所定の圧力を掛けて小径筒状外面の残部、受金の環状端面及び芯金の環状面によって略円筒軸受ブッシュにアプセット加工を施すものである。   The second manufacturing method of the cylindrical bearing bush according to the present invention is such that a predetermined pressure is applied to the metal receiver and the metal core to form a substantially cylindrical bearing bush by the remaining portion of the small-diameter cylindrical outer surface, the annular end surface of the metal receiver and the annular surface of the metal core. Is subject to upset processing.

本発明の円筒軸受ブッシュの第二の製造方法によれば、略円筒軸受ブッシュにアプセット加工を施すことにより、略円筒軸受ブッシュはその内、外周面が芯金の小径筒状外面及び金型本体の筒状内壁面に倣って塑性流動し、突き合わせ端面が互いに密に接触せしめられる。その結果、円筒軸受ブッシュを金型から取り出した後の該円筒軸受ブッシュの内周面の真円度が3〜15μmに高められる。   According to the second method of manufacturing the cylindrical bearing bush of the present invention, the substantially cylindrical bearing bush is upset, so that the substantially cylindrical bearing bush includes a small-diameter cylindrical outer surface whose outer peripheral surface is a metal core and a die body. Plastic flow following the cylindrical inner wall surface, and the butted end surfaces are brought into close contact with each other. As a result, the roundness of the inner peripheral surface of the cylindrical bearing bush after the cylindrical bearing bush is removed from the mold is increased to 3 to 15 μm.

本発明の円筒軸受ブッシュの第二の製造方法において、筒状内壁面、芯金の小径筒状外面の残部、受金の環状端面及び芯金の環状面によって形成される環状空間の容積を、当該容積が略円筒軸受ブッシュの体積の近傍になるまで減少させてアプセット加工を行うとよい。   In the second manufacturing method of the cylindrical bearing bush of the present invention, the volume of the annular space formed by the cylindrical inner wall surface, the remaining portion of the small-diameter cylindrical outer surface of the cored bar, the annular end surface of the receiver and the annular surface of the cored bar, It is preferable to perform the upsetting process by reducing the volume until it becomes close to the volume of the substantially cylindrical bearing bush.

上記の第一及び第二の製造方法において、近傍とは、環状空間の容積と略円筒軸受ブッシュの体積とが限りなく等しい場合を含むが、アプセット加工により略円筒軸受ブッシュが塑性流動されて実質的に環状空間に密に円筒軸受ブッシュが配される程度をいう。   In the first and second manufacturing methods described above, the vicinity includes a case where the volume of the annular space is substantially equal to the volume of the substantially cylindrical bearing bush, but the substantially cylindrical bearing bush is substantially plastically flowed by the upset process. In other words, the degree to which cylindrical bearing bushes are densely arranged in the annular space.

本発明の円筒軸受ブッシュの第一及び第二の製造方法において、アプセット加工は、好ましくは0.1KN/mmないし2.0KN/mm、より好ましくは0.5KN/mmないし1.2KN/mmの荷重を加えて行う。 In the first and second manufacturing methods of the cylindrical bearing bush of the present invention, the upset process is preferably 0.1 KN / mm 2 to 2.0 KN / mm 2 , more preferably 0.5 KN / mm 2 to 1.2 KN. / Mm 2 is applied.

本発明の円筒軸受ブッシュの第三の製造方法は、非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材を、該すべり層を内側にして円筒状に捲回し、突き合わせ端面に隙間を有する略円筒軸受ブッシュを形成する工程と、略円筒軸受ブッシュの最終の外径寸法を規定する径をもった筒状内壁面によって規定される円孔を具備する金型を準備する工程と、略円筒軸受ブッシュの最終の内径寸法を規定する径をもった小径円筒外面とこの小径円筒外面に軸方向に隣接して配されていると共に該小径円筒外面の径よりも大きい径をもった大径筒状外面とを具備しており、小径円筒外面と大径筒状外面との間には、小径円筒外面から径方向であって外方に延びて大径筒状外面で終端する環状面が介在してなるパンチを準備する工程と、該略円筒軸受ブッシュを金型の円孔内に圧入嵌合すると共に、該略円筒軸受ブッシュを該金型の筒状内壁面とパンチの小径円筒外面とで挟持しながら該パンチの環状面で押圧して円孔内を移動させるサイジング加工を施す工程と、サイジング加工後、突き合わせ端面が互いに密に接触した円筒軸受ブッシュを金型から取り出し、内周面の真円度が3〜15μmをもって形成された円筒軸受ブッシュを得る工程とを具備している。   The third manufacturing method of the cylindrical bearing bush of the present invention is a multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal. And a cylindrical shape having a diameter that defines a final outer diameter of the substantially cylindrical bearing bush, and a step of forming a substantially cylindrical bearing bush having a gap at the butt end surface. A step of preparing a mold having a circular hole defined by the inner wall surface, a small-diameter cylindrical outer surface having a diameter that defines the final inner diameter of the substantially cylindrical bearing bush, and an axially adjacent to the small-diameter cylindrical outer surface. And a large-diameter cylindrical outer surface having a diameter larger than the diameter of the small-diameter cylindrical outer surface, and a diameter from the small-diameter cylindrical outer surface between the small-diameter cylindrical outer surface and the large-diameter cylindrical outer surface. Direction and extends outward and terminates in a large-diameter cylindrical outer surface Preparing a punch having an annular surface interposed therein, press fitting the substantially cylindrical bearing bush into a circular hole of the mold, and punching the substantially cylindrical bearing bush with the cylindrical inner wall surface of the mold. A sizing process in which the punch is pressed by an annular surface of the punch while being held between the outer surfaces of the small-diameter cylinder and moved inside the circular hole, and after the sizing process, a cylindrical bearing bush whose butted end surfaces are in close contact with each other is removed from the mold. And a step of obtaining a cylindrical bearing bush formed with a roundness of 3 to 15 μm on the inner peripheral surface.

本発明の円筒軸受ブッシュの第四の製造方法は、非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材を、該すべり層を内側にして円筒状に捲回し、突き合わせ端面に隙間を有する略円筒軸受ブッシュを形成する工程と、大径筒状内壁面によって規定される大径円孔とこの大径円孔に連続していると共に軸方向において大径円孔から離れるに連れて徐々に縮径した截頭円錐面によって規定されるテーパ孔と大径円孔よりも小径であって略円筒軸受ブッシュの最終の外径寸法を規定する径をもった筒状内壁面によって規定される小径円孔とを具備する金型を準備する工程と、略円筒軸受ブッシュの最終の内径寸法を規定する径をもった小径円筒外面とこの小径円筒外面に軸方向に隣接して配されていると共に該小径円筒外面の径よりも大きい径をもった大径筒状外面とを具備しており、小径円筒外面と大径筒状外面との間には、小径円筒外面から径方向であって外方に延びて大径筒状外面で終端する環状面が介在してなるパンチを準備する工程と、該略円筒軸受ブッシュを金型の大径円孔内に圧入嵌合すると共に、該略円筒軸受ブッシュを該金型の大径筒状内壁面とパンチの小径円筒外面とで挟持しながら該パンチの環状面で押圧して該金型のテーパ孔及び小径円孔内を順次移動させるサイジング加工を施す工程と、サイジング加工後、突き合わせ端面が互いに密に接触した円筒軸受ブッシュを金型から取り出し、内周面の真円度が3〜15μmをもって形成された円筒軸受ブッシュを得る工程とを具備している。   A fourth manufacturing method of the cylindrical bearing bush of the present invention is a multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal. Are wound in a cylindrical shape with the sliding layer inside, and a substantially cylindrical bearing bush having a gap at the butt end face, a large diameter circular hole defined by the large diameter cylindrical inner wall surface and the large diameter circle A tapered bore defined by a frustoconical surface that is continuous with the bore and gradually decreases in diameter in the axial direction, and is smaller in diameter than the large-diameter bore and has a substantially cylindrical bearing bushing. A step of preparing a mold having a small-diameter circular hole defined by a cylindrical inner wall surface having a diameter defining a final outer diameter dimension, and a diameter defining a final inner diameter dimension of a substantially cylindrical bearing bush. A small cylindrical outer surface and an axial direction to the small cylindrical outer surface And a large-diameter cylindrical outer surface having a diameter larger than the diameter of the small-diameter cylindrical outer surface, and a small diameter between the small-diameter cylindrical outer surface and the large-diameter cylindrical outer surface. Preparing a punch having an annular surface extending radially outward from the outer surface of the cylinder and terminating at the outer surface of the large-diameter cylindrical surface; and inserting the substantially cylindrical bearing bush into the large-diameter circular hole of the mold. While press-fitting and pressing the substantially cylindrical bearing bush between the large-diameter cylindrical inner wall surface of the mold and the small-diameter cylindrical outer surface of the punch and pressing the annular surface of the punch, the taper hole and the small diameter of the mold A sizing process for sequentially moving the inside of the circular hole, and after the sizing process, the cylindrical bearing bush whose butt end faces were in close contact with each other was taken out from the mold, and the roundness of the inner peripheral surface was formed to be 3 to 15 μm. Obtaining a cylindrical bearing bush.

本発明の円筒軸受ブッシュの第三及び第四の製造方法によれば、略円筒軸受ブッシュにサイジング加工を施すことにより、略円筒軸受ブッシュはその内、外周面がパンチの小径円筒外面及び金型の筒状内壁面に倣って塑性変形し、突き合わせ端面が互いに密に接触せしめられる結果、円筒軸受ブッシュを金型から取り出した後の該円筒軸受ブッシュの内周面の真円度が3〜15μmに高められる。   According to the third and fourth manufacturing methods of the cylindrical bearing bush of the present invention, by applying sizing to the substantially cylindrical bearing bush, the substantially cylindrical bearing bush has a small-diameter cylindrical outer surface and a die whose outer peripheral surface is a punch. As a result of plastic deformation following the cylindrical inner wall surface and the butted end surfaces being brought into close contact with each other, the roundness of the inner peripheral surface of the cylindrical bearing bush after removing the cylindrical bearing bush from the mold is 3 to 15 μm. Enhanced.

また、本発明の円筒軸受ブッシュの第三及び第四の製造方法によって得られた円筒軸受ブッシュは、内周面の真円度が3〜15μmと高められているので、内周面に切削、研削等の機械加工を施す必要がない。   Moreover, since the roundness of the inner peripheral surface of the cylindrical bearing bush obtained by the third and fourth manufacturing methods of the cylindrical bearing bush of the present invention is increased to 3 to 15 μm, the inner peripheral surface is cut, There is no need for machining such as grinding.

本発明の円筒軸受ブッシュの第四の製造方法においては、金型の大径筒状内壁面に対する截頭円錐面の傾斜角度は、好ましくは0.5〜5°である。   In the fourth manufacturing method of the cylindrical bearing bush of the present invention, the inclination angle of the truncated conical surface with respect to the large-diameter cylindrical inner wall surface of the mold is preferably 0.5 to 5 °.

本発明においては、非鉄金属からなる板状の裏金は、日本工業規格(JIS)のJISH3100に規格されている無酸素銅(C1020P、C1020R)、タフピッチ銅(C1100P、C1100R)、りん脱酸銅(C1201P、C1201R、C1220P、C1220R、C1221P、C1221R)、丹銅(C2100P、C2100R、C2200P、C2200R、C2300P、C2300R、C2400P、C2400R)、黄銅(C2600P、C2600R、C2680P、C2680R、C2720P、C2720R、C2801P、C2801R)、快削黄銅(C3560P、C3560R、C3561P、C3561R、3710P、C3710R、3713P、C3713R)、白銅(C7060P、C7150P)、JISH3110に規格されているリン青銅(C5111P、C5111R、C5102P、C5102R、C5191P、C5191R、C5212P、C5212R)、洋白(C7351P、C7351R、C7451P、C7451R、C7521P、C7521R、C7541P、C7541R)などの銅及び銅合金の板及び条、並びにJISH4000に規格されているA1085P、A1080P、A1070P、A1050P、A1100P、A1200Pなどの純アルミニウム、A3003P、A3203P、A3004P、A3104P、A3005P、A3105Pなどのアルミニウム−マンガン系合金、A5005P、A5052P、A5652P、A5154P、A5254P、A5454P、A5082P、A5182P、A5083P、A5086Pなどのアルミニウム−マグネシウム系合金、A6061Pなどのアルミニウム−マグネシウム−シリコン系合金などのアルミニウム及びアルミニウム合金の板及び条のうちのいずれかから選択されて使用される。   In the present invention, the plate-like backing metal made of non-ferrous metal is oxygen free copper (C1020P, C1020R), tough pitch copper (C1100P, C1100R), phosphorous deoxidized copper (C1020P), which is standardized by JIS 3100 of Japanese Industrial Standard (JIS). C1201P, C1201R, C1220P, C1220R, C1221P, C1221R), Danshoku (C2100P, C2100R, C2200P, C2200R, C2300P, C2300R, C2400P, C2400R), Brass (C2600P, C2600R, C2680P, C2680P, C2680P, C2680P, C2680P, C2680P, C2680P, C2680P ), Free-cutting brass (C3560P, C3560R, C3561P, C3561R, 3710P, C3710R, 3713P, C3713R), white copper (C7060P, 7150P), phosphor bronze (C5111P, C5111R, C5102P, C5102R, C5191P, C5191R, C5212P, C5212R), white (C7351P, C7351R, C7451P, C7451R, C7521P, C7521P, C7521P, C7521P, 7541P, C7521P, C7521P, etc.) Copper and copper alloy plates and strips, and aluminum-manganese alloys such as A1085P, A1080P, A1070P, A1050P, A1100P, A1200P and other pure aluminum, A3003P, A3203P, A3004P, A3104P, A3005P, A3105P, etc. A5005P, A5052P, A5652P, A5154P, A5254P, A5454P, A 082P, A5182P, A5083P, aluminum, such as A5086P - magnesium alloy, aluminum, such as A6061P - magnesium - is selected and used from any of the plates, strips and the aluminum and aluminum alloys such as silicon-based alloy.

合成樹脂組成物は、エポキシ樹脂、ポリイミド樹脂及びポリアミドイミド樹脂から選択される熱硬化性合成樹脂を主成分とし、これにグラファイト、二硫化モリブデン、四ふっ化エチレン樹脂、窒化ホウ素及びメラミンシアヌレートから選択される少なくとも一種の潤滑添加剤を2〜60vol%の割合で含有されているものからなっているのが好適である。   The synthetic resin composition is mainly composed of a thermosetting synthetic resin selected from an epoxy resin, a polyimide resin and a polyamide-imide resin, and includes graphite, molybdenum disulfide, ethylene tetrafluoride resin, boron nitride and melamine cyanurate. It is preferred that it comprises at least one selected lubricating additive in a proportion of 2 to 60 vol%.

本発明によれば、非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材からなる突き合わせ端面が互いに密に接触せしめられた円筒軸受ブッシュであって、内周面に切削、研削等の機械加工を施すことなく、内周面の真円度が3〜15μmと寸法精度の高い円筒軸受ブッシュ及びその製造方法を提供することができる。   According to the present invention, the butt end faces made of a multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal are closely packed with each other. Cylindrical bearing bush that is brought into contact with the inner peripheral surface without machining, such as cutting and grinding, and whose circularity of the inner peripheral surface is 3 to 15 μm and has high dimensional accuracy, and a method for manufacturing the same Can be provided.

次に、本発明及びその実施の形態を、図に示す好ましい実施例に基づいて更に詳細に説明する。なお、本発明はこれらの実施例に何等限定されないのである。   Next, the present invention and its embodiments will be described in more detail based on preferred embodiments shown in the drawings. In addition, this invention is not limited to these Examples at all.

図1に示す本発明の円筒軸受ブッシュ1は、非鉄金属からなる板状の裏金2と該裏金2の表面に一体に被着形成された合成樹脂組成物からなるすべり層としての潤滑被覆層3とからなる複層材4(図2参照)が該潤滑被覆層3を内側にして円筒状に捲回されていると共に突き合わせ端面5が互いに密に接触せしめられており、内周面の真円度が3〜15μmをもって形成されている。   A cylindrical bearing bush 1 of the present invention shown in FIG. 1 includes a plate-like backing metal 2 made of a non-ferrous metal and a lubricating coating layer 3 as a sliding layer made of a synthetic resin composition formed integrally on the surface of the backing metal 2. 2 (see FIG. 2) is wound in a cylindrical shape with the lubricating coating layer 3 inside, and the butted end surfaces 5 are brought into close contact with each other, so that a perfect circle on the inner peripheral surface is formed. The degree is 3 to 15 μm.

次に、上述した円筒軸受ブッシュ1の製造方法について説明する。   Next, the manufacturing method of the cylindrical bearing bush 1 mentioned above is demonstrated.

無酸素銅(C1020R)、タフピッチ銅(C1100R)、黄銅(C2600R)、リン青銅(C5111R)、アルミニウム(A1080P)及びアルミニウム−マグネシウム系合金(A5052P)の夫々からなる厚さ0.8mmの板状の裏金2を準備し、これらの裏金2の表面にショットブラストによる粗面化処理を施した後、当該粗面化された表面に脱脂処理を施した。   A plate-like 0.8 mm thick plate made of oxygen-free copper (C1020R), tough pitch copper (C1100R), brass (C2600R), phosphor bronze (C5111R), aluminum (A1080P) and aluminum-magnesium alloy (A5052P) Back metal 2 was prepared, and the surface of these back metal 2 was subjected to a roughening treatment by shot blasting, and then the roughened surface was subjected to a degreasing treatment.

熱硬化性合成樹脂としてポリアミドイミド樹脂を選択し、ポリアミドイミド樹脂(日立化成工業社製「HPC−5000−30(商品名)」)100重量部及び潤滑添加剤としてポリテトラフルオロエチレン樹脂(PTFE:ダイキン工業社製「ルブロンL−5(商品名)」10重量部を、N−メチル−ピロリドン、トルエン及びキシレンの混合溶剤に均一に分散させ、固形分濃度が30重量%の被覆材(コーティング材)を作製した。   A polyamide-imide resin is selected as a thermosetting synthetic resin, 100 parts by weight of a polyamide-imide resin (“HPC-5000-30 (trade name)” manufactured by Hitachi Chemical Co., Ltd.) and a polytetrafluoroethylene resin (PTFE: PTFE) as a lubricant additive. 10 parts by weight of “Lublon L-5 (trade name)” manufactured by Daikin Industries, Ltd. is uniformly dispersed in a mixed solvent of N-methyl-pyrrolidone, toluene and xylene, and a coating material (coating material) having a solid content concentration of 30% by weight ) Was produced.

この被覆材を前記ショットブラスト及び脱脂処理を施した無酸素銅、タフピッチ銅、黄銅、リン青銅、アルミニウム及びアルミニウム−マグネシウム系合金の夫々からなる裏金2の表面に吹付け、80℃の温度で10分間乾燥させた後、160℃の温度で30分間保持し、さらに270℃の温度で30分間加熱焼付け処理を行い、その後、自然冷却して被膜厚さ30μmの潤滑被覆層3を形成し、これらを複層材4とした(図2参照)。   This coating material is sprayed on the surface of the back metal 2 made of oxygen-free copper, tough pitch copper, brass, phosphor bronze, aluminum and aluminum-magnesium alloy, which have been subjected to the shot blasting and degreasing treatment, and the temperature is 10 ° C. After drying for 30 minutes, the temperature is maintained at 160 ° C. for 30 minutes, and further heat-baked at 270 ° C. for 30 minutes, and then naturally cooled to form a lubricating coating layer 3 having a film thickness of 30 μm. Was a multilayer material 4 (see FIG. 2).

このようにして作製した複層材4を、潤滑被覆層3を内側にして曲げ加工により円筒状に捲回し、突き合わせ端面5及び5間に隙間δを有する略円筒軸受ブッシュ6を作製した(図3参照)。   The multilayer material 4 produced in this way was wound into a cylindrical shape by bending with the lubricating coating layer 3 inside, and a substantially cylindrical bearing bush 6 having a gap δ between the butted end surfaces 5 and 5 was produced (FIG. 3).

ついで、上記の略円筒軸受ブッシュ6にアプセット加工又はサイジング加工を施す。アプセット加工においては、次の二つの加工方法を採ることができる。   Next, upsetting or sizing is performed on the substantially cylindrical bearing bush 6. In upset processing, the following two processing methods can be employed.

第一のアプセット加工方法
図4に示すように、大径筒状内壁面11によって規定される大径円孔12を具備した金型本体13と、この大径円孔12に軸方向に隣接して配されていると共に該大径円孔12の径14よりも小径であって、最終の円筒軸受ブッシュ1の内径d(図5参照)と実質的に等しい径15をもった小径円孔16とを具備した金型台座17とからなり、該大径筒状内壁面11と小径円孔16を規定する小径筒状内壁面18との間には、大径筒状内壁面11から径方向であって内方に延びて小径筒状内壁面18で終端する環状面19が介在している金型10を準備する。
First Upset Processing Method As shown in FIG. 4, a mold body 13 having a large-diameter circular hole 12 defined by a large-diameter cylindrical inner wall surface 11 and the large-diameter circular hole 12 are adjacent to each other in the axial direction. A small diameter circular hole 16 having a diameter 15 smaller than the diameter 14 of the large diameter circular hole 12 and substantially equal to the inner diameter d (see FIG. 5) of the final cylindrical bearing bush 1. And between the large-diameter cylindrical inner wall surface 11 and the small-diameter cylindrical inner wall surface 18 that defines the small-diameter circular hole 16 in the radial direction. A mold 10 is prepared in which an annular surface 19 extending inward and terminating at a small-diameter cylindrical inner wall surface 18 is interposed.

図4に示すように、最終の円筒軸受ブッシュ1の内径dを規定する径21をもった小径筒状外面22と、小径筒状外面22に軸方向の上方に隣接して配されていると共に小径筒状外面22の径よりも大きく、大径円孔12の径14に実質的に等しい径23をもった大径筒状外面24とを具備しており、小径筒状外面22と大径筒状外面24との間には、小径筒状外面22から径方向であって外方に伸びて大径筒状外面24で終端する環状面25が介在してなる芯金20を準備する。   As shown in FIG. 4, a small-diameter cylindrical outer surface 22 having a diameter 21 that defines the inner diameter d of the final cylindrical bearing bush 1 is disposed adjacent to the small-diameter cylindrical outer surface 22 in the axial direction and adjacent to the upper side. A large-diameter cylindrical outer surface 24 having a diameter 23 larger than the diameter of the small-diameter cylindrical outer surface 22 and substantially equal to the diameter 14 of the large-diameter circular hole 12. A cored bar 20 is prepared between the cylindrical outer surface 24 and an annular surface 25 extending radially outward from the small-diameter cylindrical outer surface 22 and terminating at the large-diameter cylindrical outer surface 24.

斯かる準備した金型10と芯金20とにおいて、芯金20の小径筒状外面22に略円筒軸受ブッシュ6を嵌着し、次に、芯金20を金型10に対して位置決めし、更に、芯金20にA方向の荷重を加えて、芯金20を金型10の金型台座17に向かって移動させる。   In the prepared metal mold 10 and the metal core 20, the substantially cylindrical bearing bush 6 is fitted on the small-diameter cylindrical outer surface 22 of the metal core 20, and then the metal core 20 is positioned with respect to the metal mold 10. Further, a load in the A direction is applied to the core metal 20 to move the core metal 20 toward the mold base 17 of the mold 10.

更に、芯金20の小径筒状外面22の一部を金型10の小径円孔16に、芯金20の大径筒状外面24を金型10の大径円孔12に夫々配して、小径筒状外面22の残部及び金型10並びに芯金20の夫々の環状面19及び25によって略円筒軸受ブッシュ6をアプセット加工する(図5参照)。   Further, a part of the small-diameter cylindrical outer surface 22 of the core metal 20 is disposed in the small-diameter circular hole 16 of the mold 10, and the large-diameter cylindrical outer surface 24 of the core metal 20 is disposed in the large-diameter circular hole 12 of the mold 10. The substantially cylindrical bearing bush 6 is upset by the remainder of the small-diameter cylindrical outer surface 22 and the annular surfaces 19 and 25 of the mold 10 and the cored bar 20 (see FIG. 5).

このアプセット加工においては、大径筒状内壁面11及び小径筒状外面22の残部並びに環状面19及び25によって形成される環状空間Sを、その容積が最終の円筒軸受ブッシュ1の体積の近傍になるまで減少させて行うのであるが、環状空間Sの容積減少により、略円筒軸受ブッシュ6に軸方向の圧縮力を加えて、略円筒軸受ブッシュ6の軸方向の長さを減少させる一方、この軸方向の長さの減少に基づいて略円筒軸受ブッシュ6を径方向に塑性変形させて、大径筒状内壁面11に圧接させ、突き合わせ端面5及び5が互いに密に接触した円筒軸受ブッシュ1とする。この円筒軸受ブッシュ1は金型10から取り出される。   In this upset processing, the volume of the annular space S formed by the remaining portions of the large-diameter cylindrical inner wall surface 11 and the small-diameter cylindrical outer surface 22 and the annular surfaces 19 and 25 is close to the volume of the final cylindrical bearing bush 1. This is carried out by reducing the volume of the annular space S. By reducing the volume of the annular space S, an axial compressive force is applied to the substantially cylindrical bearing bush 6 to reduce the axial length of the substantially cylindrical bearing bush 6. The cylindrical bearing bush 1 in which the substantially cylindrical bearing bush 6 is plastically deformed in the radial direction on the basis of the reduction in the axial length and pressed against the large-diameter cylindrical inner wall surface 11 so that the butted end surfaces 5 and 5 are in close contact with each other. And The cylindrical bearing bush 1 is taken out from the mold 10.

第二のアプセット加工方法
図6に示すように、略円筒軸受ブッシュ6の最終の外径寸法を規定する径をもった筒状内壁面31によって規定される円孔32を備えた金型本体33と、一端35側に凹所36を有すると共に凹所36の開口端面を囲繞する環状端面37及び金型本体33の筒状内壁面31に嵌合される筒状外面34を備えた受金38とからなる金型30を準備する。
Second Upset Processing Method As shown in FIG. 6, a mold body 33 having a circular hole 32 defined by a cylindrical inner wall surface 31 having a diameter that defines the final outer diameter of the substantially cylindrical bearing bush 6. And a metal receiver 38 having a recess 36 on one end 35 side and an annular end surface 37 surrounding the opening end surface of the recess 36 and a cylindrical outer surface 34 fitted to the cylindrical inner wall surface 31 of the mold body 33. 1 is prepared.

図6に示すように、略円筒軸受ブッシュ6の最終の内径寸法を規定する径を有すると共に前記受金38の凹所36に嵌入される小径筒状外面41とこの小径筒状外面41に軸方向に隣接して配されていると共に該小径筒状外面41よりも大径の大径筒状外面42とを具備しており、小径筒状外面41と大径筒状外面42との間には、小径筒状外面41から径方向であって外方に延びて大径筒状外面42で終端する環状面43が介在してなる芯金40を準備する。   As shown in FIG. 6, a small-diameter cylindrical outer surface 41 having a diameter that defines the final inner diameter of the substantially cylindrical bearing bush 6 and fitted in the recess 36 of the receiver 38, and a shaft on the small-diameter cylindrical outer surface 41. And a large-diameter cylindrical outer surface 42 having a diameter larger than that of the small-diameter cylindrical outer surface 41 and being arranged between the small-diameter cylindrical outer surface 41 and the large-diameter cylindrical outer surface 42. Prepares a cored bar 40 that includes an annular surface 43 that extends radially outward from the small-diameter cylindrical outer surface 41 and terminates at the large-diameter cylindrical outer surface 42.

斯かる準備した金型30と芯金40とにおいて、該芯金40の小径筒状外面41に略円筒軸受ブッシュ6を嵌着し、次に、受金38を金型本体33の円孔32の一方の開口端から円孔32内に配し、該小径筒状外面41に略円筒軸受ブッシュ6を嵌着した芯金40の小径筒状外面41の一部を金型本体33の円孔32の他方の開口端を介して受金38の凹所36に配し、受金38及び芯金40の夫々に所定の圧力を掛けて小径筒状外面41の残部、受金38の環状端面37及び芯金40の環状面43によって略円筒軸受ブッシュ6をアプセット加工する。   In the prepared metal mold 30 and the metal core 40, the substantially cylindrical bearing bush 6 is fitted to the small-diameter cylindrical outer surface 41 of the metal core 40, and then the metal receiver 38 is attached to the circular hole 32 of the metal mold body 33. A part of the small-diameter cylindrical outer surface 41 of the cored bar 40 that is disposed in the circular hole 32 from the one open end of the metal core 40 and is fitted with the substantially cylindrical bearing bush 6 on the small-diameter cylindrical outer surface 41 is the circular hole of the mold body 33. The other end of 32 is disposed in the recess 36 of the metal receiver 38, and a predetermined pressure is applied to each of the metal receiver 38 and the core metal 40 so that the remaining portion of the small-diameter cylindrical outer surface 41 and the annular end surface of the metal receiver 38 are provided. The substantially cylindrical bearing bush 6 is upset by 37 and the annular surface 43 of the core metal 40.

このアプセット加工においては、金型本体33の筒状内壁面31と芯金40の小径筒状外面41の残部と金型本体33の環状端面37と芯金40の環状面43とによって形成される環状空間Sの容積を、受金38及び芯金40に夫々圧縮力を掛けて最終の円筒軸受ブッシュ1の体積の近傍になるまで減少させて行うのであるが、環状空間Sの容積の減少により、略円筒軸受ブッシュ6の軸方向の長さを減少させる一方、この軸方向長さの減少に基づいて略円筒軸受ブッシュ6を径方向に塑性変形させて、金型本体33の筒状内壁面31に圧接させ、突き合わせ端面5及び5が互いに密に接触した円筒軸受ブッシュ1とする。この円筒軸受ブッシュ1は金型30及び芯金40から取り出される。   In this upset process, the cylindrical inner wall surface 31 of the mold body 33, the remaining portion of the small-diameter cylindrical outer surface 41 of the core metal 40, the annular end surface 37 of the mold body 33, and the annular surface 43 of the core metal 40 are formed. The volume of the annular space S is reduced by applying a compressive force to the receiving metal 38 and the cored bar 40 until they are close to the volume of the final cylindrical bearing bush 1. While reducing the axial length of the substantially cylindrical bearing bush 6, the substantially cylindrical bearing bush 6 is plastically deformed in the radial direction on the basis of the reduction in the axial length, so that the cylindrical inner wall surface of the mold body 33 is The cylindrical bearing bush 1 is brought into pressure contact with the butt end face 5 and 5 and the butted end faces 5 and 5 are in close contact with each other. The cylindrical bearing bush 1 is taken out from the mold 30 and the cored bar 40.

サイジング加工においては、次の二つの加工方法を採ることができる。   In the sizing process, the following two processing methods can be adopted.

第一のサイジング加工方法
図7に示すように、略円筒軸受ブッシュ6の外径Dxよりも小径であって略円筒軸受ブッシュ6の最終の外径寸法である最終の円筒軸受ブッシュ1の外径と実質的に等しい径51をもった筒状内壁面52によって規定される円孔53を具備した金型50を準備する。
First Sizing Method As shown in FIG. 7, the outer diameter of the final cylindrical bearing bush 1 is smaller than the outer diameter Dx of the substantially cylindrical bearing bush 6 and is the final outer diameter of the substantially cylindrical bearing bush 6. A mold 50 having a circular hole 53 defined by a cylindrical inner wall surface 52 having a diameter 51 that is substantially equal to the diameter 51 is prepared.

図7に示すように、略円筒軸受ブッシュ6の最終の内径寸法である最終の円筒軸受ブッシュ1の内径dを規定する径61をもった小径円筒外面62と、小径円筒外面62に軸方向の上方に隣接して配されていると共に小径円筒外面62の径よりも大きく、円孔53の径51に実質的に等しい径63をもった大径筒状外面64とを具備しており、小径円筒外面62と大径筒状外面64との間には、小径円筒外面62から径方向であって外方に伸びて大径筒状外面64で終端する環状面65が介在してなるパンチ60を準備する。   As shown in FIG. 7, a small-diameter cylindrical outer surface 62 having a diameter 61 that defines the inner diameter d of the final cylindrical bearing bush 1, which is the final inner diameter of the cylindrical bearing bush 6, and an axial direction on the small-diameter cylindrical outer surface 62. And a large-diameter cylindrical outer surface 64 having a diameter 63 larger than the diameter of the small-diameter cylindrical outer surface 62 and substantially equal to the diameter 51 of the circular hole 53. A punch 60 is interposed between the cylindrical outer surface 62 and the large-diameter cylindrical outer surface 64, and has an annular surface 65 extending radially outward from the small-diameter cylindrical outer surface 62 and terminating at the large-diameter cylindrical outer surface 64. Prepare.

斯かる準備した金型50とパンチ60とにおいて、略円筒軸受ブッシュ6を金型50の円孔53の一方の開口部54側に圧入嵌合し(図7参照)、次に、パンチ60を金型50に対して位置決めし、更に、パンチ60にA方向の荷重を加えて略円筒軸受ブッシュ6を該金型50の筒状内壁面52とパンチ60の小径円筒外面62とで挟持しながら該パンチ60の環状面65でA方向に押圧して円孔53内を移動させ、金型50の円孔53内に位置せしめる(図8参照)。   In the prepared mold 50 and punch 60, the substantially cylindrical bearing bush 6 is press-fitted and fitted to one opening 54 side of the circular hole 53 of the mold 50 (see FIG. 7). Positioning with respect to the mold 50, and applying a load in the A direction to the punch 60, while holding the substantially cylindrical bearing bush 6 between the cylindrical inner wall surface 52 of the mold 50 and the small-diameter cylindrical outer surface 62 of the punch 60. The annular surface 65 of the punch 60 is pressed in the A direction to move in the circular hole 53 and is positioned in the circular hole 53 of the mold 50 (see FIG. 8).

次に、パンチ60を金型50の円孔53から抜き出し、該金型50の円孔53の一方の開口部54側に次の略円筒軸受ブッシュ6を圧入嵌合し、再び、パンチ60を金型50に対して位置決めし、更に、パンチ60にA方向の荷重を加えて略円筒軸受ブッシュ6を該金型50の筒状内壁面52とパンチ60の小径円筒外面62とで挟持しながら該パンチ60の環状面65で押圧して円孔53内をA方向に移動させるという操作を繰り返し、金型50の円孔53の他方の開口部55側からサイジング加工が施された円筒軸受ブッシュ1を排出する(図9乃至図11参照)。   Next, the punch 60 is extracted from the circular hole 53 of the mold 50, the next substantially cylindrical bearing bush 6 is press-fitted into the one opening 54 side of the circular hole 53 of the mold 50, and the punch 60 is again fitted. Positioning with respect to the mold 50, and applying a load in the A direction to the punch 60, while holding the substantially cylindrical bearing bush 6 between the cylindrical inner wall surface 52 of the mold 50 and the small-diameter cylindrical outer surface 62 of the punch 60. Cylindrical bearing bush that has been subjected to sizing from the other opening 55 side of the circular hole 53 of the mold 50 by repeatedly pressing the annular surface 65 of the punch 60 to move in the A direction in the circular hole 53. 1 is discharged (see FIGS. 9 to 11).

このサイジング加工方法においては、略円筒軸受ブッシュ6を径方向に塑性変形させ、突き合わせ端面5及び5が互いに密に接触した円筒軸受ブッシュ1とする。   In this sizing method, the substantially cylindrical bearing bush 6 is plastically deformed in the radial direction to form the cylindrical bearing bush 1 in which the butted end surfaces 5 and 5 are in close contact with each other.

第二のサイジング加工方法
図12に示すように、略円筒軸受ブッシュ6の外径Dxより小径であって大径筒状内壁面71によって規定される大径円孔72と、この大径円孔72に連続していると共に軸方向において大径円孔72から離れるに連れて徐々に縮径した截頭円錐面73によって規定されるテーパ孔74と、大径円孔72よりも小径であって略円筒軸受ブッシュ6の最終の外径寸法である最終の円筒軸受ブッシュ1の外径を規定する径75をもった筒状内壁面76によって規定される小径円孔77を具備する金型70を準備する。ここで、金型70の大径筒状内壁面71に対する截頭円錐面73の傾斜角度αは、0.5°〜5°である。
Second Sizing Method As shown in FIG. 12, a large-diameter circular hole 72 that is smaller than the outer diameter Dx of the substantially cylindrical bearing bush 6 and is defined by a large-diameter cylindrical inner wall surface 71, and the large-diameter circular hole 72 and a tapered hole 74 defined by a truncated conical surface 73 that gradually decreases in diameter in the axial direction as it leaves the large-diameter circular hole 72, and has a smaller diameter than the large-diameter circular hole 72. A mold 70 having a small-diameter circular hole 77 defined by a cylindrical inner wall surface 76 having a diameter 75 that defines the outer diameter of the final cylindrical bearing bush 1, which is the final outer diameter of the substantially cylindrical bearing bush 6. prepare. Here, the inclination angle α of the truncated conical surface 73 with respect to the large-diameter cylindrical inner wall surface 71 of the mold 70 is 0.5 ° to 5 °.

図12に示すように、略円筒軸受ブッシュ6の最終の内径寸法である最終の円筒軸受ブッシュ1の内径dを規定する径81をもった小径円筒外面82と、小径円筒外面82に軸方向の上方に隣接して配されていると共に小径円筒外面82の径よりも大きく、大径円孔72の径に実質的に等しい径83をもった大径筒状外面84とを具備しており、小径円筒外面82と大径筒状外面84との間には、小径円筒外面82から径方向であって外方に伸びて大径筒状外面84で終端する環状面85が介在してなるパンチ80を準備する。   As shown in FIG. 12, a small-diameter cylindrical outer surface 82 having a diameter 81 that defines the inner diameter d of the final cylindrical bearing bush 1 that is the final inner diameter of the cylindrical bearing bush 6, and an axial direction on the small-diameter cylindrical outer surface 82. A large-diameter cylindrical outer surface 84 disposed adjacent to the upper side and having a diameter 83 that is larger than the diameter of the small-diameter cylindrical outer surface 82 and substantially equal to the diameter of the large-diameter circular hole 72; A punch formed between the small-diameter cylindrical outer surface 82 and the large-diameter cylindrical outer surface 84 is an annular surface 85 extending radially outward from the small-diameter cylindrical outer surface 82 and terminating at the large-diameter cylindrical outer surface 84. Prepare 80.

斯かる準備した金型70とパンチ80とにおいて、金型70の大径円孔72の一方の開口部78側に略円筒軸受ブッシュ6を圧入嵌合し、次に、パンチ80を金型70に対して位置決めし、更に、パンチ80にA方向の荷重を加えて略円筒軸受ブッシュ6を該金型70の大径筒状内壁面71とパンチ80の小径円筒外面82とで挟持しながら該パンチ80の環状面85でA方向に押圧して該金型70の大径円孔72内を移動させ、金型70の大径円孔72内に位置せしめる。   In the prepared mold 70 and punch 80, the substantially cylindrical bearing bush 6 is press-fitted into one opening 78 side of the large-diameter circular hole 72 of the mold 70, and then the punch 80 is inserted into the mold 70. The cylindrical bearing bush 6 is sandwiched between the large-diameter cylindrical inner wall surface 71 of the mold 70 and the small-diameter cylindrical outer surface 82 of the punch 80 while applying a load in the A direction to the punch 80. The annular surface 85 of the punch 80 is pressed in the A direction to move in the large-diameter circular hole 72 of the mold 70 and is positioned in the large-diameter circular hole 72 of the mold 70.

次に、パンチ80を金型70の大径円孔72から抜き出し、該金型70の大径円孔72の一方の開口部78側に次の略円筒軸受ブッシュ6を圧入嵌合し、再び、パンチ80を金型70に対して位置決めし、更に、パンチ80にA方向の荷重を加えて略円筒軸受ブッシュ6を該金型70の大径筒状内壁面71とパンチ80の小径円筒外面82とで挟持しながら該パンチ80の環状面85でA方向に押圧して大径円孔72内を移動させるという操作を繰り返す。この繰り返し操作により、最初に金型70の一方の開口部78側に圧入嵌合された略円筒軸受ブッシュ6は大径円孔72からテーパ孔74を経由して小径円孔77に移動し、ついには金型70の他方の開口部79側からサイジング加工が施された状態の円筒軸受ブッシュ1として排出される(図13参照)。   Next, the punch 80 is extracted from the large-diameter circular hole 72 of the mold 70, and the next substantially cylindrical bearing bush 6 is press-fitted and fitted into one opening 78 side of the large-diameter circular hole 72 of the mold 70. Then, the punch 80 is positioned with respect to the mold 70, and further, a load in the A direction is applied to the punch 80 so that the substantially cylindrical bearing bush 6 is connected to the large-diameter cylindrical inner wall surface 71 of the mold 70 and the small-diameter cylindrical outer surface of the punch 80. The operation of pressing in the direction A with the annular surface 85 of the punch 80 and moving the inside of the large diameter circular hole 72 is repeated. By this repeated operation, the substantially cylindrical bearing bush 6 first press-fitted to the one opening 78 side of the mold 70 moves from the large diameter circular hole 72 to the small diameter circular hole 77 via the tapered hole 74, Finally, the cylindrical bearing bush 1 is discharged from the other opening 79 side of the mold 70 as a sizing-processed cylindrical bearing bush 1 (see FIG. 13).

このサイジング加工方法においては、略円筒軸受ブッシュ6を金型70のテーパ孔74において絞って径方向内側に塑性変形させ、突き合わせ端面5及び5が互いに密に接触した円筒軸受ブッシュ1とする。また、このサイジング加工方法においては、略円筒軸受ブッシュ6は、金型70のテーパ孔74を移動する際に絞られ、それによって最終の円筒軸受ブッシュ1の肉厚は略円筒軸受ブッシュ6の肉厚よりも薄くなる。   In this sizing method, the substantially cylindrical bearing bush 6 is squeezed in the taper hole 74 of the mold 70 and plastically deformed radially inward to form the cylindrical bearing bush 1 in which the butted end surfaces 5 and 5 are in close contact with each other. Further, in this sizing method, the substantially cylindrical bearing bush 6 is squeezed when moving through the taper hole 74 of the mold 70, so that the final thickness of the cylindrical bearing bush 1 is approximately the thickness of the cylindrical bearing bush 6. It becomes thinner than the thickness.

上述した略円筒軸受ブッシュ6を使用し、略円筒軸受ブッシュ6に前記第一のアプセット加工及び第二のサイジング加工を施した後の円筒軸受ブッシュ1の内径dの真円度を測定した実験結果について説明する。   Experimental results of measuring the roundness of the inner diameter d of the cylindrical bearing bush 1 after using the above-described substantially cylindrical bearing bush 6 and subjecting the substantially cylindrical bearing bush 6 to the first upset process and the second sizing process. Will be described.

試験体として、無酸素銅からなる裏金2を有した複層材(B)、タフピッチ銅からなる裏金2を有した複層材(C)、黄銅からなる裏金2を有した複層材(D)、リン青銅からなる裏金2を有した複層材(E)、アルミニウムからなる裏金2を有した複層材(F)、アルミニウム−マグネシウム系合金からなる裏金2を有した複層材(G)、そして従来技術である厚さ0.80mmの冷間圧延鋼板(SPCC)を裏金2とし、斯かる裏金2に前記と同様にして厚さ30μmの潤滑被覆層3を形成した複層材(H)の夫々を、潤滑被覆層3を内側にして曲げ加工して円筒状に捲回した略円筒軸受ブッシュ6を夫々2個ずつ作製して準備した。   As a test body, a multilayer material (B) having a backing metal 2 made of oxygen-free copper, a multilayer material (C) having a backing metal 2 made of tough pitch copper, and a multilayer material having a backing metal 2 made of brass (D ), A multilayer material (E) having a backing metal 2 made of phosphor bronze, a multilayer material (F) having a backing metal 2 made of aluminum, and a multilayer material having a backing metal 2 made of an aluminum-magnesium alloy (G) ), And a cold rolled steel plate (SPCC) having a thickness of 0.80 mm, which is a conventional technology, is used as a back metal 2, and a multi-layer material in which a lubricating coating layer 3 having a thickness of 30 μm is formed on the back metal 2 in the same manner as described above ( Each of H) was prepared by preparing two substantially cylindrical bearing bushes 6 each of which was bent with the lubricating coating layer 3 inside and wound into a cylindrical shape.

第一のアプセット加工
試験体B−1:厚さ0.83mm
内径10.32mm、外径12.02mm、長さ10.2mm、突き合
わせ端面間の隙間(δ)0.5mm
試験体B−2:厚さ0.83mm
内径10.36mm、外径12.04mm、長さ10.3mm、突き合
わせ端面間の隙間(δ)0.4mm
試験体C−1:厚さ0.83mm
内径10.30mm、外径12.02mm、長さ10.3mm、突き合
わせ端面間の隙間(δ)0.5mm
試験体C−2:厚さ0.83mm
内径10.35mm、外径12.02mm、長さ10.3mm、突き合
わせ端面間の隙間(δ)0.5mm
試験体D−1:厚さ0.83mm
内径10.40mm、外径12.04mm、長さ10.2mm、突き合
わせ端面間の隙間(δ)0.6mm
試験体D−2:厚さ0.83mm
内径10.40mm、外径12.08mm、長さ10.3mm、突き合
わせ端面間の隙間(δ)0.5mm
試験体E−1:厚さ0.83mm
内径10.35mm、外径12.06mm、長さ10.2mm、突き合
わせ端面間の隙間(δ)0.5mm
試験体E−2:厚さ0.83mm
内径10.40mm、外径12.10mm、長さ10.3mm、突き合
わせ端面間の隙間(δ)0.6mm
試験体F−1:厚さ0.83mm
内径10.35mm、外径12.02mm、長さ10.3mm、突き合
わせ端面間の隙間(δ)0.4mm
試験体F−2:厚さ0.83mm
内径10.32mm、外径12.00mm、長さ10.4mm、突き合
わせ端面間の隙間(δ)0.4mm
試験体G−1:厚さ0.83mm
内径10.34mm、外径12.02mm、長さ10.4mm、突き合
わせ端面間の隙間(δ)0.4mm
試験体G−2:厚さ0.83mm
内径10.32mm、外径12.00mm、長さ10.4mm、突き合
わせ端面間の隙間(δ)0.4mm
試験体H−1:厚さ0.83mm
内径10.35mm、外径12.06mm、長さ10.3mm、突き合
わせ端面間の隙間(δ)0.6mm
試験体H−2:厚さ0.83mm
内径10.40mm、外径12.08mm、長さ10.2mm、突き合
わせ端面間の隙間(δ)0.7mm
First upset processing Specimen B-1: Thickness 0.83mm
Inner diameter 10.32 mm, outer diameter 12.02 mm, length 10.2 mm, butted
Gap between laying end faces (δ) 0.5mm
Specimen B-2: Thickness 0.83mm
Inner diameter 10.36 mm, outer diameter 12.04 mm, length 10.3 mm, butted
Gap between laying end faces (δ) 0.4mm
Specimen C-1: thickness 0.83 mm
Inner diameter 10.30mm, outer diameter 12.02mm, length 10.3mm, butt
Gap between laying end faces (δ) 0.5mm
Specimen C-2: thickness 0.83 mm
Inner diameter 10.35 mm, outer diameter 12.02 mm, length 10.3 mm, butted
Gap between laying end faces (δ) 0.5mm
Specimen D-1: thickness 0.83 mm
Inner diameter 10.40mm, outer diameter 12.04mm, length 10.2mm, butting
Gap between laying end faces (δ) 0.6mm
Specimen D-2: thickness 0.83 mm
Inner diameter 10.40mm, outer diameter 12.08mm, length 10.3mm, butting
Gap between laying end faces (δ) 0.5mm
Specimen E-1: 0.83 mm thick
Inner diameter 10.35 mm, outer diameter 12.06 mm, length 10.2 mm, butting
Gap between laying end faces (δ) 0.5mm
Specimen E-2: thickness 0.83 mm
Inner diameter 10.40mm, outer diameter 12.10mm, length 10.3mm, butting
Gap between laying end faces (δ) 0.6mm
Specimen F-1: thickness 0.83 mm
Inner diameter 10.35 mm, outer diameter 12.02 mm, length 10.3 mm, butted
Gap between laying end faces (δ) 0.4mm
Specimen F-2: thickness 0.83 mm
Inner diameter 10.32 mm, outer diameter 12.00 mm, length 10.4 mm, butted
Gap between laying end faces (δ) 0.4mm
Specimen G-1: thickness 0.83 mm
Inner diameter 10.34 mm, outer diameter 12.02 mm, length 10.4 mm, butted
Gap between laying end faces (δ) 0.4mm
Specimen G-2: thickness 0.83 mm
Inner diameter 10.32 mm, outer diameter 12.00 mm, length 10.4 mm, butted
Gap between laying end faces (δ) 0.4mm
Specimen H-1: 0.83 mm thick
Inner diameter 10.35 mm, outer diameter 12.06 mm, length 10.3 mm, butted
Gap between laying end faces (δ) 0.6mm
Specimen H-2: thickness 0.83 mm
Inner diameter 10.40mm, outer diameter 12.08mm, length 10.2mm, butting
Gap between laying end faces (δ) 0.7mm

<金型10及び芯金20の仕様>
金型10の大径円孔12の直径:12.00mm
芯金20の小径筒状外面22の外径:10.20mm
<Specifications of mold 10 and core 20>
Diameter of the large-diameter circular hole 12 of the mold 10: 12.00 mm
The outer diameter of the small cylindrical outer surface 22 of the cored bar 20 is 10.20 mm.

<試験方法>
芯金20の小径筒状外面22に各試験体を嵌着し、芯金20を金型10に対して位置決めし、芯金20に荷重1.0KN/mmを加え各試験体にアプセット加工を施して円筒軸受ブッシュ1とした後、
(1)金型10内に保持された状態での各円筒軸受ブッシュ1の一方の端部から3mmの位置の内周面の真円度
(2)金型10から円筒軸受ブッシュ1を取り出した状態での各円筒軸受ブッシュ1の一方の端部から3mmの位置の内周面の真円度
を夫々測定した。
<Test method>
Each test specimen is fitted to the small-diameter cylindrical outer surface 22 of the core metal 20, the core metal 20 is positioned with respect to the mold 10, and a load of 1.0 KN / mm 2 is applied to the core metal 20 to upset the test specimen. To give a cylindrical bearing bush 1,
(1) Roundness of inner peripheral surface at a position of 3 mm from one end of each cylindrical bearing bush 1 in a state of being held in the mold 10 (2) The cylindrical bearing bush 1 was taken out from the mold 10 The roundness of the inner peripheral surface at a position 3 mm from one end of each cylindrical bearing bush 1 in the state was measured.

上記試験結果を表1に示す。   The test results are shown in Table 1.

Figure 2007127228
Figure 2007127228

第二のサイジング加工
試験体として、前記と同様の厚さ0.8mmの無酸素銅、タフピッチ銅、アルミニウム−マグネシウム系合金及び従来技術である冷間圧延鋼板の夫々からなる裏金2を準備すると共にこれら裏金の表面に前記と同様の表面処理を行った後、前記と同様の被覆材を加熱焼付けして厚さ20μmの潤滑被覆層3を形成した無酸素銅からなる裏金2を有した複層材(B)、タフピッチ銅からなる裏金2を有した複層材(C)、アルミニウム−マグネシウム系合金からなる裏金2を有した複層材(G)及び冷間圧延鋼板を裏金2とした複層材(H)を作製し、これら複層材から潤滑被覆層3を内側にして曲げ加工により円筒状に捲回して作製した略円筒軸受ブッシュ6の複数個を準備した。
As a second sizing test specimen, a back metal 2 made of oxygen-free copper, tough pitch copper, aluminum-magnesium alloy having a thickness of 0.8 mm, and a cold-rolled steel sheet, which is a conventional technology, is prepared. After the surface treatment similar to that described above was performed on the surfaces of these backing plates, a multilayer having a backing plate 2 made of oxygen-free copper, in which a lubricating coating layer 3 having a thickness of 20 μm was formed by heating and baking the same coating material as described above. A composite material (B), a multilayer material (C) having a backing metal 2 made of tough pitch copper, a multilayer material (G) having a backing metal 2 made of an aluminum-magnesium alloy, and a cold rolled steel sheet as a backing metal 2. A plurality of substantially cylindrical bearing bushes 6 were prepared by preparing a layer material (H) and winding the multilayered material into a cylindrical shape by bending the lubricating coating layer 3 inside.

試験体B:厚さ0.82mm
内径10.3±0.1mm、外径12.0±0.1mm、長さ10.0±0 .1mm、突き合わせ端面間の隙間(δ)0.4mm 複数個
試験体C:厚さ0.82mm
内径10.3±0.1mm、外径12.0±0.1mm、長さ10.0±0 .1mm、突き合わせ端面間の隙間(δ)0.4mm 複数個
試験体G:厚さ0.82mm
内径10.3±0.1mm、外径12.0±0.1mm、長さ10.0±0 .1mm、突き合わせ端面間の隙間(δ)0.4mm 複数個
試験体H:厚さ0.82mm
内径10.4±0.1mm、外径12.1±0.1mm、長さ10.0±0 .1mm、突き合わせ端面間の隙間(δ)0.6mm 複数個
Specimen B: Thickness 0.82mm
Inner diameter 10.3 ± 0.1 mm, outer diameter 12.0 ± 0.1 mm, length 10.0 ± 0. 1 mm, gap between butt end faces (δ) 0.4 mm Multiple Specimen C: Thickness 0.82 mm
Inner diameter 10.3 ± 0.1 mm, outer diameter 12.0 ± 0.1 mm, length 10.0 ± 0. 1 mm, gap between butt end faces (δ) 0.4 mm Multiple specimen G: thickness 0.82 mm
Inner diameter 10.3 ± 0.1 mm, outer diameter 12.0 ± 0.1 mm, length 10.0 ± 0. 1 mm, gap between butt end faces (δ) 0.4 mm Multiple specimen H: thickness 0.82 mm
Inner diameter 10.4 ± 0.1 mm, outer diameter 12.1 ± 0.1 mm, length 10.0 ± 0. 1mm, gap between butt end faces (δ) 0.6mm

金型70及びパンチ80の仕様は、次のとおりである。
<金型70の仕様>
大径円孔72の直径:12.0mm、傾斜角度α:1.4°、テーパ孔74の長さ:10mm、小径円孔77の直径:11.5mm
<パンチ80の仕様>
小径円筒外面82の直径:10.0mm、大径筒状外面84の直径:11.9mm
The specifications of the mold 70 and the punch 80 are as follows.
<Specifications of mold 70>
Diameter of large-diameter circular hole 72: 12.0 mm, inclination angle α: 1.4 °, length of tapered hole 74: 10 mm, diameter of small-diameter circular hole 77: 11.5 mm
<Specifications of punch 80>
Diameter of small-diameter cylindrical outer surface 82: 10.0 mm, diameter of large-diameter cylindrical outer surface 84: 11.9 mm

<試験方法>
金型70の大径円孔72の一方の開口部78側に略円筒軸受ブッシュ6を圧入嵌合し、次に、パンチ80を金型70に対して位置決めし、パンチ80にA方向の荷重を加えて略円筒軸受ブッシュ6を該金型70の大径筒状内壁面71とパンチ80の小径円筒外面82とで挟持しながら該パンチ80の環状面85でA方向に押圧して該金型70の大径円孔72内を移動させ、金型70の大径円孔72内に位置せしめる。次に、パンチ80を金型70の大径円孔72から抜き出し、該金型70の大径円孔72の一方の開口部78側に次の略円筒軸受ブッシュ6を圧入嵌合し、再び、パンチ80を金型70に対して位置決めし、パンチ80にA方向の荷重を加えて略円筒軸受ブッシュ6を該金型70の大径筒状内壁面71とパンチ80の小径円筒外面82とで挟持しながら該パンチ80の環状面85で押圧して大径円孔72内をA方向に移動させるという操作を繰り返すことによって、略円筒軸受ブッシュ6を大径円孔72からテーパ孔74を介して小径円孔77に移動させ、ついには金型70の大径円孔72の他方の開口部79側からサイジング加工が施された状態の円筒軸受ブッシュ1として排出させる。このようにしてサイジング加工が施された円筒軸受ブッシュ1の5個について、各円筒軸受ブッシュ1の一方の端面から3mmの位置の内周面の真円度を測定した。
<Test method>
The substantially cylindrical bearing bush 6 is press-fitted into one opening 78 side of the large-diameter circular hole 72 of the mold 70, and then the punch 80 is positioned with respect to the mold 70, and the load in the A direction is applied to the punch 80. In addition, the substantially cylindrical bearing bush 6 is pressed between the large diameter cylindrical inner wall surface 71 of the mold 70 and the small diameter cylindrical outer surface 82 of the punch 80 in the A direction by the annular surface 85 of the punch 80. The inside of the large-diameter circular hole 72 of the mold 70 is moved and positioned within the large-diameter circular hole 72 of the mold 70. Next, the punch 80 is extracted from the large-diameter circular hole 72 of the mold 70, and the next substantially cylindrical bearing bush 6 is press-fitted and fitted into one opening 78 side of the large-diameter circular hole 72 of the mold 70. The punch 80 is positioned with respect to the mold 70, and a load in the A direction is applied to the punch 80, so that the substantially cylindrical bearing bush 6 is connected to the large diameter cylindrical inner wall surface 71 of the mold 70 and the small diameter cylindrical outer surface 82 of the punch 80. The cylindrical bearing bush 6 is moved from the large-diameter circular hole 72 to the tapered hole 74 by repeating the operation of pressing the annular surface 85 of the punch 80 and moving the inside of the large-diameter circular hole 72 in the A direction. Then, the cylindrical bearing bush 1 is discharged from the other opening 79 side of the large diameter circular hole 72 of the mold 70 as a cylindrical bearing bush 1. The roundness of the inner peripheral surface at a position of 3 mm from one end face of each cylindrical bearing bush 1 was measured for the five cylindrical bearing bushes 1 subjected to sizing in this way.

上記試験結果を表2に示す。   The test results are shown in Table 2.

Figure 2007127228
Figure 2007127228

上記表1及び表2の試験結果から、試験体B、C、D、E、F及びGは本発明の製造方法によって得られた円筒軸受ブッシュ1であり、試験体Hの従来の円筒軸受ブッシュと比較すると明らかに内周面の真円度が高められていることがわかる。試験体B、C、D、E、F及びGの円筒軸受ブッシュ1では、アプセット加工後及びサイジング加工後の突き合わせ端面5及び5は互いに密に接触していることが確認されたのに対し、試験体Hの円筒軸受ブッシュでは、いずれの加工後においても突き合わせ端面間にスプリングバックに起因する隙間が生じているのが確認された。   From the test results of Table 1 and Table 2, the test bodies B, C, D, E, F, and G are cylindrical bearing bushes 1 obtained by the manufacturing method of the present invention, and the conventional cylindrical bearing bush of the test body H. It is clear that the roundness of the inner peripheral surface is clearly increased compared with. In the cylindrical bearing bush 1 of the test bodies B, C, D, E, F, and G, it was confirmed that the butted end surfaces 5 and 5 after the upset processing and after the sizing processing are in close contact with each other. In the cylindrical bearing bush of the test body H, it was confirmed that a gap due to the spring back was generated between the butt end faces after any processing.

以上のように、本発明によれば、突き合わせ端面が互いに密に接触せしめられ、内周面に切削、研削等の機械加工を施すことなく極めて高い真円度を有する円筒軸受ブッシュ及びその製造方法を提供することができる。   As described above, according to the present invention, the butted end faces are brought into close contact with each other, and the cylindrical bearing bush having an extremely high roundness without subjecting the inner peripheral surface to machining such as cutting and grinding, and a method for manufacturing the same Can be provided.

本発明の製造方法によって得られた円筒軸受ブッシュの斜視図である。It is a perspective view of the cylindrical bearing bush obtained by the manufacturing method of this invention. 図1に示す円筒軸受ブッシュを形成するための複層材の断面図である。It is sectional drawing of the multilayer material for forming the cylindrical bearing bush shown in FIG. 本発明の製造方法における略円筒軸受ブッシュの斜視図である。It is a perspective view of the substantially cylindrical bearing bush in the manufacturing method of this invention. 本発明の方法に好適な金型と芯金とからなるアプセット装置の断面図である。It is sectional drawing of the upset apparatus which consists of a metal mold | die and a core metal suitable for the method of this invention. 本発明の方法の最終工程の説明図である。It is explanatory drawing of the last process of the method of this invention. 本発明の方法に好適な他の金型と芯金とからなるアプセット装置の断面図である。It is sectional drawing of the upset apparatus which consists of another metal mold | die and a core metal suitable for the method of this invention. 本発明の製造方法に好適な金型とパンチとからなるサイジング加工装置の断面図である。It is sectional drawing of the sizing processing apparatus which consists of a metal mold | die and a punch suitable for the manufacturing method of this invention. 本発明の製造方法における円筒軸受ブッシュの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the cylindrical bearing bush in the manufacturing method of this invention. 本発明の製造方法における円筒軸受ブッシュの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the cylindrical bearing bush in the manufacturing method of this invention. 本発明の製造方法における円筒軸受ブッシュの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the cylindrical bearing bush in the manufacturing method of this invention. 本発明の製造方法における円筒軸受ブッシュの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the cylindrical bearing bush in the manufacturing method of this invention. 本発明の製造方法に用いて好適な他の金型とパンチとからなるサイジング加工装置の断面図である。It is sectional drawing of the sizing processing apparatus which consists of another metal mold | die and punch suitable for use in the manufacturing method of this invention. 本発明の製造方法における円筒軸受ブッシュの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the cylindrical bearing bush in the manufacturing method of this invention.

符号の説明Explanation of symbols

1 円筒軸受ブッシュ
2 裏金
3 潤滑被覆層
4 複層材
5 突き合わせ端面
6 略円筒軸受ブッシュ
10、30 金型
13、33 金型本体
17 金型台座
20、40 芯金
50、70 金型
60、80 パンチ
DESCRIPTION OF SYMBOLS 1 Cylindrical bearing bush 2 Back metal 3 Lubrication coating layer 4 Multi-layer material 5 Butt end surface 6 Substantially cylindrical bearing bush 10, 30 Mold 13, 33 Mold main body 17 Mold base
20, 40 Core 50, 70 Die 60, 80 Punch

Claims (12)

非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備しており、該すべり層を内側にして円筒状に捲回されていると共に突き合わせ端面が互いに密に接触せしめられており、内周面の真円度が3〜15μmをもって形成されていることを特徴とする円筒軸受ブッシュ。   It comprises a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal, and is wound in a cylindrical shape with the sliding layer inside. The cylindrical bearing bush is characterized in that the abutting end surfaces are in close contact with each other and the roundness of the inner peripheral surface is 3 to 15 μm. 非鉄金属からなる板状の裏金は、銅及び銅合金並びにアルミニウム及びアルミニウム合金のうちのいずれかから選択されたものからなっている請求項1に記載の円筒軸受ブッシュ。   2. The cylindrical bearing bush according to claim 1, wherein the plate-like backing metal made of a non-ferrous metal is selected from any one of copper, a copper alloy, aluminum, and an aluminum alloy. 合成樹脂組成物は、エポキシ樹脂、ポリイミド樹脂及びポリアミドイミド樹脂から選択される熱硬化性合成樹脂を主成分とし、これにグラファイト、二硫化モリブデン、四ふっ化エチレン樹脂、窒化ホウ素及びメラミンシアヌレートから選択される少なくとも一種の潤滑添加剤が2〜60vol%の割合で含有されているものからなっている請求項1又は2に記載の円筒軸受ブッシュ。   The synthetic resin composition is mainly composed of a thermosetting synthetic resin selected from an epoxy resin, a polyimide resin and a polyamide-imide resin, and includes graphite, molybdenum disulfide, ethylene tetrafluoride resin, boron nitride and melamine cyanurate. The cylindrical bearing bush according to claim 1 or 2, comprising at least one selected lubricating additive in a proportion of 2 to 60 vol%. 非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材を、該すべり層を内側にして円筒状に捲回し、突き合わせ端面に隙間を有する略円筒軸受ブッシュを形成する工程と、
大径筒状内壁面によって規定される大径円孔とこの大径円孔に軸方向に隣接して配されていると共に該大径円孔よりも小径の小径円孔とを具備しており、該大径筒状内壁面と小径円孔を規定する小径筒状内壁面との間には、大径筒状内壁面から径方向であって内方に延びて小径筒状内壁面で終端する環状面が介在してなる金型を準備する工程と、
略円筒軸受ブッシュの最終の内径寸法を規定する径をもった小径筒状外面とこの小径筒状外面に軸方向に隣接して配されていると共に該小径筒状外面よりも大径の大径筒状外面とを具備しており、小径筒状外面と大径筒状外面との間には、小径筒状外面から径方向であって外方に延びて大径筒状外面で終端する環状面が介在してなる芯金を準備する工程と、
該芯金の小径筒状外面に略円筒軸受ブッシュを嵌着する工程と、
該小径筒状外面に略円筒軸受ブッシュを嵌着した芯金の小径筒状外面の一部を金型の小径の小径円孔に、芯金の大径筒状外面を金型の大径円孔に夫々配し、該芯金に所定の圧力を掛けて小径筒状外面の残部並びに金型及び芯金の夫々の環状面によって略円筒軸受ブッシュにアプセット加工を施す工程と、
アプセット加工後、突き合わせ端面が互いに密に接触した円筒軸受ブッシュを金型から取り出し、内周面の真円度が3〜15μmをもって形成された円筒軸受ブッシュを得る工程と、
を具備した円筒軸受ブッシュの製造方法。
A multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal is wound into a cylindrical shape with the sliding layer inside. A step of forming a substantially cylindrical bearing bush having a gap at the butt end surface;
A large-diameter circular hole defined by a large-diameter cylindrical inner wall surface and a small-diameter circular hole that is disposed adjacent to the large-diameter circular hole in the axial direction and has a smaller diameter than the large-diameter circular hole And between the large-diameter cylindrical inner wall surface and the small-diameter cylindrical inner wall surface defining the small-diameter circular hole, extending radially inward from the large-diameter cylindrical inner wall surface and terminating at the small-diameter cylindrical inner wall surface A step of preparing a mold having an annular surface to be interposed;
A small cylindrical outer surface having a diameter that defines the final inner diameter of the substantially cylindrical bearing bush and an axially adjacent to the small diameter cylindrical outer surface and a large diameter larger than the small diameter cylindrical outer surface A cylindrical outer surface, and a ring between the small-diameter cylindrical outer surface and the large-diameter cylindrical outer surface that extends radially outward from the small-diameter cylindrical outer surface and terminates at the large-diameter cylindrical outer surface A step of preparing a mandrel with an intervening surface;
Fitting a substantially cylindrical bearing bush on the small-diameter cylindrical outer surface of the core;
A part of the small-diameter cylindrical outer surface of the metal core having a substantially cylindrical bearing bush fitted to the small-diameter cylindrical outer surface is used as the small-diameter small-diameter hole of the metal mold, and the large-diameter cylindrical outer surface of the metal core is used as the large-diameter circle of the metal mold. Each of which is arranged in the hole, and a predetermined pressure is applied to the core metal to subject the remaining portion of the small-diameter cylindrical outer surface and the annular surface of the mold and the core metal to upset the substantially cylindrical bearing bush;
After the upset process, the cylindrical bearing bush whose butted end faces are in close contact with each other is taken out from the mold, and a cylindrical bearing bush formed with a roundness of 3 to 15 μm on the inner peripheral surface is obtained;
A method of manufacturing a cylindrical bearing bush comprising:
大径筒状内壁面及び芯金の小径筒状外面の残部並びに金型及び芯金の夫々の環状面によって形成される環状空間の容積を、当該容積が略円筒軸受ブッシュの体積の近傍になるまで減少させてアプセット加工を行う請求項4に記載の円筒軸受ブッシュの製造方法。   The volume of the annular space formed by the large-diameter cylindrical inner wall surface and the remainder of the small-diameter cylindrical outer surface of the core metal and the annular surfaces of the mold and the core metal is approximately the volume of the cylindrical bearing bush. The method for manufacturing a cylindrical bearing bush according to claim 4, wherein the upset process is performed while reducing the upset process. 非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材を、該すべり層を内側にして円筒状に捲回し、突き合わせ端面に隙間を有する略円筒軸受ブッシュを形成する工程と、
略円筒軸受ブッシュの最終の外径寸法を規定する径をもった筒状内壁面によって規定される円孔を備えた金型本体と一端側に凹所を有すると共に該凹所の開口面を囲繞する環状端面及び金型本体の筒状内壁面に嵌合される筒状外面を有した受金とを具備した金型を準備する工程と、
略円筒軸受ブッシュの最終の内径寸法を規定する径を有すると共に前記受金の凹所に嵌入される小径筒状外面とこの小径筒状外面に軸方向に隣接して配されていると共に該小径筒状外面よりも大径の大径筒状外面とを具備しており、小径筒状外面と大径筒状外面との間には、小径筒状外面から径方向であって外方に延びて大径筒状外面で終端する環状面が介在してなる芯金を準備する工程と、
該芯金の小径筒状外面に略円筒軸受ブッシュを嵌着する工程と、
該受金を金型本体の円孔の一方の開口端から円孔内に、該小径筒状外面に略円筒軸受ブッシュを嵌着した芯金の小径筒状外面の一部を金型本体の円孔の他方の開口端を介して受金の凹所に夫々配し、該受金及び芯金に所定の圧力を掛けて小径筒状外面の残部、受金の環状端面及び芯金の環状面によって略円筒軸受ブッシュにアプセット加工を施す工程と、
アプセット加工後、突き合わせ端面が互いに密に接触した円筒軸受ブッシュを金型から取り出し、内周面の真円度が3〜15μmをもって形成された円筒軸受ブッシュを得る工程と、
を具備した円筒軸受ブッシュの製造方法。
A multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal is wound into a cylindrical shape with the sliding layer inside. A step of forming a substantially cylindrical bearing bush having a gap at the butt end surface;
A die body having a circular hole defined by a cylindrical inner wall surface having a diameter defining the final outer diameter of the substantially cylindrical bearing bush, and having a recess on one end side and surrounding an opening surface of the recess Preparing a mold having an annular end surface and a receiver having a cylindrical outer surface fitted to a cylindrical inner wall surface of the mold body;
A small cylindrical outer surface having a diameter defining the final inner diameter of the substantially cylindrical bearing bush, and being arranged adjacent to the small cylindrical outer surface in the axial direction and being inserted in the recess of the receiver. A large-diameter cylindrical outer surface having a diameter larger than that of the cylindrical outer surface, and extends radially outward from the small-diameter cylindrical outer surface between the small-diameter cylindrical outer surface and the large-diameter cylindrical outer surface. Preparing a cored bar having an annular surface that terminates at a large cylindrical outer surface;
Fitting a substantially cylindrical bearing bush on the small-diameter cylindrical outer surface of the core;
A part of the small-diameter cylindrical outer surface of the core metal in which a substantially cylindrical bearing bush is fitted to the small-diameter cylindrical outer surface is inserted into the circular hole from one open end of the circular hole of the mold main body. The other end of the circular hole is arranged in the recess of the receiving metal, and a predetermined pressure is applied to the receiving metal and the cored bar so that the remaining portion of the outer surface of the small-diameter cylindrical shape, the annular end surface of the receiving metal and the annular shape of the cored bar A process of upsetting the substantially cylindrical bearing bush depending on the surface;
After the upset process, the cylindrical bearing bush whose butted end faces are in close contact with each other is taken out from the mold, and a cylindrical bearing bush formed with a roundness of 3 to 15 μm on the inner peripheral surface is obtained;
A method of manufacturing a cylindrical bearing bush comprising:
筒状内壁面、芯金の小径筒状外面の残部、受金の環状端面及び芯金の環状面によって形成される環状空間の容積を、当該容積が略円筒軸受ブッシュの体積の近傍になるまで減少させてアプセット加工を行う請求項6に記載の円筒軸受ブッシュの製造方法。   The volume of the annular space formed by the cylindrical inner wall surface, the remainder of the small-diameter cylindrical outer surface of the cored bar, the annular end surface of the receiving bar and the annular surface of the cored bar until the volume becomes approximately the volume of the cylindrical bearing bush. The method for manufacturing a cylindrical bearing bush according to claim 6, wherein the upset process is performed by decreasing the number. 非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材を、該すべり層を内側にして円筒状に捲回し、突き合わせ端面に隙間を有する略円筒軸受ブッシュを形成する工程と、
略円筒軸受ブッシュの最終の外径寸法を規定する径をもった筒状内壁面によって規定される円孔を具備する金型を準備する工程と、
略円筒軸受ブッシュの最終の内径寸法を規定する径をもった小径円筒外面とこの小径円筒外面に軸方向に隣接して配されていると共に該小径円筒外面の径よりも大きい径をもった大径筒状外面とを具備しており、小径円筒外面と大径筒状外面との間には、小径円筒外面から径方向であって外方に延びて大径筒状外面で終端する環状面が介在してなるパンチを準備する工程と、
該略円筒軸受ブッシュを金型の円孔内に圧入嵌合すると共に、該略円筒軸受ブッシュを該金型の筒状内壁面とパンチの小径円筒外面とで挟持しながら該パンチの環状面で押圧して円孔内を移動させるサイジング加工を施す工程と、
サイジング加工後、突き合わせ端面が互いに密に接触した円筒軸受ブッシュを金型から取り出し、内周面の真円度が3〜15μmをもって形成された円筒軸受ブッシュを得る工程と、
を具備した円筒軸受ブッシュの製造方法。
A multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal is wound into a cylindrical shape with the sliding layer inside. A step of forming a substantially cylindrical bearing bush having a gap at the butt end surface;
Preparing a mold having a circular hole defined by a cylindrical inner wall surface having a diameter defining a final outer diameter of the substantially cylindrical bearing bush;
A small cylindrical outer surface having a diameter that defines the final inner diameter of the substantially cylindrical bearing bush and an axially adjacent to the small cylindrical outer surface and a large diameter larger than the diameter of the small cylindrical outer surface A cylindrical outer surface, and an annular surface between the small-diameter cylindrical outer surface and the large-diameter cylindrical outer surface that extends radially outward from the small-diameter cylindrical outer surface and terminates at the large-diameter cylindrical outer surface. A step of preparing a punch intervening,
The substantially cylindrical bearing bush is press-fitted into a circular hole of the mold, and the substantially cylindrical bearing bush is sandwiched between the cylindrical inner wall surface of the mold and the small-diameter cylindrical outer surface of the punch, and the annular surface of the punch A step of applying sizing to move in the circular hole by pressing,
After the sizing process, a cylindrical bearing bush whose butted end faces are in close contact with each other is taken out of the mold, and a cylindrical bearing bush formed with a roundness of 3 to 15 μm on the inner peripheral surface is obtained;
A method of manufacturing a cylindrical bearing bush comprising:
非鉄金属からなる板状の裏金と該裏金の表面に一体に被着形成された合成樹脂組成物からなるすべり層とを具備した複層材を、該すべり層を内側にして円筒状に捲回し、突き合わせ端面に隙間を有する略円筒軸受ブッシュを形成する工程と、
大径筒状内壁面によって規定される大径円孔とこの大径円孔に連続していると共に軸方向において大径円孔から離れるに連れて徐々に縮径した截頭円錐面によって規定されるテーパ孔と大径円孔よりも小径であって略円筒軸受ブッシュの最終の外径寸法を規定する径をもった筒状内壁面によって規定される小径円孔とを具備する金型を準備する工程と、
略円筒軸受ブッシュの最終の内径寸法を規定する径をもった小径円筒外面とこの小径円筒外面に軸方向に隣接して配されていると共に該小径円筒外面の径よりも大きい径をもった大径筒状外面とを具備しており、小径円筒外面と大径筒状外面との間には、小径円筒外面から径方向であって外方に延びて大径筒状外面で終端する環状面が介在してなるパンチを準備する工程と、
該略円筒軸受ブッシュを金型の大径円孔内に圧入嵌合すると共に、該略円筒軸受ブッシュを該金型の大径筒状内壁面とパンチの小径円筒外面とで挟持しながら該パンチの環状面で押圧して該金型のテーパ孔及び小径円孔内を順次移動させるサイジング加工を施す工程と、
サイジング加工後、突き合わせ端面が互いに密に接触した円筒軸受ブッシュを金型から取り出し、内周面の真円度が3〜15μmをもって形成された円筒軸受ブッシュを得る工程と、
を具備した円筒軸受ブッシュの製造方法。
A multilayer material comprising a plate-like backing metal made of a non-ferrous metal and a sliding layer made of a synthetic resin composition integrally formed on the surface of the backing metal is wound into a cylindrical shape with the sliding layer inside. A step of forming a substantially cylindrical bearing bush having a gap at the butt end surface;
A large-diameter circular hole defined by a large-diameter cylindrical inner wall surface and a truncated conical surface that is continuous with the large-diameter circular hole and that gradually decreases in diameter in the axial direction. A die having a tapered hole and a small-diameter circular hole defined by a cylindrical inner wall surface having a diameter smaller than the large-diameter circular hole and having a diameter that defines the final outer diameter of the substantially cylindrical bearing bush And a process of
A small cylindrical outer surface having a diameter that defines the final inner diameter of the substantially cylindrical bearing bush and an axially adjacent to the small cylindrical outer surface and a large diameter larger than the diameter of the small cylindrical outer surface A cylindrical outer surface, and an annular surface between the small-diameter cylindrical outer surface and the large-diameter cylindrical outer surface that extends radially outward from the small-diameter cylindrical outer surface and terminates at the large-diameter cylindrical outer surface. A step of preparing a punch intervening,
The substantially cylindrical bearing bush is press-fitted into the large-diameter circular hole of the mold, and the punch is held while the substantially cylindrical bearing bush is sandwiched between the large-diameter cylindrical inner wall surface of the mold and the small-diameter cylindrical outer surface of the punch. A step of performing sizing by sequentially pressing the taper hole and the small-diameter circular hole of the mold by pressing with the annular surface;
After the sizing process, a cylindrical bearing bush whose butted end faces are in close contact with each other is taken out of the mold, and a cylindrical bearing bush formed with a roundness of 3 to 15 μm on the inner peripheral surface is obtained;
A method of manufacturing a cylindrical bearing bush comprising:
金型の大径筒状内壁面に対する截頭円錐面の傾斜角度は、0.5〜5°である請求項9に記載の円筒軸受ブッシュの製造方法。   The method for manufacturing a cylindrical bearing bush according to claim 9, wherein an inclination angle of the truncated conical surface with respect to the large-diameter cylindrical inner wall surface of the mold is 0.5 to 5 °. 非鉄金属からなる板状の裏金は、銅及び銅合金並びにアルミニウム及びアルミニウム合金のうちのいずれかから選択される請求項4から10のいずれか一項に記載の円筒軸受ブッシュの製造方法。   The method for manufacturing a cylindrical bearing bush according to any one of claims 4 to 10, wherein the plate-like backing metal made of a non-ferrous metal is selected from any one of copper, a copper alloy, aluminum, and an aluminum alloy. 合成樹脂組成物は、エポキシ樹脂、ポリイミド樹脂及びポリアミドイミド樹脂から選択される熱硬化性合成樹脂を主成分とし、これにグラファイト、二硫化モリブデン、四ふっ化エチレン樹脂、窒化ホウ素及びメラミンシアヌレートから選択される少なくとも一種の潤滑添加剤を2〜60vol%の割合で含有されているものからなっている請求項4から11のいずれか一項に記載の円筒軸受ブッシュの製造方法。   The synthetic resin composition is mainly composed of a thermosetting synthetic resin selected from an epoxy resin, a polyimide resin and a polyamide-imide resin, and includes graphite, molybdenum disulfide, ethylene tetrafluoride resin, boron nitride and melamine cyanurate. The method for manufacturing a cylindrical bearing bush according to any one of claims 4 to 11, comprising at least one selected lubricating additive in a ratio of 2 to 60 vol%.
JP2005321603A 2005-11-04 2005-11-04 Cylindrical bearing bush and its manufacturing method Pending JP2007127228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321603A JP2007127228A (en) 2005-11-04 2005-11-04 Cylindrical bearing bush and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321603A JP2007127228A (en) 2005-11-04 2005-11-04 Cylindrical bearing bush and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007127228A true JP2007127228A (en) 2007-05-24

Family

ID=38150040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321603A Pending JP2007127228A (en) 2005-11-04 2005-11-04 Cylindrical bearing bush and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007127228A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112509A (en) * 2008-11-07 2010-05-20 Yamada Seisakusho Co Ltd Press fitting construction of shaft and shaft hole
CN102444672A (en) * 2011-12-12 2012-05-09 柳盛春 Barrel-type elastic metal plastic bearing bush and preparation method thereof
CN103813936A (en) * 2011-09-14 2014-05-21 凯波有限责任两合公司 Method for producing a vehicle seat fitting
KR200474291Y1 (en) * 2010-04-19 2014-09-11 현대중공업 주식회사 Structure for joining a shaft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147466A (en) * 1975-06-13 1976-12-17 Taiho Kogyo Co Ltd Method of shaping butttjointed cylindrical bushes
JPS53132464A (en) * 1977-04-26 1978-11-18 Taiho Kogyo Co Ltd Manufacturing method of plain bearing
JPS5686669A (en) * 1979-11-27 1981-07-14 Bbc Brown Boveri & Cie Bearing metal for sliding bearing having high thermal conductivity and its manufacture
JPS57118337A (en) * 1981-01-14 1982-07-23 Toshiba Corp Manufacture of magnetron anode
JPH0489892A (en) * 1990-08-02 1992-03-24 Taiho Kogyo Co Ltd Sliding member
JP2001123063A (en) * 2000-09-07 2001-05-08 Nsk Ltd Straight-chain polyphenylene sulfide resin composition and sliding member
JP2004263727A (en) * 2003-02-17 2004-09-24 Taiho Kogyo Co Ltd Sliding bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51147466A (en) * 1975-06-13 1976-12-17 Taiho Kogyo Co Ltd Method of shaping butttjointed cylindrical bushes
JPS53132464A (en) * 1977-04-26 1978-11-18 Taiho Kogyo Co Ltd Manufacturing method of plain bearing
JPS5686669A (en) * 1979-11-27 1981-07-14 Bbc Brown Boveri & Cie Bearing metal for sliding bearing having high thermal conductivity and its manufacture
JPS57118337A (en) * 1981-01-14 1982-07-23 Toshiba Corp Manufacture of magnetron anode
JPH0489892A (en) * 1990-08-02 1992-03-24 Taiho Kogyo Co Ltd Sliding member
JP2001123063A (en) * 2000-09-07 2001-05-08 Nsk Ltd Straight-chain polyphenylene sulfide resin composition and sliding member
JP2004263727A (en) * 2003-02-17 2004-09-24 Taiho Kogyo Co Ltd Sliding bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112509A (en) * 2008-11-07 2010-05-20 Yamada Seisakusho Co Ltd Press fitting construction of shaft and shaft hole
KR200474291Y1 (en) * 2010-04-19 2014-09-11 현대중공업 주식회사 Structure for joining a shaft
CN103813936A (en) * 2011-09-14 2014-05-21 凯波有限责任两合公司 Method for producing a vehicle seat fitting
JP2014526413A (en) * 2011-09-14 2014-10-06 ジョンソン コントロールズ コンポーネンツ ゲーエムベーハー ウント コンパニー カーゲー How to make a vehicle seat joint
US9623772B2 (en) 2011-09-14 2017-04-18 Keiper Gmbh & Co. Kg Method for producing a vehicle seat fitting
CN102444672A (en) * 2011-12-12 2012-05-09 柳盛春 Barrel-type elastic metal plastic bearing bush and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5464821B2 (en) Roller bearing cage, roller bearing and roller bearing cage manufacturing method
EP1688630B1 (en) Bush bearing
JP2007127228A (en) Cylindrical bearing bush and its manufacturing method
WO2007142298A1 (en) Shell needle bearing with seal ring and its manufacturing method
US11219950B2 (en) Sintered component
JP2009228725A (en) Sliding bearing
RU2667946C2 (en) Tube expander
KR101355142B1 (en) Sliding member, semi-cylindrical sliding bearing using the same, and method of manufacturing the semi-cylindrical sliding bearing
JP2012081520A (en) Method of manufacturing shell type needle bearing with seal ring
US5469616A (en) Method of manufacturing a side rail of a combined oil ring
EP2095940B1 (en) Sliding member
JP2006070940A (en) Method of manufacturing cylindrical bearing bush
JP2006038180A (en) Cylindrical bearing bush and its manufacturing method
JP5905102B2 (en) Manufacturing method of plain bearing
JP2006038181A (en) Method for fixing cylindrical bearing bush to inside of bearing supporting body
JP2005164040A (en) Journal bearing system and process for manufacturing lining for dynamic pressure bearing
EP0486320A1 (en) Method of manufacturing a side rail of combined oil ring
EP3411601B1 (en) Bearing and process of making and using the same
RU2267034C2 (en) Method of producing slide bearing
JP4928331B2 (en) Shell outer ring manufacturing method and shell needle roller bearing
JP4978318B2 (en) Method for manufacturing shell needle bearing with seal ring
JP5346465B2 (en) Roller bearing cage and needle roller bearing
JP2007296570A (en) Heat-resistant steel sheet excellent in tube-making property and stainless steel sheet excellent in the same property
JP2003239973A (en) Sliding member and manufacturing method therefor
JP5566600B2 (en) Metal O-ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831