JP2007121401A - Simulator for car driving - Google Patents

Simulator for car driving Download PDF

Info

Publication number
JP2007121401A
JP2007121401A JP2005309726A JP2005309726A JP2007121401A JP 2007121401 A JP2007121401 A JP 2007121401A JP 2005309726 A JP2005309726 A JP 2005309726A JP 2005309726 A JP2005309726 A JP 2005309726A JP 2007121401 A JP2007121401 A JP 2007121401A
Authority
JP
Japan
Prior art keywords
road surface
data
decomposition
wave
driving simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005309726A
Other languages
Japanese (ja)
Other versions
JP5156888B2 (en
Inventor
Akira Kawamura
彰 川村
Keizo Kamiya
恵三 神谷
Masakazu Sato
正和 佐藤
Kazuhiko Kumada
一彦 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitami Institute of Technology NUC
West Nippon Expressway Co Ltd
Central Nippon Expressway Co Ltd
East Nippon Expressway Co Ltd
Original Assignee
Kitami Institute of Technology NUC
West Nippon Expressway Co Ltd
Central Nippon Expressway Co Ltd
East Nippon Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitami Institute of Technology NUC, West Nippon Expressway Co Ltd, Central Nippon Expressway Co Ltd, East Nippon Expressway Co Ltd filed Critical Kitami Institute of Technology NUC
Priority to JP2005309726A priority Critical patent/JP5156888B2/en
Publication of JP2007121401A publication Critical patent/JP2007121401A/en
Application granted granted Critical
Publication of JP5156888B2 publication Critical patent/JP5156888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simulator for car driving, enabling evaluation of a road surface by reflecting localized road surface condition and expressing future traveling state wherein the road conditions are changed. <P>SOLUTION: In the simulator for car driving, the data of the position of the road surface to be the object of simulation traveling and the data of road surface height, corresponding to the position are classified into segments wherein waveform characteristics (1) of a reference road surface, are divided into waves (2a, 2b, 2c, 2d, 2e, 2f) of multiple kinds of frequencies (a, b, c, d, e, f) and defined, according to the characteristics of a localized oscillating part (4), wherein oscillation amplitude locally varies by a larger amount than at other continuous portions and appear in a waveform (3) obtained by division, and are inputted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車を実際に走行させることなく所定の条件における走行状態を表現できる自動車模擬運転装置に関するものである。   The present invention relates to an automobile simulation driving apparatus that can express a driving state under a predetermined condition without actually driving an automobile.

従来、道路投資は新設に主眼がおかれていたが、日本全国の道路整備がほぼ完了したといえる近年では、これまでに建設された道路をどのように維持管理するかが重要な課題となっている。そして、路面のどの程度の傷みで人と車が快適に走行できる限界がどのように変わってくるのか或いはヒヤリ・ハット体験等の潜在的危険現象にはどのような道路要因が関与しているか等、路面状況が運転の安全性や快適性に与える影響は、道路の維持管理において特に重要な要素となっている。   Traditionally, road investment has been focused on new construction, but in recent years it can be said that road construction in Japan has almost been completed. How to maintain and manage roads constructed so far has become an important issue. ing. And how much damage the road surface causes to allow people and cars to run comfortably, or what road factors are involved in potential hazards such as near-miss experiences etc. The influence of road surface conditions on driving safety and comfort is a particularly important factor in road maintenance.

一方、道路の維持管理に関し、道路交通評価においては、自動車模擬運転装置の利用が提案されている(例えば、特開2002−157673号)。自動車模擬運転装置は、未熟な運転者の訓練において、事故を引き起こす危険性を回避しつつ運転者の技能を向上させるための手段であるが、近年の情報処理技術の向上に伴い、運転者の訓練のためのみならず、車両設計に必要なデータや上記道路交通評価のデータの収集等、幅広い目的に用いられている。そして、このように様々な目的に利用できる自動車運転模擬装置についての様々な改良が試みられており、例えば、特開2003−114607号公報に開示された技術では、ITS(高度道路交通システム)等に活用されるヒューマンインターフェイス評価に有効な低コストの仮想ドライビングシステムを提供するための試みがなされている。   On the other hand, regarding road maintenance management, use of a simulated vehicle driving device has been proposed in road traffic evaluation (for example, Japanese Patent Application Laid-Open No. 2002-157673). The vehicle simulation driving device is a means for improving the skill of the driver while avoiding the risk of causing an accident in the training of an immature driver. It is used not only for training but also for a wide range of purposes such as collecting data necessary for vehicle design and data for road traffic evaluation. Various attempts have been made to improve the vehicle driving simulation device that can be used for various purposes as described above. For example, in the technology disclosed in Japanese Patent Application Laid-Open No. 2003-114607, ITS (Intelligent Transport System), etc. Attempts have been made to provide a low-cost virtual driving system that is effective for human interface evaluation utilized in the world.

しかしながら、従来の自動車模擬運転装置は、様々なデータ収集の目的に適した改良がなされているものの、その主眼点は、視覚的な仮想空間の再現や迫力の追求におかれていた。そのため、従来の自動車運転模擬装置では、路面評価に必要なデータ収集に適用できるものが存在しなかった。   However, although the conventional automobile simulation driving device has been improved in accordance with various data collection purposes, the main point has been to reproduce the visual virtual space and pursue the force. Therefore, there is no conventional automobile driving simulation device that can be applied to data collection necessary for road surface evaluation.

そこで、本発明者の一人は、実走行状態をより忠実に再現するため、特願2004−131866号に開示されているように、路面状態を模擬走行に反映させることを試みている。この試みによれば、実路面の実車走行時において、画像撮影装置により撮影された映像と、運動センサ(加速度計及び角速度計)により収集されたデータに加え、更に、実測路面データをパワースペクトル密度(PSD)により分類して取り込み、これらのデータに基づいた視界表示装置と動揺装置による走行状態の再現がなされている。なお、路面性状をPSDで表現する手法は、ISO8608で決められている。
特開2002−157673号公報 特開2003−114607号公報 特願2004−131866
Therefore, one of the present inventors has attempted to reflect the road surface state in the simulated traveling as disclosed in Japanese Patent Application No. 2004-131866 in order to more accurately reproduce the actual traveling state. According to this attempt, in addition to the video captured by the image capturing device and the data collected by the motion sensor (accelerometer and angular velocity meter) during actual vehicle running on the actual road surface, the measured road surface data is further converted into the power spectral density. (PSD) classifies and captures, and the running state is reproduced by the visual field display device and the shaking device based on these data. In addition, the method of expressing road surface property by PSD is determined by ISO8608.
JP 2002-157673 A JP 2003-114607 A Japanese Patent Application No. 2004-131866

しかしながら、特願2004−131866号の装置においては、一応路面状態が考慮されることになるが、路面の大まかな変化のみが反映されるのみで、段差や細かいひび割れ等の局在路面状況を反映した路面評価に適用できる程度のものではなかった。   However, in the device of Japanese Patent Application No. 2004-131866, the road surface condition is considered, but only a rough change of the road surface is reflected, and the localized road surface conditions such as steps and fine cracks are reflected. It was not enough to be applied to the road surface evaluation.

また、特願2004−131866号にかかる装置を含め、従来の模擬走行装置では、いずれも道路の現状に基づく走行状態は再現できるものの、道路の状態が変化した将来の走行状態をうまく表現することができなかった。一方、路面評価において、経時劣化した路面状態における自動車の挙動に関するデータは有効かつ必要であるため、路面の経時劣化を反映した将来の走行状態をうまく表現できない従来の自動車運転模擬装置は、この点においても路面評価に適用できるものではなかった。   In addition, all the conventional simulation traveling devices including the device according to Japanese Patent Application No. 2004-131866 can reproduce the traveling state based on the current state of the road, but well express the future traveling state in which the road state has changed. I could not. On the other hand, in the road surface evaluation, since the data on the behavior of the vehicle in the road surface condition deteriorated with time is valid and necessary, the conventional vehicle driving simulation device which cannot express the future driving state reflecting the time deterioration of the road surface well is this point. However, it was not applicable to road surface evaluation.

そこで、本発明の目的は、局在路面状況を反映させるとともに、道路の状態が変化した将来の走行状態を表現することで路面評価を行うことのできる自動車運転模擬装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an automobile driving simulation device that can reflect a localized road surface condition and perform a road surface evaluation by expressing a future driving state in which the road state has changed.

本発明にかかる自動車運転模擬装置では、模擬走行の対象となる路面の位置と該位置に対応する路面高さのデータが、基準路面の波状特性を複数種類の周波数の波に分解し、該分解により得られた波形に現出する、振幅が他の連続部分よりも局所的に大きく変動する局在振動部の特性に応じて定義された区分に分類されて、入力される。
なお、分解により得られた波形に局在振動部が現出しない場合、局在振動部が現出しない区分、例えば、正常路面の区分、として定義することも、局在振動部の特性に応じた定義に含まれるものとする。
In the automobile driving simulation apparatus according to the present invention, the road surface position to be simulated and the road height data corresponding to the position decompose the wavy characteristics of the reference road surface into waves of a plurality of types of frequencies. Are input after being classified into categories defined according to the characteristics of the local vibration part appearing in the waveform obtained by the above and whose amplitude fluctuates more locally than other continuous parts.
If the local vibration part does not appear in the waveform obtained by decomposition, it can be defined as a section where the local vibration part does not appear, for example, a normal road surface section, depending on the characteristics of the local vibration part. Included in the definition.

該分解は、空間周波数分析により実行されてもよい。   The decomposition may be performed by spatial frequency analysis.

該空間周波数分析において、離散ウェーブレットが利用されてもよい。   In the spatial frequency analysis, discrete wavelets may be used.

該離散ウェーブレットは、スケーリング関数に基づいて構成され、該分解が該多重解像度分析又はウェーブレットパケット分析により実行されていてもよい。   The discrete wavelet may be configured based on a scaling function, and the decomposition may be performed by the multi-resolution analysis or wavelet packet analysis.

本発明にかかる自動車運転模擬装置によれば、段差や細かいひび割れ等の局在路面状況が、その路面の波状特性を複数種類の周波数の波に分解して得られる波形において、振幅が他の連続部分よりも局所的に大きく変動する局在振動部として現出する特徴を利用することにより、局在路面状況を模擬走行に反映させることができる。例えば、図2(a)に示すような、基準地点Oから段差を有する領域Aを経て地点Bに至る路面の波状特性(基準地点Oからの距離を横軸に、路面高さを縦軸にとって表現した路面高さの推移)を周波数aの波2a、周波数bの波2b、周波数cの波2c、周波数dの波2d、周波数eの波2e及び周波数fの波2fに分解し、領域Aにおいて波2c及び波2dのみが強くなる波形を得た場合、領域Aにおいてこの波2c及び波2dの波形に基づく振動を与えることにより、領域Aに局在する段差を模擬走行に反映させることができる。そして、段差、細かいひび割れ等、様々な局在路面状況に応じた局在振動部の特性を把握し、これら局在振動部の特性に応じた区分を定義しておき、路面のデータをその区分に分類して入力しておけば、模擬走行においてその分類に応じた振動を与えることで、様々な局在路面状況を反映させることができる。   According to the automobile driving simulation apparatus according to the present invention, the local road surface condition such as a step or a fine crack is obtained by decomposing the wavy characteristic of the road surface into waves of a plurality of types of frequencies. By utilizing the feature that appears as a local vibration part that fluctuates more locally than the part, the local road surface condition can be reflected in the simulated traveling. For example, as shown in FIG. 2 (a), the wavy characteristics of the road surface from the reference point O to the point B through the region A having a step (the distance from the reference point O is the horizontal axis and the road surface height is the vertical axis The road 2a having the frequency a), the wave 2b having the frequency b, the wave 2c having the frequency c, the wave 2d having the frequency d, the wave 2e having the frequency e, and the wave 2f having the frequency f. When the waveform in which only the wave 2c and the wave 2d are strong is obtained in FIG. 5, by applying vibration based on the waveform of the wave 2c and the wave 2d in the region A, the step difference localized in the region A can be reflected in the simulated traveling. it can. Then, grasp the characteristics of the localized vibration parts corresponding to various localized road surface conditions such as steps and fine cracks, define the classification according to the characteristics of these localized vibration parts, and classify the road surface data into the classification If it is classified and input, it is possible to reflect various localized road surface conditions by applying vibration according to the classification in the simulated traveling.

また、局在路面状況が局在振動部として表現されるため、その局在振動部を加工することにより、経時的変化を表現することができる。例えば、上記の例において、波2c及び2dの局在振動部の強さを大きくし、或いは横軸方向の長さを伸ばす等して、路面の経時劣化に起因する段差の拡大を表現することができる。そして、模擬走行において路面データの分類に応じて与える振動を、局在振動部の経時劣化を考慮した変更に適応させることにより、道路の状態が変化した将来の走行状態を表現することが可能となる。   Further, since the local road surface state is expressed as a local vibration part, it is possible to express a change with time by processing the local vibration part. For example, in the above example, increase in the strength of the local vibration parts of the waves 2c and 2d, or increase the length in the horizontal axis direction, etc., to express the enlargement of the step due to the deterioration of the road surface over time. Can do. And, by adapting the vibration given according to the classification of the road surface data in the simulated traveling to the change considering the temporal deterioration of the local vibration part, it is possible to express the future traveling state in which the road state has changed Become.

基準路面の波状特性の分解を、空間周波数分析により実行すれば、公知のウェーブレット変換技術を適用できる。なお、一般のウェーブレット理論においては、時間信号データが扱われることが多く、時間信号に対し時間周波数分析といわれていることに対応し、空間軸(距離軸)データである路面の波状特性に対してのウェーブレット変換による分析を空間周波数分析というものとする。   If the decomposition of the wavy characteristics of the reference road surface is executed by spatial frequency analysis, a known wavelet transform technique can be applied. In general wavelet theory, time signal data is often handled, and it corresponds to what is called time frequency analysis for time signals, and it corresponds to the wavy characteristics of the road surface that is space axis (distance axis) data. All wavelet transform analysis is called spatial frequency analysis.

空間周波数分析において、離散ウェーブレットを利用すれば、電子計算機による扱いに適したものとなるため、電子計算機による処理を必要とする自動車運転模擬装置の実現が可能となる。   If a discrete wavelet is used in the spatial frequency analysis, it becomes suitable for handling by an electronic computer, so that it is possible to realize an automobile driving simulation device that requires processing by the electronic computer.

離散ウェーブレットをスケーリング関数に基づいて構成すれば、路面の波状特性の近似関数(スケーリング関数の一次結合)が解像度の階層構造で表現されるので、解像度ごとにその性質を分析することができる。そのため、実際に得られるデータの質、例えば路面高さデータの採取間隔の大小、に応じた解像度を適宜選択し、路面の波状特性の最適な分析を行うことができる。
なお、基準路面の波状特性の分解を多重解像度分析により実行すれば、路面に局在する段差や細かいひび割れ等を反映させながら、走行対象となる路面の全長のマクロ的特徴の反映を主体にできる。これは、多重解像度分析では、ローパス成分(Approximation)の取り出しを基本としていることによる。
一方、基準路面の波状特性の分解をウェーブレットパケット分析により実行すれば、ローパス成分に加えハイパス成分(Detail)の取り出しもローパス成分と同程度に行うことができる。そのため、走行対象となる路面の全長における、段差や細かいひび割れ等の任意成分のミクロ的特徴を、ハイパス成分を利用して反映させることができる。
If a discrete wavelet is configured based on a scaling function, an approximation function (linear combination of scaling functions) of the road surface wavy characteristic is expressed by a hierarchical structure of resolution, so that the properties can be analyzed for each resolution. For this reason, it is possible to appropriately select the resolution according to the quality of the actually obtained data, for example, the size of the road surface height data collection interval, and perform the optimal analysis of the wavy characteristics of the road surface.
If the decomposition of the wavy characteristics of the reference road surface is executed by multi-resolution analysis, it is possible to mainly reflect the macro characteristics of the total length of the road surface to be traveled while reflecting the steps and fine cracks localized on the road surface. . This is because multi-resolution analysis is based on extraction of low-pass components (Approximation).
On the other hand, if the decomposition of the wavy characteristics of the reference road surface is executed by wavelet packet analysis, the high-pass component (Detail) can be extracted in the same degree as the low-pass component in addition to the low-pass component. Therefore, the micro features of arbitrary components such as steps and fine cracks in the entire length of the road surface to be traveled can be reflected using the high-pass component.

図1は本発明にかかる自動車運転模擬装置の具体例の概念を示すブロック図である。図2及び3は同自動車運転模擬装置のデータ区分を定義するために用いられる基準路面データの例を示し、(a)は基準路面の波状特性を、(b)は同波状特性を複数種類の周波数の波に分解して得られる波形を示すグラフである。   FIG. 1 is a block diagram showing the concept of a specific example of an automobile driving simulation apparatus according to the present invention. 2 and 3 show examples of reference road surface data used to define the data classification of the vehicle driving simulation device, (a) shows the wavy characteristics of the reference road surface, (b) shows a plurality of types of the same wave characteristics. It is a graph which shows the waveform obtained by decomposing into a frequency wave.

この自動車運転模擬装置は、通常の自動車と同様にハンドル、アクセルペダル、ブレーキペダル等が装備された操縦席11において、被験者が模擬走行を行うものである。この操縦席11の正面には視覚表示装置12が設けられ、被験者に対し、実際の走行と同様の視覚情報が与えられるようになっている。また、操縦席11は、動揺装置13を介し、被験者に対し、実際の走行と同様の振動情報が与えられるようになっている。   In this automobile driving simulation device, a subject performs a simulated running in a cockpit 11 equipped with a steering wheel, an accelerator pedal, a brake pedal, and the like as in a normal automobile. A visual display device 12 is provided in front of the cockpit 11 so that visual information similar to that in actual traveling is given to the subject. In addition, the cockpit 11 is provided with vibration information similar to that in actual traveling to the subject via the shaking device 13.

視覚表示装置12と動揺装置13の動作は、制御装置14により制御されている。制御装置14は、入力データ15と操縦席11からの操縦情報を基にして視覚表示装置12及び動揺装置13を操作し、被験者に対し適切な情報を与えている。
なお、操縦席11、視覚表示装置12、動揺装置13及び制御装置14として、公知のもの、例えば、特願2004−131866に開示されたものを利用できる。
The operations of the visual display device 12 and the shaking device 13 are controlled by the control device 14. The control device 14 operates the visual display device 12 and the shaking device 13 based on the input data 15 and the operation information from the cockpit 11 to give appropriate information to the subject.
As the cockpit 11, the visual display device 12, the shaking device 13, and the control device 14, a known device, for example, a device disclosed in Japanese Patent Application No. 2004-131866 can be used.

入力データ15として、模擬走行の対象となる路面の位置と、その位置に対応する路面高さが利用されている。図2(a)及び図3(a)は、後述の基準路面の波状特性を示すグラフであるが、入力データ15も、図2(a)及び図3(a)と同様の形式のものを利用する。   As the input data 15, the position of the road surface to be simulated and the road surface height corresponding to the position are used. FIGS. 2 (a) and 3 (a) are graphs showing the wavy characteristics of a reference road surface, which will be described later, and the input data 15 also has the same format as FIGS. 2 (a) and 3 (a). Use.

入力データ15は、基準路面の波状特性1を複数種類の周波数a、b、c、d、e及びfの波2a、2b、2c、2d、2e及び2fに分解し、分解により得られた波形3に現出する、振幅が他の連続部分よりも局所的に大きく変動する局在振動部4の特性に応じて定義された区分に分類されて、入力される。なお、区分は、基準路面として選択された実際の路面の状態に基づいて適宜定義すれば良いが、区分の一例として、図2及び図3に示す場合について説明する。   The input data 15 is a waveform obtained by decomposing the wavy characteristic 1 of the reference road surface into waves 2a, 2b, 2c, 2d, 2e and 2f of a plurality of types of frequencies a, b, c, d, e and f. 3 is input after being classified into categories defined in accordance with the characteristics of the local vibration unit 4 whose amplitude varies locally more largely than other continuous portions. In addition, what is necessary is just to define a division suitably based on the state of the actual road surface selected as a reference | standard road surface, However, The case shown in FIG.2 and FIG.3 is demonstrated as an example of a division.

図2に示す基準路面は領域Aに段差を有しており、路面の位置を横軸に路面高さを縦軸にとった場合、図2(a)に示すように領域Aにおいて大きく振動する波状特性1を有する。また、この波状特性1を波2a、2b、2c、2d、2e、2fに分解して得られる波形3には、波2c、2dにおいてその振幅が他の連続部分よりも局所的に大きく変動する局在振動部4が現出する。そこで、局在振動部4が波2c、2dに現出する区分を「段差路面」と定義する。そして、模擬走行の対象となる路面に段差が存在すれば、その部分のデータは区分「段差路面」に属するものとして入力する。   The reference road surface shown in FIG. 2 has a step in the region A. When the position of the road surface is taken on the horizontal axis and the road surface height is taken on the vertical axis, the reference road surface vibrates greatly in the region A as shown in FIG. It has a wave characteristic 1. Further, in the waveform 3 obtained by decomposing the wave-like characteristic 1 into the waves 2a, 2b, 2c, 2d, 2e, and 2f, the amplitude of the waves 2c and 2d fluctuates more locally than other continuous portions. Local vibration part 4 appears. Therefore, a section where the localized vibration unit 4 appears in the waves 2c and 2d is defined as a “step road surface”. If there is a step on the road surface to be simulated, the data of that portion is input as belonging to the category “step road surface”.

図3に示す基準路面は何ら損傷等を有さず、路面の位置を横軸に路面高さを縦軸にとった場合、図3(a)に示すように路面の小さな凹凸によりわずかに振動する波状特性1を有する。また、この波状特性1を波2a、2b、2c、2d、2e、2fに分解して得られる波形3は定周波となり、局在振動部が存在しない。そこで、局在振動部が現出しない区分を「一般舗装路」と定義する。そして、模擬走行の対象となる路面が舗装されていれば、特に留意する損傷や段差がない限り、大部分のデータは区分「一般舗装路」に属するものとして入力する。   The reference road surface shown in FIG. 3 is not damaged at all. When the road surface position is taken on the horizontal axis and the road surface height is taken on the vertical axis, the road surface slightly vibrates due to small unevenness of the road surface as shown in FIG. It has a wavy characteristic 1. Further, the waveform 3 obtained by decomposing the wave-like characteristic 1 into the waves 2a, 2b, 2c, 2d, 2e, and 2f has a constant frequency, and there is no localized vibration portion. Therefore, the section where the localized vibration part does not appear is defined as “general paved road”. If the road surface to be simulated is paved, most data is input as belonging to the category “general paved road” unless there is a particular damage or step to be noted.

なお、波状特性1を分解する波の数に制限はなく、得られるデータの精度に応じて適宜決めることができる。ただし、その数が多くなれば、局在路面状況をより正確に反映させることができるので、波の数はできるだけ多くすることが好ましい。   Note that the number of waves for decomposing the wave characteristic 1 is not limited, and can be determined as appropriate according to the accuracy of the obtained data. However, as the number increases, the localized road surface condition can be reflected more accurately, and therefore it is preferable to increase the number of waves as much as possible.

この自動車運転模擬装置によれば、段差や細かいひび割れ等の局在路面状況が、その路面の波状特性を複数種類の周波数の波に分解して得られる波形において、振幅が他の連続部分よりも局所的に大きく変動する局在振動部として現出する特徴を利用することにより、局在路面状況を模擬走行に反映させることができる。例えば、図2に示す段差路面であれば、領域Aにおいてこの波c及び波dの波形に基づく振動を与えることにより、領域Aに局在する段差を模擬走行に反映させることができる。そして、段差、細かいひび割れ等、様々な局在路面状況に応じた局在振動部の特性を把握し、これら局在振動部の特性に応じた区分を定義しておき、路面のデータをその区分に分類して入力しておけば、模擬走行においてその分類に応じた振動を与えることで、様々な局在路面状況を反映させることができる。   According to this automobile driving simulation device, the local road surface conditions such as steps and fine cracks are obtained by decomposing the wave surface characteristics of the road surface into waves of a plurality of types of frequencies, and the amplitude is greater than that of other continuous parts. By utilizing the feature that appears as a local vibration part that varies greatly locally, the local road surface condition can be reflected in the simulated traveling. For example, in the case of the stepped road surface shown in FIG. 2, the step localized in the region A can be reflected in the simulated traveling by applying vibration based on the waveforms of the waves c and d in the region A. Then, grasp the characteristics of the localized vibration parts corresponding to various localized road surface conditions such as steps and fine cracks, define the classification according to the characteristics of these localized vibration parts, and classify the road surface data into the classification If it is classified and input, it is possible to reflect various localized road surface conditions by applying vibration according to the classification in the simulated traveling.

また、局在路面状況(図2の例における段差)が局在振動部4として表現されるため、局在振動部4を加工することにより、経時的変化を表現することができる。例えば、波2c及び波2dの局在振動部4の振幅を大きくし、或いは横軸方向の長さを伸ばす等して、路面の経時劣化に起因する段差の拡大を表現することができる。そして、模擬走行において路面データの分類に応じて与える振動を、局在振動部4の経時劣化を考慮した変更に適応させることにより、道路の状態が変化した将来の走行状態を表現することが可能となる。   In addition, since the localized road surface condition (the step in the example of FIG. 2) is expressed as the localized vibration part 4, the temporal change can be expressed by processing the localized vibration part 4. For example, the amplitude of the localized vibration part 4 of the wave 2c and the wave 2d can be increased, or the length in the horizontal axis direction can be increased to express the increase in the level difference due to the deterioration of the road surface over time. Then, by adapting the vibration given according to the classification of the road surface data in the simulated traveling to the change in consideration of the temporal deterioration of the local vibration unit 4, it is possible to express the future traveling state in which the road state has changed. It becomes.

基準路面の波状特性1の分解は、空間周波数分析により実行されている。具体的には、数式1で表される公知のウェーブレット変換を利用した分析により実行されている。なお、数式1におけるf(x)が、分解する波状特性1の関数となる。

Figure 2007121401
The decomposition of the wavy characteristic 1 of the reference road surface is performed by spatial frequency analysis. Specifically, it is executed by analysis using a known wavelet transform represented by Formula 1. Note that f (x) in Equation 1 is a function of the wave characteristic 1 to be decomposed.
Figure 2007121401

ただし、数式1の場合、aとbとによる無限積分が必要であり、現実的ではない。そこで、電子計算機である制御装置14による扱いに適したものとするため、数式1におけるaを2に、bを2kに置き換えて2進分割表現とした離散ウェーブレット(数式2)による変換を利用した空間周波数分析により実行されている。

Figure 2007121401
なお、jはレベルと呼ばれ、その値の小さいものは高周波数になる。一方、kはシフト距離(横軸方向の移動)を示す。ここで、数式2の離散ウェーブレットを適当に選択して直交系(内積がj=k以外の場合すべて0になる関数群)とすれば、波状特性1の関数f(x)は数式3の級数に展開される。
Figure 2007121401
なお、cjkは展開係数またはウェーブレット係数とよばれる。 However, in the case of Equation 1, infinite integration using a and b is necessary, which is not realistic. In order to be suitable for handling by the controller 14 is a computer, the a in Equation 1 to 2 j, transformation by the discrete wavelet (Equation 2) obtained by the binary split representation by replacing b to 2 j k It is executed by spatial frequency analysis using
Figure 2007121401
Note that j is called a level, and a small value has a high frequency. On the other hand, k represents a shift distance (movement in the horizontal axis direction). Here, if the discrete wavelet of Formula 2 is appropriately selected to form an orthogonal system (a group of functions that are all 0 when the inner product is other than j = k), the function f (x) of the wave characteristic 1 is a series of Formula 3. Expanded to
Figure 2007121401
Note that c jk is called an expansion coefficient or a wavelet coefficient.

更に、数式2の離散ウェーブレットをスケーリング関数に基づいて構成することにより、波状特性1をスケーリング関数の一次結合で近似し、解像度の階層構造で表現することができる。スケーリング関数をφで表した近似関数の一般式は数式4の通りとなる。なお、スケーリング関数には、例えば、Haar関数を採用してもよい。

Figure 2007121401
ここに、djkはスケーリング係数とよばれる。 Furthermore, by constructing the discrete wavelet of Formula 2 based on the scaling function, the wave characteristic 1 can be approximated by a linear combination of the scaling function and expressed by a hierarchical structure of resolution. A general expression of an approximate function in which the scaling function is represented by φ is as shown in Expression 4. For example, a Haar function may be adopted as the scaling function.
Figure 2007121401
Here, d jk is called a scaling factor.

j次以下の解像度のスケーリング係数及びウェーブレット係数は、djkを基に数式5及び数式6の繰り返し計算で求めることができる。

Figure 2007121401
Figure 2007121401
ここに、hとgは、それぞれローパス及びハイパスフィルタであり、これはφ(スケーリング関数)及びψ(離散ウェーブレット)から導かれる。また、j+1次のスケーリング係数dj+1は、j次より一つ下の低解像度表現であり、解析周波数及び距離解像度がj次の2分の1となる。このように、近似関数fを解像度の階層構造で表現すれば、解像度ごとにその性質を分析することができる。 A scaling coefficient and a wavelet coefficient having a resolution of jth order or less can be obtained by iterative calculation of Expression 5 and Expression 6 based on d jk .
Figure 2007121401
Figure 2007121401
Here, h and g are low-pass and high-pass filters, respectively, which are derived from φ (scaling function) and ψ (discrete wavelet). The j + 1-order scaling coefficient d j + 1 is a low-resolution expression that is one order lower than the j-order, and the analysis frequency and the distance resolution are ½ of the j-order. As described above, if the approximate function f is expressed by a hierarchical structure of resolution, the property can be analyzed for each resolution.

なお、ローパス成分(Approximation)である数式6のウェーブレット係数の取り出しを繰り返す多重解像度分析により近似関数fを求める場合、路面に局在する段差や細かいひび割れ等を反映させながら、走行対象となる路面の全長のマクロ的特徴の反映を主体にできる。   When the approximate function f is obtained by multi-resolution analysis that repeatedly extracts the wavelet coefficient of Equation 6 that is a low-pass component (Apploximation), the step of the road surface to be traveled is reflected while reflecting the step difference localized on the road surface and fine cracks. It can mainly reflect the macro characteristics of the full length.

一方、ローパス成分に加えハイパス成分(Detail)である数式5のスケーリング係数もローパス成分と同程度に取り出すウェーブレットパケット分析により近似関数fを求める場合、走行対象となる路面の全長における、段差や細かいひび割れ等の任意成分のミクロ的特徴を、ハイパス成分を利用して反映させることができる。
波状特性を、ウェーブレットパケット分析により複数種類の周波数の波に分解した場合に得られる波形の具体例を、図4及び図5に示す。
On the other hand, when the approximation function f is obtained by wavelet packet analysis in which the scaling coefficient of Equation 5 which is a high-pass component (Detail) in addition to the low-pass component is extracted to the same extent as the low-pass component, steps and fine cracks in the entire length of the road surface to be traveled It is possible to reflect the micro-features of arbitrary components such as those using a high-pass component.
4 and 5 show specific examples of waveforms obtained when the wave characteristics are decomposed into waves of a plurality of types of frequencies by wavelet packet analysis.

図4は図2に示す基準路面(特定の領域に段差を有する路面)の波状特性を、図5は図3に示す基準路面(何ら損傷等を有さない路面)の波状特性を、ウェーブレットパケット分析により複数種類の周波数の波に分解した場合に得られる波形を示すグラフである。なお、図4及び図5において、波状特性1及び各周波数の波形は、対応地点における振幅を棒の高さとして表現したものとなっている。
この図4及び図5において、波状特性1の解析前の生データSは、まず、ローパス成分Aとハイパス成分Dとに分解されている。そして、ローパス成分Aをローパス成分Aとハイパス成分Dとに分解し、更に、ローパス成分Aをローパス成分Aとハイパス成分Dとに、ローパス成分Aをローパス成分Aとハイパス成分Dとに分解し、各ローパス成分を利用する手法が、多重解像度分析である。一方、ハイパス成分Dをローパス成分ADとハイパス成分DDとに分解し、更に、ハイパス成分DDをローパス成分ADDとハイパス成分DDDとに分解し、一次のハイパス成分Dを分解して得られる成分を利用する手法がウェーブレットパケット分析である。ただし、分解の程度は、任意成分のミクロ的特徴を反映させることができる範囲で適宜決定すればよい。例えば、ハイパス成分Dのハイパス成分DDのみでなく、そのローパス成分ADを分解して得られるローパス成分AADとハイパス成分DADを利用すること、或いはハイパス成分D(DA)を分解して得られるローパス成分ADAとハイパス成分DDAを利用することも可能である。
4 shows the wave characteristics of the reference road surface (road surface having a step in a specific area) shown in FIG. 2, and FIG. 5 shows the wave characteristics of the reference road surface (road surface having no damage etc.) shown in FIG. It is a graph which shows the waveform obtained when it decomposes | disassembles into the wave of multiple types of frequency by analysis. In FIGS. 4 and 5, the waveform 1 and the waveform of each frequency represent the amplitude at the corresponding point as the height of the bar.
In FIG. 4 and FIG. 5, the raw data S before analysis wavy characteristics 1, first, are decomposed into a low-pass component A 1 and a high-pass component D 1. Then, the low-pass component A 1 is decomposed into a low-pass component A 2 and a high-pass component D 2 , the low-pass component A 2 is further converted into a low-pass component A 3 and a high-pass component D 3 , and the low-pass component A 3 is converted into a low-pass component A 4 . decomposed into high-pass component D 4, technique using the low-pass component is multiresolution analysis. On the other hand, decomposes the high pass component D 1 to the low-pass component AD 2 and a high-pass component DD 2, further decompose a high-pass component DD 2 to the lowpass ADD 3 and highpass DDD 3, degradation of the primary high-pass component D 1 Wavelet packet analysis is a technique that uses the components obtained in this way. However, the degree of decomposition may be determined as appropriate as long as the microscopic characteristics of the optional component can be reflected. For example, not only the high-pass component DD 2 of the high-pass component D 1 but also the low-pass component AAD 3 and the high-pass component DAD 3 obtained by decomposing the low-pass component AD 2 are used, or the high-pass component D 2 (DA 2 ) is used. It is also possible to use a low-pass component ADA 3 and a high-pass component DDA 3 obtained by decomposition.

なお、図4及び図5において、分解後に得られる波形の全長は、分解前の波形の全長の半分となっているが、これはダウンサンプリングによるものである。そして、分解後に得られる波形の各データ間に0値を挿入し、分解前の波形と全長をそろえた場合の位置が、各データに対応する位置となる。すなわち、ローパス成分とハイパス成分は、分解前の波形の左半分及び右半分に対応するものではなく、どちらの成分も、それずれ分解前の波形の全長に対応するものとなっている。   4 and 5, the total length of the waveform obtained after the decomposition is half of the total length of the waveform before the decomposition, which is due to downsampling. A position corresponding to each data is a position when a zero value is inserted between each data of the waveform obtained after the decomposition, and the entire length is aligned with the waveform before the decomposition. That is, the low-pass component and the high-pass component do not correspond to the left half and the right half of the waveform before the decomposition, and both components correspond to the entire length of the waveform before the decomposition.

本発明にかかる自動車運転模擬装置の具体例の概念を示すブロック図である。It is a block diagram which shows the concept of the specific example of the motor vehicle driving simulation apparatus concerning this invention. 同自動車運転模擬装置のデータ区分を定義するために用いられる基準路面データの例を示し、(a)は基準路面の波状特性を、(b)は同波状特性を複数種類の周波数の波に分解して得られる波形を示すグラフである。The example of the reference road surface data used for defining the data classification of the car driving simulation device is shown, (a) is the wave characteristic of the reference road surface, (b) is the wave characteristic decomposed into waves of plural kinds of frequencies. It is a graph which shows the waveform obtained by doing. 同自動車運転模擬装置のデータ区分を定義するために用いられる基準路面データの別の例を示し、(a)は基準路面の波状特性を、(b)は同波状特性を複数種類の周波数の波に分解して得られる波形を示すグラフである。The other example of the reference | standard road surface data used in order to define the data classification | category of the same vehicle driving simulation apparatus is shown, (a) is a wavy characteristic of a reference | standard road surface, (b) is the wave characteristic of several types of frequency. It is a graph which shows the waveform obtained by disassembling. 図2に示す基準路面(特定の領域に段差を有する路面)の波状特性を、ウェーブレットパケット分析により複数種類の周波数の波に分解した場合に得られる波形を示すグラフである。It is a graph which shows the waveform obtained when the wavelike characteristic of the reference | standard road surface (road surface which has a level | step difference in a specific area | region) shown in FIG. 2 is decomposed | disassembled into the wave of several types of frequency by wavelet packet analysis. 図3に示す基準路面(何ら損傷等を有さない路面)の波状特性を、ウェーブレットパケット分析により複数種類の周波数の波に分解した場合に得られる波形を示すグラフである。It is a graph which shows the waveform obtained when the wave-like characteristic of the reference | standard road surface (road surface which does not have any damage etc.) shown in FIG. 3 is decomposed | disassembled into the wave of several types of frequency by wavelet packet analysis.

符号の説明Explanation of symbols

1 波状特性
a,b,c,d,e,f 周波数
2a,2b,2c,2d,2e,2f 波
3 波形
4 局在振動部
1 Wave characteristic a, b, c, d, e, f Frequency 2a, 2b, 2c, 2d, 2e, 2f Wave 3 Waveform 4 Local vibration part

Claims (5)

模擬走行の対象となる路面の位置と該位置に対応する路面高さのデータが、基準路面の波状特性(1)を複数種類の周波数(a, b, c, d, e, f)の波(2a, 2b, 2c, 2d, 2e 2f)に分解し、該分解により得られた波形(3)に現出する、振幅が他の連続部分よりも局所的に大きく変動する局在振動部(4)の特性に応じて定義された区分に分類されて、入力されることを特徴とする自動車運転模擬装置。   The data on the road surface position and the road surface height corresponding to the position of the simulated driving are used to determine the wavy characteristics (1) of the reference road surface as the wave of multiple frequencies (a, b, c, d, e, f). (2a, 2b, 2c, 2d, 2e 2f), and the local vibration part (a) whose amplitude changes locally more greatly than other continuous parts appears in the waveform (3) obtained by the decomposition ( 4. A vehicle driving simulation device, wherein the vehicle driving simulation device is classified into the categories defined according to the characteristics of 4) and input. 該分解は、空間周波数分析により実行される請求項1に記載の自動車運転模擬装置。   The automobile driving simulation device according to claim 1, wherein the decomposition is performed by spatial frequency analysis. 該空間周波数分析において、離散ウェーブレットが利用されている請求項2に記載の自動車運転模擬装置。   The vehicle driving simulation apparatus according to claim 2, wherein discrete wavelets are used in the spatial frequency analysis. 該離散ウェーブレットは、スケーリング関数に基づいて構成され、該分解が多重解像度分析によりにより実行される請求項3に記載の自動車運転模擬装置。   The automobile driving simulation device according to claim 3, wherein the discrete wavelet is configured based on a scaling function, and the decomposition is performed by multi-resolution analysis. 該離散ウェーブレットは、スケーリング関数に基づいて構成され、該分解がウェーブレットパケット分析により実行される請求項3に記載の自動車運転模擬装置。   The automobile driving simulation device according to claim 3, wherein the discrete wavelet is configured based on a scaling function, and the decomposition is performed by wavelet packet analysis.
JP2005309726A 2005-10-25 2005-10-25 Car simulation driving device Expired - Fee Related JP5156888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309726A JP5156888B2 (en) 2005-10-25 2005-10-25 Car simulation driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309726A JP5156888B2 (en) 2005-10-25 2005-10-25 Car simulation driving device

Publications (2)

Publication Number Publication Date
JP2007121401A true JP2007121401A (en) 2007-05-17
JP5156888B2 JP5156888B2 (en) 2013-03-06

Family

ID=38145347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309726A Expired - Fee Related JP5156888B2 (en) 2005-10-25 2005-10-25 Car simulation driving device

Country Status (1)

Country Link
JP (1) JP5156888B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116355A (en) * 1993-10-21 1995-05-09 Namco Ltd Three-dimensional simulator apparatus
JPH08248872A (en) * 1995-03-08 1996-09-27 Toyota Motor Corp Simulated driving test device
JP2003233298A (en) * 2002-02-08 2003-08-22 Denso Corp System for evaluating navigation device
JP3467773B2 (en) * 1996-10-09 2003-11-17 株式会社セガ GAME DEVICE, GAME PROCESSING METHOD, GAME EXECUTION METHOD, AND GAME SYSTEM
JP2004317138A (en) * 2003-04-11 2004-11-11 Toyota Motor Corp Road/environment display apparatus and road/environment reporting apparatus
JP2005316004A (en) * 2004-04-27 2005-11-10 Japan Science & Technology Agency Driving simulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116355A (en) * 1993-10-21 1995-05-09 Namco Ltd Three-dimensional simulator apparatus
JPH08248872A (en) * 1995-03-08 1996-09-27 Toyota Motor Corp Simulated driving test device
JP3467773B2 (en) * 1996-10-09 2003-11-17 株式会社セガ GAME DEVICE, GAME PROCESSING METHOD, GAME EXECUTION METHOD, AND GAME SYSTEM
JP2003233298A (en) * 2002-02-08 2003-08-22 Denso Corp System for evaluating navigation device
JP2004317138A (en) * 2003-04-11 2004-11-11 Toyota Motor Corp Road/environment display apparatus and road/environment reporting apparatus
JP2005316004A (en) * 2004-04-27 2005-11-10 Japan Science & Technology Agency Driving simulator

Also Published As

Publication number Publication date
JP5156888B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
Šabanovič et al. Identification of road-surface type using deep neural networks for friction coefficient estimation
Won Intelligent traffic monitoring systems for vehicle classification: A survey
Liu et al. Diagnosis algorithms for indirect structural health monitoring of a bridge model via dimensionality reduction
Gorges et al. Impact detection using a machine learning approach and experimental road roughness classification
Teng et al. Application of wavelet technique to freeway incident detection
CN109919008A (en) Moving target detecting method, device, computer equipment and storage medium
Karimi et al. Signal reconstruction, modeling and simulation of a vehicle full-scale crash test based on Morlet wavelets
Guerrieri et al. Analysis of kinematic parameters and driver behavior at turbo roundabouts
Singh et al. A hybrid time-frequency method for robust drive-by modal identification of bridges
JP2019074849A (en) Drive data analyzer
US20200369270A1 (en) Apparatus and method for processing vehicle signals to compute a behavioral hazard measure
US20190146493A1 (en) Method And Apparatus For Autonomous System Performance And Benchmarking
JP2003203243A (en) Method for accumulation and transmission of map data and device for executing accumulation and transmission
Kausar et al. Two-wheeled vehicle detection using two-step and single-step deep learning models
Ngo et al. Beamforming and scalable image processing in vehicle-to-vehicle networks
JP5156888B2 (en) Car simulation driving device
DE102021205230A1 (en) HAZARD DETECTION ENSEMBLE ARCHITECTURE SYSTEM AND PROCEDURE
DE112020003411T5 (en) VEHICLE CONTROL IN GEOGRAPHICAL TAX ZONES
JP2003345233A (en) Device and method for generating simulated vibration
CN113536905B (en) Time-frequency domain combined panoramic segmentation convolutional neural network and application thereof
JPWO2018143277A1 (en) Image feature output device, image recognition device, image feature output program, and image recognition program
DE102020125061A1 (en) DRIVING ASSISTANCE SYSTEM, DRIVING ASSISTANCE PROCEDURES, PROGRAM AND NON-VOLATILE COMPUTER-READABLE STORAGE MEDIUM THAT SAVES THE PROGRAM
JP2007050805A (en) Data acquisition method for vehicle drive route management
DE102019218067A1 (en) Control unit for a vehicle that can be operated in an automated manner for the detection of a point of origin of sound waves, method for the detection of a point of origin of sound waves and a vehicle that can be operated automatically
Zhang et al. International Roughness Index (IRI) measurement using Hilbert-Huang transform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5156888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees