JP2007120946A - Method for measuring physical property value of solid material surface layer part - Google Patents

Method for measuring physical property value of solid material surface layer part Download PDF

Info

Publication number
JP2007120946A
JP2007120946A JP2005309134A JP2005309134A JP2007120946A JP 2007120946 A JP2007120946 A JP 2007120946A JP 2005309134 A JP2005309134 A JP 2005309134A JP 2005309134 A JP2005309134 A JP 2005309134A JP 2007120946 A JP2007120946 A JP 2007120946A
Authority
JP
Japan
Prior art keywords
solid material
surface layer
wave
density
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005309134A
Other languages
Japanese (ja)
Other versions
JP4736036B2 (en
Inventor
Toshio Kumagai
年男 熊谷
Junji Takatsubo
純治 高坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005309134A priority Critical patent/JP4736036B2/en
Publication of JP2007120946A publication Critical patent/JP2007120946A/en
Application granted granted Critical
Publication of JP4736036B2 publication Critical patent/JP4736036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which enables a measurement of the density and vertical elastic coefficient of a solid material surface layer part in a non-destructive manner even in a case that the surface of the solid material surface layer part to be measured has an arcuate shape in addition to a planar shape. <P>SOLUTION: An ultrasonic wave is transmitted to the solid material surface layer part and the sonic speeds of a leak creeping wave; a surface SV wave and a leak Rayleigh wave are respectively calculated from the receiving wave; the value of the damping coefficient of the leak Rayleigh wave is calculated using the receiving amplitude of the leak Rayleigh wave and a specific calculation formula; and the density and vertical elastic coefficient of the solid material surface layer part is finally measured from the values of the sonic speeds and the value of the damping coefficient. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

固体材料表層部の物性値を測定する方法に関し、詳しくは固体材料表層部の密度、縦弾性係数または横弾性係数を測定する方法に関する。   More specifically, the present invention relates to a method for measuring the density, longitudinal elastic modulus, or transverse elastic modulus of a solid material surface layer.

材料表面を高機能・高性能にする表面処理技術が開発されている。例えば金型であれば、長寿命をはかるために表面に窒化物を形成させることが行われている。また、環境保全の観点から潤滑剤の使用量を減らすために、金型表面にダイアモンドライクなコ−ティング膜を施すことも行われている。
そして金型に代表されるように、表層部の物性がそのバルク材とは異なっている製品が近年増加している。また表層部がそのバルク材の物性と同一であったとしても、使用している間に例えば熱疲労などによって表層部の物性が変化する例も数多く存在する。そのため表層部の物性、例えば密度や縦弾性係数を測定することが必要である。
固体材料表層部の物性値、例えば密度や縦弾性係数を非破壊的に測定する方法として、次の非特許文献に記載されたものがある。これは漏洩表面波が表面からほぼ一波長の間を伝搬する特性を利用して表層部の物性を測定する方法である。
Surface treatment technology to make the material surface highly functional and high performance has been developed. For example, in the case of a mold, nitride is formed on the surface in order to achieve a long life. In order to reduce the amount of lubricant used from the viewpoint of environmental protection, a diamond-like coating film is also applied to the mold surface.
And as represented by metal molds, products whose physical properties of the surface layer portion are different from the bulk materials have been increasing in recent years. Even if the surface layer portion has the same physical properties as the bulk material, there are many examples in which the physical property of the surface layer portion changes due to, for example, thermal fatigue during use. Therefore, it is necessary to measure the physical properties of the surface layer portion, such as density and longitudinal elastic modulus.
As a method for nondestructively measuring a physical property value of a surface portion of a solid material, for example, a density and a longitudinal elastic modulus, there are those described in the following non-patent documents. This is a method of measuring the physical properties of the surface layer portion by utilizing the characteristic that a leaky surface wave propagates from the surface between approximately one wavelength.

この方法の概要は次の通りである。水浸法で固体材料表層部に超音波を発信し、反射波を計測して漏洩クリーピング波、表面SV波、及び漏洩Rayleigh波の音速を各々算出する。また、漏洩Rayleigh波の振幅スペクトルからデフォ−カス量zの変化にともなう漏洩Rayleigh波の受信振幅A(z)の変化割合を求め、下記のXiangの式(1a)を用いて漏洩Rayleigh波の減衰係数γを算出する。

Figure 2007120946
The outline of this method is as follows. Ultrasonic waves are transmitted to the surface layer of the solid material by the water immersion method, the reflected waves are measured, and the sound velocities of the leaky creeping wave, surface SV wave, and leaky Rayleigh wave are calculated. In addition, the rate of change of the received amplitude A (z) of the leaky Rayleigh wave with the change of the defocus amount z is obtained from the amplitude spectrum of the leaky Rayleigh wave, and attenuation of the leaked Rayleigh wave using the following Xiang equation (1a) The coefficient γ is calculated.
Figure 2007120946

次に、下記のViktrovの式(2)を用いて表層部の密度ρを求める。

Figure 2007120946
さらに、Viktrovの式(2)で算出した表層部の密度ρの値、漏洩クリーピング波の音速Vl、及び表面SV波の音速Vtとから、表層部の縦弾性係数を算出する。 Next, the surface layer density ρ is determined using the following Viktrov equation (2).
Figure 2007120946
Further, the longitudinal elastic modulus of the surface layer portion is calculated from the value of the density ρ of the surface layer portion calculated by the Viktrov equation (2), the sound velocity V l of the leaky creeping wave, and the sound velocity Vt of the surface SV wave.

川嶋ほか:機論A,64-625(1998),2315.Kawashima et al .: Theory A, 64-625 (1998), 2315. D.Xiang et al:Review of Progress in Quantitative NDE,15(1996),1431.D.Xiang et al: Review of Progress in Quantitative NDE, 15 (1996), 1431. I.A.Viktrov:Rayleigh and Lamb Waves, Plenum Press(1967).I.A.Viktrov: Rayleigh and Lamb Waves, Plenum Press (1967).

上記の非特許文献に記載の方法は、被測定対象である固体材料表層部の表面が平面である場合には有効であるが、被測定対象である固体材料表層部の表面が曲面形状である場合には式(1a)が適用できないため、固体材料表層部の表面が曲面形状の場合にはその密度と縦弾性係数を求めることが不可能である。しかし、固体材料例えば金型の表層部の表面は一般的には曲面形状となるため、固体材料表層部の表面が曲面形状となる場合であってもその物性が測定できる方法が望まれている。   The method described in the above non-patent document is effective when the surface of the solid material surface layer part to be measured is a flat surface, but the surface of the solid material surface layer part to be measured has a curved surface shape. In this case, since the formula (1a) cannot be applied, the density and the longitudinal elastic modulus cannot be obtained when the surface of the solid material surface layer portion is a curved surface. However, since the surface of the surface layer portion of a solid material, for example, a mold is generally curved, a method capable of measuring the physical properties even when the surface of the solid material surface layer portion is curved is desired. .

本発明はかかる実状を背景になされたものである。
すなわち、本発明は、測定の対象となる固体材料表層部の表面が平面に加え、円弧形状(曲面形状)の場合においても、表層部の密度と縦弾性係数を非破壊的に測定できる方法を提供することを目的とする。
The present invention has been made against this background.
That is, the present invention provides a method capable of nondestructively measuring the density and the longitudinal elastic modulus of the surface layer portion even when the surface of the solid material surface layer portion to be measured is an arc shape (curved surface shape) in addition to a flat surface. The purpose is to provide.

以上のような課題背景に対して、本発明者は鋭意工夫を重ねた結果、漏洩Rayleigh波の減衰係数を本発明者が導き出した式によって算出することで問題が解決できることを見出し、その知見に基づき本発明を行った。   As a result of intensive efforts, the inventor found that the problem can be solved by calculating the attenuation coefficient of the leaked Rayleigh wave using the formula derived by the inventor. Based on this invention.

すなわち本発明は(1)、固体材料表層部の密度と縦弾性係数とを測定する方法であって、超音波を固体材料表層部に対して発信し、その受信波から漏洩クリーピング波、表面SV波、及び漏洩Rayleigh波の音速をそれぞれ求め、また漏洩Rayleigh波の受信振幅と本発明者の式(1)を用いて漏洩Rayleigh波の減衰係数の値を求め、該音速の値と該減衰係数の値から、Viktrovの式(2)及び式(3)を用いることで固体材料表層部の密度と縦弾性係数を測定する方法に存する。   That is, the present invention is (1) a method for measuring the density and the longitudinal elastic modulus of a solid material surface layer portion, which transmits ultrasonic waves to the solid material surface layer portion, leaks creeping waves from the received waves, surface The sound speeds of the SV wave and the leaky Rayleigh wave are obtained, respectively, and the reception amplitude of the leaky Rayleigh wave and the value of the attenuation coefficient of the leaky Rayleigh wave are obtained using the inventor's equation (1). From the value of the coefficient, the density and the longitudinal elastic modulus of the solid material surface layer part are measured by using Viktrov's formula (2) and formula (3).

Figure 2007120946
Figure 2007120946

Figure 2007120946
Figure 2007120946

Figure 2007120946
Figure 2007120946

また本発明は、(2)固体材料表層部の表面が円弧形状であることを特徴とする(1)記載の固体材料表層部の密度と縦弾性係数の測定方法に存する。   The present invention also resides in (2) the method for measuring the density and the longitudinal elastic modulus of the solid material surface layer part according to (1), wherein the surface of the solid material surface layer part has an arc shape.

また本発明は、(3)固体材料表層部の表面が平面であることを特徴とする(1)記載の固体材料表層部の密度と縦弾性係数の測定方法に存する。   The present invention also resides in (3) the method for measuring the density and the longitudinal elastic modulus of the solid material surface layer according to (1), wherein the surface of the solid material surface layer is flat.

また本発明は、(4)固体材料の材質が金属であることを特徴とする(1)記載の密度と縦弾性係数の測定方法に存する。   The present invention also resides in (4) the method for measuring density and longitudinal elastic modulus according to (1), wherein the solid material is a metal.

また本発明は、(5)固体材料の材質がセラミック材料であることを特徴とする(1)記載の密度と縦弾性係数の測定方法に存する。   The present invention also resides in (5) the method for measuring density and longitudinal elastic modulus according to (1), wherein the material of the solid material is a ceramic material.

また本発明は、(6)固体材料の材質がプラスチック材料であることを特徴とする(1)記載の密度と縦弾性係数の測定方法に存する。   The present invention also resides in (6) the method for measuring density and longitudinal elastic modulus according to (1), wherein the solid material is a plastic material.

なお、本発明の目的に沿ったものであれば、上記(1)から(6)を適宜組み合わせた構成も採用可能である。   In addition, as long as the objective of this invention is followed, the structure which combined suitably said (1) to (6) is also employable.

本発明を用いることで、固体材料表層部の表面が、平面の場合は勿論、円弧形状であっても、その密度と縦弾性係数の測定が可能となる。   By using the present invention, it is possible to measure the density and the longitudinal elastic modulus even when the surface of the solid material surface layer portion is a flat surface as well as an arc shape.

〔実施形態〕
以下図面を用いて、本発明の実施形態について説明をする。
本発明は、固体材料表層部の表面が平面の場合に加え円弧形状の場合においても、表層部の密度や弾性係数の測定をする方法である。
図1に示す通り、対象となる固体材料表層部(例えば金型の表層部)の表面を水等の液体中に沈め、対象となる固体材料表層部にたいして超音波を発信して、表層部表面からの反射波のピ−ク値を観察しながら、該固体材料の軸方向と線収束型超音波トランスデュ−サの軸方向とが一致するように注意深く調整をする。さらに、発信された超音波の焦点が該固体材料表層部の表面に一致するように、注意深く調整をする。
Embodiment
Embodiments of the present invention will be described below with reference to the drawings.
The present invention is a method for measuring the density and elastic modulus of a surface layer portion when the surface of the solid material surface layer portion is a flat surface as well as when it has an arc shape.
As shown in FIG. 1, the surface of a target solid material surface layer (for example, a surface layer of a mold) is submerged in a liquid such as water, and an ultrasonic wave is transmitted to the target solid material surface layer to transmit the surface layer surface. While observing the peak value of the reflected wave from the solid material, the solid material is carefully adjusted so that the axial direction of the solid material coincides with the axial direction of the line-converging ultrasonic transducer. Further, carefully adjust so that the focal point of the transmitted ultrasonic wave coincides with the surface of the surface portion of the solid material.

次に、デフォ−カス量zを一定間隔(例えば0.5mm)で変化させながら反射波を受信し、それをパソコンに転送して収録する。そして、収録した反射波の波形から垂直反射波とそれ以外の反射波(漏洩クリーピング波、表面SV波、及び漏洩Rayleigh波)とを切り分け、相互相関法によって垂直反射波とそれ以外の反射波との到達時間差を各々算出する。さらに、それらの到達時間差と固体材料と超音波トランスデュ−サとの間の幾何学的関係とから、漏洩クリーピング波、表面SV波、及び漏洩Rayleigh波の音速を算出する。これらの計算はコンピュータの演算処理によって容易に行うことができる。   Next, the reflected wave is received while changing the defocus amount z at a constant interval (for example, 0.5 mm), and it is transferred to a personal computer and recorded. Then, the vertical reflected wave and other reflected waves (leakage creeping wave, surface SV wave, and leaky Rayleigh wave) are separated from the recorded reflected wave waveform, and the vertical reflected wave and other reflected waves are separated by the cross correlation method. The difference in arrival time with each is calculated. Furthermore, the sound speed of the leaky creeping wave, the surface SV wave, and the leaky Rayleigh wave is calculated from the arrival time difference and the geometrical relationship between the solid material and the ultrasonic transducer. These calculations can be easily performed by computer processing.

また、固体材料表層部の表面が円弧形状の場合、Rayleigh波の音速は周波数によって変化することが理論的に知られているため、位相スペクトル法で漏洩Rayleigh波の位相速度を算出する。そして、漏洩Rayleigh波の位相速度にきわだった分散が観測されない場合には、漏洩Rayleigh波の音速は一定であるとみなし、相互相関法によって求めた漏洩クリーピング波、表面SV波、及び漏洩Rayleigh波の音速を用いて以降の計算を行う。なお、際立った分散が観測される場合には位相スペクトル法で求めた音速を用いて以降の計算を行う。   In addition, when the surface of the solid material surface layer has an arc shape, it is theoretically known that the sound speed of the Rayleigh wave varies depending on the frequency. Therefore, the phase velocity of the leaky Rayleigh wave is calculated by the phase spectrum method. If no significant dispersion is observed in the phase velocity of the leaky Rayleigh wave, the sound speed of the leaky Rayleigh wave is assumed to be constant, and the leaky creeping wave, surface SV wave, and leaky Rayleigh wave obtained by the cross-correlation method are considered. The following calculations are performed using the sound speed of. In addition, when remarkable dispersion | distribution is observed, subsequent calculations are performed using the sound speed calculated | required by the phase spectrum method.

次に、受信した漏洩Rayleigh波をフ−リエ変換して得られる振幅スペクトルから求まるデフォ−カス量zの変化にともなう漏洩Rayleigh波の受信振幅A(z)の変化割合d[lnA(z)]/dzと本発明者の式(1)を用いて漏洩Rayleigh波の減衰係数γの値を算出する。

Figure 2007120946
Next, the rate of change d [lnA (z)] of the received amplitude A (z) of the leaked Rayleigh wave accompanying the change of the defocus amount z obtained from the amplitude spectrum obtained by Fourier transform of the received leaky Rayleigh wave The value of the leaky Rayleigh wave attenuation coefficient γ is calculated using / dz and the present inventor's formula (1).
Figure 2007120946

こうして求めた漏洩クリーピング波の音速Vl、表面SV波の音速Vt、漏洩Rayleigh波の音速VR、及びRayleigh波の減衰係数γの値と下記のViktrovの式(2)を用いて固体材料表層部の密度ρを算出する。

Figure 2007120946
Using the values of leaky creeping wave velocity V l , surface SV wave velocity Vt, leaky Rayleigh wave velocity V R , and Rayleigh wave attenuation coefficient γ, and Viktrov's equation (2) below, the solid material The density ρ of the surface layer part is calculated.
Figure 2007120946

さらに、該密度ρの値、漏洩クリーピング波の音速Vl、及び表面SV波の音速Vtと下記の式(3)を用いて固体材料表層部の縦弾性係数(ヤング率)Eを算出する。

Figure 2007120946
Further, the longitudinal elastic modulus (Young's modulus) E of the surface layer of the solid material is calculated using the value of the density ρ, the sound velocity V l of the leaking creeping wave, the sound velocity Vt of the surface SV wave, and the following equation (3). .
Figure 2007120946

そして下記の式(4)を用いることで横弾性係数Gを算出することができる。

Figure 2007120946
The transverse elastic modulus G can be calculated by using the following formula (4).
Figure 2007120946

以下本発明を実施例に基づいて説明するが、その発明は実施例に限定されるものではない。
〔実施例1〕
以下、本発明の妥当性を実証するための実験を行った。
固体材料表層部表面の半径がR=38.9mmの凸かまぼこ形状のホウ珪酸ガラスを用いた。ホウ珪酸ガラスを選んだのは、均質に製造された材料であるため形状の影響のみを観察するのに好適であるからである。
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples.
[Example 1]
Hereinafter, experiments for verifying the validity of the present invention were conducted.
A convex kamaboko-shaped borosilicate glass having a radius of the surface of the solid material R = 38.9 mm was used. The reason why borosilicate glass was selected is that it is suitable for observing only the influence of the shape because it is a homogeneously manufactured material.

図1に示す通り、該固体材料を水で満たした水槽中に完全に沈め、リモ−トパルサ−用いて、線収束型で広帯域のPVDF超音波トランスデューサ(中心周波数10MHz、焦点距離15mm)から該固体材料表層部に超音波を発信した。そして、デジタルオシロに映し出される表層部の表面からの反射波のピ−ク値を観察しながら、該固体材料の軸方向と凹かまぼこ形状をしている線収束型超音波トランスデュ−サの軸方向とが一致するように注意深く調整をした。また、デジタルオシロに映し出される表層部の表面からの反射波のピ−ク値が最大になる位置を見つけだすことにより、超音波の焦点を固体材料表層部の表面に一致させた。このような調整を終えた後、デフォーカス量zを0.5mm間隔で1.5mmから5mmまで変化させながら反射波を超音波レシ−バで受信した。
受信した反射波は、デジタルオシロでAD変換してGPIBを介しパソコンに転送して収録した。パソコンに収録した反射波形から垂直反射波とその他の波を切り分けて、相互相関法によって垂直反射波とその他の波の到達時間差を求めた。こうして求めた到達時間差と幾何学的関係とから、漏洩クリーピング波、表面SV波、及び漏洩Rayleigh波の音速を各々算出した。
As shown in FIG. 1, the solid material is completely submerged in a water tank filled with water, and a solid pulsed wideband PVDF ultrasonic transducer (center frequency 10 MHz, focal length 15 mm) is used with a remote pulser. Ultrasonic waves were transmitted to the material surface layer. Then, while observing the peak value of the reflected wave from the surface of the surface layer imaged on the digital oscilloscope, the axis of the solid material and the axis of the line-converging ultrasonic transducer having a concave hull shape Careful adjustment was made to match the direction. Further, by finding the position where the peak value of the reflected wave from the surface of the surface layer portion projected on the digital oscilloscope was maximized, the focal point of the ultrasonic wave was matched with the surface of the solid material surface layer portion. After finishing such adjustment, the reflected wave was received by the ultrasonic receiver while changing the defocus amount z from 1.5 mm to 5 mm at intervals of 0.5 mm.
Received reflected waves were converted to digital signals using a digital oscilloscope, transferred to a personal computer via GPIB, and recorded. The vertical reflected wave and other waves were separated from the reflected waveform recorded on the personal computer, and the arrival time difference between the vertical reflected wave and other waves was obtained by the cross-correlation method. From the arrival time difference thus obtained and the geometrical relationship, the sound speeds of the leaky creeping wave, surface SV wave, and leaky Rayleigh wave were calculated.

なお本実施例では、図2に示すように漏洩Rayleigh波の音速に際立った分散は観測されなかった。よって漏洩Rayleigh波の音速を周波数に依らず一定であるとみなし、相互相関法によって求めた漏洩クリーピング波、表面SV波、及び漏洩Rayleigh波の音速を用いて以降の計算を行った。
さらに、パソコンに収録したRayleigh波をフ−リエ変換して得られる振幅スペクトルからデフォ−カス量zの変化にともなう漏洩Rayleigh波の受信振幅A(z)の変化割合を求め、該受信振幅A(z)の変化割合と本発明者の式(1)を用いて漏洩Rayleigh波の減衰係数γの値を算出した。
In the present example, as shown in FIG. 2, no remarkable dispersion was observed in the sound speed of the leaked Rayleigh wave. Therefore, the sound speed of the leaky Rayleigh wave was assumed to be constant regardless of the frequency, and the subsequent calculations were performed using the sound speed of the leaky creeping wave, surface SV wave, and leaky Rayleigh wave obtained by the cross-correlation method.
Further, the change rate of the received amplitude A (z) of the leaked Rayleigh wave accompanying the change of the defocus amount z is obtained from the amplitude spectrum obtained by performing Fourier transform on the Rayleigh wave recorded in the personal computer, and the received amplitude A ( The value of the attenuation coefficient γ of the leaky Rayleigh wave was calculated using the change ratio of z) and the inventor's formula (1).

次に、該漏洩Rayleigh波の減衰係数γ、漏洩クリーピング波の音速Vl、表面SV波の音速Vt及びViktrovの式(2)を用いて、該固体材料表層部の密度ρを算出した。密度ρの算出に当たって、周波数fについては、漏洩Rayleigh波の減衰係数γの算出において受信振幅A(z)の変化割合d[lnA(z)]/dzを求めたときのデフォーカス量zにおける振幅スペクトルが最大となる周波数fの変動範囲の中間の周波数、具体的には9×106 Hzとした。漏洩Rayleigh波の減衰係数γについても、9×106 Hzのときの値を用いた。 Next, the density ρ of the surface portion of the solid material was calculated using the attenuation coefficient γ of the leaky Rayleigh wave, the sound velocity V l of the leaky creeping wave, the sound velocity Vt of the surface SV wave, and the Viktrov equation (2). In calculating the density ρ, for the frequency f, the amplitude at the defocus amount z when the change rate d [lnA (z)] / dz of the reception amplitude A (z) is calculated in the calculation of the attenuation coefficient γ of the leaked Rayleigh wave. The frequency in the middle of the fluctuation range of the frequency f at which the spectrum is maximum, specifically 9 × 10 6 Hz. For the attenuation coefficient γ of the leaky Rayleigh wave, the value at 9 × 10 6 Hz was used.

そして、該密度ρ、漏洩クリーピング波の音速Vl、表面SV波の音速Vt及び式(3)を用いて、該固体材料表層部の縦弾性係数を求めた。さらに式(4)を用いて横弾性係数を算出した。
なお、音速は温度変化に敏感に左右されるため、空調の効いた室内で水槽内の水の温度を20℃に保って実験を行った。また、液体(水)を伝搬する音速VLと液体(水)の音波吸収係数αLとは、20℃における一般的な値として知られているVL=1482.34 m/sとαL=25.6×10-18 f(mm−1)とした。ここでfは周波数(Hz)である。
Then, the longitudinal elastic modulus of the surface layer of the solid material was determined using the density ρ, the sound velocity V l of the leaking creeping wave, the sound velocity Vt of the surface SV wave, and the equation (3). Further, the transverse elastic modulus was calculated using Equation (4).
Since the speed of sound is sensitive to changes in temperature, the experiment was conducted while keeping the temperature of the water in the water tank at 20 ° C. in an air-conditioned room. The sound velocity V L propagating through the liquid (water) and the sound absorption coefficient α L of the liquid (water) are known as typical values at 20 ° C. V L = 1482.34 m / s and α L = 25.6. × 10 -18 f 2 (mm -1 ). Here, f is a frequency (Hz).

〔実施例2〕
固体材料表層部表面の半径がR=−47.0mmの凹かまぼこ形状のホウ珪酸ガラスを用いたこと以外は全て実施例1と同様の手順で行った。
[Example 2]
All procedures were the same as those in Example 1 except that a concave kamaboko-shaped borosilicate glass having a surface radius of the solid material surface of R = −47.0 mm was used.

〔実施例3〕
固体材料表層部の表面が平面のホウ珪酸ガラスを用い、R=1015 mmとしたこと以外は全て実施例1と同様の手順で行った。
Example 3
The same procedure as in Example 1 was performed except that the surface of the solid material surface layer portion was made of borosilicate glass having a flat surface and R = 10 15 mm.

実施例1〜3の結果を表1及び図3に示す。
なお、実施例で用いた固体材料メーカーが公表している該固体材料の密度と縦弾性係数の値を表1に併記している。
表1に示す通り、実施例1、2の測定結果とメーカーが公表している密度と縦弾性係数の値との差は数パ−セントであり、本発明の方法による測定結果は実用上十分な精度であることが実証された。また、実施例3のように、固体材料表層部の表面が平面の場合は、曲率半径Rを極めて大きい値とすることで、平面に近似させることができる。その精度も表1の結果によって実証された。
The results of Examples 1 to 3 are shown in Table 1 and FIG.
Table 1 also shows the density of the solid material and the value of the longitudinal elastic modulus which are announced by the solid material manufacturer used in the examples.
As shown in Table 1, the difference between the measurement results of Examples 1 and 2 and the values published by the manufacturer and the value of the longitudinal elastic modulus is several percent, and the measurement results by the method of the present invention are practically sufficient. Proved to be accurate. Further, when the surface of the solid material surface layer portion is flat as in Example 3, it can be approximated to a flat surface by setting the curvature radius R to a very large value. The accuracy was also demonstrated by the results in Table 1.

図3は実施例1〜3における漏洩Rayleigh波の減衰係数の算出結果である。形状が変化しても値のバラツキは小さく、本発明者の式(1)が信頼できることが実証された。
表2には実施例1〜3で求めた各反射波の音速を示す。
FIG. 3 is a calculation result of the attenuation coefficient of the leaked Rayleigh wave in Examples 1 to 3. Even if the shape changes, the value variation is small, and it has been proved that the inventor's formula (1) is reliable.
Table 2 shows the sound speed of each reflected wave obtained in Examples 1 to 3.

Figure 2007120946
Figure 2007120946

Figure 2007120946
Figure 2007120946

図1は超音波トランスデューサと固体材料間の位置関係を示した図である。FIG. 1 is a diagram showing a positional relationship between an ultrasonic transducer and a solid material. 図2は漏洩Rayleigh波の音速の分散の算出結果を示したグラフである。FIG. 2 is a graph showing the calculation result of the dispersion of the sound speed of the leaky Rayleigh wave. 図3は各実施例の減衰係数の算出結果を示したグラフである。FIG. 3 is a graph showing the calculation result of the attenuation coefficient of each example.

Claims (6)

固体材料表層部の密度と縦弾性係数を測定する方法であって、超音波を固体材料表層部に対して発信し、その受信波から漏洩クリーピング波、表面SV波、及び漏洩Rayleigh波の音速をそれぞれ求め、また漏洩Rayleigh波の振幅スペクトルと本発明者の式(1)を用いて漏洩Rayleigh波の減衰係数の値を求め、該3つの音速の値と該減衰係数の値から、Viktrovの式(2)及び式(3)を用いることで固体材料表層部の密度と縦弾性係数を測定する方法。
Figure 2007120946
Figure 2007120946
Figure 2007120946
A method for measuring the density and longitudinal elastic modulus of the surface layer of a solid material, transmitting ultrasonic waves to the surface layer of the solid material, and measuring the velocity of the leaked creeping wave, surface SV wave, and leaked Rayleigh wave from the received wave. And the leaky Rayleigh wave amplitude spectrum and the inventor's equation (1) are used to obtain the leaky Rayleigh wave attenuation coefficient value, and the Viktrov's value is calculated from the three sound velocity values and the attenuation coefficient value. A method of measuring the density and the longitudinal elastic modulus of the surface layer of the solid material by using the equations (2) and (3).
Figure 2007120946
Figure 2007120946
Figure 2007120946
固体材料表層部の表面が円弧形状であることを特徴とする請求項1記載の固体材料表層部の密度と縦弾性係数の測定方法。   2. The method for measuring density and longitudinal elastic modulus of a solid material surface layer part according to claim 1, wherein the surface of the solid material surface layer part has an arc shape. 固体材料表層部の表面が平面であることを特徴とする請求項1記載の固体材料表層部の密度と縦弾性係数の測定方法。   2. The method for measuring the density and longitudinal elastic modulus of a solid material surface layer part according to claim 1, wherein the surface of the solid material surface layer part is a flat surface. 固体材料の材質が金属であることを特徴とする請求項1記載の密度と縦弾性係数の測定方法。   The method for measuring density and longitudinal elastic modulus according to claim 1, wherein the solid material is a metal. 固体材料の材質がセラミック材料であることを特徴とする請求項1記載の密度と縦弾性係数の測定方法。   2. The density and longitudinal elastic modulus measuring method according to claim 1, wherein the solid material is a ceramic material. 固体材料の材質がプラスチック材料であることを特徴とする請求項1記載の密度と縦弾性係数の測定方法。
2. The method for measuring density and longitudinal elastic modulus according to claim 1, wherein the solid material is a plastic material.
JP2005309134A 2005-10-24 2005-10-24 Method for measuring physical properties of surface layer of solid material Expired - Fee Related JP4736036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309134A JP4736036B2 (en) 2005-10-24 2005-10-24 Method for measuring physical properties of surface layer of solid material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309134A JP4736036B2 (en) 2005-10-24 2005-10-24 Method for measuring physical properties of surface layer of solid material

Publications (2)

Publication Number Publication Date
JP2007120946A true JP2007120946A (en) 2007-05-17
JP4736036B2 JP4736036B2 (en) 2011-07-27

Family

ID=38144970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309134A Expired - Fee Related JP4736036B2 (en) 2005-10-24 2005-10-24 Method for measuring physical properties of surface layer of solid material

Country Status (1)

Country Link
JP (1) JP4736036B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021401A1 (en) 2007-05-01 2008-11-13 Hitachi, Ltd. Hydraulic device for fluid pressure regulation
DE102009036001A1 (en) * 2009-07-30 2011-02-10 Sensaction Ag Method for measuring the condition of a surface of a body and device for measuring the condition of a surface of a body
CN102841145A (en) * 2012-08-23 2012-12-26 中国神华能源股份有限公司 Creeping-wave fault detecting probe and creeping wave fault detecting method
CN106769651A (en) * 2016-11-23 2017-05-31 平高集团有限公司 The density lossless detection method and device of high-tension switch gear quenching nozzle
CN109283079A (en) * 2018-09-25 2019-01-29 华东交通大学 A method of measurement and calculating rock attenuation coefficient and nonlinear factor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540108A (en) * 1991-08-08 1993-02-19 Hitachi Constr Mach Co Ltd Measuring and evaluating method of physical properties of body to be inspected
JPH05149931A (en) * 1991-11-26 1993-06-15 Hitachi Constr Mach Co Ltd Method and apparatus for measuring sound speed and density
JPH05264518A (en) * 1992-03-19 1993-10-12 Olympus Optical Co Ltd Ultrasonic measuring device
JPH09218184A (en) * 1996-02-09 1997-08-19 Sonitsukusu Kk Method for measuring speed of surface wave, creeping wave and transverse wave, and device therefor
JP2000028592A (en) * 1998-07-10 2000-01-28 Michiaki Kobayashi Measuring method for measuring elastic modulus and density of solid surface using elastic wave
JP2005069782A (en) * 2003-08-21 2005-03-17 Murata Mfg Co Ltd Surface state measuring method of surface processed product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540108A (en) * 1991-08-08 1993-02-19 Hitachi Constr Mach Co Ltd Measuring and evaluating method of physical properties of body to be inspected
JPH05149931A (en) * 1991-11-26 1993-06-15 Hitachi Constr Mach Co Ltd Method and apparatus for measuring sound speed and density
JPH05264518A (en) * 1992-03-19 1993-10-12 Olympus Optical Co Ltd Ultrasonic measuring device
JPH09218184A (en) * 1996-02-09 1997-08-19 Sonitsukusu Kk Method for measuring speed of surface wave, creeping wave and transverse wave, and device therefor
JP2000028592A (en) * 1998-07-10 2000-01-28 Michiaki Kobayashi Measuring method for measuring elastic modulus and density of solid surface using elastic wave
JP2005069782A (en) * 2003-08-21 2005-03-17 Murata Mfg Co Ltd Surface state measuring method of surface processed product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021401A1 (en) 2007-05-01 2008-11-13 Hitachi, Ltd. Hydraulic device for fluid pressure regulation
DE102009036001A1 (en) * 2009-07-30 2011-02-10 Sensaction Ag Method for measuring the condition of a surface of a body and device for measuring the condition of a surface of a body
CN102841145A (en) * 2012-08-23 2012-12-26 中国神华能源股份有限公司 Creeping-wave fault detecting probe and creeping wave fault detecting method
CN106769651A (en) * 2016-11-23 2017-05-31 平高集团有限公司 The density lossless detection method and device of high-tension switch gear quenching nozzle
CN109283079A (en) * 2018-09-25 2019-01-29 华东交通大学 A method of measurement and calculating rock attenuation coefficient and nonlinear factor
CN109283079B (en) * 2018-09-25 2020-10-09 华东交通大学 Method for measuring and calculating rock attenuation coefficient and nonlinear coefficient

Also Published As

Publication number Publication date
JP4736036B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
Deutsch et al. Self-focusing of Rayleigh waves and Lamb waves with a linear phased array
JP4736036B2 (en) Method for measuring physical properties of surface layer of solid material
Jen et al. Long isotropic buffer rods
CN113029880B (en) Phased array ultrasonic evaluation method of grain size
CA1070417A (en) Ultrasonic immersion type testing
RU2604562C2 (en) Method of resilient properties ultrasonic measurement
JP2006322902A5 (en)
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
JP4888484B2 (en) Metallic tissue material measuring device
JP2010169494A (en) Compression strength measurement method, and compression strength measuring instrument using the same
RU2580907C1 (en) Ultrasonic waveguide level meter for liquid
RU2625264C2 (en) Method for describing object characteristics comprising, at least, locally symmetry plane
JPH08261997A (en) Surface wave probe
JP4403280B2 (en) Method for measuring physical properties of soft thin film and apparatus therefor
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
JP2009031088A (en) Hardness distribution measuring method
Simonetti et al. Ultrasonic interferometry for the measurement of shear velocity and attenuation in viscoelastic solids
Quentin et al. Comparison of backscattering of short pulses by solid spheres and cylinders at large ka
Yochev et al. Investigation of ultrasonic properties of hydrophilic polymers for dry-coupled inspection
JP2007309850A5 (en)
Chen et al. Parameter measurement of the cylindrically curved thin layer using low-frequency circumferential Lamb waves
Drinkwater et al. The interaction of Lamb waves with solid-solid interfaces
JP2012189352A (en) Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface
Kawashima et al. Determination of Mass Density and Elastic Constants in the Surface Layer With Leaky Surface Waves
RU2052774C1 (en) Ultrasonic device for measurement of physical properties of liquid media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees