JP2007120465A - Pump rotor and internal gear type pump using it - Google Patents

Pump rotor and internal gear type pump using it Download PDF

Info

Publication number
JP2007120465A
JP2007120465A JP2005316820A JP2005316820A JP2007120465A JP 2007120465 A JP2007120465 A JP 2007120465A JP 2005316820 A JP2005316820 A JP 2005316820A JP 2005316820 A JP2005316820 A JP 2005316820A JP 2007120465 A JP2007120465 A JP 2007120465A
Authority
JP
Japan
Prior art keywords
rotor
pump
noise
porosity
internal gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005316820A
Other languages
Japanese (ja)
Inventor
Naoki Inui
直樹 乾
Daisuke Ogata
大介 緒方
Akimitsu Sasaki
陽充 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2005316820A priority Critical patent/JP2007120465A/en
Publication of JP2007120465A publication Critical patent/JP2007120465A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal gear type pump capable of restraining meshing noise and tooth hitting noise of a pump rotor, and capable of reducing noise and vibration caused by the meshing noise or the tooth hitting noise. <P>SOLUTION: At least one of an inner rotor 2 and an outer rotor 3 is formed by a sintered material having the porosity of 17% or more, and the pump rotor 4 wherein the inter rotor 2 and the outer rotor 3 are eccentrically arranged and combined is housed in a casing 5 having a suction port 6 and a discharge port 7, and the internal gear type pump 1 is obtained. In the sintered material having the enhanced porosity, impact noise is attenuated compared to the one in the sintered material having the low porosity (high density), and damping performance of sound is also enhanced, and thereby, noise and vibration of the pump having the rotor can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、インナーロータとアウターロータを組み合わせて構成されるポンプロータとそれを用いた内接歯車式ポンプ、詳しくは、インナーロータとアウターロータの噛み合い音や歯当たり音を小さくして噛み合い音や歯当たり音に起因するポンプ作動時の騒音、振動を低減したポンプロータとそれを用いた内接歯車式ポンプに関する。   The present invention relates to a pump rotor configured by combining an inner rotor and an outer rotor and an internal gear type pump using the pump rotor. More specifically, the engagement noise and the tooth contact noise between the inner rotor and the outer rotor are reduced, and the engagement noise is reduced. The present invention relates to a pump rotor that reduces noise and vibration during pump operation caused by tooth contact noise, and an internal gear pump using the pump rotor.

内接歯車式ポンプは、車のエンジンやオートマチックトランスミッション用のオイルポンプなどとして多用されている。この内接歯車式ポンプは、外歯を有するインナーロータと内歯を有するアウターロータを偏心配置にして組み合わせたポンプロータを採用しており、ロータ回転時に歯の噛み合い音や歯当たり音が発生する。   Internal gear pumps are widely used as oil pumps for car engines and automatic transmissions. This internal gear type pump employs a pump rotor in which an inner rotor having external teeth and an outer rotor having internal teeth are combined in an eccentric arrangement, and tooth engagement noise and tooth contact noise are generated when the rotor rotates. .

その噛み合い音や歯当たり音は、ポンプの騒音、振動の原因となるので、できるだけ小さいことが望まれる。   Since the meshing sound and the tooth contact sound cause the noise and vibration of the pump, it is desired to be as small as possible.

その要求に応えるために、下記特許文献1は、インナーロータの回転軸を装着する軸着部を高強度高密度焼結材で、アウターロータと噛合する外周部を軸着部よりも低密度の制振性焼結材でそれぞれ形成した内接ギヤ型オイルポンプを開示している。また、特許文献2は、インナーロータを焼結鍛造ロータとし、そのインナーロータのアウターロータと噛合する外周部の密度を7.7g/cm以上、中心孔のある内周部の密度を6.6〜7.6g/cmとしたギヤポンプ用焼結鍛造ロータを開示している。 In order to meet the demand, Patent Document 1 below discloses that a shaft mounting portion on which the rotating shaft of the inner rotor is mounted is made of a high-strength, high-density sintered material, and an outer peripheral portion meshing with the outer rotor has a lower density than the shaft mounting portion. Disclosed are internal gear type oil pumps each formed of a vibration-damping sintered material. Further, in Patent Document 2, the inner rotor is a sintered forged rotor, the density of the outer peripheral portion meshing with the outer rotor of the inner rotor is 7.7 g / cm 3 or more, and the density of the inner peripheral portion having the center hole is 6. Disclosed is a sintered forged rotor for gear pumps of 6 to 7.6 g / cm 3 .

ポンプロータの材料には、一般に、安価な工業製品として粉末冶金による焼結材が広く用いられている。特許文献1、2もその焼結材を採用しているが、特許文献1が開示しているオイルポンプは、インナーロータの回転軸を装着する内周側を外周側よりも密度の高い焼結材で形成することによって騒音、振動を抑えようとしており、ひとつのロータに2種類の材料を使用するので、インナーロータが複合構造になり、生産性の低下や、コストアップが避けられない。   As a material for the pump rotor, a sintered material by powder metallurgy is generally widely used as an inexpensive industrial product. Patent Documents 1 and 2 also employ the sintered material. However, the oil pump disclosed in Patent Document 1 is sintered with higher density on the inner peripheral side where the rotating shaft of the inner rotor is mounted than on the outer peripheral side. The material is made of a material to suppress noise and vibration, and since two types of materials are used for one rotor, the inner rotor has a composite structure, resulting in a reduction in productivity and an increase in cost.

また、特許文献2が開示しているロータは、インナーロータの外周側を、回転軸を装着する内周側よりも密度の高い焼結材で形成しており、外周側と内周側の密度差を鍛造時の圧縮量を制御して付すので、単一材料で形成するものに比べると製造工程が増える。また、このロータは噛み合い音や歯当たり音を発生させる部位が一般的な焼結材よりも高密度の焼結材で形成されているので、噛み合い音や歯当たり音を効果的に低減させるのが難しいと推測される。
実開平5−77587号公報 特開平6−50269号公報
In the rotor disclosed in Patent Document 2, the outer peripheral side of the inner rotor is formed of a sintered material having a higher density than the inner peripheral side on which the rotating shaft is mounted. Since the difference is applied by controlling the amount of compression during forging, the number of manufacturing steps is increased as compared with a single material. In addition, since this rotor is made of a sintered material having a density higher than that of a general sintered material, the portion that generates a meshing sound and a tooth contact sound is effectively reduced. Is estimated to be difficult.
Japanese Utility Model Publication No. 5-77587 JP-A-6-50269

この発明は、ポンプロータの噛み合い音や歯当たり音を抑制して噛み合い音や歯当たり音に起因する内接歯車式ポンプの騒音、振動を低減することを課題としている。   An object of the present invention is to reduce the noise and vibration of the internal gear pump caused by the meshing sound and the tooth contact sound by suppressing the meshing sound and the tooth contact sound of the pump rotor.

上記の課題を解決するため、この発明においては、ポンプロータを構成するインナーロータとアウターロータの少なくとも一方を気孔率17%以上の焼結材で形成する。また、このポンプロータを、吸入ポートと吐出ポートを有するケーシングに収納して内接歯車式ポンプを構成する。   In order to solve the above problems, in the present invention, at least one of the inner rotor and the outer rotor constituting the pump rotor is formed of a sintered material having a porosity of 17% or more. The pump rotor is housed in a casing having a suction port and a discharge port to constitute an internal gear type pump.

この発明は、歯数がn枚のインナーロータと歯数が(n+1)枚のアウターロータを組み合わせたポンプロータやそれを使用した内接歯車式ポンプに適用すると好ましいが、インナーロータとアウターロータの歯数差が1枚以上ある内接歯車式ポンプにも適用できる。どちらのタイプのポンプも、インナーロータとアウターロータの双方を気孔率17%以上の焼結材で形成すると、騒音、振動の低減に関してよりよい効果が得られる。   The present invention is preferably applied to a pump rotor in which an inner rotor having n teeth and an outer rotor having (n + 1) teeth are combined, or an internal gear pump using the pump rotor. It can also be applied to an internal gear type pump having one or more teeth. In both types of pumps, if both the inner rotor and the outer rotor are formed of a sintered material having a porosity of 17% or more, a better effect can be obtained with respect to noise and vibration reduction.

なお、ロータ材として採用する気孔率17%以上の焼結材は、Fe−Cu−C系の材料に、Ni、Mo、Mnの中から選ばれた金属元素の少なくとも1種を添加した合金の粉末で形成されるものや、Fe−C系の材料に、Ni、Mo、Mn、Crの中から選ばれた金属元素の少なくとも1種を添加した合金の粉末で形成されるものが好ましい。   A sintered material having a porosity of 17% or more employed as a rotor material is an alloy in which at least one metal element selected from Ni, Mo, and Mn is added to an Fe—Cu—C-based material. What is formed with a powder and what is formed with the powder of the alloy which added at least 1 sort (s) of the metal element chosen from Ni, Mo, Mn, and Cr to the Fe-C type material are preferable.

この発明では、ロータを構成する焼結材の気孔率を高めてインナーロータとアウターロータの噛み合い音や歯当たり音を低減する。気孔率の小さい焼結材は互いに衝突したときにかん高い音を発するが、気孔率が大きくなるにつれてその衝突音は鈍くなり、音の減衰性能も増す。従って、材料の気孔率を従来よりも大きくしたこの発明のポンプロータは、噛み合い音や歯当たり音が従来品に比べて小さくなり、これを使用したポンプの騒音、振動が減少する。   In this invention, the porosity of the sintered material constituting the rotor is increased to reduce the meshing noise and the tooth contact noise between the inner rotor and the outer rotor. Sintered materials with low porosity emit a loud sound when they collide with each other, but as the porosity increases, the impact sound becomes dull and the sound attenuation performance increases. Therefore, in the pump rotor of the present invention in which the porosity of the material is larger than that of the conventional one, the meshing noise and the tooth contact noise are smaller than those of the conventional product, and the noise and vibration of the pump using this are reduced.

なお、この発明を特徴付ける焼結材の気孔率は、下限を17%にする。一般にポンプロータに採用されている焼結材の気孔率は10%前後であるので、17%は相当大きな気孔率と言える。その気孔率を高くするほど騒音、振動の低減効果が高まる。ただし、気孔率が25%を超えると粉末の成形が困難になるので、気孔率の上限は25%になると思われる。   The lower limit of the porosity of the sintered material characterizing the present invention is 17%. Generally, the porosity of the sintered material employed in the pump rotor is around 10%, so 17% can be said to be a considerably large porosity. As the porosity increases, the noise and vibration reduction effect increases. However, if the porosity exceeds 25%, powder molding becomes difficult, so the upper limit of the porosity seems to be 25%.

次に、内接歯車式ポンプのロータ用焼結材としては、一般に、Fe−Cu−C系の材料やFe−C系の材料が用いられるが、どちらも、気孔率を高めると強度や歯面の硬度が低下する。それが原因でポンプの要求仕様や使用条件を満たせなくなる場合には、材料の高強度化策を施す。具体的には、Ni、Mo、Mnの中から選ばれた金属元素の少なくとも1種を、Fe−Cu−C系の材料に対しては、重量比でNiは1.5〜5.0%の範囲で、Moは0.2〜1.5%の範囲で、Mnは0.3〜1.0%の範囲で添加する。また、Ni、Mo、Mn、Crの中から選ばれた金属元素の少なくとも1種を、Fe−C系の材料に対しては、重量比でNiは1.0〜3.0%の範囲で、Moは0.5〜2.5%の範囲で、Mnは0.3〜1.0%の範囲で、Crは0.5〜1.5%の範囲で添加する。その合金元素の添加によって、気孔率の増加による強度低下や歯面硬度の低下を補うことができる。   Next, as a sintered material for a rotor of an internal gear type pump, generally, an Fe-Cu-C-based material or an Fe-C-based material is used, but both increase strength and teeth when the porosity is increased. The surface hardness decreases. If this makes it impossible to meet the required pump specifications and usage conditions, measures will be taken to increase the strength of the material. Specifically, at least one metal element selected from Ni, Mo, and Mn is 1.5 to 5.0% by weight with respect to the Fe—Cu—C-based material. In this range, Mo is added in a range of 0.2 to 1.5%, and Mn is added in a range of 0.3 to 1.0%. In addition, at least one metal element selected from Ni, Mo, Mn, and Cr, with respect to Fe-C materials, Ni is in a range of 1.0 to 3.0% by weight. , Mo is added in a range of 0.5 to 2.5%, Mn is added in a range of 0.3 to 1.0%, and Cr is added in a range of 0.5 to 1.5%. Addition of the alloy element can compensate for a decrease in strength and a decrease in tooth surface hardness due to an increase in porosity.

図1及び図2に、この発明のポンプロータと内接歯車式ポンプの実施の形態を示す。図示の内接歯車式ポンプ1は、歯数がn(図はn=9)枚のインナーロータ2と歯数が(n+1)枚のアウターロータ3を組み合わせてポンプロータ4を構成し、このポンプロータ4を、吸入ポート6と吐出ポート7を有するケーシング5に収納して構成されている。   1 and 2 show an embodiment of a pump rotor and an internal gear pump according to the present invention. The illustrated internal gear pump 1 comprises a pump rotor 4 by combining an inner rotor 2 having n teeth (n = 9 in the figure) and an outer rotor 3 having (n + 1) teeth. The rotor 4 is configured to be accommodated in a casing 5 having a suction port 6 and a discharge port 7.

インナーロータ2とアウターロータ3は、偏心配置にして外歯2aと内歯3aを互いに噛み合わせている。この発明では、このインナーロータ2とアウターロータ3の少なくとも一方を気孔率が17〜25%の焼結材で形成して噛み合い音や歯当たり音を低減する。他方のロータは鍛造或いは鋳造した材料を機械加工したものなどでもよいが、インナーロータ2とアウターロータ3の両者を気孔率17〜25%の焼結材で形成してそれを組み合わせると、より良い効果が期待できる。   The inner rotor 2 and the outer rotor 3 are arranged eccentrically so that the outer teeth 2a and the inner teeth 3a mesh with each other. In the present invention, at least one of the inner rotor 2 and the outer rotor 3 is formed of a sintered material having a porosity of 17 to 25% to reduce meshing noise and tooth contact noise. The other rotor may be a forged or cast material machined or the like, but it is better to combine both the inner rotor 2 and the outer rotor 3 with a sintered material having a porosity of 17 to 25% and combine them. The effect can be expected.

図1、図2の8は回転軸であり、この回転軸8にインナーロータ2が固定される。その回転軸8を駆動してインナーロータ2を回転させると、従動歯車であるアウターロータ3も回転し、両ロータ2、3間に形成されるポンピングチャンバ9の容積変化が起こって液体の吸入、吐出がなされる。   Reference numeral 8 in FIGS. 1 and 2 denotes a rotating shaft, and the inner rotor 2 is fixed to the rotating shaft 8. When the inner rotor 2 is rotated by driving the rotary shaft 8, the outer rotor 3, which is a driven gear, is also rotated, and a volume change of the pumping chamber 9 formed between the rotors 2 and 3 occurs to suck in liquid. Discharge is made.

このとき、インナーロータ2とアウターロータ3の歯2a、3aの噛み合い部が互いに擦れ、また、回転軸8が振れることによって歯2a、3aが互いに打ち合う現象も起こるが、図示の内接歯車式ポンプ1は、インナーロータ2とアウターロータ3の少なくとも一方が従来よりも気孔率の高い焼結材で形成されているので、音が発生し難く、発生した音の減衰性能も高い。従って、気孔率の小さい焼結材でロータを形成した従来のポンプに比べると噛み合い音や歯当たり音が小さくなり、その噛み合い音や歯当たり音に起因した騒音、振動が低減される。   At this time, the meshing portions of the teeth 2a and 3a of the inner rotor 2 and the outer rotor 3 rub against each other, and the phenomenon in which the teeth 2a and 3a strike each other due to the rotation of the rotating shaft 8 occurs. No. 1 is such that at least one of the inner rotor 2 and the outer rotor 3 is formed of a sintered material having a higher porosity than the conventional one, so that it is difficult for sound to be generated and the performance of attenuating the generated sound is high. Therefore, compared with a conventional pump in which the rotor is formed of a sintered material having a low porosity, the meshing sound and the tooth contact sound are reduced, and the noise and vibration caused by the meshing sound and the tooth contact sound are reduced.

なお、気孔率が17%以上のロータは、Cu含有量が1.0〜2.5wt%、C含有量が0.2〜1.2wt%の範囲にあるFe−Cu−C系の材料に、Ni、Mo、Mnの中から選ばれた金属元素の少なくとも1種を添加した組成の焼結合金や、C含有量が0.2〜1.2wt%のFe−C系の材料に、Ni、Mo、Mn、Crの中から選ばれた金属元素の少なくとも1種を添加した組成の焼結合金で形成すると好ましい。これらの焼結合金は、気孔率の増加による強度低下や歯面硬度の低下を、添加元素による合金の高強度化によって補うことができる。なお、Fe−Cu−C系の材料は、Ni、Mo、Mnの添加量をNiは1.5wt%以上、Moは0.2wt%以上、Mnは0.3wt%以上として添加の効果を十分に発揮させ、また、その添加量をNiは5.0wt%以下、Moは1.5wt%以下、Mnは1.0wt%以下としてコストアップを抑える。Fe−C系の材料も同じ理由からNiは1.0〜3.0wt%の範囲、Moは0.5〜2.5wt%の範囲、Mnは0.3〜1.0wt%の範囲、Crは0.5〜1.5wt%の範囲とする。   A rotor with a porosity of 17% or more is a Fe-Cu-C-based material having a Cu content of 1.0 to 2.5 wt% and a C content of 0.2 to 1.2 wt%. Ni, Mo, Mn sintered alloy having a composition added with at least one metal element selected from Ni, Fe-C based material having a C content of 0.2 to 1.2 wt%, Ni It is preferable to form a sintered alloy having a composition to which at least one metal element selected from Mo, Mn, and Cr is added. These sintered alloys can compensate for a decrease in strength and a decrease in tooth surface hardness due to an increase in porosity by increasing the strength of the alloy with an additive element. The Fe-Cu-C-based material has a sufficient effect of adding Ni, Mo, and Mn with Ni being 1.5 wt% or more, Mo being 0.2 wt% or more, and Mn being 0.3 wt% or more. In addition, Ni is added at 5.0 wt% or less, Mo is 1.5 wt% or less, and Mn is 1.0 wt% or less to suppress the cost increase. For the same reason, the Fe-C material is Ni in the range of 1.0 to 3.0 wt%, Mo is in the range of 0.5 to 2.5 wt%, Mn is in the range of 0.3 to 1.0 wt%, Cr Is in the range of 0.5 to 1.5 wt%.

この発明の効果を確認するために行った試験の結果を以下に記す。試験は、先ず、焼結材の気孔率と音の減衰時間の相関関係を調べた。
表1の組成の粉末を所定の気孔率となるような成形圧力で金型成形した後、1130℃
の温度で焼結して外径60mm×内径10mm×厚さ10mmの中空円盤の試験片を作製した。得られた試験片を自由振動ができるようにミシン糸で吊り下げ、3/8インチのベアリング用鋼球を一定高さ位置から傾斜角45°の斜面を転がらせて吊り下げられた試験片(円盤)の端面に直角方向から衝突させた。このときに発生する衝突音を試験片から一定距離をおいた騒音計で測定して騒音レベルの時間変化を記録し、衝突初期の最大騒音レベルから騒音レベルが70%に減衰するまでの時間(70%減衰時間)をそれぞれの試験片について測定した結果を表1及び図3に示す。
The results of tests conducted to confirm the effects of the present invention are described below. The test first examined the correlation between the porosity of the sintered material and the sound decay time.
After molding the powder having the composition shown in Table 1 at a molding pressure that gives a predetermined porosity, 1130 ° C.
A hollow disk test piece having an outer diameter of 60 mm, an inner diameter of 10 mm, and a thickness of 10 mm was prepared. The obtained test piece was suspended with a sewing thread so as to be able to freely vibrate, and a 3/8 inch bearing steel ball was suspended from a certain height by rolling an inclined surface with an inclination angle of 45 ° ( It was made to collide with the end face of the disk from a right angle direction. The impact sound generated at this time is measured with a sound level meter at a fixed distance from the test piece, and the time change of the noise level is recorded. The time until the noise level is attenuated to 70% from the maximum noise level at the beginning of the collision ( Table 1 and FIG. 3 show the results of measuring 70% decay time for each test piece.

この減衰時間が短いほど、騒音(振動)の減衰性能が高いことを示しており、騒音、振動に対して有効な材料である。   The shorter the attenuation time, the higher the noise (vibration) attenuation performance, and the more effective the material is against noise and vibration.

Figure 2007120465
Figure 2007120465

いずれの材料においても、気孔率17%以上で急激に減衰時間が短くなっており、減衰効果が高いことがわかる。   In any material, it can be seen that the decay time is rapidly shortened at a porosity of 17% or more, and the damping effect is high.

次に、Fe−2wt%Cu−1wt%Cの組成の焼結材を用いて、インナーロータとアウターロータの気孔率が共に約17%のポンプロータ(発明品)を作成した。また、同じ材料を用いてインナーロータとアウターロータの気孔率が約10%(密度約7.0g/cm)のポンプロータ(従来品)も作成した。そして、発明品と従来品のポンプロータをそれぞれケーシングに収納して内接歯車式ポンプを形成し、それらのポンプを、回転数:1750rpm、吐出圧力:0.3MPaの条件で作動させて振動を測定した結果、発明品のポンプの振動は、図4に示すように、従来品のポンプの振動よりも小さかった。 Next, using a sintered material having a composition of Fe-2 wt% Cu-1 wt% C, a pump rotor (invention product) in which the porosity of the inner rotor and outer rotor was about 17% was prepared. In addition, a pump rotor (conventional product) in which the porosity of the inner rotor and the outer rotor is about 10% (density is about 7.0 g / cm 3 ) was also made using the same material. Inventive and conventional pump rotors are housed in casings to form internal gear pumps. These pumps are operated under the conditions of rotational speed: 1750 rpm and discharge pressure: 0.3 MPa to generate vibration. As a result of the measurement, the vibration of the inventive pump was smaller than the vibration of the conventional pump as shown in FIG.

表2に示す組成の焼結材を使用して気孔率約20%のインナーロータを作成し、各ロータの強度(引張り強さ)と歯面の硬度を調べた。その結果を表2に併記する。   An inner rotor having a porosity of about 20% was prepared using a sintered material having the composition shown in Table 2, and the strength (tensile strength) and tooth surface hardness of each rotor were examined. The results are also shown in Table 2.

Figure 2007120465
Figure 2007120465

この試験結果からわかるように、Fe−Cu−C系の材料にNi、Mo、Mnの中から選ばれた金属元素の少なくとも1種を添加した組成の焼結合金や、Fe−C系の材料にNi、Mo、Mn、Crの中から選ばれた金属元素の少なくとも1種を添加した組成の焼結合金で形成したインナーロータは、強度と歯面の硬度がFe−Cu−C系やFe−C系の一般的な焼結材で形成したロータよりも高く、気孔率の増加による強度及び歯面硬度の低下を材料の高強度化によって補うことができる。   As can be seen from this test result, a sintered alloy having a composition in which at least one metal element selected from Ni, Mo and Mn is added to an Fe—Cu—C based material, or an Fe—C based material The inner rotor formed of a sintered alloy having a composition in which at least one metal element selected from Ni, Mo, Mn, and Cr is added to the Fe-Cu-C type or Fe It is higher than a rotor made of a general sintered material of -C type, and the decrease in strength and tooth surface hardness due to an increase in porosity can be compensated by increasing the strength of the material.

この発明の内接歯車式ポンプの一例を示す断面図Sectional drawing which shows an example of the internal gear type pump of this invention 図1のX−X線に沿った断面図Sectional view along line XX in FIG. 焼結材の気孔率と発生音の相関関係の調査結果を示す図表Chart showing the results of investigating the correlation between porosity and generated sound of sintered materials 発明品と従来品のポンプの振動比較結果を示す図表Chart showing vibration comparison results of the pumps of the invention and conventional products

符号の説明Explanation of symbols

1 内接歯車式ポンプ
2 インナーロータ
2a 外歯
3 アウターロータ
3a 内歯
4 ポンプロータ
5 ケーシング
6 吸入ポート
7 吐出ポート
8 回転軸
9 ポンピングチャンバ
DESCRIPTION OF SYMBOLS 1 Internal gear type pump 2 Inner rotor 2a External tooth 3 Outer rotor 3a Internal tooth 4 Pump rotor 5 Casing 6 Intake port 7 Discharge port 8 Rotating shaft 9 Pumping chamber

Claims (5)

インナーロータとアウターロータの少なくとも一方を気孔率17%以上の焼結材で形成し、そのインナーロータとアウターロータを偏心配置にして組み合わせたポンプロータ。   A pump rotor in which at least one of an inner rotor and an outer rotor is formed of a sintered material having a porosity of 17% or more, and the inner rotor and the outer rotor are arranged eccentrically. 歯数がn枚のインナーロータと歯数が(n+1)枚のアウターロータを組み合わせ、そのインナーロータとアウターロータの双方を気孔率17%以上の焼結材で形成した請求項1に記載のポンプロータ。   The pump according to claim 1, wherein an inner rotor having n teeth and an outer rotor having (n + 1) teeth are combined, and both the inner rotor and the outer rotor are formed of a sintered material having a porosity of 17% or more. Rotor. 気孔率17%以上の前記焼結材を、Fe−Cu−C系の材料に、Ni、Mo、Mnの中から選ばれた金属元素の少なくとも1種を添加した合金の粉末で形成した請求項1又は2に記載のポンプロータ。   The sintered material having a porosity of 17% or more is formed of an alloy powder obtained by adding at least one metal element selected from Ni, Mo, and Mn to a Fe-Cu-C-based material. The pump rotor according to 1 or 2. 気孔率17%以上の前記焼結材を、Fe−C系の材料に、Ni、Mo、Mn、Crの中から選ばれた金属元素の少なくとも1種を添加した合金の粉末で形成した請求項1又は2に記載のポンプロータ。   The sintered material having a porosity of 17% or more is formed of an alloy powder in which at least one metal element selected from Ni, Mo, Mn, and Cr is added to an Fe-C-based material. The pump rotor according to 1 or 2. 請求項1〜4のいずれかに記載のポンプロータを、吸入ポートと吐出ポートを有するケーシングに収納して構成される内接歯車式ポンプ。   An internal gear pump constructed by housing the pump rotor according to any one of claims 1 to 4 in a casing having a suction port and a discharge port.
JP2005316820A 2005-10-31 2005-10-31 Pump rotor and internal gear type pump using it Pending JP2007120465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316820A JP2007120465A (en) 2005-10-31 2005-10-31 Pump rotor and internal gear type pump using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316820A JP2007120465A (en) 2005-10-31 2005-10-31 Pump rotor and internal gear type pump using it

Publications (1)

Publication Number Publication Date
JP2007120465A true JP2007120465A (en) 2007-05-17

Family

ID=38144555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316820A Pending JP2007120465A (en) 2005-10-31 2005-10-31 Pump rotor and internal gear type pump using it

Country Status (1)

Country Link
JP (1) JP2007120465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508344A (en) * 2008-11-07 2012-04-05 エスティーティー テクノロジーズ インコーポレイテッド ア ジョイント ヴェンチャー オブ マグナ パワートレイン インコーポレイテッド アンド エスエイチダブリュ ゲゼルシャフト ミット ベシュレン Fully submerged integrated electric oil pump
CN104074739A (en) * 2013-03-29 2014-10-01 株式会社捷太格特 Pump
CN106194713A (en) * 2015-04-30 2016-12-07 江苏白雪电器股份有限公司 Carbon-dioxide gas compressor height rotating speed oil pump
JP2019031933A (en) * 2017-08-08 2019-02-28 住友電工焼結合金株式会社 High-performance internal gear pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174582A (en) * 1986-01-28 1987-07-31 Toshiba Corp Compressor
JPH03281991A (en) * 1990-03-30 1991-12-12 Toshiba Corp Coolant compressor
JPH0790514A (en) * 1993-09-13 1995-04-04 Mitsubishi Materials Corp Vane member made of fe-base sintered alloy infiltrated with copper, for vane pump device excellent in wear resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174582A (en) * 1986-01-28 1987-07-31 Toshiba Corp Compressor
JPH03281991A (en) * 1990-03-30 1991-12-12 Toshiba Corp Coolant compressor
JPH0790514A (en) * 1993-09-13 1995-04-04 Mitsubishi Materials Corp Vane member made of fe-base sintered alloy infiltrated with copper, for vane pump device excellent in wear resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508344A (en) * 2008-11-07 2012-04-05 エスティーティー テクノロジーズ インコーポレイテッド ア ジョイント ヴェンチャー オブ マグナ パワートレイン インコーポレイテッド アンド エスエイチダブリュ ゲゼルシャフト ミット ベシュレン Fully submerged integrated electric oil pump
US9581158B2 (en) 2008-11-07 2017-02-28 Magna Powertrain Inc. Submersible electric pump having a shaft with spaced apart shoulders
CN104074739A (en) * 2013-03-29 2014-10-01 株式会社捷太格特 Pump
CN106194713A (en) * 2015-04-30 2016-12-07 江苏白雪电器股份有限公司 Carbon-dioxide gas compressor height rotating speed oil pump
JP2019031933A (en) * 2017-08-08 2019-02-28 住友電工焼結合金株式会社 High-performance internal gear pump

Similar Documents

Publication Publication Date Title
JP2007120465A (en) Pump rotor and internal gear type pump using it
US7572117B2 (en) Inner rotor of internal gear pump having convex small circular arc parts
JP6028832B2 (en) Compressor manufacturing method
JP4874063B2 (en) Internal gear pump
JP2009013832A (en) Pump rotor and internal gear pump using it
JPH01134092A (en) Roller for compressor
JP2001192754A (en) BEARING MADE OF GRAPHITE DISPERSION TYPE Cu BASE SINTERED ALLOY OF MOTOR TYPE FUEL PUMP EXHIBITING EXCELLENT WEAR RESISTANCE UNDER HIGH PRESSURE-HIGH SPEED CIRCULATION OF CASOLINE AND MOTOR TYPE FUEL PUMP USING SAME
JP7131566B2 (en) Gear and its manufacturing method
EP1617091B1 (en) Abrasion-resistant bearing of motor type fuel pump
JP2005214140A (en) Oil pump
JP4786203B2 (en) Inscribed gear pump
JP6053823B2 (en) Hermetic rotary compressor
WO2014065257A1 (en) Vane for rotary compressor
JP2020037943A (en) Refrigerant compressor and refrigeration device with the same
JP4528542B2 (en) Compressor bearing
JP4743569B2 (en) Cu-based sintered alloy bearing for motor-type fuel pump and motor-type fuel pump incorporating the bearing
JP7179269B2 (en) Sintered parts and electromagnetic couplings
JP5329744B2 (en) Scroll member of scroll compressor
JP2006220137A (en) Tooth shape creating method for internal gear pump and internal gear
JP4691729B2 (en) Pump rotor and internal gear pump using the pump rotor
JPH01155001A (en) Scroll fluid machine
JPH05214560A (en) Sliding member and vane type compressor
JP2008088860A (en) Sliding components of compressor, scroll component, crankshaft component, rotation preventing member, and piston component of swing compressor
JP2002285266A (en) Bearing made of copper based sintered alloy of motor type fuel pump and motor type fuel pump incorporated with the bearing
JP2009250105A (en) Scroll component

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20081030

Free format text: JAPANESE INTERMEDIATE CODE: A625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004