JP2007119282A - Method and apparatus for preparing undiluted solution containing uranyl nitrate - Google Patents

Method and apparatus for preparing undiluted solution containing uranyl nitrate Download PDF

Info

Publication number
JP2007119282A
JP2007119282A JP2005311875A JP2005311875A JP2007119282A JP 2007119282 A JP2007119282 A JP 2007119282A JP 2005311875 A JP2005311875 A JP 2005311875A JP 2005311875 A JP2005311875 A JP 2005311875A JP 2007119282 A JP2007119282 A JP 2007119282A
Authority
JP
Japan
Prior art keywords
uranyl nitrate
solution
stock solution
preparation tank
thickener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005311875A
Other languages
Japanese (ja)
Inventor
Masashi Takahashi
昌史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005311875A priority Critical patent/JP2007119282A/en
Publication of JP2007119282A publication Critical patent/JP2007119282A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for preparing a stock solution containing uranyl nitrate capable of efficiently preparing the stock solution containing uranyl nitrate having highly concentrated uranium for producing ammonium diuranate particles useful for producing fuel kernels for a fuel for a high-temperature gas-cooled reactor. <P>SOLUTION: The stock solution containing uranyl nitrate is prepared by storing uranyl nitrate prepared from uranium oxide and nitric acid and a thickener in a preparation tank having a limited shape and transferring the content of the preparation tank from the lower part to the upper part of the preparation tank through a circulation channel installed at the outside of the preparation tank. The apparatus for preparing the stock solution containing uranyl nitrate by this method is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、硝酸ウラニル含有原液の調製方法及び硝酸ウラニル含有原液の調製装置に関し、さらに詳しくは、高温ガス炉用燃料の燃料核の製造に有用な重ウラン酸アンモニウム粒子を製造するための硝酸ウラニル含有の原液を、形状制限条件下に、短時間で効率よく調製することのできる方法及びその方法を実施するのに有用な原液調製装置に関する。   The present invention relates to a method for preparing a uranyl nitrate-containing stock solution and an apparatus for preparing a uranyl nitrate-containing stock solution, and more specifically, uranyl nitrate for producing ammonium deuterated uranate particles useful for the production of fuel nuclei for high-temperature gas reactor fuels. The present invention relates to a method capable of efficiently preparing a stock solution containing the solution in a short time under a shape-limiting condition and a stock solution preparation apparatus useful for carrying out the method.

高温ガス炉の燃料を投入する炉心は、熱容量が大きく、高温健全性に優れた黒鉛により形成されている。この高温ガス炉においては、冷却ガスとして、高温下でも化学反応を起こすことがなく、安全性の高いヘリウムガスなどの気体が用いられているので、出口温度が高い場合でも冷却ガスを安全に取り出すことができる。したがって、炉心の温度が900℃程度まで上昇したとしても、高温に加熱された前記冷却ガスは、発電はもとより、水素製造装置、その他の化学プラントなど、幅広い分野において、安全な熱利用を可能としている。   The core into which the fuel of the high-temperature gas reactor is charged is formed of graphite having a large heat capacity and excellent high-temperature soundness. In this high-temperature gas furnace, a gas such as helium gas, which does not cause a chemical reaction even at high temperatures and has high safety, is used as the cooling gas, so that the cooling gas can be safely taken out even when the outlet temperature is high. be able to. Therefore, even if the temperature of the core rises to about 900 ° C., the cooling gas heated to a high temperature can be used safely in a wide range of fields such as power generation, hydrogen production equipment, and other chemical plants. Yes.

また、この高温ガス炉に投入される高温ガス炉用燃料は、一般的に、燃料核とこの燃料核の周囲を被覆する被覆層とを備えて成る。燃料核は、例えば、二酸化ウランをセラミックス状に焼結して成る直径約350〜650μmの微粒子である。   Moreover, the fuel for a high temperature gas reactor to be charged into the high temperature gas reactor generally includes a fuel core and a coating layer that covers the periphery of the fuel core. The fuel core is, for example, fine particles having a diameter of about 350 to 650 μm formed by sintering uranium dioxide into a ceramic form.

前記被覆層は、4層構造をなし、燃料核表面側より、第一層、第二層、第三層及び第四層を有している。第一層は、密度約1g/cmの低密度熱分解炭素により形成され、ガス状の核分裂生成物(FP)のガス溜めとしての機能を有すると共に、燃料核のスウェリングを吸収するバッファとしての機能をも有している。第二層は、密度約1.8g/cmの高密度熱分解炭素により形成され、ガス状FPの保持機能を有している。第三層は、密度約3.2g/cmの炭化珪素(SiC)により形成され、固体FPの保持機能を有し、被覆層の主要な強度部材である。また、第四層は、密度約1.8g/cmの高密度熱分解炭素により形成され、ガス状FPの保持機能を有すると共に、第三層の保護層としての機能をも有している。これら被覆層を形成する被覆粒子の直径は、通常は、約500〜1000μmである。 The coating layer has a four-layer structure, and has a first layer, a second layer, a third layer, and a fourth layer from the fuel core surface side. The first layer is formed of low-density pyrolytic carbon having a density of about 1 g / cm 3 , functions as a gas reservoir for gaseous fission products (FP), and serves as a buffer for absorbing fuel nuclear swelling. It also has the function of The second layer is formed of high-density pyrolytic carbon having a density of about 1.8 g / cm 3 and has a function of holding a gaseous FP. The third layer is formed of silicon carbide (SiC) having a density of about 3.2 g / cm 3 , has a function of holding a solid FP, and is a main strength member of the coating layer. The fourth layer is formed of high-density pyrolytic carbon having a density of about 1.8 g / cm 3 and has a function of holding a gaseous FP and also a function of a protective layer of the third layer. . The diameter of the coated particles forming these coating layers is usually about 500 to 1000 μm.

前記4層の被覆層により被覆された燃料核(被覆燃料粒子)は、黒鉛マトリックス中に分散され、一定形状の燃料コンパクトの形態に成型加工され、さらにこの燃料コンパクトは、黒鉛により形成された筒に一定数量収容され、上下に栓をして、燃料棒の形態とされる。最終的には、この燃料棒は、六角柱型黒鉛ブロックが有する複数の挿入口に入れられ、この六角柱型黒鉛ブロックを多数個、ハニカム状に配列し、複数段重ねることによって炉心が形成される。   The fuel nuclei (coated fuel particles) covered with the four coating layers are dispersed in a graphite matrix and molded into a fixed fuel compact shape. The fuel compact is a cylinder made of graphite. A fixed quantity is accommodated in the container and plugged up and down to form a fuel rod. Ultimately, this fuel rod is inserted into a plurality of insertion holes of the hexagonal column type graphite block, and a core is formed by arranging a plurality of the hexagonal column type graphite blocks in a honeycomb shape and stacking a plurality of stages. The

このような高温ガス炉用燃料は、一般的に、以下のような工程を経ることによって製造することができる。まず、酸化ウラン粉末を硝酸に溶解して硝酸ウラニル溶液を調製する。次いで、この硝酸ウラニル溶液に水及び増粘剤を加えて撹拌混合し、重ウラン酸アンモニウム粒子製造用原液を調製する。増粘剤は、後記のアンモニア水溶液中に滴下される重ウラン酸アンモニウム粒子製造用原液の液滴が、落下中に自身の表面張力により真球状になるように添加される物質である。   Such a HTGR fuel can generally be manufactured through the following steps. First, a uranium nitrate solution is prepared by dissolving uranium oxide powder in nitric acid. Subsequently, water and a thickener are added to this uranyl nitrate solution and mixed by stirring to prepare a stock solution for producing ammonium biuranium particles. A thickener is a substance that is added so that droplets of a raw solution for producing ammonium heavy uranate particles dropped into an aqueous ammonia solution, which will be described later, become spherical due to its surface tension during dropping.

前記増粘剤としては、例えば、ポリビニルアルコール、テトラヒドロフルフリルアルコール、ポリエチレングリコール、メトローズなどを挙げることができる。このようにして調製された重ウラン酸アンモニウム粒子製造用原液は、所定の温度に冷却されることにより粘度調整された後、原液滴下器が有する細径の原液滴下ノズルから、好ましくはこのノズルを振動させることによってアンモニア水溶液貯槽内のアンモニア水溶液中に滴下される。   Examples of the thickener include polyvinyl alcohol, tetrahydrofurfuryl alcohol, polyethylene glycol, and metroses. After the viscosity of the stock solution for producing ammonium heavy uranate particles prepared in this way is adjusted by cooling to a predetermined temperature, this nozzle is preferably removed from the nozzle with a small diameter of the stock drop device. It is dripped in the ammonia aqueous solution in the ammonia aqueous solution storage tank by vibrating.

アンモニア水溶液中で液滴粒子の群が堆積することにより上側の液滴粒子の荷重で下側の液滴粒子が変形しないように、アンモニア水溶液貯槽内のアンモニア水溶液はアンモニア水溶液貯槽の下側から上側に向かって循環されている。このアンモニア水溶液貯槽内において、硝酸ウラニルとアンモニアとが反応して重ウラン酸アンモニウムが形成され、重ウラン酸アンモニウムを主成分とする重ウラン酸アンモニウム含有粗粒子が得られる。   The aqueous ammonia solution in the ammonia aqueous solution storage tank is located above the lower side of the aqueous ammonia solution tank so that the lower droplet particles do not deform due to the load of the upper liquid droplet particles due to the accumulation of droplet particles in the aqueous ammonia solution. It is circulating towards. In this aqueous ammonia storage tank, uranyl nitrate reacts with ammonia to form ammonium heavy uranate, and ammonium heavy uranate-containing coarse particles mainly composed of ammonium heavy uranate are obtained.

アンモニア水溶液貯槽において形成された重ウラン酸アンモニウム含有粗粒子は、アンモニア水溶液貯槽に続設された後処理装置に移送される。この重ウラン酸アンモニウム含有粗粒子の後処理装置への移送は、通常は、アンモニア水溶液貯槽と後処理装置とを繋ぐ配管の弁を開放し、自重によりアンモニア水溶液と共に落下させることによって行われる。この後処理装置は、後処理槽を回転させながら、加熱により粒子の中心まで完全に硝酸ウラニルとアンモニアとを反応させて重ウラン酸アンモニウムを生成させる処理(熟成処理)、温水などにより重ウラン酸アンモニウム粒子を洗浄する処理(洗浄処理)及び乾燥する処理(乾燥処理)を施す装置である。   The coarse particles containing ammonium heavy uranate formed in the ammonia aqueous solution storage tank are transferred to a post-treatment device connected to the ammonia aqueous solution storage tank. The transfer of the ammonium heavy uranate-containing coarse particles to the post-treatment device is usually performed by opening a valve of a pipe connecting the aqueous ammonia solution storage tank and the post-treatment device and dropping it together with the aqueous ammonia solution by its own weight. In this post-treatment device, while rotating the post-treatment tank, by heating, the uranyl nitrate and ammonia are completely reacted to the center of the particles to produce ammonium heavy uranate (ripening treatment), heavy uranic acid with hot water, etc. It is an apparatus which performs the process (cleaning process) which wash | cleans an ammonium particle, and the process (drying process) which dries.

熟成、洗浄及び乾燥処理されてなる重ウラン酸アンモニウム粒子は、大気中で焙焼され、三酸化ウラン粒子となる。さらに、この三酸化ウラン粒子は、還元及び焼結することにより、高密度のセラミックス状の二酸化ウラン粒子となる。このようにして形成された二酸化ウラン粒子は分級され、所定の粒子径を有する燃料核微粒子として得られる。   Ammonium heavy uranate particles that have been aged, washed and dried are roasted in the atmosphere to form uranium trioxide particles. Further, the uranium trioxide particles are reduced and sintered to become high-density ceramic-like uranium dioxide particles. The uranium dioxide particles thus formed are classified and obtained as fuel core fine particles having a predetermined particle diameter.

このようにして得られた燃料核微粒子は、流動床に装荷され、被覆用ガスを熱分解することによって被覆が施される。例えば、前記第一層は、約1400℃でアセチレンを熱分解することによって形成することができ、前記第二層及び第四層は、約1400℃でプロピレンを熱分解することによって形成することができる。また、例えば、前記第三層は、約1600℃でメチルトリクロロシランを熱分解することによって形成することができる。通常の燃料コンパクトは、被覆燃料粒子を黒鉛粉末及び粘結剤などから成る黒鉛マトリックス材と共に中空円筒状又は中密円筒状にプレス成型又はモールド成型した後、焼成して製造することができる。(非特許文献1及び2参照)。   The fuel core particles obtained in this way are loaded onto a fluidized bed and coated by thermally decomposing the coating gas. For example, the first layer can be formed by pyrolyzing acetylene at about 1400 ° C., and the second and fourth layers can be formed by pyrolyzing propylene at about 1400 ° C. it can. For example, the third layer can be formed by thermally decomposing methyltrichlorosilane at about 1600 ° C. A normal fuel compact can be manufactured by press-molding or molding coated fuel particles into a hollow cylindrical shape or a medium-density cylindrical shape together with a graphite matrix material made of graphite powder and a binder, and then firing. (See Non-Patent Documents 1 and 2).

「原子炉材料ハンドブック」p221−p247,昭和52年10月31日発行、日刊工業新聞社発行"Reactor Material Handbook" p221-p247, published October 31, 1977, published by Nikkan Kogyo Shimbun 「原子力ハンドブック」p161−p169,平成7年12月20日発行、株式会社オーム社"Nuclear Power Handbook" p161-p169, issued on December 20, 1995, Ohm Corporation

ところで、濃縮度が5%以下であるウランを含有する酸化ウランを用いて硝酸ウラニル含有原液を調製するときには、臨界安全対策として質量制限法が採用されることが多いが、濃縮度が10%を超えるウランを含有する酸化ウランを用いて硝酸ウラニル含有原液を調製するときには、より安全側の形状制限が課せられる場合がある。   By the way, when preparing a uranyl nitrate-containing stock solution using uranium oxide containing uranium having a concentration of 5% or less, the mass limiting method is often adopted as a critical safety measure, but the concentration is reduced to 10%. When a uranyl nitrate-containing stock solution is prepared using uranium oxide containing more uranium, a safer shape limitation may be imposed.

前記形状制限が課せられた硝酸ウラニル含有原液の調製槽は、濃縮度が10%以下のウランを用いる場合に、調製槽が円筒であるときには、その直径は、例えば、19.8cm以下であり、20%以下のウランを用いる場合に、調製槽が円筒であるときには、その直径は、例えば、17.4cm以下となる。しかし、高濃縮度のウランとなるに従い、形状制限における寸法制限値は小さくなるため、燃料核を製造する装置は、細長い円筒状となる。   The preparation tank of the uranyl nitrate-containing stock solution in which the shape restriction is imposed, when using uranium with a concentration of 10% or less, when the preparation tank is a cylinder, its diameter is, for example, 19.8 cm or less, When 20% or less of uranium is used and the preparation tank is a cylinder, the diameter is, for example, 17.4 cm or less. However, since the dimensional limit value in the shape restriction becomes smaller as the uranium becomes highly enriched, the device for producing the fuel core becomes an elongated cylindrical shape.

細長い円筒状の調製槽で、硝酸ウラニル溶液と増粘剤とを均一に混合して硝酸ウラニル含有原液を調製することはきわめて困難であるという問題がある。このことは、例えば細長い円筒状の調製槽内に撹拌羽根を挿入して調製槽内の液を撹拌することを想定した場合に、細長い円筒状の調製槽の一端から多端にほぼ到る撹拌回転軸に複数の撹拌羽根を撹拌回転軸の要所要所に設置することが考えられるが撹拌回転軸の回転により撹拌回転軸が振れて回転することにより撹拌羽根が調製槽内の内壁に衝突してしまって円滑な撹拌効果を得ることができず、といって軸長の短い撹拌回転軸を採用すると撹拌羽根による撹拌が局所的になって調製槽内全体における円滑な撹拌を期待することができないことからも、明らかである。   There is a problem that it is extremely difficult to prepare a uranyl nitrate-containing stock solution by uniformly mixing a uranyl nitrate solution and a thickener in an elongated cylindrical preparation tank. This is because, for example, when it is assumed that a stirring blade is inserted into an elongated cylindrical preparation tank to stir the liquid in the preparation tank, the stirring rotation almost reaches from one end to the other end of the elongated cylindrical preparation tank. It is conceivable to install a plurality of stirring blades on the shafts at the required locations of the stirring rotation shaft, but the stirring blades collide with the inner wall in the preparation tank by rotating the stirring rotation shaft due to the rotation of the stirring rotation shaft. If a stirrer rotating shaft with a short shaft length is adopted, the stirring by the stirring blade becomes local and smooth stirring cannot be expected in the entire preparation tank. It is clear from this.

この発明は、このような従来の問題を解消し、高温ガス炉用燃料の燃料核の製造に有用な重ウラン酸アンモニウム粒子を製造するための高濃縮度のウランを有する硝酸ウラニル含有原液を効率よく調製することのできる硝酸ウラニル含有原液の調製方法及び硝酸ウラニル含有原液調製装置を提供することを課題とする。   The present invention eliminates such conventional problems and efficiently uses a uranyl nitrate-containing stock solution having highly enriched uranium for producing ammonium heavy uranate particles useful for the production of fuel nuclei for high-temperature gas reactor fuels. It is an object of the present invention to provide a method for preparing a uranyl nitrate-containing stock solution and a uranyl nitrate-containing stock solution preparation device that can be well prepared.

前記課題を解決するための手段として、
請求項1は、酸化ウランと硝酸とから調製されて成る硝酸ウラニル溶液と増粘剤とを、形状制限された調製槽に収容し、前記調製槽の外部に設けた循環流路により、前記調製槽の内容物を、調製槽の下部から前記循環流路を経て調製槽の上部へと移送することを特徴とする硝酸ウラニル含有原液の調製方法であり、
請求項2は、前記循環流路は、スタティックミキサを装備してなる前記請求項1に記載の硝酸ウラニル含有原液の調製方法であり、
請求項3は、酸化ウランと硝酸とから調製された硝酸ウラニル溶液と増粘剤とを収容可能な形状制限された調製槽と、この調製槽の下部に開口する導出開口部5とこの調製槽の上部に開口する導入開口部とを連通するように前記調製槽外に設けられた循環流路とを備えることを特徴とする硝酸ウラニル含有原液の調製装置であり、
請求項4は、前記循環流路は、スタティックミキサを装備してなる前記請求項3に記載の硝酸ウラニル含有原液の調製装置である。
As means for solving the above problems,
Claim 1 is that the uranyl nitrate solution prepared from uranium oxide and nitric acid and a thickener are housed in a shape-restricted preparation tank, and the preparation is performed by a circulation channel provided outside the preparation tank. A method for preparing a uranyl nitrate-containing stock solution, characterized in that the contents of the tank are transferred from the lower part of the preparation tank to the upper part of the preparation tank via the circulation channel,
Claim 2 is the method for preparing the uranyl nitrate-containing stock solution according to claim 1, wherein the circulation channel is equipped with a static mixer.
The third aspect of the present invention is a shape-restricted preparation tank that can contain a uranyl nitrate solution prepared from uranium oxide and nitric acid and a thickener, a lead-out opening 5 that opens at the bottom of the preparation tank, and the preparation tank An apparatus for preparing a uranyl nitrate-containing stock solution, characterized in that it comprises a circulation channel provided outside the preparation tank so as to communicate with an introduction opening that opens at the top of
A fourth aspect of the present invention provides the apparatus for preparing a uranyl nitrate-containing stock solution according to the third aspect, wherein the circulation channel is equipped with a static mixer.

この発明によると、硝酸ウラニル溶液と増粘剤とを、形状制限された調製槽に収容し、収容された硝酸ウラニル溶液及び増粘剤を調製槽から抜き出して循環流路に導入し、循環流路に導出された前記硝酸ウラニル溶液及び増粘剤を調製槽の上部から調製槽の内部に導入し、これによって調製槽内に収容された内容物が調製槽及び循環流路を循環する硝酸ウラニル含有原液の調製方法及び硝酸ウラニル含有原液の調製装置が提供される。このように、調製槽及び循環流路に硝酸ウラニル溶液及び増粘剤を循環させることにより、硝酸ウラニル溶液と増粘剤との混合が円滑に進行し、均一に混合された硝酸ウラニル含有原液が効率よく調製される。   According to this invention, the uranyl nitrate solution and the thickener are accommodated in a shape-restricted preparation tank, and the contained uranyl nitrate solution and the thickener are extracted from the preparation tank and introduced into the circulation flow path. The uranyl nitrate solution and the thickener led to the passage are introduced into the preparation tank from the upper part of the preparation tank, whereby the contents contained in the preparation tank are circulated through the preparation tank and the circulation channel. A method for preparing a containing stock solution and an apparatus for preparing a stock solution containing uranyl nitrate are provided. Thus, by circulating the uranyl nitrate solution and the thickener in the preparation tank and the circulation channel, the mixing of the uranyl nitrate solution and the thickener smoothly proceeds, and the uniformly mixed uranyl nitrate-containing stock solution is obtained. It is prepared efficiently.

また、循環流路の途中にスタティックミキサが備わっていると、このスタティックミキサはこのスタティックミキサ自体が動力源を有さず、スタティックミキサ内を通過するだけで硝酸ウラニルと増粘剤との混合を行うことができるから、単純に硝酸ウラニルと増粘剤とを循環移動させる以上に効率的に硝酸ウラニルと増粘剤とを均一に混合することのできる硝酸ウラニル含有原液の調製方法及び原液調製装置が提供される。   In addition, if a static mixer is provided in the middle of the circulation flow path, this static mixer itself does not have a power source, and only mixes uranyl nitrate and thickener by passing through the static mixer. A method and apparatus for preparing a uranyl nitrate-containing stock solution capable of uniformly mixing uranyl nitrate and a thickener more efficiently than simply circulating and moving uranyl nitrate and a thickener. Is provided.

図1は、この発明の一例である硝酸ウラニル含有原液の調製装置(以下において、「硝酸ウラニル含有原液の調製装置」を「原液調製装置」と簡便に略称することがある。)を示す図である。   FIG. 1 is a diagram showing an apparatus for preparing a uranyl nitrate-containing stock solution (hereinafter, “a device for preparing a uranyl nitrate-containing stock solution” may be simply abbreviated as “stock solution preparing apparatus”) as an example of the present invention. is there.

図1に示されるように、原液調製装置1は、原液調製槽2と、循環流路である循環移送管3とを備える。前記原液調製槽2は形状制限された細長い有底筒状体である。この原液調製槽2の内部には、図示しない駆動源例えばモータにより回転する撹拌子4が配置される。前記撹拌子4は、原液調製槽2の内容物を撹拌することができる限り、その形状や構造に制限はなく、例えば、プロペラ状撹拌子又はパドル状撹拌子を挙げることができる。この撹拌子4は、通常、複数個用いられるが、必ずしも複数個に拘束されることはない。   As shown in FIG. 1, the stock solution preparation apparatus 1 includes a stock solution preparation tank 2 and a circulation transfer pipe 3 that is a circulation channel. The stock solution preparation tank 2 is an elongated bottomed cylindrical body whose shape is limited. A stirrer 4 that is rotated by a drive source (not shown) such as a motor is disposed inside the stock solution preparation tank 2. The stirrer 4 is not limited in its shape and structure as long as the contents of the stock solution preparation tank 2 can be stirred, and examples thereof include a propeller stirrer and a paddle stirrer. A plurality of the stirring bars 4 are usually used, but are not necessarily restricted to a plurality.

図1には、短い回転軸に二組の撹拌子4が上下となって回転軸に取り付けられているが、硝酸ウラニル溶液と増粘剤溶液とを円滑に混合するためには、細長い原液調製槽2内の全長に亘り、長い回転軸に多数の撹拌子を取り付けるのが好ましいことは当然である。ところが、形状制限された細長い原液調製槽2内に多数の撹拌子を取り付けることは、技術的にも作業上からもきわめて煩雑である。また、長い回転軸に多数の撹拌子4を取り付けると、回転軸の揺動ないしは振動によって、撹拌子が原液調製槽2の内壁に接触して、撹拌子及び原液調製槽2の内壁を損傷し、却って硝酸ウラニル溶液と増粘剤溶液との円滑な混合を阻害することとなる。このようなことから、比較的短い回転軸に数少なく撹拌子を取り付けざるを得ず、撹拌が円滑に行われなくなることがある。   In FIG. 1, two sets of stirrers 4 are mounted on a rotating shaft with a short rotating shaft, but in order to smoothly mix the uranyl nitrate solution and the thickener solution, the elongated stock solution is prepared. Of course, it is preferable to attach a large number of stirring bars to a long rotating shaft over the entire length of the tank 2. However, attaching a large number of stir bars to the elongated stock solution preparation tank 2 with a limited shape is extremely complicated both technically and from the work. Further, when a large number of stirring bars 4 are attached to a long rotating shaft, the stirring bars come into contact with the inner wall of the stock solution preparation tank 2 due to swinging or vibration of the rotating shaft, and the stirrer and the inner wall of the stock solution preparation tank 2 are damaged. On the other hand, the smooth mixing of the uranyl nitrate solution and the thickener solution is inhibited. For this reason, a few stirring bars must be attached to the relatively short rotating shaft, and stirring may not be performed smoothly.

前記形状制限された有底筒状体である原液調製槽2は、例えば、濃縮度が10%以下のウランを含有する酸化ウランから調製された硝酸ウラニル溶液と増粘剤溶液とを混合する場合には、その内径が19.8cm以下であり、20%以下のウランを含有する酸化ウランから調製された硝酸ウラニル溶液と増粘剤溶液とを混合する場合には、その内径が17.4cm以下に設計されることが臨界安全対策の観点から好ましい。また、この有底筒状体である原液調製槽2は軸線方向長さが大きく、例えばその軸線方向長さの一例として1.5〜4mを挙げることができる。   The stock solution preparation tank 2 which is the bottomed cylindrical body having a limited shape, for example, mixes a uranyl nitrate solution prepared from uranium oxide containing uranium having a concentration of 10% or less and a thickener solution. The inner diameter is 19.8 cm or less, and when the uranyl nitrate solution prepared from uranium oxide containing 20% or less of uranium and the thickener solution are mixed, the inner diameter is 17.4 cm or less. It is preferable to be designed from the viewpoint of critical safety measures. Moreover, the stock solution preparation tank 2 which is this bottomed cylindrical body has a large axial direction length, for example, 1.5-4 m can be mentioned as an example of the axial direction length.

前記循環移送管3は、前記原液調製槽2の底面に開口する導出開口部5と、前記原液調製槽2の上部に開口する導入開口部6とを備え、これらは前記原液調製槽2の外部に設けられる。この循環移送管3もまた、形状制限を受けた内径であることが望ましい。この循環移送管3は、スタティックミキサ7を管の途中に介装する。   The circulation transfer pipe 3 includes a lead-out opening 5 that opens to the bottom surface of the stock solution preparation tank 2 and an introduction opening 6 that opens to the top of the stock solution preparation tank 2, which are external to the stock solution preparation tank 2. Is provided. It is desirable that the circulating transfer pipe 3 also has an inner diameter subjected to shape restriction. The circulating transfer pipe 3 has a static mixer 7 interposed in the middle of the pipe.

このスタティックミキサ7は、分割、転換及び反転の作用により流体を効果的に混合することのできる静止混合機であり、公知の静止混合機を採用することができる。スタティックミキサは、一般に、液の分流を生起するエレメントを複数個、パイプに挿入し、処理液の分流とその作用で生じる乱流とにより、送液中の撹拌を行う静止型管路撹拌機である。このスタティックミキサ7における管路を形成する管体は、形状制限を受けた内径を有することが望ましい。スタティックミキサ7に装填されるエレメントの数については、この原液調製装置1の規模に応じて適宜に決定される。   The static mixer 7 is a static mixer that can effectively mix fluids by the action of division, conversion, and inversion, and a known static mixer can be adopted. Generally, a static mixer is a static pipe stirrer in which a plurality of elements that cause a liquid split flow are inserted into a pipe, and stirring is performed during liquid feeding by the split flow of the processing liquid and the turbulent flow generated by the action. is there. It is desirable that the pipe body forming the pipe line in the static mixer 7 has an inner diameter subjected to shape restriction. The number of elements loaded in the static mixer 7 is appropriately determined according to the scale of the stock solution preparation apparatus 1.

前記循環移送管3におけるスタティックミキサ7の上流側には、この循環移送管3内に存在する流体を強制的に循環移送管3内で移送する流体強制移送手段8と、硝酸ウラニル溶液供給手段9と、増粘剤溶液供給手段10とが結合される。   On the upstream side of the static mixer 7 in the circulation transfer pipe 3, fluid forced transfer means 8 forcibly transferring the fluid existing in the circulation transfer pipe 3 in the circulation transfer pipe 3, and uranyl nitrate solution supply means 9. And the thickener solution supply means 10 are combined.

前記流体強制移送手段8は、例えば第1ポンプ11を備える。この第1ポンプ11を駆動すると、原液調製槽2内の流体が導出開口部5から循環移送管3内に導入され、循環移送管3内を強制的に移送される。なお、循環移送管3における前記第1ポンプ11と導出開口部5との間には循環移送管3の流路を開閉する第1開閉弁12が介装され、前記第1ポンプ11とスタティックミキサ7との間には循環移送管3の流路を開閉する第2開閉弁13が介装される。   The fluid forced transfer means 8 includes, for example, a first pump 11. When the first pump 11 is driven, the fluid in the stock solution preparation tank 2 is introduced into the circulation transfer pipe 3 from the outlet opening 5 and is forcedly transferred through the circulation transfer pipe 3. A first on-off valve 12 for opening and closing the flow path of the circulation transfer pipe 3 is interposed between the first pump 11 and the outlet opening 5 in the circulation transfer pipe 3, and the first pump 11 and the static mixer A second opening / closing valve 13 for opening / closing the flow path of the circulation transfer pipe 3 is interposed between the second opening / closing valve 13 and the circulation transfer pipe 3.

前記硝酸ウラニル溶液供給手段9は、酸化ウランを硝酸に溶解して硝酸ウラニルを調製する溶解槽2Aと、この溶解槽2Aで調製された硝酸ウラニル溶液を、前記循環移送管3におけるスタティックミキサ7の上流側であってスタティックミキサ7と前記第2開閉弁13との間に注入することができるように結合された硝酸ウラニル溶液移送配管14と、前記硝酸ウラニル溶液移送配管14の途中に介装され、溶解槽2A内に貯留されている硝酸ウラニル溶液を硝酸ウラニル溶液移送配管14に流出させ、又は流出を阻止するように開閉する第3開閉弁15と、溶解槽2Aから供給される硝酸ウラニル溶液を強制的に循環移送管3に向けて移送する第2ポンプ16と、硝酸ウラニル溶液移送配管14の循環移送管3が結合する近傍に介装された第4開閉弁17とを備える。前記溶解槽2Aは、高濃縮ウランを用いるときには、形状制限又は質量制限を有する装置であることが、好ましい。また、硝酸ウラニル溶液移送配管14は、高濃縮ウランから製造された酸化ウランと硝酸とで調製された硝酸ウラニル溶液を流通させるのであれば、形状制限を有する内径の配管であるのが好ましい。   The uranyl nitrate solution supply means 9 comprises a dissolution tank 2A for preparing uranyl nitrate by dissolving uranium oxide in nitric acid, and a uranyl nitrate solution prepared in the dissolution tank 2A. The uranyl nitrate solution transfer pipe 14 is connected upstream so as to be injected between the static mixer 7 and the second on-off valve 13, and is interposed in the middle of the uranyl nitrate solution transfer pipe 14. The uranyl nitrate solution stored in the dissolution tank 2A is caused to flow out into the uranyl nitrate solution transfer pipe 14, or the third on-off valve 15 is opened and closed to prevent the outflow, and the uranyl nitrate solution supplied from the dissolution tank 2A. Between the second pump 16 that forcibly transports the liquid toward the circulation transfer pipe 3 and the circulation transfer pipe 3 of the uranyl nitrate solution transfer pipe 14. And a fourth on-off valve 17. When the highly concentrated uranium is used, the dissolution tank 2A is preferably an apparatus having a shape limit or a mass limit. In addition, the uranyl nitrate solution transfer pipe 14 is preferably a pipe having an inner diameter having a shape restriction if a uranyl nitrate solution prepared from highly enriched uranium oxide and nitric acid is circulated.

増粘剤溶液供給手段10は、増粘剤溶液を調製する増粘剤槽18と、この増粘剤槽18に貯留されている増粘剤溶液を、前記循環移送管3におけるスタティックミキサ7の上流側であって第2開閉弁13の下流側に供給する増粘剤溶液移送管19と、この増粘剤溶液移送管19の途中に介装され、増粘剤槽18内の増粘剤溶液を強制的に循環移送管3に合流するように移送させる第3ポンプ20と、この増粘剤溶液移送管19に介装され、増粘剤溶液の流通を可能にし、又は不能にする第5開閉弁21とを備える。   The thickener solution supply means 10 supplies the thickener tank 18 for preparing the thickener solution and the thickener solution stored in the thickener tank 18 to the static mixer 7 in the circulation transfer pipe 3. A thickener solution transfer pipe 19 supplied to the upstream side and the downstream side of the second on-off valve 13 and a thickener in the thickener tank 18 interposed in the middle of the thickener solution transfer pipe 19. A third pump 20 for forcibly transferring the solution to join the circulation transfer pipe 3 and a thickener solution transfer pipe 19 are provided to enable or disable the flow of the thickener solution. 5 on-off valve 21.

前記構成の原液調製装置1を用いた硝酸ウラニル含有の原液の調製方法は、次のとおりである。   A method for preparing a uranyl nitrate-containing stock solution using the stock solution preparation apparatus 1 having the above-described configuration is as follows.

図1に示すように、まず、溶解槽2A中で酸化ウランを硝酸に溶解して硝酸ウラニル溶液を調製する。この硝酸ウラニル溶液としては、濃縮度が10%を超えるウランに由来する酸化ウランを硝酸に溶解することによって得られる溶液を挙げることができる。   As shown in FIG. 1, first, a uranium nitrate solution is prepared by dissolving uranium oxide in nitric acid in a dissolution tank 2A. Examples of the uranyl nitrate solution include a solution obtained by dissolving uranium oxide derived from uranium having a concentration degree exceeding 10% in nitric acid.

高濃縮度の酸化ウランを硝酸に溶解して硝酸ウラニル溶液を調製するときの条件に特に制限はないが、例えば、ウランが4kgのときにはウランと硝酸とのモル比を1:2.5とし、100℃で30分以上、混合することによって調製される。   There is no particular limitation on the conditions for preparing a uranyl nitrate solution by dissolving highly concentrated uranium oxide in nitric acid. For example, when uranium is 4 kg, the molar ratio of uranium and nitric acid is 1: 2.5. It is prepared by mixing at 100 ° C. for 30 minutes or more.

一方、増粘剤槽18では、増粘剤と溶媒とを混合して増粘剤溶液を調製する。前記増粘剤としては、例えば、ポリビニルアルコール、テトラヒドロフルフリルアルコール、ポリエチレングリコール、メトローズなどを挙げることができる。溶媒としては、純水等の水を挙げることができる。増粘剤溶液における増粘剤の濃度は、用いる増粘剤の種類にり異なり一律に決定することはできないが、後工程のアンモニア水溶液貯槽で重ウラン酸アンモニウム粒子を形成する成工程において、良好な真球度を有する重ウラン酸アンモニウム粒子を形成することができるような粘度となる濃度に調整することが望まれる。   On the other hand, in the thickener tank 18, a thickener and a solvent are mixed to prepare a thickener solution. Examples of the thickener include polyvinyl alcohol, tetrahydrofurfuryl alcohol, polyethylene glycol, and metroses. Examples of the solvent include water such as pure water. The concentration of the thickener in the thickener solution depends on the type of thickener used and cannot be determined uniformly, but it is good in the formation process of forming ammonium deuterated uranate particles in the aqueous ammonia storage tank in the subsequent process. It is desired to adjust the concentration so that the ammonium uranate particles having a high sphericity can be formed.

例えば、アンモニア水溶液貯槽に滴下する硝酸ウラニル含有原液の粘度が15℃において、4.0×10−2〜6.5×10−2Pa.Sとなるように増粘剤溶液を添加し、かつウラン濃度を0.6〜0.9ml−U/lとすることを挙げることができる。 For example, when the viscosity of the uranyl nitrate-containing stock solution dropped into the aqueous ammonia storage tank is 15 ° C., 4.0 × 10 −2 to 6.5 × 10 −2 Pa. A thickener solution is added so that it may become S, and uranium density | concentration can be made into 0.6-0.9 ml-U / l.

次いで、第3開閉弁15及び第4開閉弁17を開放し、第1開閉弁12、第2開閉弁13及び第5開閉弁21は閉鎖した状態で、前記のとおり調製された硝酸ウラニル溶液を、第2ポンプ16を駆動させて硝酸ウラニル溶液移送配管14を通じて循環移送管3に流し込む。このとき、第1ポンプ11及び第3ポンプ20は駆動停止状態である。かくして、硝酸ウラニル溶液が原液調製槽2に注入される。原液調製槽2への硝酸ウラニル溶液の注入は、さらに増粘剤溶液を注入すると原液調製槽2が満杯になるであろうまで、つまり後述する増粘剤溶液の注入量が可能になるところを上限にして、原液調製槽2に硝酸ウラニル溶液を注入する。   Next, the third on-off valve 15 and the fourth on-off valve 17 are opened, and the first on-off valve 12, the second on-off valve 13 and the fifth on-off valve 21 are closed, and the uranyl nitrate solution prepared as described above is used. The second pump 16 is driven to flow into the circulation transfer pipe 3 through the uranyl nitrate solution transfer pipe 14. At this time, the first pump 11 and the third pump 20 are in a drive stop state. Thus, the uranyl nitrate solution is injected into the stock solution preparation tank 2. The injection of the uranyl nitrate solution into the stock solution preparation tank 2 is performed until the stock solution preparation tank 2 will become full when the thickener solution is further injected, that is, the amount of the thickener solution to be described later can be injected. The uranyl nitrate solution is poured into the stock solution preparation tank 2 at the upper limit.

所定量の硝酸ウラニル溶液が原液調製槽2に移送されると、その後に、第5開閉弁21を開放し、第1開閉弁12、第2開閉弁13、第3開閉弁15及び第4開閉弁17を閉鎖した状態で、第3ポンプ20を駆動させて増粘剤溶液移送管19によって増粘剤溶液を循環移送管3に流し込む。このとき、第1ポンプ11及び第2ポンプ16は駆動停止状態である。循環移送管3に流入した増粘剤溶液はスタティックミキサ7を通過する。スタティックミキサ7を通過する流体は増粘剤溶液の一種類であるものの、前回に通過した硝酸ウラニル溶液の残渣がスタティックミキサ7中に存在するので、スタティックミキサ7により硝酸ウラニル溶液の残渣と増粘剤溶液との混合が行われる。もっともこの段階でのスタティックミキサ7による硝酸ウラニル溶液と増粘剤溶液との混合は、この発明が達成しようとする硝酸ウラニル溶液と増粘剤溶液との混合そのものではないが、硝酸ウラニル溶液と増粘剤溶液とを均一に混合することに一部の寄与をなす。スタティックミキサ7を通過した増粘剤溶液は更に循環移送管3を通過して原液調製槽2に至る。   When a predetermined amount of uranyl nitrate solution is transferred to the stock solution preparation tank 2, the fifth on-off valve 21 is opened thereafter, and the first on-off valve 12, the second on-off valve 13, the third on-off valve 15, and the fourth on-off valve are opened. With the valve 17 closed, the third pump 20 is driven and the thickener solution transfer pipe 19 flows the thickener solution into the circulation transfer pipe 3. At this time, the first pump 11 and the second pump 16 are in a drive stop state. The thickener solution flowing into the circulation transfer pipe 3 passes through the static mixer 7. Although the fluid that passes through the static mixer 7 is one type of thickener solution, the residue of the uranyl nitrate solution that was previously passed is present in the static mixer 7. Mixing with the agent solution is performed. However, the mixing of the uranyl nitrate solution and the thickener solution by the static mixer 7 at this stage is not the mixing of the uranyl nitrate solution and the thickener solution which the present invention intends to achieve. Partly contributes to uniform mixing with the viscous solution. The thickener solution that has passed through the static mixer 7 further passes through the circulation transfer pipe 3 and reaches the stock solution preparation tank 2.

原液調製槽2に供給された硝酸ウラニル溶液と増粘剤溶液とは、原液調製槽2中で撹拌子4を回転させることにより撹拌される。このときの撹拌処理条件としては特に制限はないが、例えば、1体積部の硝酸ウラニル溶液と2体積部の増粘剤溶液とを5〜25℃で、例えば、硝酸ウラニル溶液と増粘剤溶液との合計量に応じて例えば30〜120分間、撹拌することを挙げることができる。   The uranyl nitrate solution and the thickener solution supplied to the stock solution preparation tank 2 are stirred by rotating the stirring bar 4 in the stock solution preparation tank 2. The stirring treatment conditions at this time are not particularly limited. For example, 1 volume part of uranyl nitrate solution and 2 volume parts of thickener solution are at 5 to 25 ° C., for example, uranyl nitrate solution and thickener solution. Depending on the total amount, for example, stirring may be mentioned for 30 to 120 minutes.

原液調製槽2内で撹拌子4を回転させるだけでは硝酸ウラニル溶液と増粘剤溶液とを短時間のうちに均一に混合することが困難であることは従来技術の欄にて説明した通りである。この発明の一実施例である原液調製装置1においては、原液調製槽2内の内容物22を循環移送管3に強制的に導入し、原液調製槽2と循環移送管3とで形成される循環経路を通して原液調製槽2の内容物22を循環させることにより硝酸ウラニル溶液と増粘剤溶液との均一な混合が短時間の内に達成される。   As explained in the section of the prior art, it is difficult to uniformly mix the uranyl nitrate solution and the thickener solution in a short time only by rotating the stirring bar 4 in the stock solution preparation tank 2. is there. In the stock solution preparation apparatus 1 according to an embodiment of the present invention, the contents 22 in the stock solution preparation tank 2 are forcibly introduced into the circulation transfer pipe 3 and formed by the stock solution preparation tank 2 and the circulation transfer pipe 3. By circulating the contents 22 of the stock solution preparation tank 2 through the circulation path, uniform mixing of the uranyl nitrate solution and the thickener solution is achieved within a short time.

すなわち、原液調製槽2の内容物22の循環が次のようにして行われる。   That is, the contents 22 in the stock solution preparation tank 2 are circulated as follows.

第1開閉弁12及び第2開閉弁13を開状態にし、第3開閉弁15、第4開閉弁17及び第5開閉弁21を閉状態にし、第2ポンプ16及び第3ポンプ20を駆動停止状態にした状態で、第1ポンプ11を駆動すると、硝酸ウラニル溶液と増粘剤溶液とが撹拌されてなる原液調製槽2の内容物22が、原液調製槽2の下部に開口する導出開口部5から循環移送管3の中に導出される。原液調製槽2の下部から内容物22を取り出し、原液調製槽2の上部に位置するところの、循環移送管3の導入開口部6から内容物22を原液調製槽2の内部に投入すると、投入時の衝撃により混合効果が奏されるので、撹拌子4による撹拌効果と相俟って、硝酸ウラニル溶液と増粘剤溶液とが短時間のうちに均一な溶液に混合される。図1に示される原液調製装置1においては、循環移送管3にスタティックミキサ7が介装されているので、硝酸ウラニル溶液と増粘剤溶液との混合が更に促進される。つまり、循環移送管3に導入された前記内容物22はスタティックミキサ7で更に混合されて導入開口部6から再び原液調製槽2に至る。このような循環を繰り返すと硝酸ウラニル溶液と増粘剤溶液とが混合されて短時間の内に均一な硝酸ウラニル含有原液となる。   The first on-off valve 12 and the second on-off valve 13 are opened, the third on-off valve 15, the fourth on-off valve 17 and the fifth on-off valve 21 are closed, and the second pump 16 and the third pump 20 are stopped. When the first pump 11 is driven in the state, the contents 22 of the stock solution preparation tank 2 in which the uranyl nitrate solution and the thickener solution are stirred open to the lower part of the stock solution preparation tank 2. 5 into the circulating transfer pipe 3. When the contents 22 are taken out from the lower part of the stock solution preparation tank 2 and the contents 22 are put into the stock solution preparation tank 2 from the introduction opening 6 of the circulation transfer pipe 3 located at the upper part of the stock solution preparation tank 2, Since the mixing effect is exerted by the impact of time, the uranyl nitrate solution and the thickener solution are mixed in a uniform solution in a short time in combination with the stirring effect by the stirring bar 4. In the stock solution preparation apparatus 1 shown in FIG. 1, since the static mixer 7 is interposed in the circulation transfer pipe 3, the mixing of the uranyl nitrate solution and the thickener solution is further promoted. That is, the content 22 introduced into the circulation transfer pipe 3 is further mixed by the static mixer 7 and reaches the stock solution preparation tank 2 again from the introduction opening 6. When such circulation is repeated, the uranyl nitrate solution and the thickener solution are mixed to form a uniform uranyl nitrate-containing stock solution within a short time.

この発明の原液調製装置の具体例として、図1に示される装置構成の原液調製装置1のみならず、図2に示される原液調製装置1Aを例示することができる。   As a specific example of the stock solution preparation apparatus of the present invention, not only the stock solution preparation apparatus 1 having the device configuration shown in FIG. 1 but also a stock solution preparation apparatus 1A shown in FIG.

図2に示す原液調製装置1Aが図1に示される原液調製装置1と相違するところは、図1に示される原液調製槽2が有するところの、循環移送管3に接続された増粘剤溶液移送管19を有する増粘剤溶液供給手段10がなく、原液調製槽2に直接に増粘剤溶液を供給することのできるように、原液調製槽2の上部に開口する増粘剤溶液移送管19を備えた増粘剤溶液供給手段10Aを設けたことである。図2において図1におけるのと同一の部材乃至手段については、図1におけるのと同一の符号を付してその説明を省略する。   2 differs from the stock solution preparation apparatus 1 shown in FIG. 1 in that the stock solution preparation tank 2 shown in FIG. 1 has a thickener solution connected to the circulation transfer pipe 3. There is no thickener solution supply means 10 having the transfer pipe 19, and the thickener solution transfer pipe opened at the upper part of the stock solution preparation tank 2 so that the thickener solution can be supplied directly to the stock solution preparation tank 2. The thickener solution supply means 10A provided with 19 is provided. In FIG. 2, the same members or means as those in FIG. 1 are denoted by the same reference numerals as those in FIG.

この原液調製装置1Aにおいては、次のようにして硝酸ウラニル含有原液を調製する。   In this stock solution preparation apparatus 1A, a uranyl nitrate-containing stock solution is prepared as follows.

まず、溶解槽2A中で高濃縮度の酸化ウランを硝酸に溶解して硝酸ウラニル溶液を調製する。このときの条件は、前記と同様である。次いで、第3開閉弁15及び第4開閉弁17を開放し、第2開閉弁13は閉鎖した状態で、前記のとおり調製された硝酸ウラニル溶液を、第2ポンプ16を駆動させて硝酸ウラニル溶液移送配管14を通じて循環移送管3に流し込み、循環移送管3に流し込まれた硝酸ウラニル溶液はスタティックミキサ7を通過して原液調製槽2に移送される。   First, a highly concentrated uranium oxide is dissolved in nitric acid in a dissolution tank 2A to prepare a uranyl nitrate solution. The conditions at this time are the same as described above. Next, the third on-off valve 15 and the fourth on-off valve 17 are opened, and the second on-off valve 13 is closed, and the uranyl nitrate solution prepared as described above is driven by the second pump 16 to drive the uranyl nitrate solution. The uranyl nitrate solution poured into the circulating transfer pipe 3 through the transfer pipe 14 passes through the static mixer 7 and is transferred to the stock solution preparation tank 2.

原液調製槽2に硝酸ウラニル溶液が流し込まれた後に、又は原液調製槽2に硝酸ウラニル溶液が流しこまれる途中に、原液調製槽2に、増粘剤溶液供給手段10Aから増粘剤溶液が原液調製槽2に供給される。   After the uranyl nitrate solution is poured into the stock solution preparation tank 2 or while the uranyl nitrate solution is poured into the stock solution preparation tank 2, the thickener solution is supplied from the thickener solution supply means 10A to the stock solution preparation tank 2. It is supplied to the preparation tank 2.

原液調製槽2では撹拌子4を回転させることにより、硝酸ウラニル溶液と増粘剤溶液との撹拌が行われる。このときの撹拌条件は、前記と同様である。この硝酸ウラニル溶液と増粘剤溶液とを撹拌してなる原液調製槽2の内容物22が、次のようにして循環移送管3に移送される。すなわち、第1開閉弁12及び第2開閉弁13を開放し、第3開閉弁15及び第4開閉弁17を閉鎖した状態で、第1ポンプ11の駆動を開始すると、原液調製槽2の下部にある循環移送管3の導出開口部5から原液調製槽2の内容物22が循環移送管3に抜き出され、第1ポンプ11の駆動により循環移送管3内を移送されていく。   In the stock solution preparation tank 2, the stirring element 4 is rotated to stir the uranyl nitrate solution and the thickener solution. The stirring conditions at this time are the same as described above. The contents 22 of the stock solution preparation tank 2 obtained by stirring the uranyl nitrate solution and the thickener solution are transferred to the circulation transfer pipe 3 as follows. That is, when driving of the first pump 11 is started with the first on-off valve 12 and the second on-off valve 13 opened, and the third on-off valve 15 and the fourth on-off valve 17 closed, the lower part of the stock solution preparation tank 2 The contents 22 of the stock solution preparation tank 2 are extracted from the outlet opening 5 of the circulation transfer pipe 3 to the circulation transfer pipe 3 and are transferred through the circulation transfer pipe 3 by driving the first pump 11.

循環移送管3内を移動する前記内容物22はスタティックミキサ7によりさらに十分に混合処理され、スタティックミキサ7を通過した液が、原液調製槽2の上部に開口する循環移送管3の導入開口部6から原液調製槽2の中に戻される。原液調製槽2に供給された硝酸ウラニル溶液と増粘剤溶液とが循環移送管3によって原液調製槽2の上部から原液調製槽2の中に投入され、投入された液が循環移送管3に導出されるといった循環を繰り返すことにより、硝酸ウラニル溶液と増粘剤溶液との混合が行われて均一な溶液が短時間の内に形成される。   The contents 22 moving in the circulation transfer pipe 3 are further sufficiently mixed by the static mixer 7, and the liquid that has passed through the static mixer 7 is introduced to the upper part of the stock solution preparation tank 2. 6 is returned to the stock solution preparation tank 2. The uranyl nitrate solution and the thickener solution supplied to the stock solution preparation tank 2 are introduced into the stock solution preparation tank 2 from the upper part of the stock solution preparation tank 2 by the circulation transfer pipe 3, and the introduced liquid is supplied to the circulation transfer pipe 3. By repeating the circulation such as being led out, the uranyl nitrate solution and the thickener solution are mixed to form a uniform solution within a short time.

この発明においては、形状制限された原液調製槽内の所定位置で内容液の一部を撹拌することのできる撹拌子4を装備するにもかかわらず、循環流路を設けているから、直径に比べて軸線長さの大きな原液調製槽内で硝酸ウラニル含有原液を均一に調製することができる。   In the present invention, the circulation channel is provided in spite of the provision of the stirrer 4 capable of stirring a part of the content liquid at a predetermined position in the stock solution preparation tank whose shape is limited. In comparison, a uranyl nitrate-containing stock solution can be uniformly prepared in a stock solution preparation tank having a larger axial length.

なお、この発明に係る原液調製装置により調製された硝酸ウラニル含有原液は、アンモニア水溶液に滴下され、滴下された液滴中の硝酸ウラニルとアンモニアとが反応し、重ウラン酸アンモニウムの粒子が形成される。   The uranyl nitrate-containing stock solution prepared by the stock solution preparation apparatus according to the present invention is dropped into an aqueous ammonia solution, and the uranyl nitrate and ammonia in the dropped droplets react to form ammonium deuterated uranate particles. The

このようにして形成された重ウラン酸アンモニウムの粒子は、熟成、洗浄及び乾燥処理されて重ウラン酸アンモニウム粒子となり、この重ウラン酸アンモニウム粒子が大気中で焙焼されて三酸化ウラン粒子となる。さらに、この三酸化ウラン粒子は、還元及び焼結することにより、高密度のセラミックス状の二酸化ウラン粒子となる。この二酸化ウラン粒子は分級され、所定の粒子径を有する燃料核微粒子として取得される。   Ammonium heavy uranate particles thus formed are aged, washed and dried to become ammonium heavy uranate particles, and the ammonium heavy uranate particles are roasted in the air to become uranium trioxide particles. . Further, the uranium trioxide particles are reduced and sintered to become high-density ceramic-like uranium dioxide particles. The uranium dioxide particles are classified and obtained as fuel core fine particles having a predetermined particle diameter.

ウランを使用する実験操作は、監督官庁の許可を受けなければならない事情の下では、特許出願のための実験を任意に、かつ短時間のうちに実行することができない。この理由のために、図1に示される原液調製装置1を用い、シミュレーション実験によって、硝酸ウラニル溶液と増粘剤溶液との混合性を評価した。このとき、硝酸ウラニル溶液として水を、増粘剤溶液としてポリビニルアルコール水溶液(以下、「PVA水溶液」という。)を用いて、以下のとおり実施した。   An experimental operation using uranium cannot be carried out arbitrarily and in a short period of time for a patent application under circumstances where permission from the supervisory authority must be obtained. For this reason, the mixability of the uranyl nitrate solution and the thickener solution was evaluated by a simulation experiment using the stock solution preparation apparatus 1 shown in FIG. At this time, water was used as the uranyl nitrate solution and a polyvinyl alcohol aqueous solution (hereinafter referred to as “PVA aqueous solution”) was used as the thickener solution.

(シミュレーション1)
このシミュレーション1は、実施例1に相当する。まず、溶解槽2Aに貯留されている水(粘度1cP)を、第3開閉弁15及び第4開閉弁17を開放し、第1開閉弁12、第2開閉弁13及び第5開閉弁21は閉鎖した状態で、第2ポンプ16を駆動させて硝酸ウラニル溶液移送配管14を通じて原液調製槽2(内径150mm、高さ2000mm、有底円筒状)に移送した。このとき、撹拌子4は駆動させていない。
(Simulation 1)
This simulation 1 corresponds to the first embodiment. First, water (viscosity 1 cP) stored in the dissolution tank 2A is opened to the third on-off valve 15 and the fourth on-off valve 17, and the first on-off valve 12, the second on-off valve 13 and the fifth on-off valve 21 are In the closed state, the second pump 16 was driven and transferred to the stock solution preparation tank 2 (inner diameter 150 mm, height 2000 mm, bottomed cylindrical shape) through the uranyl nitrate solution transfer pipe 14. At this time, the stirring bar 4 is not driven.

次いで、第5開閉弁21を開放し、第1開閉弁12、第2開閉弁13、第3開放弁15及び第4開閉弁17を閉鎖状態にした状態で、第3ポンプ20を駆動させて増粘剤溶液移送管19によってPVA水溶液を原液調製槽2に供給し、水とPVA水溶液との合計量を24Lとした。このとき、PVA水溶液には、ポリビニルアルコール300g及びテトラヒドロフルフリルアルコール10.8Lを含有させていた。   Next, the fifth on-off valve 21 is opened, and the third pump 20 is driven with the first on-off valve 12, the second on-off valve 13, the third on-off valve 15 and the fourth on-off valve 17 closed. The PVA aqueous solution was supplied to the stock solution preparation tank 2 through the thickener solution transfer pipe 19, and the total amount of water and the PVA aqueous solution was 24L. At this time, the PVA aqueous solution contained 300 g of polyvinyl alcohol and 10.8 L of tetrahydrofurfuryl alcohol.

原液調製槽2に供給された水とPVA水溶液とを、原液調製槽2内で、プロペラ状の撹拌羽根を有する撹拌子4を回転駆動機構、例えば、モータ(図示していない。)により150rpmで回転させて、15℃で混合処理し、水とPVA水溶液とを撹拌した。   Water and PVA aqueous solution supplied to the stock solution preparation tank 2 are fed into the stock solution preparation tank 2 at 150 rpm by means of a stirrer 4 having a propeller-like stirring blade at a rotational drive mechanism, for example, a motor (not shown). The mixture was rotated and mixed at 15 ° C., and water and an aqueous PVA solution were stirred.

続いて、調製された水とPVA水溶液との混合物を、第1開閉弁12及び第2開閉弁13を開放し、第4開閉弁17及び第5開閉弁21を閉鎖した状態で、原液調製槽2の下部に開口する導出開口部5から抜き出し、第1ポンプ11を駆動させて、3L/minの送液速度で循環移送管3によってスタティックミキサ7(エレメント数が21個である。)に供給して、水とPVA水溶液との混合物における混合状態を更に増進させ、更に原液調製槽2と循環移送管3とに原液調製槽2内の内容物22を繰り返し循環させることにより硝酸ウラニル含有原液に相当する水溶液を調製した。   Subsequently, the mixture of the prepared water and the PVA aqueous solution is a stock solution preparation tank in a state where the first on-off valve 12 and the second on-off valve 13 are opened and the fourth on-off valve 17 and the fifth on-off valve 21 are closed. 2 is extracted from the lead-out opening 5 that opens at the lower part of 2 and the first pump 11 is driven to supply the static mixer 7 (the number of elements is 21) by the circulating transfer pipe 3 at a liquid feeding speed of 3 L / min. Then, the mixing state in the mixture of water and the aqueous PVA solution is further enhanced, and further, the contents 22 in the stock solution preparation tank 2 are repeatedly circulated through the stock solution preparation tank 2 and the circulation transfer pipe 3 to obtain a uranyl nitrate-containing stock solution. A corresponding aqueous solution was prepared.

原液調製槽2における当初の混合処理から水とPVA水溶液との混合液の循環混合処理までを、目視観察すると共に、第1ポンプ11を停止し、送液を止めた上で、原液調製槽2の下部から前記混合液の3試料を20分毎に採取して、この各試料の粘度を測定し、その粘度の変化によって混合状態の良否を評価した。その結果、当初の混合処理開始後、20分経過した時点で、前記混合液はきわめて均質であり、不均質相は皆無であることが視認され、40分経過した時点におていも、粘度測定の結果から、前記の状態であることが確認された。   From the initial mixing process in the stock solution preparation tank 2 to the circulating mixing process of the mixed solution of water and PVA aqueous solution, the first pump 11 is stopped and the feeding is stopped, and then the stock solution preparation tank 2 is stopped. Three samples of the mixed solution were taken from the lower part of the sample every 20 minutes, the viscosity of each sample was measured, and the quality of the mixed state was evaluated by the change in the viscosity. As a result, when 20 minutes passed after the start of the initial mixing process, it was visually confirmed that the mixed solution was very homogeneous and there was no inhomogeneous phase. From the result, it was confirmed that the above state was observed.

(シミュレーション2)
このシミュレーション2は、実施例2に相当する。シミュレーション1における循環移送管3の途中にスタティックミキサ7を介装しなかった以外は、シミュレーション1と同様に実施した。その結果、当初の混合処理開始後、20分経過した時点で、若干の不均質相が観察されるものの、前記混合液はほぼ均質であることが視認され、40分経過した時点におていも、粘度測定の結果から、前記の状態であることが確認された。
(Simulation 2)
This simulation 2 corresponds to the second embodiment. The same operation as in the simulation 1 was performed except that the static mixer 7 was not interposed in the circulation transfer pipe 3 in the simulation 1. As a result, although a slight heterogeneous phase is observed when 20 minutes have elapsed after the start of the initial mixing process, it is visually confirmed that the mixed solution is almost homogeneous, and even when 40 minutes have elapsed. From the result of the viscosity measurement, it was confirmed that the above state was obtained.

(シミュレーション3)
このシミュレーション3は、比較例に相当する。図1に示す原液調製装置1において、水とPVA水溶液との混合液の調製を終了するまで、第1開閉弁12及び第2開閉弁13を終始閉鎖状態にすると共に、第1ポンプ11も終始駆動せずに、原液調製槽2に供給された水とPVA水溶液との混合液を撹拌子4で撹拌し続けた。
(Simulation 3)
This simulation 3 corresponds to a comparative example. In the stock solution preparation apparatus 1 shown in FIG. 1, the first on-off valve 12 and the second on-off valve 13 are closed all the time until the preparation of the mixed solution of water and the PVA aqueous solution is completed, and the first pump 11 is also always on-hand. Without being driven, the liquid mixture of the water and the PVA aqueous solution supplied to the stock solution preparation tank 2 was continuously stirred with the stirring bar 4.

なお、溶解槽2Aにおける水の調製、及び増粘剤槽18におけるPVA水溶液の調製を前記シミュレーション1と同様にして行った。また、原液調製槽2における撹拌子4の回転速度は、前記シミュレーション1と同様である。   The water in the dissolution tank 2A and the PVA aqueous solution in the thickener tank 18 were prepared in the same manner as in the simulation 1. Further, the rotation speed of the stirring bar 4 in the stock solution preparation tank 2 is the same as in the simulation 1.

シミュレーション1と同様の目視観察及び粘度測定により、水とPVA水溶液との混合液の混合状態の良否を評価した。その結果、シミュレーション2と同等の均質な混合液が調製されるまでに約5時間を要した。   By visual observation and viscosity measurement similar to those of simulation 1, the quality of the mixed state of the mixed solution of water and the aqueous PVA solution was evaluated. As a result, it took about 5 hours until a homogeneous mixed solution equivalent to simulation 2 was prepared.

図1は、この発明の一例である原液調製装置を示す図である。FIG. 1 is a view showing a stock solution preparation apparatus which is an example of the present invention. 図2は、この発明の他の例である原液調製装置を示す図である。FIG. 2 is a view showing a stock solution preparation apparatus which is another example of the present invention.

符号の説明Explanation of symbols

1 原液調製装置
1A 原液調製装置
2 原液調製槽
2A 溶解槽
3 循環移送管
4 撹拌子
5 導出開口部
6 導入開口部
7 スタティックミキサ
8 流体強制移送手段
9 硝酸ウラニル溶液供給手段
10 増粘剤溶液供給手段
10A 増粘剤溶液供給手段
11 第1ポンプ
12 第1開閉弁
13 第2開閉弁
14 硝酸ウラニル溶液移送配管
15 第3開閉弁
16 第2ポンプ
17 第4開閉弁
18 増粘剤槽
19 増粘剤溶液移送管
20 第3ポンプ
21 第5開閉弁
22 内容物
DESCRIPTION OF SYMBOLS 1 Stock solution preparation apparatus 1A Stock solution preparation apparatus 2 Stock solution preparation tank 2A Dissolution tank 3 Circulation transfer pipe 4 Stirrer 5 Outlet opening 6 Introduction opening 7 Static mixer 8 Fluid forced transfer means 9 Uranyl nitrate solution supply means 10 Thickener solution supply Means 10A Thickener solution supply means 11 First pump 12 First on-off valve 13 Second on-off valve 14 Uranyl nitrate solution transfer pipe 15 Third on-off valve 16 Second pump 17 Fourth on-off valve 18 Thickener tank 19 Thickening Agent solution transfer pipe 20 Third pump 21 Fifth on-off valve 22 Contents

Claims (4)

酸化ウランと硝酸とから調製されて成る硝酸ウラニル溶液と増粘剤とを、形状制限された調製槽本体に収容し、前記調製槽本体の外部に設けた循環流路により、前記調製槽本体の内容物を、調製槽本体の下部から前記循環流路を経て調製槽本体の上部へと移送することを特徴とする硝酸ウラニル含有原液の調製方法。   A uranyl nitrate solution prepared from uranium oxide and nitric acid and a thickener are housed in a shape-restricted preparation tank body, and the circulation path provided outside the preparation tank body allows the preparation tank body to A method for preparing a uranyl nitrate-containing stock solution, wherein the contents are transferred from the lower part of the preparation tank body to the upper part of the preparation tank body through the circulation channel. 前記循環流路は、スタティックミキサを装備してなる前記請求項1に記載の硝酸ウラニル含有原液の調製方法。   The method for preparing a uranyl nitrate-containing stock solution according to claim 1, wherein the circulation channel is equipped with a static mixer. 酸化ウランと硝酸とから調製された硝酸ウラニル溶液と増粘剤とを収容可能な形状制限された調製槽本体と、この調製槽本体の下部に開口する導出開口部とこの調製槽本体の上部に開口する導入開口部とを連通するように前記調製槽本体外に設けられた循環流路とを備えることを特徴とする硝酸ウラニル含有原液の調製装置。   A shape-restricted preparation tank body capable of containing a uranyl nitrate solution prepared from uranium oxide and nitric acid and a thickener, a lead-out opening opening at the bottom of the preparation tank body, and an upper part of the preparation tank body An apparatus for preparing a uranyl nitrate-containing stock solution, comprising: a circulation channel provided outside the preparation tank main body so as to communicate with an introduction opening that opens. 前記循環流路は、スタティックミキサを装備してなる前記請求項3に記載の硝酸ウラニル含有原液の調製装置。   4. The apparatus for preparing a uranyl nitrate-containing stock solution according to claim 3, wherein the circulation channel is equipped with a static mixer.
JP2005311875A 2005-10-26 2005-10-26 Method and apparatus for preparing undiluted solution containing uranyl nitrate Withdrawn JP2007119282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311875A JP2007119282A (en) 2005-10-26 2005-10-26 Method and apparatus for preparing undiluted solution containing uranyl nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311875A JP2007119282A (en) 2005-10-26 2005-10-26 Method and apparatus for preparing undiluted solution containing uranyl nitrate

Publications (1)

Publication Number Publication Date
JP2007119282A true JP2007119282A (en) 2007-05-17

Family

ID=38143515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311875A Withdrawn JP2007119282A (en) 2005-10-26 2005-10-26 Method and apparatus for preparing undiluted solution containing uranyl nitrate

Country Status (1)

Country Link
JP (1) JP2007119282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006618A (en) * 2008-06-24 2010-01-14 Nuclear Fuel Ind Ltd Method and apparatus for regulating uranium enrichment for high-temperature gas-cooled reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006618A (en) * 2008-06-24 2010-01-14 Nuclear Fuel Ind Ltd Method and apparatus for regulating uranium enrichment for high-temperature gas-cooled reactor

Similar Documents

Publication Publication Date Title
CN104671797B (en) Internal gelation method for ceramic microspheres capable of keeping gel solution steady at normal temperature
Kumar et al. Studies on preparation of (U0. 47, Pu0. 53) O2 microspheres by internal gelation process
BR112016004477B1 (en) NUCLEAR FUEL TABLET WITH ENRICHED THERMAL CONDUCTIVITY AND ITS PREPARATION METHOD
Hunt et al. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process
JP2007119282A (en) Method and apparatus for preparing undiluted solution containing uranyl nitrate
JP4334334B2 (en) Method for preparing uranyl nitrate solution
US3384687A (en) Microsphere forming process for aqueous salt soultions using dissolved ammonia in a dehydrating solvent
JP2007197242A (en) Apparatus for manufacturing ammonium diuranate particle
WO2005061387A1 (en) Liquid stock for dropping, method for preparing liquid stock for dropping, method for preparing uranyl nitrate solution, and method for preparing polyvinyl alcohol solution
JP2007121128A (en) Ammonium diuranate particle containing gadolinium and manufacturing method thereof, fuel kernel for high-temperature gas-cooled reactor fuel, coated particle for high-temperature gas-cooled reactor, and high-temperature gas-cooled reactor fuel
JP2006284489A (en) Manufacturing method of coated fuel particle for high-temperature gas-cooled reactors
JP2006111474A (en) Device for preparing uranyl nitrate-containing liquid concentrate
JP2006062886A (en) Method and apparatus for producing ammonium diuranate particle
JP2006143520A (en) Uranyl nitrate solution preparation device and uranyl nitrate solution preparation method
JP2006151724A (en) Post-treating unit of ammonium biuranate particle
JP2006111471A (en) Device for producing ammonium diuranate particle
JP2007084375A (en) Dissolving and mixing tank
JP2006298729A (en) Apparatus for manufacturing ammonium diuranate particle
JP4521763B2 (en) Production equipment for coated fuel particles for HTGR
JP2006038793A (en) Method for manufacturing fuel kernel particle
JP2006143521A (en) Uranyl nitrate-containing raw liquid preparation device
JP4354903B2 (en) Production equipment for coated fuel particles for HTGR
JP4409405B2 (en) Production equipment for coated fuel particles for HTGR
JP2007055860A (en) Apparatus for manufacturing ammonium diuranate particle
JP2006266805A (en) Manufacturing equipment and manufacturing method for coated fuel particle for high-temperature gas-cooled reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106