JP2007118950A - Enlarged vessel - Google Patents

Enlarged vessel Download PDF

Info

Publication number
JP2007118950A
JP2007118950A JP2007032327A JP2007032327A JP2007118950A JP 2007118950 A JP2007118950 A JP 2007118950A JP 2007032327 A JP2007032327 A JP 2007032327A JP 2007032327 A JP2007032327 A JP 2007032327A JP 2007118950 A JP2007118950 A JP 2007118950A
Authority
JP
Japan
Prior art keywords
hull
bow
ship
waterline
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007032327A
Other languages
Japanese (ja)
Inventor
Koichiro Matsumoto
光一郎 松本
Keiichi Yamazaki
啓市 山崎
Kazuyoshi Hirota
和義 廣田
Kenji Takagishi
憲璽 高岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2007032327A priority Critical patent/JP2007118950A/en
Publication of JP2007118950A publication Critical patent/JP2007118950A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enlarged vessel with Cb of 0.78 or more capable of effectively exhibiting reduction effect of resistance increase in a billow even in such a state that a draft becomes shallow or even in full-loading. <P>SOLUTION: In a bow upper than the minimum draft line and lower than the maximum draft line, an angle γ measured from a hull center line of a linear line (a) connecting a point (E) at a front end of a hull on the hull center line on all water line surface, a vertical line (B-B) relative to the hull center line at a horizontal distance C (=0.02×L<SB>OA</SB>) rear position measured from the front end of the hull and an intersection (D) of a water line surface shape 4 is set to 0°<γ≤55°. A ratio of a horizontal distance F from FP to the front end of the bow and the whole length L<SB>OA</SB>is set to 0≤F/L<SB>OA</SB>≤0.02. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タンカーやバルクキャリアー等の肥大船に関し、特に肥大船が実海域を航行する場合の波浪中抵抗増加量を低減することができる船首部の形状に関する。   The present invention relates to a large-sized ship such as a tanker or a bulk carrier, and more particularly to a bow shape that can reduce an increase in resistance in waves when the large-sized ship navigates a real sea area.

実海域を航行する船舶は、水から抵抗を受ける。抵抗は、波浪のない平水中を航行する場合に受ける抵抗と、波浪中を航行することで平水中を航行する場合に比べて増加する抵抗、所謂、波浪中抵抗増加とに分けられる。波浪中抵抗増加は、船首部において船体に入ってくる波(入射波と呼ぶ)の反射、及び波浪中発生する船体運動に起因する抵抗量の増加である。   Ships navigating the actual sea area receive resistance from water. The resistance is classified into resistance that is received when navigating in plain water without waves and resistance that is increased compared to navigating in plain water by navigating in waves, so-called increased resistance in waves. The increase in resistance in waves is an increase in resistance due to reflection of waves (referred to as incident waves) that enter the hull at the bow and ship motion that occurs in the waves.

タンカーやバルクキャリアー等のたくさんの荷物を運ぶ肥大船は、船首がかなり肥っており、スプーンの凸部の様な形状をしているのが一般的である。このような肥大船が波浪中を航行した時、特に向かい波中を航行する時には、肥った船首で入射波が前方に反射され、波崩れを起こす。この現象によって、船体は後ろ向きの反力を受け、平水中に比べ波浪中では抵抗が大きくなる。また、波浪が船首に入射した際に波浪の山谷に対して船首が上下に運動するが、その上下運動による波崩れも波浪中での抵抗増加が大きくなる要因である。これらの波崩れ現象を小さく抑えることができれば波浪中抵抗増加を下げることができ、実海域を航行する船舶が受ける抵抗力を低減させることができる。   A large ship that carries a lot of luggage such as a tanker or a bulk carrier generally has a very thick bow and has a shape like a convex part of a spoon. When such a huge ship navigates in the waves, especially when navigating in the opposite waves, the incident waves are reflected forward by the fattened bow and cause wave collapse. Due to this phenomenon, the hull is subjected to a backward reaction force, and resistance increases in waves compared to plain water. In addition, when a wave is incident on the bow, the bow moves up and down with respect to the mountain valley of the wave. Wave collapse caused by the vertical movement is a factor that increases resistance in the wave. If these wave breaking phenomena can be suppressed to a small level, the increase in resistance in the waves can be reduced, and the resistance force applied to ships navigating the actual sea area can be reduced.

このような波浪中抵抗増加を低減するものとして、特開平8−142974号公報(特許文献1)では、尖端縁をもつ楔状付加物を備えた大型肥大船が示されている。この発明は船首部に付加物を備えるため、船体と付加物の取り合い部分が不連続になる。その不連続部分で滑らかな流体(水)の流れが阻害され、抵抗力を発生させる原因となるという問題点がある。付加物を備えずに波浪中抵抗増加を低減する船首形状としては、最大喫水線よりも上部の船首部分を側面からみて、その下部から上部に向け傾斜状に張り出し前方に突出して形成した船首形状が知られている(特開平9−290796号公報参照:特許文献2)。しかし、最大喫水線よりも下部には平水中抵抗を低減するために船首バルブが形成されているので、最大喫水線上の突出させた船首と水面下の船首バルブとを繋ぐ曲面の曲がりが大きな曲面となり、すなわち最大喫水線付近での船首の形状が大きな曲がりを持つようになり船首の設計や工作がしにくいという問題があった。   In order to reduce such resistance increase in waves, Japanese Patent Application Laid-Open No. 8-142974 (Patent Document 1) shows a large-sized enlarged ship equipped with a wedge-shaped appendage having a pointed edge. Since this invention is provided with an appendage at the bow, the part where the hull and the appendage meet is discontinuous. There is a problem in that the flow of smooth fluid (water) is hindered by the discontinuous portion and causes resistance. As a bow shape that reduces the increase in resistance in the waves without providing an appendage, the bow shape formed by protruding from the lower part to the upper part of the bow part at the upper part of the maximum waterline and projecting forward is projected. It is known (see JP-A-9-290796: Patent Document 2). However, since a bow valve is formed below the maximum water line to reduce resistance to plain water, the curved surface connecting the projected bow on the maximum water line and the bow valve below the water surface becomes a large curved surface. In other words, there is a problem that the bow shape near the maximum waterline has a large bend and it is difficult to design and work the bow.

この設計・工作上の問題を解決したものが特開2000−335478号公報(特許文献3)に記載の肥大船であり、最大喫水線上の船首と水面下の船首バルブとを滑らかな曲面で繋ぐことによって解決を図っている。波浪中抵抗増加を減少させるために設けられる船首部の形状を、FPより前方で、最大喫水線上の船首において、すべての水線面における、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦50°に設定することとしており、最大喫水線よりも上方の範囲に限定されている。 The enlargement ship described in Japanese Patent Application Laid-Open No. 2000-335478 (Patent Document 3) solves this design and work problem, and connects the bow on the maximum water line and the bow valve below the water surface with a smooth curved surface. We are trying to solve it. The shape of the bow portion provided to reduce the increase in resistance in the waves is the front of the hull on the maximum waterline in front of the FP, the point (E) at the front edge of the hull on the hull centerline, and the hull on all waterline surfaces. The center of the hull of the straight line (a) connecting the intersection (D) of the vertical line (BB) and the waterline surface shape with respect to the hull center line at the horizontal distance C (0.02 × L OA ) measured from the front end The angle γ measured from the line is set to 0 ° <γ ≦ 50 °, and is limited to a range above the maximum water line.

特開平8−142974号公報JP-A-8-142974 特開平9−290796号公報JP-A-9-290796 特開2000−335478号公報JP 2000-335478 A

しかしながら、特許文献3に記載の肥大船にあっては、波浪中抵抗増加を減少させるために設けられた船首前端での船体側面の水線面における船体中心線からの角度γを設定する範囲は、最大喫水線より上方の範囲に限定されているため、波浪中抵抗増加を低減させる効果は、最大喫水線より上方に波浪が盛り上がってきた場合のみ有効である。波浪の波面は上下するので、下がっている時、波面は最大喫水線より下方にくるが、そのときには効果を有効に発揮できないという問題点があった。また、タンカーやバルクキャリアー等では貨物積載量の少ない状態で航行する場合が航海の半分程度あるが、その場合喫水が浅くなり、入射する波面が最大喫水線まで届かなくなる。このような喫水の浅い状態では、波浪中抵抗増加を低減する効果が全く消滅してしまうという問題点もあった。   However, in the enlargement ship described in Patent Document 3, the range for setting the angle γ from the hull center line in the water line surface of the hull side surface at the front end of the bow provided in order to reduce the increase in resistance in the wave is Since it is limited to a range above the maximum water line, the effect of reducing the increase in resistance in the waves is effective only when the waves rise above the maximum water line. Since the wavefront of the waves goes up and down, the wavefront comes below the maximum water line when it is lowered, but at that time, there is a problem that the effect cannot be exhibited effectively. On the other hand, tankers, bulk carriers, etc. sail with a small cargo load in about half of the voyage. In that case, the draft becomes shallow and the incident wavefront does not reach the maximum draft. In such a shallow draft state, there was a problem that the effect of reducing the increase in resistance in the waves disappeared at all.

そこで、本発明は、満載時でも喫水が浅くなった状態においても、波浪中抵抗増加の低減効果が有効に発揮できる、波浪中の推進性能の優れた肥大船を提供することを目的とする。   Therefore, an object of the present invention is to provide an enlarged vessel with excellent propulsion performance in waves, which can effectively exhibit the effect of reducing the increase in resistance in waves even when the draft is shallow even when fully loaded.

肥大船では、肥った船首で入射波が前方に反射し、波崩れを起こすので、波浪中での抵抗が増加する。船首での前方への波反射、波崩れ現象を緩和するためには、すなわち、波の反射する方向を制御して、波浪による反力を低減し抵抗増加を低減するためには、船首部分をできる限り前方に尖らせ、波を崩さずに横に掻き分ければ良い。本発明者は、浅い喫水の状態においても波浪中の抵抗増加を低減するために、最大喫水線と最小喫水線との間に尖り部分を設定するのが有効であることを知見した。   In a large-sized ship, incident waves are reflected forward by a fattened bow and cause wave collapse, increasing resistance in waves. In order to alleviate the wave reflection and wave breaking phenomenon at the bow, that is, to control the wave reflection direction to reduce the reaction force caused by the waves and reduce the resistance increase, Sharpen as far as possible and scrape it sideways without breaking the waves. The present inventor has found that it is effective to set a sharp portion between the maximum water line and the minimum water line in order to reduce an increase in resistance in waves even in a shallow draft state.

すなわち請求項1の発明は、最小喫水線より上方で且つ最大喫水線よりも下方の船首において、すべての水線面における、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船により、上述した課題を解決する。 That is, the invention according to claim 1 is that at the bow above the minimum water line and below the maximum water line, the point (E) at the front end of the hull on the center line of the hull and the horizontal distance measured from the front end of the hull on all water surface. C (0.02 × L OA ) Measured from the hull centerline of the straight line (a) connecting the intersection (D) of the vertical line (BB) and waterline surface shape (4) to the hull centerline at the rear position The above-mentioned problem is solved by a large-sized ship having C b = ∇ / (L PP × B × d) of about 0.78 or more, characterized in that the angle γ is set to 0 ° <γ ≦ about 55 °. Resolve.

この発明によれば、喫水が浅くなった場合でも波を横に掻き分ける作用が有効に働き、従来技術では実現できなかった浅い喫水の状態においても波浪中の抵抗を減少することができる。また満載時でも上下する波が下がったときに波を横に掻き分ける作用が働き、波浪中の抵抗を減少することができる。   According to the present invention, even when the draft becomes shallow, the action of scraping the waves sideways works effectively, and the resistance in the waves can be reduced even in a shallow draft state that could not be realized by the prior art. In addition, even when full, the action of scraping the waves sideways when the up and down waves drop can work, and the resistance in the waves can be reduced.

船首部分をできるだけ前方に尖らせるためには、本発明中で定義されている水線面角度γが小さければ小さいほど良いと考えられる。実際には、肥大船の場合、船首近くまで貨物タンクがあるため船首近傍はかなり肥っている。γを極めて小さくすることは船首部の横幅を極めて減少させることになり、船腹と船首との接続部に極端な段差が生じるため、この段差部分で波浪中の抵抗が増加する懸念がある。また、全長の制限もあるため前方にかなり延ばしてγを小さくすることには制約がある。したがって、γは15°より大きいことが好ましい。γが55°を超えると、船首での波の反射する方向の大部分が前方となり、船体は後ろ向きの反力を受け抵抗増加が大きくなる。そのため、設計上、実用上及び波浪中の抵抗増加の一層の低減を考慮すると、γは15°≦γ≦55°の範囲が望ましく、γは15°≦γ≦50°の範囲がより望ましい。   In order to sharpen the bow as far forward as possible, it is considered that the smaller the waterline surface angle γ defined in the present invention, the better. Actually, in the case of a large-sized ship, there is a cargo tank near the bow, so the area near the bow is considerably fattened. If γ is made extremely small, the lateral width of the bow portion is extremely reduced, and an extreme step is generated at the connecting portion between the hull and the bow, and there is a concern that the resistance in the waves increases at this step portion. In addition, since there is a restriction on the total length, there is a limitation in reducing γ by extending it forward. Therefore, γ is preferably greater than 15 °. When γ exceeds 55 °, most of the wave reflection direction at the bow is forward, and the hull is subjected to a backward reaction force and resistance increases. Therefore, in view of further reduction in resistance increase in design, practical use and in waves, γ is preferably in the range of 15 ° ≦ γ ≦ 55 °, and γ is more preferably in the range of 15 ° ≦ γ ≦ 50 °.

また本発明は、最小喫水線より上方で且つ最大喫水線よりも下方の船首において、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°とする水線面を、前記船首範囲の70%以上に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船としても構成することができる。 The present invention also provides a point (E) at the front end of the hull on the center line of the hull at the bow above the minimum water line and below the maximum water line, and a horizontal distance C (0.02 × L OA ) measured from the front end of the hull. The angle γ, measured from the hull centerline, of the straight line (a) connecting the intersection (D) of the vertical line (BB) to the hull centerline at the position and the waterline surface shape (4) is 0 ° <γ ≦ A water surface with an angle of about 55 ° is set to 70% or more of the bow range, and the enlargement ship having C b = ∇ / (L PP × B × d) of about 0.78 or more Can be configured.

実船の設計にあたっては、最大喫水線近傍の船首形状を後方へ後退させたときに、後退させた部分がどうしても肥る(γが大きくなる)傾向となることを考慮する必要がある。このため、最小喫水線より上方で且つ最大喫水線よりも下方の船首において、γを0°<γ≦約55°とする水線面を前記船首範囲の70%以上に設定することもある。   When designing an actual ship, it is necessary to consider that when the bow shape near the maximum waterline is retracted backward, the retracted part inevitably becomes fertile (γ increases). For this reason, the waterline surface where γ is 0 ° <γ ≦ about 55 ° may be set to 70% or more of the bow range above the minimum waterline and below the maximum waterline.

さらに本発明は、最小喫水線より上方の船首において、デッキ近傍を除くすべての水線面における、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船としても構成することができる。 Further, the present invention provides a point (E) at the front end of the hull on the center line of the hull at all bows except the vicinity of the deck at the bow above the minimum waterline, and a horizontal distance C (0.02 ×) measured from the front end of the hull. L OA ) The angle γ measured from the hull center line of the straight line (a) connecting the intersection (D) of the vertical line (BB) and the waterline surface shape (4) with respect to the hull center line at the rear position is 0 It can also be configured as an enlarged ship having C b = ∇ / (L PP × B × d) of about 0.78 or more, characterized in that it is set to ° <γ ≦ about 55 °.

波浪中の抵抗増加を低減する効果を大きくするためには、最小喫水線よりも上方で且つ最大喫水線よりも下方の船首部だけでなく、最大喫水線よりも上方の船首部に尖り部分を設定することが有効である。ここでデッキ近傍に尖り部分を設定すると、デッキ面積が狭くなり、これにより作業性が悪くなるおそれがある。デッキ近傍には波が届かないこともあることを考慮すると、デッキ近傍を尖らせない船首形状も採用し得る。   In order to increase the effect of reducing the increase in resistance in the waves, not only the bow above the minimum waterline and below the maximum waterline, but also the sharp part at the bow above the maximum waterline. Is effective. Here, if a sharp portion is set near the deck, the deck area becomes narrow, which may deteriorate workability. Considering that waves may not reach the vicinity of the deck, a bow shape that does not sharpen the vicinity of the deck can also be adopted.

さらに本発明は、最小喫水線より上方の船首において、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°とする水線面を、前記船首範囲の80%以上に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船としても構成することができる。 Further, the present invention provides a point (E) at the front end of the hull on the center line of the hull at the bow above the minimum waterline and a vertical to the center line of the hull at a position behind the horizontal distance C (0.02 × L OA ) measured from the front end of the hull. Water line in which the angle γ measured from the hull center line of the straight line (a) connecting the intersection (D) of the line (BB) and the water line surface shape (4) is 0 ° <γ ≦ about 55 ° The surface can be set to 80% or more of the bow range, and it can be configured as an enlarged ship having C b = / (L PP × B × d) of about 0.78 or more.

実船の設計にあたっては、デッキ面積の確保と船首形状の連続性を考慮する必要がある。このため、最小喫水線より上方の船首において、γを0°<γ≦約55°とする水線面を前記船首範囲の80%以上に設定することもある。   When designing an actual ship, it is necessary to consider ensuring the deck area and continuity of the bow shape. For this reason, at the bow above the minimum waterline, the waterline surface where γ is 0 ° <γ ≦ about 55 ° may be set to 80% or more of the bow range.

さらに本発明は、最小喫水線より上方で且つ最大喫水線よりも下方の船首において、少なくとも一部の水線面における、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°に設定し、且つ、最小喫水線より上方の船首において、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°とする水線面を、前記船首範囲の50%以上に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船としても構成することができる。 Furthermore, the present invention relates to a point (E) at the front end of the hull on the hull center line and a horizontal distance C measured from the front end of the hull in at least a part of the waterline surface at the bow above the minimum waterline and below the maximum waterline. (0.02 × L OA ) Measured from the hull centerline of the straight line (a) connecting the intersection (D) of the vertical line (BB) and the waterline surface shape (4) with respect to the hull centerline at the rear position The angle γ is set to 0 ° <γ ≦ about 55 °, and at the bow above the minimum water line, the point (E) of the hull front end on the hull center line and the horizontal distance C (0. 02 × L OA ) The angle γ measured from the hull centerline of the straight line (a) connecting the intersection (D) of the vertical line (BB) and waterline surface shape (4) with respect to the hull centerline at the rear position , 0 ° <γ ≦ about 55 °, wherein the water line surface is set to 50% or more of the bow range, It can be configured as an enlargement ship having C b = ∇ / (L PP × B × d) of about 0.78 or more.

最大喫水線近傍の船首形状を、FPから船首先端までの水平距離FがF/LOA≦約0.02の範囲で後方へ後退させたときに、後退させた部分がどうしても肥る(γが大きくなる)傾向となり、γが55°を超える場合も発生する。このため、最小喫水線より上方で且つ最大喫水線よりも下方の船首において、少なくとも一部の水線面におけるγを、0°<γ≦約55°に設定し、且つ、最小喫水線より上方の船首において、γを0°<γ≦約55°とする水線面を前記船首範囲の50%以上に設定することもある。 When the bow shape near the maximum waterline is moved backward in the range where the horizontal distance F from the FP to the tip of the bow is F / L OA ≦ about 0.02, the retracted portion is inevitably fertilized (γ is large This also occurs when γ exceeds 55 °. For this reason, at the bow above the minimum waterline and below the maximum waterline, at least a part of the waterline surface is set to 0 ° <γ ≦ about 55 °, and at the bow above the minimum waterline. The surface of the water line where γ is 0 ° <γ ≦ about 55 ° may be set to 50% or more of the bow range.

また、船首先端部の側面形状を限りなく直線に近い状態にすれば、すなわち、船首に最も近い貨物タンクの位置や大きさを変えないでFPだけを可能な限り前方に移動させれば、最小喫水線から船首部上端の範囲の全ての水船面において、船首の尖り角γを小さくすることが可能となる。FPから船首先端までの水平距離Fが限りなく0に近いか、0となる場合が、船の全長を変更しないで、船首の尖り角を最も鋭くすることができる。したがって、上記水平距離Fと全長LOAの比は、約0≦F/LOA≦約0.02の範囲が望ましく、約0≦F/LOA≦約0.015の範囲がより望ましい。ここで上記水平距離Fと全長LOAの比は、F/LOA=約0に設定してもよい。 Also, if the side shape of the bow tip is made as close to a straight line as possible, that is, if only the FP is moved forward as much as possible without changing the position and size of the cargo tank closest to the bow, the minimum The sharp angle γ of the bow can be reduced on all the water surface from the water line to the upper end of the bow. When the horizontal distance F from the FP to the tip of the bow is as close as possible to 0 or 0, the sharpness of the bow can be made the sharpest without changing the overall length of the ship. Accordingly, the ratio of the horizontal distance F to the total length L OA is preferably in the range of about 0 ≦ F / L OA ≦ about 0.02, and more preferably in the range of about 0 ≦ F / L OA ≦ about 0.015. Here, the ratio of the horizontal distance F to the total length L OA may be set to F / L OA = about 0.

詳しくは後述するが、従来の肥大船型では、平水中の造波抵抗を低減するために船首先端の下方部分に突出した船首バルブが取り付けられている。本発明のようにFPを先端あるいは先端付近まで突出させることは、船首バルブを含めた船首近傍の形状を壊すことになり、平水中の抵抗性能の劣化、特に造波抵抗の低減効果が減少すると従来は考えられていた。本発明者は、前進する船体によって造られる波形を解析するCFDツール(TUMMAC IV;東京大学にて開発された)を用いて種々の検討を行い、FPを先端あるいは先端付近まで突出させても平水中の造波抵抗を増加させない本発明の形状を開発した。また本発明の形状が、平水中の造波抵抗を増加させないことを模型試験で確認した。   As will be described in detail later, in the conventional enlarged hull form, a bow valve protruding at the lower part of the tip of the bow is attached in order to reduce wave resistance in the plain water. Protruding the FP to the tip or the vicinity of the tip as in the present invention breaks the shape near the bow including the bow valve, and the deterioration of resistance performance in plain water, especially the effect of reducing wave resistance is reduced. Previously it was considered. The present inventor has made various studies using a CFD tool (TUMMAC IV; developed at the University of Tokyo) that analyzes a waveform created by a moving hull, and even if the FP protrudes to the tip or near the tip, A shape of the present invention was developed that does not increase the wave resistance in water. Moreover, it was confirmed by a model test that the shape of the present invention does not increase the wave resistance in plain water.

最大喫水線より上方の船首部と最小喫水線部の船首部を滑らかな曲面で繋ぐことにより、推進時の抵抗を小さくできる。船首バルブを有する従来の肥大船型では、最小喫水線の線上にある船首バルブ部から最大喫水線より上方の船首部にかけて、γとFを上述の範囲になるように滑らかな曲面で繋ぐようにすれば、平水中の推進抵抗を損なうことなく波浪中の抵抗増加量を小さくすることができる。   Propulsion resistance can be reduced by connecting the bow portion above the maximum water line and the bow portion of the minimum water line portion with a smooth curved surface. In a conventional enlarged hull form having a bow valve, if γ and F are connected with a smooth curved surface so as to be in the above range from the bow valve part on the line of the minimum draft line to the bow part above the maximum draft line, It is possible to reduce the resistance increase in the waves without impairing the propulsion resistance in the flat water.

また本発明の好ましい一態様は、前記船首の先端が、船体全体の制限寸法に合わせて、前記船首の傾斜状下面(2a)の前方向延長線(5)と船首上面(2c)の前方向延長線(6)の交差位置(P)よりも後退することを特徴とする。   Further, according to a preferred aspect of the present invention, the front end of the bow has a forward extension line (5) of the inclined lower surface (2a) and a forward direction of the bow upper surface (2c) in accordance with a limit dimension of the entire hull. It is characterized by retreating from the intersection position (P) of the extension line (6).

この発明によれば、船首の先端を、船体全体の制限寸法に合わせて、船首の傾斜状下面の前方向延長線と船首上面の前方向延長線の交差位置よりも後退させたので、例えば港湾入港時に全長制限があっても対応することができる。   According to this invention, the tip of the bow is retracted from the intersection of the forward extension line of the inclined lower surface of the bow and the forward extension line of the upper surface of the bow in accordance with the limit size of the entire hull. Even if there is a total length restriction when entering the port, it can be handled.

以上説明したように、本発明によれば、船首部に波の山が来たときだけでなく、波の谷が来たときでも波面を横方向に分け反射できるので、船首での前方への波反射、波崩れ現象を緩和し、波浪中抵抗増加を低減できる。また、船舶の積載量が少なく喫水が最大喫水線よりも浅い場合でも、水面付近の船首前端の尖り角が鋭角であるため、波浪中抵抗増加の低減効果が十分に発揮される。   As explained above, according to the present invention, the wave front can be divided and reflected not only when a wave mountain comes to the bow part but also when a wave valley comes, so that the wave front can be reflected forward. Wave reflection and wave breaking phenomena can be alleviated, and resistance increase in waves can be reduced. Moreover, even when the load of the ship is small and the draft is shallower than the maximum draft, since the sharp angle of the bow front end near the water surface is acute, the effect of reducing the increase in resistance in waves is sufficiently exhibited.

まず、図1に基づいて、本発明で使用している用語の定義・説明を行う。図中FPは、Fore Perpendicularの略で、最大喫水線:LWLと交わる船首先端位置(垂直線)である。LPPは、FP位置から舵軸中心位置:AP(Aft Perpendicular)までの水平距離で計った船舶の長さで、LOAは船舶の全長である。また、LBは船が航行可能な最小喫水線を表す。本発明における肥大船とは、タンカーやバルクキャリアーなどのたくさんの荷物を運ぶ肥った船舶で、Cb=∇/(LPP×B×d)が0.78程度以上の船舶を指す。ここで、dは船舶の最大喫水線下の深さで、Bは船舶の全幅、∇はdに対応する型排水容積である。 First, terms used in the present invention are defined and explained based on FIG. In the figure, FP is an abbreviation of Fore Perpendicular, and is the tip of the bow (vertical line) that intersects the maximum water line: LWL. L PP is the length of the ship measured by the horizontal distance from the FP position to the rudder axle center position: AP (Aft Perpendicular), and L OA is the total length of the ship. Further, L B represents a minimum ship navigable waterline. The enlargement ship in the present invention is a fertile ship that carries a lot of cargo such as a tanker or a bulk carrier, and C b = / (L PP × B × d) is about 0.78 or more. Here, d is the depth below the maximum waterline of the ship, B is the full width of the ship, and dredge is the die drainage volume corresponding to d.

図2は、γの定義について示す。図中(A)は船舶の船首2付近を側面からみた形状を示し、図中(B)はA−A断面(あるいはA′−A′断面)での水線面形状を示す。水線面における、船体中心線上の船体前端の点Eと、船体前縁から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線B−Bと水線面形状4との交点Dを結んだ直線aの、船体中心線から計った角度をγ(尖り角)と定義する。図中(A)に示すように、全水線面内の船体中心線に対する垂直線B−Bをつなげてできる2次元曲面の側面形状は、船体前縁に沿った形状になる。 FIG. 2 shows the definition of γ. In the figure, (A) shows the shape of the vicinity of the bow 2 of the ship as viewed from the side, and (B) in the figure shows the shape of the water line in the AA section (or A'-A 'section). The vertical line BB and the shape of the waterline on the hull centerline on the hull centerline and the hull centerline at the rear of the horizontal distance C (0.02 x LOA ) measured from the hull front edge on the hull centerline The angle measured from the hull center line of the straight line a connecting the intersection D with 4 is defined as γ (a sharp angle). As shown to (A) in a figure, the side surface shape of the two-dimensional curved surface which connects the perpendicular line BB with respect to the hull centerline in all the water surface becomes a shape along the hull front edge.

この実施形態では、最小喫水線LBより上方で且つ最大喫水線LWLよりも下方の船首において、すべての水線面におけるγは、0°<γ≦55°に設定される。設計上、実用上及び波浪中の抵抗増加の一層の低減を考慮すると、15°≦γ≦55°の範囲が望ましく、15°≦γ≦50°の範囲がより望ましい。   In this embodiment, in the bow above the minimum draft line LB and below the maximum draft line LWL, γ in all the waterline surfaces is set to 0 ° <γ ≦ 55 °. Considering further reduction in resistance increase in design, practical use, and waves, the range of 15 ° ≦ γ ≦ 55 ° is desirable, and the range of 15 ° ≦ γ ≦ 50 ° is more desirable.

実船の設計にあたっては、最大喫水線近傍の船首形状を後方へ後退させたときに、後退させた部分がどうしても肥る(γが大きくなる)傾向となることを考慮する必要がある。このため、最小喫水線LBより上方で且つ最大喫水線LWLよりも下方の船首において、γを0°<γ≦約55°とする水線面を前記船首範囲の70%以上に設定することもある。   When designing an actual ship, it is necessary to consider that when the bow shape near the maximum waterline is retracted backward, the retracted part inevitably becomes fertile (γ increases). For this reason, at the bow above the minimum waterline LB and below the maximum waterline LWL, the waterline surface where γ is 0 ° <γ ≦ about 55 ° may be set to 70% or more of the bow range.

またこの実施形態では、船首上端部2bから航行可能な最小喫水線LBまでの、デッキ近傍を除くすべての尖り角γは、0°<γ≦55°に設定される。   In this embodiment, all the sharp angles γ except for the vicinity of the deck from the bow upper end 2b to the navigable minimum draft LB are set to 0 ° <γ ≦ 55 °.

実船の設計にあたっては、デッキ面積の確保を考慮する必要がある。このため、最小喫水線LBより上方の船首において、γを0°<γ≦約55°とする水線面を前記船首範囲の80%以上に設定することもある。   When designing an actual ship, it is necessary to consider securing the deck area. For this reason, at the bow above the minimum waterline LB, the waterline surface where γ is 0 ° <γ ≦ about 55 ° may be set to 80% or more of the bow range.

図3は、本発明の一実施形態における肥大船を示すものである。図中(A)は船首部付近の側面図であり、図中(B)はg−g線での船体前縁の片舷の水線面形状を示す。図3中の破線の曲線iは本発明の設計過程における仮の船首形状を示している。図中FP′は設計過程における仮のFore Perpendicularを示す。これに対する本発明の肥大船の形状を曲線jで示す。本発明は、曲線iで示す開発過程における仮の船首形状を、船首前端(3bあるいは2b)を超えることなく限りなく前方に伸ばした形状とし、FPから船首前端までの水平距離Fと全長LOAとの比は、約0≦F/LOA≦約0.02の範囲に設定される。このようにFPを前方に持ってゆくことで、図中(A)の最小喫水線より上方の船首の水線面形状jは、図中(B)に示すように設計過程における仮の水線面形状iに比べて、船首前方に向けて鋭角になる度合いが高まる。これにより、最小喫水線LBより上方の広い範囲で、尖り角γをさらに鋭角にすることが可能になるので、波浪中抵抗増加の減少度合いが大きくなる。したがって、水平距離Fは小さいほど効果が大きく、約0≦F/LOA≦約0.02の範囲が望ましい。 FIG. 3 shows an enlargement ship in one embodiment of the present invention. In the figure, (A) is a side view in the vicinity of the bow, and (B) in the figure shows the water line shape of one side of the hull front edge at the gg line. A broken curve i in FIG. 3 indicates a temporary bow shape in the design process of the present invention. In the figure, FP ′ indicates a temporary Fore Perpendicular in the design process. The shape of the enlargement ship of this invention with respect to this is shown with the curve j. In the present invention, the provisional bow shape in the development process indicated by the curve i is a shape that extends to the front as much as possible without exceeding the bow front end (3b or 2b), the horizontal distance F from the FP to the bow front end, and the total length L OA. Is set in the range of about 0 ≦ F / L OA ≦ about 0.02. By bringing the FP forward in this way, the waterline surface shape j of the bow above the minimum waterline in the figure (A) becomes the temporary waterline surface in the design process as shown in the figure (B). Compared to the shape i, the degree of an acute angle toward the front of the bow increases. As a result, the sharp angle γ can be made more acute in a wide range above the minimum waterline LB, so that the degree of decrease in the wave resistance increases. Accordingly, the smaller the horizontal distance F, the greater the effect, and a range of about 0 ≦ F / L OA ≦ about 0.02 is desirable.

船首先端部の側面形状が直線になるように、FPから船首前端までの水平距離Fと全長LOAとの比を、F/LOA=約0に設定してもよい。 The ratio of the horizontal distance F from the FP to the front end of the bow and the total length L OA may be set to F / L OA = about 0 so that the shape of the side of the bow tip is a straight line.

最大喫水線LWL近傍の船首形状を、FPから船首先端までの水平距離FがF/LOA≦約0.02の範囲で後方へ後退させたときに、後退させた部分がどうしても肥る(γが大きくなる)傾向となり、γが55°を超える場合も発生する。このため、最小喫水線LBより上方で且つ最大喫水線LWLよりも下方の船首において、少なくとも一部の水線面におけるγを、0°<γ≦約55°に設定し、且つ、最小喫水線LBより上方の船首において、γを0°<γ≦約55°とする水線面を前記船首範囲の50%以上に設定することもある。 When the horizontal shape F from the FP to the tip of the bow is moved backward in the range of F / L OA ≦ about 0.02 in the bow shape in the vicinity of the maximum water line LWL, the retracted portion is inevitably fertile (γ is This also occurs when γ exceeds 55 °. For this reason, at the bow above the minimum waterline LB and below the maximum waterline LWL, γ on at least some of the waterline surfaces is set to 0 ° <γ ≦ about 55 ° and above the minimum waterline LB The water line surface where γ is 0 ° <γ ≦ about 55 ° may be set to 50% or more of the bow range.

図3(A)中、3は船首バルブである。最大喫水線より上方の船首部と船首バルブ3を滑らかな曲面で繋ぐようにすることにより、船首バルブによる推進抵抗を低減する効果を損なうことなく、波浪中抵抗増加量の低減効果を発揮できる。   In FIG. 3A, 3 is a bow valve. By connecting the bow portion above the maximum water line and the bow valve 3 with a smooth curved surface, the effect of reducing the resistance increase in waves can be exhibited without impairing the effect of reducing the propulsion resistance by the bow valve.

図3(A)に示すように、最大喫水線LWLより上方の船首の傾斜状下面2aの前方向延長線5と、船首上面2cから水平前方への延長線6との交点Pが、全長LOAの制限範囲を超過する範囲に及ぶ場合は、超過した形状部分(図中斜線部4)をカットし、カット部分の水線面の尖り角γも所定の範囲となるようにする。 As shown in FIG. 3A, the intersection P between the forward extension line 5 of the inclined lower surface 2a of the bow above the maximum draft line LWL and the extension line 6 extending horizontally from the bow upper surface 2c is the total length L OA. When the range exceeds the limit range, the excess shape portion (shaded portion 4 in the figure) is cut so that the sharp angle γ of the water line surface of the cut portion also falls within a predetermined range.

デッキ近傍(すなわち船首上面2cから所定距離下方までの範囲)の尖り角γを0°<γ≦55°に設定すると、デッキ面積が狭くなり、これにより作業性が悪くなるおそれがある。デッキ近傍には波が届かないこともあることを考慮すると、デッキ近傍の尖り角γは55°を超えることもある。   When the sharp angle γ in the vicinity of the deck (that is, the range from the bow upper surface 2c to a predetermined distance below) is set to 0 ° <γ ≦ 55 °, the deck area becomes narrow, which may deteriorate the workability. Considering that waves may not reach the vicinity of the deck, the sharp angle γ near the deck may exceed 55 °.

上述のようにすることで、従来技術の問題点であった、波浪中抵抗増加を減少させる効果が最大喫水線より上方の船首部に限定されていることと、喫水が浅くなった場合に効果が消滅することの問題点を解決することができた。   By doing as described above, the effect of reducing the increase in resistance in waves, which was a problem of the prior art, is limited to the bow portion above the maximum draft line, and is effective when the draft becomes shallow The problem of disappearance could be solved.

ところで、船首先端の下方部分に突出して取り付けられている船首バルブは、中高速船においてその利用が始まった。平水中を航行する際、船体は波を発生する。波を造ることにより発生する抵抗成分は造波抵抗と呼ばれている。船首バルブは、それ自身が造る波が主船体前半部で作られる波と干渉し、船全体として造る波の波高を小さくすることでエネルギ損失を小さく抑え、造波抵抗を低減する効果がある。中高速船では、造波抵抗が大きいためその効果が顕著に現れ一般的に用いられるようになり、その延長として低速肥大船においても船首バルブが適用され始めた。その後、長い年月を経て最適化が進み、低速肥大船における平水中の抵抗を小さくするのに最も有効な船首バルブ形状が造りだされてきたし、またそのように考えられてきた。   By the way, the use of the bow valve which protrudes and is attached to the lower part of the tip of the bow has begun to be used in medium and high speed ships. When navigating in flat water, the hull generates waves. The resistance component generated by creating a wave is called wave-making resistance. The bow valve has the effect of reducing the wave resistance by suppressing the energy loss by making the wave produced by itself interfere with the wave produced in the front half of the main hull and reducing the wave height of the wave produced as a whole ship. In medium and high speed ships, the wave-making resistance is large, so that the effect is prominent and it is generally used. Since then, optimization has progressed over the years, and the most effective bow valve shape has been created and thought to reduce the resistance in plain water on low-speed enlarged vessels.

本発明のように、FPを先端あるいは先端付近まで突出させることは、上述の船首バルブを含めた船首近傍の形状を壊すことになり、平水中の抵抗性能の劣化、特に造波抵抗の増大が懸念される。   Protruding the FP to the tip or near the tip as in the present invention breaks the shape of the vicinity of the bow including the above-mentioned bow valve, which deteriorates the resistance performance in plain water, especially increases the wave resistance. Concerned.

本発明者は、前進する船体によって造られる波形を解析するCFDツール(TUMMAC IV;東京大学にて開発された)を用いて種々の検討を行い、FPを前方に持ってきても平水中の造波抵抗を増加させない形状を開発した。   The present inventor has made various studies using a CFD tool (TUMMAC IV; developed at the University of Tokyo) that analyzes the waveform created by the advancing hull. A shape that does not increase wave resistance has been developed.

本発明の効果を算定するために、図4(C)に示す側面形状の船首形状を有するタンカー船型を作成した。その要目は、全長LOA=277.3m,全幅B=50m,喫水d=14.4mである。図3に示す船型のFPから船首前端までの水平距離Fを0とし、FPは船首前端と一致している。図2中(B)で示す水線面形状の尖り角γを可能な限り小さくした船型(以下"C船型"と記述する)である。そのγを設定した範囲は、図4(C)の最小喫水線から船首上端の範囲である。本発明の効果を確認するために、一般的な船首形状を持つ船型(図4中(A)、以下"A船型"と記述する)と従来型「特開2000−335478号公報」で記載されている船型(図4(B)、以下"B船型"と記述する)との波浪中抵抗増加を比較する。B船型は、F/LOAが約0.02で、船首部の水線面の前端部の尖り角γを、最大喫水線から船首上端の範囲で設定した船型である。上記各船型の航行中平均喫水における水線面における尖り角γは、A船型が約70°、B船型が約40°、C船型が約35°になっている。尖り角γがC船型の方がB船型より小さいのは、FPが船首前端と一致しているからである。 In order to calculate the effect of the present invention, a tanker hull form having a side-shaped bow shape shown in FIG. 4C was created. The main points are the total length L OA = 277.3 m, the total width B = 50 m, and the draft d = 14.4 m. The horizontal distance F from the boat-shaped FP shown in FIG. 3 to the bow front end is set to 0, and the FP coincides with the bow front end. This is a hull form (hereinafter referred to as “C hull form”) in which the sharp angle γ of the waterline surface shape shown in FIG. The range in which γ is set is a range from the minimum water line in FIG. 4C to the upper end of the bow. In order to confirm the effect of the present invention, it is described in a ship type having a general bow shape ((A) in FIG. 4, hereinafter referred to as “A ship type”) and a conventional type “Japanese Patent Laid-Open No. 2000-335478”. The increase in resistance in waves is compared with the existing ship type (FIG. 4B, hereinafter referred to as “B ship type”). The ship type B has a F / LOA of about 0.02 and a sharp angle γ at the front end portion of the waterline surface of the bow portion set in a range from the maximum water line to the bow upper end. The sharp angle γ on the waterline surface at the average draft during navigation of each ship type is about 70 ° for the A type, about 40 ° for the B type, and about 35 ° for the C type. The reason why the C-shaped ship is smaller than the B-shaped ship is that the FP coincides with the bow front end.

図5は、突出した船首バルブを持ち、且つ船首の最大喫水線よりも上方の範囲を尖らせた従来型の船首(B船型)と、本発明の船首(C船型)とのTUMMAC IVによる波高分布の計算結果の比較を示す。本発明の船首の造る波のパターンと従来型の船首の造る波パターンには大きな差は無く、船首先端の波高を示す係数は本発明の船首の方が若干小さくなっているが、全体的には、本発明の船首と従来型の船首との差は殆どないと判断される。   FIG. 5 shows the wave height distribution by TUMMAC IV of a conventional bow (B type) having a protruding bow valve and sharpening the range above the maximum draft of the bow and the bow (C type) of the present invention. Comparison of calculation results is shown. There is no significant difference between the wave pattern produced by the bow of the present invention and the wave pattern produced by the conventional bow, and the coefficient indicating the wave height at the bow tip is slightly smaller in the bow of the present invention. It is judged that there is almost no difference between the bow of the present invention and the conventional bow.

また、水槽試験による造波抵抗計測を実施して検証も行った。図6は試験結果を示す。従来型の船(B船型)との優劣は全くない。この試験結果により、本発明の船首(C船型)が突出した船首バルブを持つ従来型の船首(B船型)と大きく異なるものの、造波抵抗の劣化が全く見られない形状であることを検証した。   In addition, wave resistance was measured by a water tank test and verified. FIG. 6 shows the test results. There is no superiority or inferiority to the conventional ship (B type). From this test result, it was verified that the bow of the present invention (C type) was greatly different from the conventional type (B type) with a protruding bow valve, but the wave resistance was not deteriorated at all. .

また、波浪中抵抗増加量の低減効果も、水槽試験によって検証されている。図7に満載状態の抵抗増加量の比較を、図8に一般的な船首形状(A船型)からの低減量をパーセンテージで示す。同様に、図9及び図10にバラスト状態の結果を示す。図8及び図10の中に示した数値は、本船が実航海で遭遇する頻度の高い波長範囲における抵抗増加量低減率の平均値を示している。これらコンピュータによる解析技術と水槽試験を駆使して初めて、平水中の抵抗性能を劣化させることなく、波浪中抵抗増加量の大幅な低減を可能にする本発明の考案が可能になった。   In addition, the effect of reducing the increase in resistance in waves has been verified by a water tank test. FIG. 7 shows a comparison of the resistance increase amount in the full load state, and FIG. 8 shows the reduction amount from a general bow shape (A type) in percentage. Similarly, FIGS. 9 and 10 show the results of the ballast state. The numerical values shown in FIG. 8 and FIG. 10 show the average value of the resistance increase amount reduction rate in the wavelength range where the ship frequently encounters in actual voyages. For the first time by using these computer analysis techniques and water tank tests, it has become possible to devise the present invention that can significantly reduce the resistance increase in waves without deteriorating the resistance performance in plain water.

船舶の側面図である。It is a side view of a ship. 図中(A)は船首の側面図を示し、図中(B)は船首の水線面形状を示す。In the figure, (A) shows a side view of the bow, and (B) in the figure shows the waterline shape of the bow. 図中(A)は本発明の一実施形態における船首の側面図を示し、図中(B)は本発明の一実施形態における船首の水線面形状を示す。In the figure, (A) shows a side view of the bow in one embodiment of the present invention, and (B) in the figure shows the water surface shape of the bow in one embodiment of the present invention. 船首形状の側面図の比較を示す(図中(A)は一般的な船首形状を示し、図中(B)は従来型の船首形状を示し、図中(C)は本発明の船首形状を示す)。A comparison of the side view of the bow shape is shown ((A) in the figure shows a general bow shape, (B) shows a conventional bow shape, and (C) in the figure shows the bow shape of the present invention). Show). TUMMACによる波形解析を示すグラフ(図中(A)は従来型の船首を示し、図中(B)は本発明の船首を示す)。The graph which shows the waveform analysis by TUMMAC ((A) in the figure shows a conventional bow, and (B) in the figure shows the bow of the present invention). 造波抵抗試験の結果を示すグラフ。The graph which shows the result of a wave-making resistance test. 抵抗増加計測の試験結果を示すグラフ(満載状態)。Graph showing the test results of resistance increase measurement (full load). 一般的な船首形状をベースとした波浪中抵抗増加の低減効果を示すグラフ(満載状態)。Graph showing the effect of reducing the increase in resistance in waves based on the general bow shape (full load state). 抵抗増加計測の試験結果を示すグラフ(バラスト状態)。The graph (ballast state) which shows the test result of resistance increase measurement. 従来型の船首形状をベースとした波浪中抵抗増加の低減効果を示すグラフ(バラスト状態)。The graph which shows the reduction effect of the increase in resistance in waves based on the conventional bow shape (ballast state).

符号の説明Explanation of symbols

1…船体
2…船首部
2a…船首の傾斜状下面
2b…船首部上端
2c…船首上面
3…船首バルブ部
3b…船舶が航行可能な最小喫水線と船首部側面形状の交点
5…船首の傾斜状下面2aの前方向延長線
6…船首上面2bの前方向延長線
D…船体前端から計った水平距離C(=0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)との交点
E…船体中心線上の点
F…FPから船首前端までの水平距離
OA…全長
PP…垂線間長
P…延長線5と6の交差位置
a…点Eと点Dを結んだ直線
γ…直線aの船体中心線から計った角度
DESCRIPTION OF SYMBOLS 1 ... Hull 2 ... Bow part 2a ... Inclined lower surface of bow 2b ... Upper part of bow part 2c ... Upper surface of bow 3 ... Bow valve part 3b ... Intersection of the minimum draft line which can navigate a ship, and the side shape of the bow part 5 ... Inclined shape of the bow Front extension line of lower surface 2a 6 ... Front extension line of bow upper surface 2b D ... Horizontal distance C (= 0.02 × L OA ) measured from the front edge of the hull Vertical line to the hull center line (BB) E ... Point on the hull center line F ... Horizontal distance from FP to the front edge of the bow LOA ... Full length LPP ... Intervertical length P ... Intersection of extension lines 5 and 6 a ... Connecting point E and point D Straight line γ ... An angle measured from the hull center line of straight line a

Claims (9)

最小喫水線より上方で且つ最大喫水線よりも下方の船首において、すべての水線面における、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船。
PP:FP位置から舵軸中心位置(AP)までの水平距離で計った船舶の長さ
d:船舶の最大喫水線下の深さ
B:船舶の全幅
∇:dに対応する型排水容積
OA:船舶の全長
FP:Fore Perpendicularの略で、最大喫水線と交わる船首先端位置(垂直線)
At the bow above the minimum waterline and below the maximum waterline, the point (E) at the front edge of the hull on the hull centerline and the horizontal distance C (0.02 × L OA ) measured from the front edge of the hull on all waterline surfaces ) The angle γ, measured from the hull centerline, of the straight line (a) connecting the intersection (D) of the vertical line (BB) and the waterline surface shape (4) with respect to the hull centerline at the rear position is 0 ° < An enlargement ship having C b = ∇ / (L PP × B × d) of about 0.78 or more, characterized in that γ ≦ about 55 °.
L PP : Length of the ship measured by the horizontal distance from the FP position to the rudder axle center position (AP) d: Depth below the maximum waterline of the ship B: Full width of the ship ∇: Mold drainage volume corresponding to d L OA : Total length of the ship FP: Abbreviation for Fore Perpendicular, position of the tip of the bow that intersects the maximum water line (vertical line)
最小喫水線より上方で且つ最大喫水線よりも下方の船首において、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°とする水線面を、前記船首範囲の70%以上に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船。
PP:FP位置から舵軸中心位置(AP)までの水平距離で計った船舶の長さ
d:船舶の最大喫水線下の深さ
B:船舶の全幅
∇:dに対応する型排水容積
OA:船舶の全長
FP:Fore Perpendicularの略で、最大喫水線と交わる船首先端位置(垂直線)
At the bow above the minimum waterline and below the maximum waterline, the hull front point on the hull centerline (E) and the hull centerline at the rear of the horizontal distance C (0.02 × L OA ) measured from the hull front end The angle γ measured from the center line of the hull of the straight line (a) connecting the intersection (D) of the vertical line (BB) and the waterline surface shape (4) to 0 ° <γ ≦ about 55 ° An enlarged ship having C b = ∇ / (L PP × B × d) of about 0.78 or more, wherein the water line surface is set to 70% or more of the bow range.
L PP : Length of the ship measured by the horizontal distance from the FP position to the rudder axle center position (AP) d: Depth below the maximum waterline of the ship B: Full width of the ship ∇: Mold drainage volume corresponding to d L OA : Total length of the ship FP: Abbreviation for Fore Perpendicular, position of the tip of the bow that intersects the maximum water line (vertical line)
最小喫水線より上方の船首において、デッキ近傍を除くすべての水線面における、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船。
PP:FP位置から舵軸中心位置(AP)までの水平距離で計った船舶の長さ
d:船舶の最大喫水線下の深さ
B:船舶の全幅
∇:dに対応する型排水容積
OA:船舶の全長
FP:Fore Perpendicularの略で、最大喫水線と交わる船首先端位置(垂直線)
At the bow above the minimum waterline, the hull front end point (E) on the hull centerline and the horizontal distance C (0.02 x L OA ) rearward position measured from the hull front end on all waterline surfaces except near the deck The angle γ, measured from the hull centerline, of the straight line (a) connecting the intersection (D) of the vertical line (BB) to the hull centerline (4) and the waterline surface shape (4) is 0 ° <γ ≦ about An enlargement ship having C b = ∇ / (L PP × B × d) of about 0.78 or more, characterized by being set to 55 °.
L PP : Length of the ship measured by the horizontal distance from the FP position to the rudder axle center position (AP) d: Depth below the maximum waterline of the ship B: Full width of the ship ∇: Mold drainage volume corresponding to d L OA : Total length of the ship FP: Abbreviation for Fore Perpendicular, the tip position of the bow (vertical line) that intersects the maximum waterline
最小喫水線より上方の船首において、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°とする水線面を、前記船首範囲の80%以上に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船。
PP:FP位置から舵軸中心位置(AP)までの水平距離で計った船舶の長さ
d:船舶の最大喫水線下の深さ
B:船舶の全幅
∇:dに対応する型排水容積
OA:船舶の全長
FP:Fore Perpendicularの略で、最大喫水線と交わる船首先端位置(垂直線)
At the bow above the minimum waterline, the point (E) at the front end of the hull on the center line of the hull and the vertical line (BB) with respect to the center line of the hull at a position behind the horizontal distance C (0.02 × L OA ) measured from the front end of the hull ) And the waterline surface shape (4) connecting the intersection (D), the waterline surface where the angle γ measured from the hull center line is 0 ° <γ ≦ about 55 ° is defined as the bow An enlargement ship having C b = ∇ / (L PP × B × d) of about 0.78 or more, characterized by being set to 80% or more of the range.
L PP : Length of the ship measured by the horizontal distance from the FP position to the rudder axle center position (AP) d: Depth below the maximum waterline of the ship B: Full width of the ship ∇: Mold drainage volume corresponding to d L OA : Total length of the ship FP: Abbreviation for Fore Perpendicular, position of the tip of the bow that intersects the maximum water line (vertical line)
最小喫水線より上方で且つ最大喫水線よりも下方の船首において、少なくとも一部の水線面における、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°に設定し、
且つ、最小喫水線より上方の船首において、船体中心線上の船体前端の点(E)と、船体前端から計った水平距離C(0.02×LOA)後方位置の船体中心線に対する垂直線(B−B)と水線面形状(4)の交点(D)を結んだ直線(a)の、船体中心線から計った角度γを、0°<γ≦約55°にする水線面を、前記船首範囲の50%以上に設定することを特徴とする、Cb=∇/(LPP×B×d)が0.78程度以上の肥大船。
PP:FP位置から舵軸中心位置(AP)までの水平距離で計った船舶の長さ
d:船舶の最大喫水線下の深さ
B:船舶の全幅
∇:dに対応する型排水容積
OA:船舶の全長
FP:Fore Perpendicularの略で、最大喫水線と交わる船首先端位置(垂直線)
At the bow above the minimum waterline and below the maximum waterline, at least a part of the waterline surface, the point (E) of the hull front end on the hull center line and the horizontal distance C (0.02 × L OA ) The angle γ measured from the hull center line of the straight line (a) connecting the intersection (D) of the vertical line (BB) and the waterline surface shape (4) with respect to the hull center line at the rear position is 0 Set it to ° <γ ≦ about 55 °,
In addition, at the bow above the minimum waterline, a point (E) at the front end of the hull on the center line of the hull and a vertical line (B) with respect to the hull center line at a position behind the horizontal distance C (0.02 × L OA ) measured from the front end of the hull -B) and the water line surface where the angle γ measured from the center line of the hull of the straight line (a) connecting the intersection (D) of the water line surface shape (4) is 0 ° <γ ≦ about 55 °, An enlargement ship having C b = ∇ / (L PP × B × d) of about 0.78 or more, characterized by being set to 50% or more of the bow range.
L PP : Length of the ship measured by the horizontal distance from the FP position to the rudder axle center position (AP) d: Depth below the maximum waterline of the ship B: Full width of the ship ∇: Mold drainage volume corresponding to d L OA : Total length of the ship FP: Abbreviation for Fore Perpendicular, position of the tip of the bow that intersects the maximum water line (vertical line)
FPから船首前端までの水平距離Fと全長LOAとの比を、約0≦F/LOA≦約0.02の範囲に設定することを特徴とする請求項1ないし5いずれかに記載の肥大船。 6. The ratio of the horizontal distance F from the FP to the front end of the bow and the total length L OA is set in a range of about 0 ≦ F / L OA ≦ about 0.02. Enlargement ship. 最大喫水線より上方の船首部と最小喫水線部の船首部とを滑らかな曲面で繋ぐことを特徴とする請求項6に記載の肥大船。   The enlargement ship according to claim 6, wherein the bow part above the maximum water line and the bow part of the minimum water line part are connected by a smooth curved surface. FPから船首前端までの水平距離Fと全長LOAとの比を、F/LOA=約0に設定することを特徴とする請求項6に記載の肥大船。 The enlargement ship according to claim 6, wherein the ratio of the horizontal distance F from the FP to the front end of the bow and the total length L OA is set to F / L OA = about 0. 最大喫水線より上方の前記船首の先端が、船体全体の制限寸法に合わせて、前記船首の傾斜状下面(2a)の前方向延長線(5)と船首上面(2c)の前方向延長線(6)の交差位置(P)よりも後退することを特徴とする請求項1ないし8いずれかに記載の肥大船。   The front end of the bow above the maximum draft is aligned with the forward extension line (5) of the inclined lower surface (2a) and the forward extension line (6) of the bow upper surface (2c) in accordance with the limit size of the entire hull. The enlargement ship according to any one of claims 1 to 8, wherein the enlargement ship moves backward from an intersection position (P).
JP2007032327A 2001-03-22 2007-02-13 Enlarged vessel Pending JP2007118950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007032327A JP2007118950A (en) 2001-03-22 2007-02-13 Enlarged vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001083128 2001-03-22
JP2007032327A JP2007118950A (en) 2001-03-22 2007-02-13 Enlarged vessel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002054475A Division JP2002347688A (en) 2001-03-22 2002-02-28 Enlarged ship

Publications (1)

Publication Number Publication Date
JP2007118950A true JP2007118950A (en) 2007-05-17

Family

ID=38143217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032327A Pending JP2007118950A (en) 2001-03-22 2007-02-13 Enlarged vessel

Country Status (1)

Country Link
JP (1) JP2007118950A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178334A (en) * 2010-03-03 2011-09-15 Universal Shipbuilding Corp Enlarged ship
JP2016101855A (en) * 2014-11-28 2016-06-02 国立研究開発法人 海上・港湾・航空技術研究所 In-wave resistance increment alleviation bow shape and vessel having in-wave resistance increment alleviation bow shape
CN107406122A (en) * 2015-04-02 2017-11-28 三井造船株式会社 Ship
CN110114266A (en) * 2016-12-28 2019-08-09 日本日联海洋株式会社 Bow shape

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291286A (en) * 1985-06-19 1986-12-22 Ishikawajima Harima Heavy Ind Co Ltd Bow form of large vessel
JPS6330298U (en) * 1986-08-15 1988-02-27
JPH0558591U (en) * 1992-01-16 1993-08-03 川崎重工業株式会社 Bow structure of a large ship
JPH0840346A (en) * 1994-08-02 1996-02-13 Kawasaki Heavy Ind Ltd Bow shape
JP2000335478A (en) * 1999-05-31 2000-12-05 Nkk Corp Enlarged ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291286A (en) * 1985-06-19 1986-12-22 Ishikawajima Harima Heavy Ind Co Ltd Bow form of large vessel
JPS6330298U (en) * 1986-08-15 1988-02-27
JPH0558591U (en) * 1992-01-16 1993-08-03 川崎重工業株式会社 Bow structure of a large ship
JPH0840346A (en) * 1994-08-02 1996-02-13 Kawasaki Heavy Ind Ltd Bow shape
JP2000335478A (en) * 1999-05-31 2000-12-05 Nkk Corp Enlarged ship

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178334A (en) * 2010-03-03 2011-09-15 Universal Shipbuilding Corp Enlarged ship
JP2016101855A (en) * 2014-11-28 2016-06-02 国立研究開発法人 海上・港湾・航空技術研究所 In-wave resistance increment alleviation bow shape and vessel having in-wave resistance increment alleviation bow shape
CN107406122A (en) * 2015-04-02 2017-11-28 三井造船株式会社 Ship
CN107406122B (en) * 2015-04-02 2019-09-10 三井易艾斯造船有限公司 Ship
CN110114266A (en) * 2016-12-28 2019-08-09 日本日联海洋株式会社 Bow shape
JPWO2018123031A1 (en) * 2016-12-28 2019-10-31 ジャパンマリンユナイテッド株式会社 Bow shape
JP7002474B2 (en) 2016-12-28 2022-01-20 ジャパンマリンユナイテッド株式会社 Bow shape

Similar Documents

Publication Publication Date Title
JP2002347688A (en) Enlarged ship
JP5986856B2 (en) Commercial cargo ship
JP4889238B2 (en) Ship with bow fin
JP4414793B2 (en) Ship
JP2007118950A (en) Enlarged vessel
JP2011178334A (en) Enlarged ship
JP2007237895A (en) Marine vessel
JP2003160090A (en) Bow shape of vessel
CN105764789A (en) Inwardly inclined bow shape, ship having inwardly inclined bow shape, and method for designing inwardly inclined bow shape
JP4009643B2 (en) Ship bow shape
JP4722072B2 (en) Ship
EP1545968B1 (en) Vessel provided with a foil situated below the waterline
JP2006224811A (en) Bow shape of ship
KR102250485B1 (en) A ship
JP3279286B2 (en) Large ship
JP4938056B2 (en) Stern wave interference fin
JP4216858B2 (en) Ship
KR20140041379A (en) Full form ship&#39;s hull with reduced wave making resistance
JP5896598B2 (en) Ship
JP3279284B2 (en) Large ship
JP3279285B2 (en) Large ship
KR100359933B1 (en) Full ship
TWI772675B (en) A hull in particular for a container ship, a bulk carrier or a tanker
KR102420948B1 (en) pontoon of semi-rig for resistance reduction.
JP6737900B2 (en) Bow shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105