JP2007118036A - Composite member - Google Patents
Composite member Download PDFInfo
- Publication number
- JP2007118036A JP2007118036A JP2005313501A JP2005313501A JP2007118036A JP 2007118036 A JP2007118036 A JP 2007118036A JP 2005313501 A JP2005313501 A JP 2005313501A JP 2005313501 A JP2005313501 A JP 2005313501A JP 2007118036 A JP2007118036 A JP 2007118036A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- composite member
- holes
- composite
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、強化された非鉄金属をマトリクスとする複合部材に関する。 The present invention relates to a composite member having a reinforced nonferrous metal as a matrix.
近年、軽量化などを目的として、アルミニウム、マグネシウムなどの軽金属・軽合金を採用することが行われる。ここで、軽金属などに対して強度向上を目的とした技術としてはセラミクス繊維を強化材として採用したMMCがある。金属マトリクス中に分散する強化材としてはアルミナ繊維やシリカ繊維の窒化材が挙げられる(特許文献1)が更なる強度向上が望まれる。 In recent years, light metals and light alloys such as aluminum and magnesium have been adopted for the purpose of weight reduction. Here, as a technique for improving the strength with respect to a light metal or the like, there is MMC using ceramic fibers as a reinforcing material. As the reinforcing material dispersed in the metal matrix, a nitride material of alumina fiber or silica fiber can be cited (Patent Document 1), and further improvement in strength is desired.
更なる強度向上が実現できる強化材としては炭化ケイ素ウィスカーが挙げられる。しかしながら炭化ケイ素ウィスカーは強化材として魅力的ではあるが、高価であると共に加工も困難であり、廉価に強度向上が実現できる手法の提供が望まれる。 A silicon carbide whisker is an example of a reinforcing material that can realize further improvement in strength. However, while silicon carbide whiskers are attractive as reinforcing materials, they are expensive and difficult to process, and it is desirable to provide a technique that can realize improved strength at low cost.
また、従来技術として、通孔を有する網状体を重ねたものを鋳込んだシリンダブロックが開示されているが、重ね合わせる網状体の間における通孔の配向方向を考慮していない(特許文献2)。
本発明は上記実情に鑑み為されたものであり、簡便・廉価な手法にてアルミニウムなどの部材を強化した複合部材を提供することを解決すべき課題とする。 The present invention has been made in view of the above circumstances, and an object to be solved is to provide a composite member in which a member such as aluminum is reinforced by a simple and inexpensive method.
本発明者らは上記課題を解決する目的で鋭意検討を行った結果、エキスパンドメタルなどの表裏面を貫通する多数の通孔をもつ板状部材を強化材として採用すると、マトリクス部を構成する材料が通孔部分に嵌入することで、マトリクス部と板状部材との間を強固に密着・結合でき、形成された複合部材の強度も高くできることに想到した。 As a result of intensive studies aimed at solving the above problems, the present inventors have adopted a plate-like member having a large number of through holes penetrating the front and back surfaces, such as expanded metal, as a reinforcing material. By inserting into the through-hole portion, it has been conceived that the matrix portion and the plate-like member can be firmly adhered and bonded, and the strength of the formed composite member can be increased.
ここで、板状部材に形成されている通孔の並び方が規則的である(配向している)と、板状部材が埋設された複合部材の強度にその配向に応じた異方性が生じる。通常、通孔の並び方は配向していることが多い。例えば、板状部材としてエキスパンドメタルや網状体を採用する場合には、その製造方法から通孔の並びは一定方向に配向するので、その配向の影響を制御することが望まれる。 Here, if the arrangement of the through holes formed in the plate-like member is regular (orientated), anisotropy corresponding to the orientation occurs in the strength of the composite member in which the plate-like member is embedded. . Usually, the arrangement of the through holes is often oriented. For example, when an expanded metal or a net-like member is adopted as the plate-like member, the arrangement of the through holes is oriented in a certain direction because of the manufacturing method, and it is desired to control the influence of the orientation.
また、パンチングメタルを採用する場合でも規則性が表れることが多い。通孔の量(数、大きさ、面積など)は、求められる強度や質量などにより制限されるので、通孔の並び方にある程度の配向(すなわち、強度の異方性)が生じる。更に、形成する複合部材において、求められる強度は方向によって異なることが多く、その場合には限られた量の通孔にて所望の強度を実現するために、通孔の配置を積極的に配向させることが考えられる。 Also, regularity often appears even when punching metal is employed. Since the amount (number, size, area, etc.) of the through holes is limited by the required strength, mass, and the like, a certain degree of orientation (that is, strength anisotropy) occurs in the arrangement of the through holes. Further, the strength required in the composite member to be formed is often different depending on the direction. In that case, in order to achieve a desired strength with a limited amount of through holes, the arrangement of the through holes is positively oriented. It is possible to make it.
このように、通孔が配向した板状体を用いても、最終的に得られる複合部材は要求された強度が得られることが求められる。そのためには、板状部材に形成された多数の通孔の配置を最適化することが求められる。 As described above, the composite member finally obtained is required to have the required strength even if a plate-like body with through holes oriented is used. For this purpose, it is required to optimize the arrangement of a large number of through holes formed in the plate member.
しかしながら、要求される性能に応じた板状部材を提供することはコストなどの観点からは好ましくないこと、更には、後述するように板状部材に浸炭処理・窒化処理などを施す場合に板状部材の厚みが薄い方が望ましいなどの理由から、複数の板状部材を通孔の配向がずれるように積層することに想到し、以下の発明を完成したのである。 However, providing a plate-like member according to the required performance is not preferable from the viewpoint of cost and the like. Furthermore, as will be described later, when the plate-like member is subjected to carburizing / nitriding treatment, etc. For reasons such as the thinner thickness of the member is desirable, the inventors have conceived that the plurality of plate-like members are laminated so that the orientations of the through holes are shifted, and the following invention has been completed.
すなわち、上記課題を解決する本発明の複合部材は、鉄系金属から構成され表裏面を貫通する多数の通孔をもつ板状部材を二重以上に積層してなる強化部材と、
該強化部材を埋設し、非鉄金属から構成されるマトリクス部と、を有し、
前記強化部材は、積層された前記板状部材間で積層により互いに近接する前記通孔が配向する方向をずらすことを特徴とする。
That is, the composite member of the present invention that solves the above problems is a reinforcing member formed by laminating double or more plate-like members made of an iron-based metal and having many through holes penetrating the front and back surfaces,
Embedded with the reinforcing member, and having a matrix portion made of non-ferrous metal,
The reinforcing member is characterized in that a direction in which the through-holes that are close to each other are stacked is shifted between the stacked plate-shaped members.
例えば、一定方向に通孔が配向している板状部材に対し通孔の配向方向を調節することで、強度の異方性を緩和することも(配向方向をずらす:90°ずらした場合に最も異方性が緩和すると考えられる)、強化することも(配向方向を揃える:0°の場合に最も異方性が強化されると考えられる)、中間で調節することも可能である。 For example, the anisotropy of the strength can be reduced by adjusting the orientation direction of the through-hole for the plate-like member in which the through-hole is oriented in a certain direction (when the orientation direction is shifted: 90 ° It is considered that the anisotropy is most relaxed), can be strengthened (alignment direction is aligned: the anisotropy is considered to be strengthened most at 0 °), or can be adjusted in the middle.
以下に、本発明の複合部材を実施形態に基づき説明する。本実施形態の複合部材はマトリクス部と強化部材とを有する。 Below, the composite member of this invention is demonstrated based on embodiment. The composite member of the present embodiment has a matrix portion and a reinforcing member.
マトリクス部は非鉄金属から構成される。非鉄金属としては本複合部材の製造時・使用状態・保存状態において強化部材を許容できる以上に浸食等することがないものであればその種類は特に限定しない。例えば、強化部材を構成する鉄系金属よりも融点が低い金属であれば鋳造により製造しやすい。特に、非鉄金属は、軽金属であることが好ましい。非鉄金属が軽金属であれば、軽量かつ高強度な複合部材となる。 The matrix portion is made of a non-ferrous metal. The type of non-ferrous metal is not particularly limited as long as it does not erode more than the reinforcing member can be tolerated in manufacturing, using, and storing the composite member. For example, a metal having a melting point lower than that of an iron-based metal constituting the reinforcing member can be easily manufactured by casting. In particular, the non-ferrous metal is preferably a light metal. If the non-ferrous metal is a light metal, it is a lightweight and high-strength composite member.
具体的に非鉄金属としては、純アルミニウムやMg、Cu、Zn、Si、Mn等を含むアルミニウム合金などのアルミニウム系金属や、純マグネシウムやZn、Al、Zr、Mn、Th、希土類元素等を含むマグネシウム合金などのマグネシウム系金属のほか、チタン系金属、リチウム系金属が挙げられる。 Specifically, non-ferrous metals include pure aluminum, aluminum-based metals such as aluminum alloys containing Mg, Cu, Zn, Si, Mn, etc., pure magnesium, Zn, Al, Zr, Mn, Th, rare earth elements, etc. In addition to magnesium-based metals such as magnesium alloys, titanium-based metals and lithium-based metals are listed.
強化部材はマトリクス部内に埋設されることでマトリクス部を強化する部材である。強化部材は板状部材から構成される。板状部材は鉄を主成分とする鉄系金属から構成されれば特に限定はないが、加工性に優れた各種圧延鋼板(SPCC、SPHC等)を用いることが好ましい。 The reinforcing member is a member that reinforces the matrix portion by being embedded in the matrix portion. The reinforcing member is composed of a plate member. The plate member is not particularly limited as long as it is made of an iron-based metal containing iron as a main component, but it is preferable to use various rolled steel plates (SPCC, SPHC, etc.) excellent in workability.
板状部材は表裏面を貫通する多数の通孔をもつ。通孔を有することにより、板状部材がマトリクス部内に埋設された際に、両者の密着性が確保できる。更に、板状部材の開口率が、28%未満、より好ましくは18%以下であれば、複合部材の強度を良好に向上できる。この際、1つの通孔の面積は300μm2 以上であることが好ましい。1つの通孔の面積を上記範囲にすることで、板状部材とマトリクス部との密着性をさらに良好にできる。 The plate-like member has a large number of through holes penetrating the front and back surfaces. By having the through-hole, when the plate-like member is embedded in the matrix portion, it is possible to ensure the adhesion between them. Furthermore, if the aperture ratio of the plate-like member is less than 28%, more preferably 18% or less, the strength of the composite member can be improved satisfactorily. At this time, the area of one through hole is preferably 300 μm 2 or more. By setting the area of one through hole in the above range, the adhesion between the plate-like member and the matrix portion can be further improved.
板状部材としては、板に多数のスリットを入れ、どの板が延びる方向に引っ張ることによりスリットを拡張し通孔を形成することによって得られるエキスパンドメタル、多数の通孔を板に穿つことで形成するパンチングメタルなどが好ましい。これらの部材は、簡単に作製でき、入手が容易であり、加工性にも優れる。この際、鉄系部材の厚さが0.5〜2mmであることが好ましい。鉄系部材の厚さが上記範囲であれば、金属複合材の強度を良好に向上させることができる。また、複数本の線材からなり、圧延された網状体を採用することもできる。 The plate-like member is formed by inserting a large number of slits in a plate and expanding the slits by pulling in the direction in which the plate extends to form through holes, and by forming a large number of through holes in the plate. Punching metal or the like is preferable. These members can be easily produced, are easily available, and have excellent workability. Under the present circumstances, it is preferable that the thickness of an iron-type member is 0.5-2 mm. When the thickness of the iron-based member is within the above range, the strength of the metal composite can be improved satisfactorily. Moreover, it is also possible to employ a rolled net made of a plurality of wires.
更に、これら板状部材としては、その表面を粗面化したものが密着性向上の観点からは望ましい。粗面化は、少なくとも非鉄金属と接触する鉄系部材の界面に施されていればよい。粗面の形成は、ショットブラストやショットピーニング等のブラスト加工による物理的な方法や、薬品による化学的な方法で粗面を形成すればよい。 Further, as these plate-like members, those having a roughened surface are desirable from the viewpoint of improving adhesion. The surface roughening should just be given to the interface of the iron-type member which contacts a nonferrous metal at least. The rough surface may be formed by a physical method using blasting such as shot blasting or shot peening, or a chemical method using chemicals.
また、板状部材は、浸炭処理が施されていることが望ましい。浸炭処理は、炭素鋼の表面から炭素を浸入させることにより表面部の炭素量を増加させ、表面部のみを硬化する処理法である。板状部材として用いられるエキスパンドメタル等で用いられる鋼板は、比較的軟らかく、加工性に優れているため、浸炭処理などを施すことにより、硬化させることが望ましい。 Moreover, it is desirable that the plate-like member has been subjected to carburizing treatment. The carburizing treatment is a treatment method in which only the surface portion is hardened by increasing the amount of carbon in the surface portion by allowing carbon to penetrate from the surface of the carbon steel. A steel plate used for an expanded metal or the like used as a plate-like member is relatively soft and excellent in workability. Therefore, it is desirable that the steel plate be hardened by performing a carburizing process or the like.
そして、上述したように、本実施形態の複合部材において、板状部材の板厚は、好ましくは0.5〜2mmであるため、このような板状部材に浸炭処理を施すと、厚さ方向のすべてにおいて炭素が浸入し硬化された部材が得られる。浸炭処理は、固体浸炭処理、液体浸炭処理、ガス浸炭処理、真空浸炭処理のうちどの浸炭法を用いてもよいが、板状部材は、浸炭窒化処理により厚さ方向の全ての部分において炭素と窒素が浸入したものが望ましい。 And as above-mentioned, in the composite member of this embodiment, since the plate | board thickness of a plate-shaped member becomes like this. Preferably it is 0.5-2 mm, When a carburizing process is performed to such a plate-shaped member, thickness direction In all of the above, a member in which carbon penetrates and is hardened is obtained. The carburizing process may use any carburizing method among solid carburizing process, liquid carburizing process, gas carburizing process, and vacuum carburizing process, but the plate-like member is made of carbon and carbon in all parts in the thickness direction by carbonitriding process. Nitrogen infiltrated is desirable.
ここで、「板状部材」は、平面的に広がりをもつ連続した部材及びその部材に通孔を形成した部材のほか、金網などのように複数本の線材からなる網状体などような、概ね平面内に収まるような部材であっても良い。 Here, the “plate-like member” is generally a continuous member having a planar extension and a member in which a through hole is formed in the member, or a net-like body made of a plurality of wires such as a wire mesh. It may be a member that fits in a plane.
強化部材はこれら板状部材を二重以上に積層した部材である。積層する2以上の板状部材間の距離は特に限定しないが、強度向上の観点からは概ね密着することが望ましい。概ね密着している場合について具体的に説明すると、積層された板状部材の間がすべて密着している場合はもちろん、板状部材の間が略平行で、 且つ、互いの板状部材の間が1点以上で接している状態も含んでいる。板状部材の積層は、積層によって互いに近接する通孔が配向する方向をずらすように設定する。二重以上に積層する場合に別個の部材である板状部材を重ね合わせる場合の他、連続した部材を丸めたり折り曲げたりすることで積層することもできる。 The reinforcing member is a member obtained by laminating these plate-like members more than double. The distance between two or more plate-like members to be laminated is not particularly limited, but it is desirable that the distances are generally in close contact from the viewpoint of improving the strength. The case where the plate members are generally in close contact with each other will be described in detail. In addition to the case where all the stacked plate members are in close contact, the plate members are substantially parallel and between the plate members. It also includes a state in which is touching at one or more points. The lamination of the plate-like members is set so as to shift the direction in which the through holes adjacent to each other are oriented by the lamination. In addition to stacking plate members, which are separate members, when stacking two or more layers, it is also possible to stack by rounding or bending continuous members.
ここで、通孔が「配向」しているとは、通孔の形状が円形以外で所定の規則(例えば、すべて同じ方向、交互に反対向きなど)で並んでいる場合や、通孔の形状が円形でも並び方が規則的で有る場合などである。その場合に、通孔以外の部分が大きく連続する方向を配向する方向と定める。具体的には、単独の板状部材において強度が一番高い方向が「配向する方向」であると定める。例えば、エキスパンドメタルは所定の切り込みを形成した板材をその切り込みと垂直な方向に引っ張ることで作成するが、図1に示すように、切り込みを入れた方向LWと引っ張った方向SWとでは強度が大きく異なり(製造条件にもよるが数倍異なる場合もある)、通孔が配向する方向は方向LWである。 Here, the “orientation” of the through holes means that the shape of the through holes is not circular but is arranged in a predetermined rule (for example, all in the same direction, alternately in opposite directions, etc.) This is the case when the circles are circular but the arrangement is regular. In that case, the direction in which portions other than the through-holes are largely continuous is defined as the orientation direction. Specifically, the direction with the highest strength in a single plate member is defined as the “orienting direction”. For example, expanded metal is prepared by pulling a plate material with a predetermined cut in a direction perpendicular to the cut, and as shown in FIG. 1, the strength is large in the direction LW in which the cut is made and the direction SW in which the cut is made. The direction in which the through-holes are oriented is the direction LW, which is different (it may be several times different depending on the manufacturing conditions).
強化部材は、マトリクス部内に埋設されている状態であれば、その位置に特に限定はない。例えば、複合部材において強度が必要な部分に、強度が必要な方向に向けて(その方向に板状部材の広がり方向を向けて)、強化部材を配設する。強度が必要な方向が湾曲する場合にはその曲面に応じて強化部材を湾曲させることが望ましい。更に、強化部材の一部が表面に露出するように配設しても良い。 The position of the reinforcing member is not particularly limited as long as it is embedded in the matrix portion. For example, the reinforcing member is disposed in a portion where the strength is required in the composite member in a direction where the strength is required (a direction in which the plate-shaped member spreads in that direction). When a direction requiring strength is curved, it is desirable to curve the reinforcing member according to the curved surface. Furthermore, you may arrange | position so that a part of reinforcement member may be exposed to the surface.
複合部材は、鋳造により製造されることが望ましい。鋳造方法としては、鋳型内に強化部材を任意の位置に配置したあと、その鋳型内にマトリクス部を構成する非鉄金属の溶湯を注入する、といった一般的な方法(いわゆるインサート成形方法)が採用できる。鋳造方法も、重力鋳造法、低圧鋳造法、溶湯鍛造法、ダイカスト法など、どのような手法であっても採用できる。更に、鋳造後、必要に応じて熱処理を行うことで、マトリクス部を構成する非鉄金属の力学的性質を調整する調質処理を行えば、さらに高強度な複合部材が得られる。 The composite member is desirably manufactured by casting. As a casting method, a general method (a so-called insert molding method) in which a reinforcing member is disposed at an arbitrary position in a mold and then a molten non-ferrous metal constituting a matrix portion is injected into the mold. . As the casting method, any method such as a gravity casting method, a low pressure casting method, a molten metal forging method, or a die casting method can be adopted. Furthermore, a higher strength composite member can be obtained by performing heat treatment as necessary after casting to perform a tempering treatment that adjusts the mechanical properties of the nonferrous metal constituting the matrix portion.
上記のような構成を有する複合部材は、高強度、且つ、マトリクス部を構成する非鉄金属によっては軽量にもできるので、エンジンブロック、油圧ポンプ、コンプレッサといった耐圧部品等に好適に使用できる。 The composite member having the above-described configuration can be suitably used for a pressure-resistant component such as an engine block, a hydraulic pump, or a compressor because it can have high strength and can be lightweight depending on the nonferrous metal constituting the matrix portion.
[試験試料の作成]
板状で厚さ方向に貫通する複数の通孔を有するエキスパンドメタル(SPCC、厚さ:1000μm、1つの通孔の面積:約300μm2 )を準備した。図1に示すように、エキスパンドメタル1は、多数の通孔12が規則的に形成された板状体である。エキスパンドメタル1の方向による強度変化を評価するために、通孔12の配向に対して平行な方向LW、45°又は135°ずれた方向MW、90°ずれた方向SWの4種類の方向を規定した。開口率は8%、18%、28%の3種類を用意した。それぞれの開口率のエキスパンドメタルに対して、浸炭窒化処理を施したものも用意した。浸炭窒化処理は、NH3を含む浸炭性ガスにより、650〜900℃に加熱し、C並びにNを同時に鋼材に反応させ拡散層を生成した後、油焼入れすることで行った。浸炭窒化処理の後、550℃にて焼き戻しを60分間、ショットブラスト処理を2分間行った。
[Preparation of test sample]
An expanded metal (SPCC, thickness: 1000 μm, area of one through hole: about 300 μm 2 ) having a plurality of through holes penetrating in the thickness direction in a plate shape was prepared. As shown in FIG. 1, the expanded
以上説明したエキスパンドメタルを用いて試験試料(複合部材)を作製した。試験試料の作製には、所定形状の凹部を有する下型と、凹部の壁面と摺接して嵌り込む形状の上型とからなる金型装置を用いた。 A test sample (composite member) was produced using the expanded metal described above. For the production of the test sample, a mold apparatus composed of a lower mold having a recess having a predetermined shape and an upper mold having a shape that is fitted in sliding contact with the wall surface of the recess was used.
試料を作製する際には、金型装置の金型温度を200〜350℃とし、エキスパンドメタルを下型の凹部の底面部に載置し300℃に予熱した後、その状態で、凹部にアルミニウム合金溶湯(ADC12、溶湯温度650〜800℃)を注湯した。その後、下型内に上型を挿入・加圧(70〜100MPa)して鋳造を行った。 When preparing the sample, the mold temperature of the mold apparatus is set to 200 to 350 ° C., and the expanded metal is placed on the bottom surface of the concave portion of the lower mold and preheated to 300 ° C., and in that state, aluminum is placed in the concave portion. Molten alloy (ADC12, molten metal temperature 650 to 800 ° C.) was poured. Thereafter, the upper mold was inserted into the lower mold and pressed (70 to 100 MPa) for casting.
実施例の試験試料では、図2(a)〜(c)に示すように、開口率18%のエキスパンドメタル1、1’は、90°ずらした状態で2枚重ね合わせて金型内に挿入した。つまり、エキスパンドメタル1の方向LW及び方向SWがそれぞれエキスパンドメタル1’の方向SW及び方向LWにそれぞれ重なり、エキスパンドメタル1の方向MW(45°及び135°)がそれぞれエキスパンドメタル1’の方向MW(135°及び45°)に重なった試験試料となった。試験例1及び2、並びに比較例として開口率8%、28%及び18%のエキスパンドメタル1を一枚だけ用いた試験試料も上述した方法にて複合材料化した。
In the test sample of the example, as shown in FIGS. 2 (a) to 2 (c), two expanded
また、開口率8%、18%及び28%のエキスパンドメタルについて浸炭窒化処理前後でそれぞれ1枚ずつ、そのまま引張試験に供した(試験例3〜8)。 Further, each of the expanded metals having an opening ratio of 8%, 18% and 28% was subjected to a tensile test as it was before and after the carbonitriding treatment (Test Examples 3 to 8).
[評価]
各実施例、各比較例及び各試験例の試験試料の強度を引張試験にて評価した。
[Evaluation]
The strength of the test sample of each example, each comparative example, and each test example was evaluated by a tensile test.
それぞれの試験試料を所定の形状に加工して、JIS平板試験片を作製した。この際、引張試験の引張方向がエキスパンドメタル1に対して方向LWになるように加工した。また、浸炭窒化処理を行った実施例及び比較例の試験試料(開口率18%)についてはエキスパンドメタル1の方向SW及び方向MW(45°)が引張方向になるように加工した試験片もそれぞれ作成した。
Each test sample was processed into a predetermined shape to prepare a JIS flat plate test piece. At this time, processing was performed so that the tensile direction of the tensile test was the direction LW with respect to the expanded
引張試験は、5tオートグラフ(島津製作所製、AG-5000A)により、引張速度0.5mm/分で行った。試験片はエキスパンドメタル1の方向LWが引っ張り方向になるように加工したものを採用した。引張試験を行った(試験1)。また、開口率18%の試験試料から作成した試験片は500℃で10時間保持し、180℃で4時間保持後、180℃にて、エキスパンドメタル1の方向がMW(45°)のものも含めて更に試験を行った(試験2)。
The tensile test was performed by a 5t autograph (manufactured by Shimadzu Corporation, AG-5000A) at a tensile speed of 0.5 mm / min. The test piece used was processed so that the direction LW of the expanded
各試験試料に対して行った引張試験の試験結果(破断応力)を表1及び図3(試験1)並びに表2及び図4(試験2)にそれぞれ示す。試験1(図3)については計算によって求めた予測値(最大:直列足し合わせ、最小:並列足し合わせ)も併せて示した。 Table 1 and FIG. 3 (Test 1) and Table 2 and FIG. 4 (Test 2) show the test results (breaking stress) of the tensile test performed on each test sample, respectively. For Test 1 (FIG. 3), the predicted values obtained by calculation (maximum: serial addition, minimum: parallel addition) are also shown.
試験1:表1及び図3から明らかなように、開口率が28%の試験試料から作成した試験片の引張強さは開口率18%の試験試料から作成した試験片よりも低いこと、及び、複合材料化による強度上昇が小さいことが判り開口率は28%未満(更には18%以下)が好ましいことが判った。 Test 1: As is apparent from Table 1 and FIG. 3, the tensile strength of the test piece prepared from the test sample having an aperture ratio of 28% is lower than that of the test specimen prepared from the test sample having an aperture ratio of 18%, and It was found that the strength increase due to the composite material was small, and the aperture ratio was preferably less than 28% (more preferably 18% or less).
開口率8%の試験試料から作成した試験片は開口率18%の試験試料から作成した試験片よりも引張強さが高かった。また、比較例の試験結果から、開口率8%及び18%の場合、開口率28%の場合よりも浸炭窒化処理による強度上昇が大きく、より強度が高くできることが判った。但し、板状部材に設けられた通孔部分によるアンカー効果を考慮すると、開口率が8%よりも18%の方が強度が高くなる可能性もある。 A test piece prepared from a test sample having an open area ratio of 8% had higher tensile strength than a test piece prepared from a test sample having an open area ratio of 18%. From the test results of the comparative example, it was found that when the aperture ratios were 8% and 18%, the strength increase due to carbonitriding was larger than when the aperture ratio was 28%, and the strength could be increased. However, when the anchor effect by the through-hole portion provided in the plate-like member is taken into consideration, there is a possibility that the strength is higher when the aperture ratio is 18% than 8%.
試験2:表2及び図4から明らかなように、引張方向がエキスパンドメタル1の方向SW及び方向MW(45°)の場合で、1枚の比較例よりも2枚積層した実施例の方がより高い引張応力を示した。いずれもエキスパンドメタルが1枚で引っ張り方向が方向LWの場合よりは引張強さは低いものの、引張方向による強度の変化を小さく抑えることができた。
Test 2: As is clear from Table 2 and FIG. 4, in the case where the tensile direction is the direction SW and the direction MW (45 °) of the expanded
1、1’…エキスパンドメタル
12、12’…通孔 LW…通孔が配向する方向と平行な方向 SW…通孔が配向する方向と直交する方向 MW…通孔が配向する方向と45°又は135°ずれた方向
DESCRIPTION OF
Claims (11)
該強化部材を埋設し、非鉄金属から構成されるマトリクス部と、を有し、
前記強化部材は、積層された前記板状部材間で積層により互いに近接する前記通孔が配向する方向をずらすことを特徴とする複合部材。 A reinforcing member formed by laminating a plate-like member composed of an iron-based metal and having many through holes penetrating the front and back surfaces; and
Embedded with the reinforcing member, and having a matrix portion made of non-ferrous metal,
The reinforcing member is a composite member characterized by shifting a direction in which the through holes that are close to each other by lamination between the laminated plate-like members are oriented.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005313501A JP4655884B2 (en) | 2005-10-27 | 2005-10-27 | Composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005313501A JP4655884B2 (en) | 2005-10-27 | 2005-10-27 | Composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007118036A true JP2007118036A (en) | 2007-05-17 |
JP4655884B2 JP4655884B2 (en) | 2011-03-23 |
Family
ID=38142438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005313501A Expired - Fee Related JP4655884B2 (en) | 2005-10-27 | 2005-10-27 | Composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4655884B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006110A1 (en) * | 2014-07-11 | 2016-01-14 | 株式会社テクノアソシエ | Joint body of like metals and electronic device structure |
KR20180111028A (en) * | 2017-03-31 | 2018-10-11 | 현대자동차주식회사 | Inserts Having Improved Strength of Light Parts for High Pressure Die-casting |
JP2019179756A (en) * | 2018-03-30 | 2019-10-17 | 大阪瓦斯株式会社 | Metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and, method for manufacturing metal plate |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025689Y1 (en) * | 1966-06-27 | 1975-05-30 | ||
JPS5316844B2 (en) * | 1973-08-21 | 1978-06-03 | ||
JPS59212160A (en) * | 1983-05-17 | 1984-12-01 | Ube Ind Ltd | Wear-resistant member for pulverizer |
JPH0216855U (en) * | 1988-07-19 | 1990-02-02 | ||
JPH04172169A (en) * | 1990-11-07 | 1992-06-19 | Toyota Motor Corp | Fiber reinforced metal matrix composite member |
JPH04367365A (en) * | 1991-06-12 | 1992-12-18 | Toyota Central Res & Dev Lab Inc | Fiber reinforced metallic cylindrical body and production thereof |
JP2003259970A (en) * | 2002-03-05 | 2003-09-16 | Meikon Ri | Cooking pot and manufacturing method therefor |
-
2005
- 2005-10-27 JP JP2005313501A patent/JP4655884B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025689Y1 (en) * | 1966-06-27 | 1975-05-30 | ||
JPS5316844B2 (en) * | 1973-08-21 | 1978-06-03 | ||
JPS59212160A (en) * | 1983-05-17 | 1984-12-01 | Ube Ind Ltd | Wear-resistant member for pulverizer |
JPH0216855U (en) * | 1988-07-19 | 1990-02-02 | ||
JPH04172169A (en) * | 1990-11-07 | 1992-06-19 | Toyota Motor Corp | Fiber reinforced metal matrix composite member |
JPH04367365A (en) * | 1991-06-12 | 1992-12-18 | Toyota Central Res & Dev Lab Inc | Fiber reinforced metallic cylindrical body and production thereof |
JP2003259970A (en) * | 2002-03-05 | 2003-09-16 | Meikon Ri | Cooking pot and manufacturing method therefor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016006110A1 (en) * | 2014-07-11 | 2016-01-14 | 株式会社テクノアソシエ | Joint body of like metals and electronic device structure |
KR20180111028A (en) * | 2017-03-31 | 2018-10-11 | 현대자동차주식회사 | Inserts Having Improved Strength of Light Parts for High Pressure Die-casting |
KR102301889B1 (en) * | 2017-03-31 | 2021-09-13 | 현대자동차주식회사 | Inserts Having Improved Strength of Light Parts for High Pressure Die-casting |
JP2019179756A (en) * | 2018-03-30 | 2019-10-17 | 大阪瓦斯株式会社 | Metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and, method for manufacturing metal plate |
JP7018807B2 (en) | 2018-03-30 | 2022-02-14 | 大阪瓦斯株式会社 | Manufacturing method of metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and metal plate |
Also Published As
Publication number | Publication date |
---|---|
JP4655884B2 (en) | 2011-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101482282B1 (en) | Multilayer steel and method for producing multilayer steel | |
Matsuoka et al. | Effect of grain size on thermal and mechanical stability of austenite in metastable austenitic stainless steel | |
JP6264515B1 (en) | Hot rolled steel sheet | |
MX2019009803A (en) | High strength hot-rolled steel sheet and method for producing same. | |
JP6246621B2 (en) | Hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet with a tensile strength of 1180 MPa or more and an excellent balance between strength and bendability | |
JP4655884B2 (en) | Composite material | |
JP2008266721A (en) | Method for producing high strength component and high strength component | |
US10119186B2 (en) | Maraging steel excellent in fatigue characteristics | |
JP5094325B2 (en) | High strength composite metal material and manufacturing method thereof | |
JP2003113449A (en) | High-strength/high-toughness stainless steel sheet superior in delayed fracture resistance and manufacturing method therefor | |
Thiyaneshwaran et al. | Dynamic compression behavior of Ti/TiAl3/Al metal intermetallic laminates | |
Kumar et al. | Influence of grooved base plate on microstructure and mechanical strength of aluminum–stainless steel explosive cladding [J] | |
CN102471815A (en) | Method for producing martensitic steel with mixed hardening | |
Hiraoka et al. | Effect of Compound Layer Thickness Composed of γ'-Fe4N on Rotated-Bending Fatigue Strength in Gas-Nitrided JIS-SCM435 Steel | |
Reddy | Formability of 5083 Al Alloy Hemi-Spherical Shells Using Hot Deep Drawing Process | |
WO2006049066A1 (en) | Pressure container, compressor and casting method of cylinder block | |
JP2002275578A (en) | Non-heattreated steel for hot forging easily separable by fracture | |
WO2006049065A1 (en) | Metal composite material and method for manufacturing metal composite material by casting | |
CN108713063A (en) | Stanniferous copper alloy, manufacturing method and application thereof | |
JP2007002281A (en) | Aluminum alloy casting for self-pierce rivet joining, and method for producing the same | |
JP4218239B2 (en) | Method of manufacturing tool steel by lamination and tool steel | |
Vu et al. | Fatigue characteristic analysis of new ECO7175v1 extruded aluminum alloy | |
JP2005226118A (en) | Magnetic steel sheet-nitriding method and magnetic steel sheet having high-hardness and high magnetic characteristic | |
KR20160127193A (en) | Material for warhead body for bunkerbuster and warhead body for bunkerbuster | |
Ogneva et al. | Effect of sintering duration on structure and properties of Ni-Al metal-intermetallic composites produced by SPS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101029 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101213 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4655884 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |