JP2007116081A - Ternary composite oxide abrasive and method of polishing substrate - Google Patents

Ternary composite oxide abrasive and method of polishing substrate Download PDF

Info

Publication number
JP2007116081A
JP2007116081A JP2006077093A JP2006077093A JP2007116081A JP 2007116081 A JP2007116081 A JP 2007116081A JP 2006077093 A JP2006077093 A JP 2006077093A JP 2006077093 A JP2006077093 A JP 2006077093A JP 2007116081 A JP2007116081 A JP 2007116081A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
composite oxide
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006077093A
Other languages
Japanese (ja)
Inventor
Masato Yoshida
誠人 吉田
Shunsuke Ueda
俊輔 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006077093A priority Critical patent/JP2007116081A/en
Publication of JP2007116081A publication Critical patent/JP2007116081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ternary composite oxide abrasive with which a surface of an SiO<SB>2</SB>insulating film etc., to be polished can be polished fast by a CMP technique without a decrease in mechanical polishing operation nor a polishing flaw caused by an abrasive grain, and to provide a method of polishing a substrate. <P>SOLUTION: The abrasive contains ternary composite oxide particles having a monoclinic brannerite structure and including a CeTi<SB>2</SB>O<SB>6</SB>phase, and the method of polishing the substrate with the abrasive. The substrate is preferably a semiconductor wafer on which a silica film is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、3元系複合酸化物粒子を含む研磨剤及び基板の研磨方法に関する。   The present invention relates to an abrasive containing ternary composite oxide particles and a method for polishing a substrate.

近年、半導体装置の製造工程において、プラズマ−CVD、低圧−CVD等の方法で形成されるSiO絶縁膜等の無機絶縁膜層を平坦化するための、化学機械研磨(CMP: Chemical Mechanical Polishing)方法が量産に適用されている。
SiO絶縁膜用CMP研磨剤には、スラリー状の、シリカ系研磨剤と酸化セリウム系研磨剤が一般に用いられている。
In recent years, chemical mechanical polishing (CMP) for planarizing an inorganic insulating film layer such as a SiO 2 insulating film formed by a method such as plasma-CVD or low-pressure CVD in a manufacturing process of a semiconductor device. The method is applied to mass production.
For the CMP abrasive for the SiO 2 insulating film, a slurry-like silica abrasive and cerium oxide abrasive are generally used.

SiO絶縁膜は、配線間を絶縁する為の層間絶縁膜(ILD:Inter Layer Dielectric)と、素子間を分離する狭素子分離(STI: Shallow Trench Isolation)用とに使われる。ILD用CMPは、Al配線の上に形成された絶縁膜の凹凸を平坦化するものである。 The SiO 2 insulating film is used for an interlayer insulating film (ILD: Inter Layer Dielectric) for insulating between wirings and a narrow element isolation (STI: Shallow Trench Isolation) for separating elements. The CMP for ILD is to flatten the unevenness of the insulating film formed on the Al wiring.

一方、STIプロセスは、Si基板にトレンチを形成し、素子部の上部にストッパー膜としてSiNを形成し、そしてそのトレンチ部にSiO(シリカ)を埋め込むようにし、CMPでSiO膜を除去する。そのときに、ストッパー膜は削らずにSiO膜だけ研磨すると言う選択研磨特性が必要となり、また凹部(トレンチ部)SiO膜の削りすぎのない高平坦化が必須となる。特にSTI用CMPには、SiO膜とSiN膜との高選択性を付与する目的で酸化セリウム粒子と添加剤とを組合せた酸化セリウム系研磨剤が主流となりつつある。酸化セリウム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、したがって、研磨表面に傷が入りにくい。また、シリカ研磨剤に比べ、研磨速度が速い利点がある。近年、高純度酸化セリウム砥粒を用いた半導体用CMP研磨剤が使用されている。例えば、その技術は特許文献1に開示されている。また、酸化セリウム研磨液に添加剤を加える技術は例えば特許文献2に開示されている。 On the other hand, in the STI process, a trench is formed in the Si substrate, SiN is formed as a stopper film on the upper portion of the element portion, and SiO 2 (silica) is embedded in the trench portion, and the SiO 2 film is removed by CMP. . At that time, it is necessary to have a selective polishing characteristic that only the SiO 2 film is polished without cutting the stopper film, and it is essential that the recess (trench) SiO 2 film is not excessively sharpened. In particular, for STI CMP, a cerium oxide-based abrasive in which cerium oxide particles and an additive are combined for the purpose of providing high selectivity between a SiO 2 film and a SiN film is becoming mainstream. The cerium oxide particles have a lower hardness than silica particles and alumina particles, and therefore are less likely to scratch the polished surface. Further, there is an advantage that the polishing rate is faster than that of the silica abrasive. In recent years, CMP abrasives for semiconductors using high-purity cerium oxide abrasive grains have been used. For example, this technique is disclosed in Patent Document 1. Moreover, the technique which adds an additive to a cerium oxide polishing liquid is disclosed by patent document 2, for example.

STI用CMPは、素子に近い部分を研磨することから、特に砥粒を起因とする研磨傷の低減が必要となる。研磨傷はデバイスの歩留まり低減に繋がるため、デザインルールの縮小化に伴い、更なる研磨傷の低減が求められている。
特開平10−106994号公報 特開平8−22970号公報
Since CMP for STI polishes a portion close to the element, it is particularly necessary to reduce polishing scratches caused by abrasive grains. Since polishing flaws lead to a reduction in device yield, further reduction of polishing flaws is demanded as design rules are reduced.
Japanese Patent Laid-Open No. 10-106994 JP-A-8-22970

SiO絶縁膜面に砥粒によって導入される研磨傷を更に低減し、従来の研磨速度を維持出来るように酸化セリウム系研磨剤用の砥粒の開発が進められている。最も効果的な手法は微粒子化であるが、その場合サイズの低減に伴って機械的な研磨作用が低下するため、CMP処理時間の増加という新たな課題が生じる。 The development of abrasive grains for cerium oxide-based abrasives is being promoted so as to further reduce the polishing scratches introduced by the abrasive grains on the SiO 2 insulating film surface and maintain the conventional polishing rate. The most effective method is micronization, but in this case, the mechanical polishing action decreases as the size is reduced, which causes a new problem of increased CMP processing time.

本発明は、SiO絶縁膜等の被研磨面を傷なく高速に研磨することが可能な研磨剤及び基板の研磨方法を提供するものである。 The present invention provides a polishing agent and a substrate polishing method capable of polishing a surface to be polished such as an SiO 2 insulating film at high speed without damage.

本発明は、単斜晶系のブランネル石構造(Brannerite構造)を有するCeTi相を含む3元系複合酸化物粒子を含む研磨剤に関する。
また、本発明は、前記の複合酸化物研磨剤で基板を研磨する基板の研磨方法に関する。
さらに、本発明は、基板が、シリカ膜が形成された半導体ウエハである前記の基板の研磨方法に関する。
以下、ブランネル石構造とはBrannerite構造を表す。
The present invention relates to an abrasive containing ternary composite oxide particles containing a CeTi 2 O 6 phase having a monoclinic blannelite structure (Brannerite structure).
The present invention also relates to a method for polishing a substrate, wherein the substrate is polished with the complex oxide abrasive.
Furthermore, the present invention relates to the method for polishing a substrate, wherein the substrate is a semiconductor wafer on which a silica film is formed.
Hereinafter, the Brunelite structure represents a Brannerite structure.

本発明の3元系複合酸化物研磨剤によれば、酸化セリウムの化学的活性を保ちつつ、質量当たりの砥粒数を増加させることができる。これにより、SiO絶縁膜等の被研磨面を傷なく高速に研磨することが可能となり、工業的に極めて好適である。 According to the ternary composite oxide abrasive of the present invention, it is possible to increase the number of abrasive grains per mass while maintaining the chemical activity of cerium oxide. As a result, the surface to be polished such as the SiO 2 insulating film can be polished at high speed without damage, which is extremely suitable industrially.

本発明の3元系複合酸化物研磨剤は、単斜晶系のブランネル石構造を有するCeTi相を含む3元系複合酸化物粒子(以下、複合酸化物粒子とも、または粒子ともいう。)を含む。CeTi相は単斜晶系のブランネル石構造であることがJournal of Alloys and Compounds, 376(2004) p.262−267などにより知られている。 The ternary composite oxide abrasive of the present invention is a ternary composite oxide particle containing a CeTi 2 O 6 phase having a monoclinic blannelite structure (hereinafter also referred to as composite oxide particle or particle). .)including. The CeTi 2 O 6 phase has a monoclinic blannelite structure in Journal of Alloys and Compounds, 376 (2004) p. 262-267 and the like.

Ce−Ti−Oの3元系の相状態図には、CeTi0、CeTi、CeTi24、CeTiO、CeTiとCeTiの6種類の異なる相が存在するが、本発明で着目したCeTiがCeO同様にCe4+を有するとされており、またその結晶構造はJournal of Solid State Chemistry, 110(1994)p.364−369などに明確化されている。 The phase phase diagram of the ternary system of Ce—Ti—O includes Ce 2 Ti0 5 , Ce 2 Ti 2 O 7 , Ce 4 Ti 9 O 24 , CeTiO 4 , Ce 2 Ti 3 O 9 and CeTi 2 O 6 . Although there are six different phases, CeTi 2 O 6 focused on in the present invention is said to have Ce 4+ like CeO 2 , and its crystal structure is Journal of Solid State Chemistry, 110 (1994) p. It is clarified in 364-369.

CeTiの密度は4.96g/ccであり、この値は酸化セリウムの7.2g/ccの70%と低く、従って質量当たりの、砥粒として作用する粒子数は1.4倍になる。 The density of CeTi 2 O 6 is 4.96 g / cc, which is as low as 70% of 7.2 g / cc of cerium oxide, so the number of particles acting as abrasives per mass is 1.4 times. Become.

CeTi相は、Ce1−xTi組成のxが0.3付近で単相を得ることが出来る。xの値が0.2の場合はCeTi相とTiO(ルチル相)相の混合相になり、また0.4では酸化セリウム相になる。合成温度600℃以上950℃以下において、CeTi相が得られるにはxの値が0.15以上0.35以下であることが望ましい。 The CeTi 2 O 6 phase can be a single phase when x of the Ce 1-x Ti x O 2 composition is around 0.3. When the value of x is 0.2, it is a mixed phase of CeTi 2 O 6 phase and TiO 2 (rutile phase), and when it is 0.4, it becomes a cerium oxide phase. In order to obtain a CeTi 2 O 6 phase at a synthesis temperature of 600 ° C. or more and 950 ° C. or less, the value of x is preferably 0.15 or more and 0.35 or less.

3元系複合酸化物粒子の合成方法は、酸化セリウム粉末と酸化チタン粉末とをCe1−xTi組成のxの値が0.15以上0.35以下になるように配合・混合し、600℃以上950℃以下で焼成して得る合成方法が挙げられる。
また、セリウム塩とチタニウム塩水溶液を混合し、アンモニア水溶液等のアルカリ溶液で中和析出させ、それを乾燥させることで前躯体を得ることが出来る。この前躯体を600℃以上950℃以下で焼成することでも得ることが出来る。
The method of synthesizing the ternary composite oxide particles is to mix and mix cerium oxide powder and titanium oxide powder so that the value of x in the Ce 1-x Ti x O 2 composition is 0.15 or more and 0.35 or less. And a synthesis method obtained by baking at 600 ° C. or more and 950 ° C. or less.
Moreover, a precursor can be obtained by mixing a cerium salt and an aqueous titanium salt solution, neutralizing and precipitating with an alkaline solution such as an aqueous ammonia solution and drying it. This precursor can also be obtained by firing at 600 ° C. or higher and 950 ° C. or lower.

更に、Pechini法によって前駆体を合成し、その前躯体を焼成することでも得られる。例えばM.Kakihana;Journal of Sol−Gel Science and Technology, 6 (1996) p.7−55に説明されている。   Furthermore, it can also be obtained by synthesizing a precursor by the Pechini method and firing the precursor. For example, M.M. Kakihana; Journal of Sol-Gel Science and Technology, 6 (1996) p. 7-55.

前躯体の作製方法としては、例えば硝酸セリウム6水和物とチタンテトライソプロポキシドとクエン酸、エチレングリコールとメタノールを所定の比で混合・攪拌し、100℃で15時間ほど加熱してエステル化をする。その後、200℃でポリマー状になるまで濃縮化し、その後450℃で炭化処理を行って前駆体を得る。前駆体の焼成方法は、いずれも、空気中で600℃から950℃で焼成することが好ましい。   As a method for preparing the precursor, for example, cerium nitrate hexahydrate, titanium tetraisopropoxide and citric acid, ethylene glycol and methanol are mixed and stirred at a predetermined ratio, and heated at 100 ° C. for 15 hours for esterification. do. Then, it concentrates at 200 degreeC until it becomes a polymer form, and carbonizes at 450 degreeC after that, and a precursor is obtained. Any of the precursor firing methods is preferably performed at 600 ° C. to 950 ° C. in air.

得られた粒子の結晶構造解析は、粉末X線リートベルト法で行うことが好ましい。単斜晶系のブランネル石構造を有するCeTi相は、空間群が

Figure 2007116081
(例えば、Internatinal Tables for Crystallography Vol.A, Th. Hahn, 第5版参照)で、格子定数がa=9.82Å、b=3.75Å、c=6.88Å、α=90.0°、β=118.978°、γ=90.0°であることが知られている。 The crystal structure analysis of the obtained particles is preferably performed by a powder X-ray Rietveld method. CeTi 2 O 6 phase with monoclinic blannelite structure has space group
Figure 2007116081
(See, for example, International Tables for Crystallography Vol. A, Th. Hahn, 5th edition), and lattice constants a = 9.829, b = 3.75Å, c = 6.88Å, α = 90.0 °, It is known that β = 118.978 ° and γ = 90.0 °.

また、原子位置は同様な構造を有するThTi相(Acta. Cryst. (1966)21, p.974参照)を参照して決定することができる。 The atomic position can be determined with reference to a ThTi 2 O 6 phase having a similar structure (see Acta. Cryst. (1966) 21, p. 974).

上記解析方法から相同定をすると共に、結晶子サイズも見積もることが出来る。すなわち解析から結晶子サイズパラメータxを得ることが出来、そのxを下記式(1)に代入し、結晶子サイズを見積もる。   In addition to phase identification from the analysis method, the crystallite size can be estimated. That is, the crystallite size parameter x can be obtained from the analysis, and the crystallite size is estimated by substituting x into the following formula (1).

(数2)
結晶子サイズ(nm)
={0.15418(nm)・180(度)・K}/{π・x} … (1)
Kは定数で一般に0.9を用いる。TEOS−CVD法等で形成されるSiO絶縁膜を研磨する際に、酸化セリウム砥粒同様に結晶子サイズが大きすぎると研磨傷の原因になり、また小さすぎると適切な研磨速度が得られない。そこで、適切な結晶子サイズは、50nm以上200nm以下が好ましい。
(Equation 2)
Crystallite size (nm)
= {0.15418 (nm) · 180 (degree) · K} / {π · x} (1)
K is a constant and generally 0.9 is used. When polishing a SiO 2 insulating film formed by TEOS-CVD or the like, if the crystallite size is too large as in the case of cerium oxide abrasive grains, it will cause polishing scratches, and if it is too small, an appropriate polishing rate can be obtained. Absent. Therefore, an appropriate crystallite size is preferably 50 nm or more and 200 nm or less.

また、リートベルト解析から結晶歪みを表わすパラメータの値yも得ることが出来、この歪みも研磨特性に影響を与える。このy値は0.01以上0.3以下が好ましい。y値は小さいほど歪みが小さいことを示す。0.3より大きいと歪みが大きく、適切な研磨速度が得られない傾向がある。   Further, a parameter value y representing crystal distortion can be obtained from Rietveld analysis, and this distortion also affects the polishing characteristics. The y value is preferably from 0.01 to 0.3. It shows that distortion is so small that y value is small. If it is larger than 0.3, the strain is large and an appropriate polishing rate tends not to be obtained.

半導体ウエハ研磨にも使用することから、3元系複合酸化物粒子のアルカリ金属およびハロゲン類の含有率は1ppm以下に抑えることが好ましい。さらに、3元系複合酸化物粒子は、Na、K、Si、Mg、Ca、Zr、Ti、Ni、Cr、Feはそれぞれ1ppm以下、Alは10ppm以下である高純度のものが好ましい。   Since it is also used for semiconductor wafer polishing, the alkali metal and halogen content of the ternary composite oxide particles is preferably suppressed to 1 ppm or less. Further, the ternary composite oxide particles preferably have high purity such that Na, K, Si, Mg, Ca, Zr, Ti, Ni, Cr and Fe are each 1 ppm or less and Al is 10 ppm or less.

焼成して得られた3元系複合酸化物粒子は、ジェットミル等の乾式粉砕、液体ジェットミルや遊星ビーズミル等の湿式粉砕で凝集を粉砕することができる。ジェットミルは例えば化学工学論文集第6巻第5号(1980)527〜532頁に説明されている。粉砕は、結晶子サイズの粒子まで行い、粉砕残りがないようにすることが好ましい。   The ternary composite oxide particles obtained by firing can be agglomerated by dry pulverization such as a jet mill or wet pulverization such as a liquid jet mill or planetary bead mill. The jet mill is described, for example, in Chemical Engineering Papers Vol. 6 No. 5 (1980) pp. 527-532. It is preferable that the pulverization is performed up to crystallite size particles so that there is no pulverization residue.

本発明の研磨剤は、上記の方法により製造された3元系複合酸化物粒子を含有する水溶液から得られるか、又はこの水溶液から回収した粒子を例えば主な分散媒である水に分散させることによって得られる。さらに、必要に応じて分散剤等からなる組成物を添加して分散させても良い。ここで粒子の濃度には制限は無いが、スラリー状の研磨剤の取り扱い易さから0.1〜10質量%の範囲が好ましい。   The abrasive of the present invention is obtained from an aqueous solution containing the ternary composite oxide particles produced by the above method, or the particles recovered from this aqueous solution are dispersed in, for example, water as a main dispersion medium. Obtained by. Furthermore, if necessary, a composition comprising a dispersant or the like may be added and dispersed. Although there is no restriction | limiting in the density | concentration of particle | grains here, the range of 0.1-10 mass% is preferable from the ease of handling of a slurry-like abrasive | polishing agent.

また、分散剤としては、金属イオン類を含まないものとして、アクリル酸重合体及びそのアンモニウム塩、メタクリル酸重合体及びそのアンモニウム塩、ポリビニルアルコール等の水溶性有機高分子類、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤、モノエタノールアミン、ジエタノールアミン等の水溶性アミン類などが挙げられる。ポリアクリル酸アンモニウム塩、特に重量平均分子量5,000〜20,000のポリアクリル酸アンモニウム塩が好ましい。   In addition, the dispersant does not contain metal ions, and includes acrylic acid polymer and ammonium salt thereof, methacrylic acid polymer and ammonium salt thereof, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, polyoxy Water-soluble anionic surfactants such as ethylene lauryl ether ammonium sulfate, water-soluble nonionic surfactants such as polyoxyethylene lauryl ether and polyethylene glycol monostearate, and water-soluble amines such as monoethanolamine and diethanolamine Can be mentioned. Polyacrylic acid ammonium salts, particularly polyacrylic acid ammonium salts having a weight average molecular weight of 5,000 to 20,000 are preferred.

これらの分散剤の添加量は、スラリー状の研磨剤中の粒子の分散性及び沈降防止性などから複合酸化物粒子100質量部に対して0.01質量部から5質量部の範囲が好ましく、その分散効果を高めるためには分散処理時に分散機の中に粒子と同時に入れることが好ましい。   The amount of these dispersants added is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the composite oxide particles from the viewpoint of the dispersibility of particles in the slurry abrasive and the anti-settling property. In order to enhance the dispersion effect, it is preferable to place the particles in the disperser simultaneously with the dispersion process.

複合酸化物粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他に、ホモジナイザー、超音波分散機、ボールミルなどを用いることができる。特に本発明における複合酸化物粒子を1000nm以下の微粒子として分散させるためには、ボールミル、振動ボールミル、遊星ボールミル、媒体撹拌式ミルなどの湿式分散機を用いることが好ましい。   As a method of dispersing the composite oxide particles in water, a homogenizer, an ultrasonic disperser, a ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer. In particular, in order to disperse the composite oxide particles in the present invention as fine particles of 1000 nm or less, it is preferable to use a wet disperser such as a ball mill, a vibration ball mill, a planetary ball mill, or a medium stirring mill.

また、研磨剤のアルカリ性を高めたい場合には、分散処理時又は処理後にアンモニア水などの金属イオンを含まないアルカリ性物質を添加することができる。
また、研磨剤の酸性を高めたい場合は、硝酸を添加することが出来る。
Moreover, when it is desired to increase the alkalinity of the abrasive, an alkaline substance containing no metal ions such as aqueous ammonia can be added during or after the dispersion treatment.
In addition, nitric acid can be added to increase the acidity of the abrasive.

本発明の研磨剤に分散される複合酸化物粒子の大きな粒子が、研磨傷に関連する。研磨剤中の粒子の粒子径は、光子相関法(例えばマルバーンインスツルメンツ社製製品名ゼータサイザー3000H)によって測定する。D99%の粒子径が1000nm以下であることが好ましい。ここでD99%とは、体積粒子径分布において粒子径の細かいものからその粒子の体積割合を積算していき、それぞれ99%になったときの粒子径を意味する。
本発明の研磨剤には、さらに、水溶性高分子、水以外の溶媒、着色剤などの添加剤を、研磨剤の作用を損なわない範囲で含有しても良い。
Large particles of composite oxide particles dispersed in the abrasive of the present invention are related to abrasive scratches. The particle diameter of the particles in the abrasive is measured by a photon correlation method (for example, product name Zeta Sizer 3000H manufactured by Malvern Instruments). It is preferable that the particle size of D99% is 1000 nm or less. Here, D99% means the particle diameter when the volume ratio of the particles is accumulated from the finer particle diameter distribution in the volume particle diameter distribution and reaches 99%.
The abrasive of the present invention may further contain additives such as a water-soluble polymer, a solvent other than water, and a colorant as long as the action of the abrasive is not impaired.

本発明の基板の研磨方法は、前記本発明の研磨剤を用いて基板を研磨することを特徴とする。基板として、半導体基板すなわち回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上にSiO絶縁膜層が形成された基板が使用できる。基板は、特に、SiO膜が形成された半導体ウエハであるのが好ましい。以下、このような半導体基板を例に挙げて説明する。基板上に形成されたSiO絶縁膜層を上記酸化セリウム研磨剤で研磨することによって、SiO絶縁膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とすることができる。ここで、研磨する装置としては、半導体基板を保持するホルダーと、研磨布(パッド)を貼り付け可能で、回転数が変更可能なモータ等を取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。 The substrate polishing method of the present invention is characterized in that the substrate is polished using the abrasive of the present invention. As the substrate, a semiconductor substrate, that is, a semiconductor substrate on which a circuit element and a wiring pattern are formed, a substrate on which a SiO 2 insulating film layer is formed on a semiconductor substrate such as a semiconductor substrate on which a circuit element is formed can be used. In particular, the substrate is preferably a semiconductor wafer on which an SiO 2 film is formed. Hereinafter, such a semiconductor substrate will be described as an example. By polishing the SiO 2 insulating film layer formed on the substrate with the cerium oxide abrasive, unevenness on the surface of the SiO 2 insulating film layer can be eliminated and the entire surface of the semiconductor substrate can be made smooth. Here, as an apparatus for polishing, a general polishing having a holder for holding a semiconductor substrate and a polishing surface plate to which a polishing cloth (pad) can be attached and a motor or the like whose rotation speed can be changed is attached. The device can be used.

研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。
また、研磨布には研磨剤が溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、研磨定盤の回転速度は半導体基板が飛び出さない様に100min−1以下の低回転が好ましく、半導体基板にかける圧力(加工荷重)は研磨後に傷が発生しない様に1kg/cm以下が好ましい。研磨している間、研磨布には研磨剤をポンプ等で連続的に供給する。この供給量には制限はないが、研磨布の表面が常に研磨剤で覆われていることが好ましい。
As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular.
Further, it is preferable that the polishing cloth is subjected to groove processing so that an abrasive is collected. The polishing conditions are not limited, but the rotation speed of the polishing surface plate is preferably low rotation of 100 min −1 or less so that the semiconductor substrate does not pop out, and the pressure (working load) applied to the semiconductor substrate does not cause scratches after polishing. Thus, 1 kg / cm 2 or less is preferable. During polishing, an abrasive is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, It is preferable that the surface of polishing cloth is always covered with the abrasive | polishing agent.

研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤー等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして平坦化されたSiO絶縁膜層の上に、第2層目のアルミニウム配線を形成し、その配線間および配線上に再度上記方法によりSiO絶縁膜を形成後、上記複合酸化物研磨剤を用いて研磨することによって、絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。 The semiconductor substrate after completion of polishing is preferably washed in running water and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. On this way, the SiO 2 insulating film layer which is flattened, forming an aluminum wiring of the second layer, after forming the SiO 2 insulating film again by the above method on the inter-wiring and the wiring, the composite oxide By polishing with an object polishing agent, unevenness on the surface of the insulating film is eliminated, and the entire surface of the semiconductor substrate is made smooth. By repeating this process a predetermined number of times, a desired number of semiconductor layers are manufactured.

本発明の複合酸化物研磨剤および研磨方法は、半導体基板に形成されたSiO絶縁膜だけでなく、所定の配線を有する配線板に形成されたSiO絶縁膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザ用LEDサファイア基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。 The composite oxide abrasive and polishing method of the present invention are not limited to SiO 2 insulating film formed on a semiconductor substrate, but also inorganic such as SiO 2 insulating film formed on a wiring board having predetermined wiring, glass, silicon nitride, etc. Optical glass such as insulating films, photomasks, lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits / optical switching elements / waveguides composed of glass and crystalline materials, end faces of optical fibers, scintillators, etc. It is used for polishing optical single crystals, solid state laser single crystals, blue laser LED sapphire substrates, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, magnetic heads, and the like.

本発明の複合酸化物研磨剤および研磨方法が使用される無機絶縁膜の作製方法として、低圧CVD法、プラズマCVD法等が挙げられる。低圧CVD法によるSiO絶縁膜形成は、Si源としてモノシラン:SiH、酸素源として酸素:Oを用いる。このSiH−O系酸化反応を400℃程度以下の低温で行わせることにより得られる。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH−O−PH系反応ガスを用いることが好ましい。 Examples of a method for manufacturing an inorganic insulating film in which the composite oxide abrasive and the polishing method of the present invention are used include a low pressure CVD method and a plasma CVD method. In the formation of the SiO 2 insulating film by the low pressure CVD method, monosilane: SiH 4 is used as the Si source, and oxygen: O 2 is used as the oxygen source. It can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. When doping phosphorus: P in order to achieve surface flattening by high-temperature reflow, it is preferable to use a SiH 4 —O 2 —PH 3 reaction gas.

プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH、酸素源としてNOを用いたSiH−NO系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。このように、本発明のSiO絶縁膜にはリン、ホウ素等の元素がド−プされていても良い。 The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. The reaction as a gas, SiH 4 as an Si source, an oxygen source as N 2 O was used was SiH 4 -N 2 O-based gas and TEOS-O 2 based gas using tetraethoxysilane (TEOS) in an Si source (TEOS- Plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa. Thus, the SiO 2 insulating film of the present invention is phosphorus, elemental boron, and the like de - may be up.

以下、実施例により本発明をさらに具体的に説明する。
実施例1
(CeTi相を含む3元系複合酸化物粒子の合成)
メタノール200ml、エチレングリコール200ml、無水クエン酸153g、硝酸セリウム6水和物63g及びチタンテトライソプロポキシド96.2gをビーカーで混合・攪拌し、15時間、100℃で加熱処理して、エステル化させた。その後、ポリマー状になるまで約200℃で濃縮させ、その後450℃で6時間、熱分解させてCe0.3Ti0.7組成になる前駆体を52g作製した。その前駆体を850℃で2時間焼成してCeTi相を含む3元系複合酸化物粒子を得た。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
(Synthesis of ternary composite oxide particles containing CeTi 2 O 6 phase)
200 ml of methanol, 200 ml of ethylene glycol, 153 g of anhydrous citric acid, 63 g of cerium nitrate hexahydrate and 96.2 g of titanium tetraisopropoxide were mixed and stirred in a beaker and heat-treated at 100 ° C. for 15 hours for esterification. It was. Thereafter, concentrated at about 200 ° C. until a polymeric, then 6 hours at 450 ° C., precursor is thermally decomposed becomes Ce 0.3 Ti 0.7 O 2 composition was prepared 52 g. The precursor was calcined at 850 ° C. for 2 hours to obtain ternary composite oxide particles containing a CeTi 2 O 6 phase.

得られた複合酸化物粒子についてXRD測定を行い、そのデータを用いてX線リートベルト解析を行った。リートベルト解析には、リートベルト解析用プログラムRIETAN−2000を用いた。

Figure 2007116081
格子定数がa=9.827(1)Å、b=3.751(3)Å、c=6.883(1)Å、α=90°、β=118.98(1)°、γ=90°であった。 XRD measurement was performed on the obtained composite oxide particles, and X-ray Rietveld analysis was performed using the data. For the Rietveld analysis, the Rietveld analysis program RIETAN-2000 was used.
Figure 2007116081
The lattice constants are a = 9.827 (1) Å, b = 3.751 (3) Å, c = 6.883 (1) Å, α = 90 °, β = 118.98 (1) °, γ = It was 90 °.

また、原子位置はCeが(0.0 0.0 0.0)、Tiが(0.883(1) 0.0 0.303(1))、O1が(0.978(2) 0.0 0.303(1))、O2が(0.654(1) 0.0 0.104(3))及びO3が(0.276(2) 0.0 0.40182))であることを確認した。結晶子パラメータxの値は、0.063で結晶子サイズを求める上記式(1)から126nmであった。また、結晶子歪みパラメータyの値は、0.10であった。   The atomic positions are Ce (0.0 0.0 0.0), Ti (0.883 (1) 0.0 0.303 (1)), and O1 (0.978 (2). 0 0.303 (1)), O2 is (0.654 (1) 0.0 0.104 (3)) and O3 is (0.276 (2) 0.0 0.40182)). confirmed. The value of the crystallite parameter x was 126 nm from the above formula (1) for obtaining the crystallite size at 0.063. Moreover, the value of the crystallite strain parameter y was 0.10.

(複合酸化物研磨剤の作製)
上記作製の複合酸化物粒子50gとポリアクリル酸アンモニウム塩水溶液(40質量%)2.5gと脱イオン水447.5gを混合し、遊星ビーズミルで30分間粉砕・分散を行ってスラリーを得た。ビーズメディアには0.8mm直径のノンアルカリガラスビーズを用いた。得られたスラリーを1ミクロンフィルターでろ過をし、さらに脱イオン水を加えることにより固形分1質量%のスラリー状の複合酸化物研磨剤を得た。研磨剤のpHは8.0であった。
(Preparation of composite oxide abrasive)
50 g of the composite oxide particles produced above, 2.5 g of ammonium polyacrylate aqueous solution (40% by mass) and 447.5 g of deionized water were mixed, and pulverized and dispersed in a planetary bead mill for 30 minutes to obtain a slurry. Non-alkaline glass beads with a diameter of 0.8 mm were used as the bead media. The obtained slurry was filtered with a 1 micron filter, and deionized water was further added to obtain a slurry-like composite oxide abrasive having a solid content of 1% by mass. The pH of the abrasive was 8.0.

スラリー状の研磨剤中の粒子の粒度分布を光子相関法で調べるためマルバーンインスツルメンツ社製粒度分布測定装置ゼータサイザー3000Hを用いて測定した。中央値が230nmで、最大粒子径は980nmであった。また研磨剤の分散性及び研磨剤中粒子の電荷を調べるため、研磨剤のゼータ電位を先の粒度分布測定装置で調べた。マイナスに荷電し、−78mVと絶対値が大きく分散性が良好であることを確認した。   In order to examine the particle size distribution of the slurry in the slurry-like abrasive by the photon correlation method, the particle size distribution was measured using a particle size distribution measuring apparatus Zeta Sizer 3000H manufactured by Malvern Instruments. The median was 230 nm and the maximum particle size was 980 nm. Further, in order to investigate the dispersibility of the abrasive and the charge of the particles in the abrasive, the zeta potential of the abrasive was examined by the particle size distribution measuring apparatus. It was negatively charged and confirmed to have a large absolute value of -78 mV and good dispersibility.

(絶縁膜層の研磨)
Siウエハ表面に、TEOS−プラズマCVD法によりSiO絶縁膜を形成させた。研磨装置の、保持基板取り付け用の吸着パッドを貼り付けたホルダーに、このSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた研磨定盤上に絶縁膜面を下にしてホルダーを載せ、さらに加工荷重が30kPaになるように設定した。研磨定盤上に上記の研磨剤(固形分:1質量%)を150cc/分の速度で滴下しながら、研磨定盤を50min−1、ウエハを装着したホルダーを50min−1で同じ方向に回転させ、絶縁膜を1分間研磨した。
(Polishing the insulating film layer)
A SiO 2 insulating film was formed on the Si wafer surface by TEOS-plasma CVD. Set this Si wafer in the holder of the polishing device to which the suction pad for attaching the holding substrate is pasted, and place the insulating film side down on the polishing surface plate on which the porous urethane resin polishing pad is pasted In addition, the processing load was set to 30 kPa. While the above polishing agent (solid content: 1% by mass) is dropped onto the polishing surface plate at a rate of 150 cc / min, the polishing surface plate is rotated in the same direction at 50 min −1 and the wafer-mounted holder is rotated in the same direction at 50 min −1. The insulating film was polished for 1 minute.

研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨によりそれぞれ352nm(研磨速度:352nm/分)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。   After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring apparatus, each of the insulating films having a thickness of 352 nm (polishing rate: 352 nm / min) was shaved by this polishing, and the thickness was uniform over the entire surface of the wafer. I found out that Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

実施例2
(CeTi相を含む3元系複合酸化物粒子の合成)
硝酸セリウムアンモニウム水溶液(50%)154g及び硫酸チタニウム水溶液(30%)260gを混合・攪拌し、25%のアンモニア水溶液を加えて中和・析出させた。懸濁液のpHが10.0になったところを終点とし、その後、遠心分離機(3000min−1、15分間)で固液分離した。固形分を110℃、3時間で乾燥し、乳鉢で粉砕したのちに、850℃で2時間焼成し、約50gの複合酸化物粒子を得た。
Example 2
(Synthesis of ternary composite oxide particles containing CeTi 2 O 6 phase)
154 g of aqueous cerium ammonium nitrate solution (50%) and 260 g of aqueous titanium sulfate solution (30%) were mixed and stirred, and 25% aqueous ammonia solution was added to neutralize and precipitate. The point at which the pH of the suspension reached 10.0 was taken as the end point, and then solid-liquid separation was performed with a centrifuge (3000 min −1 , 15 minutes). The solid content was dried at 110 ° C. for 3 hours, pulverized in a mortar, and then fired at 850 ° C. for 2 hours to obtain about 50 g of composite oxide particles.

得られた複合酸化物粒子について実施例1と同様にXRD測定およびX線リートベルト解析を行った。

Figure 2007116081
格子定数がa=9.823(1)Å、b=3.757(3)Å、c=6.888(1)Å、α=90°、β=118.98(1)°、γ=90°であった。 The obtained composite oxide particles were subjected to XRD measurement and X-ray Rietveld analysis in the same manner as in Example 1.
Figure 2007116081
Lattice constants are a = 9.823 (1) Å, b = 3.757 (3) Å, c = 6.888 (1) Å, α = 90 °, β = 118.98 (1) °, γ = It was 90 °.

また、原子位置はCeが(0.0 0.0 0.0)、Tiが(0.873(1) 0.0 0.313(1))、O1が(0.971(2) 0.0 0.300(1))、O2が(0.634(1) 0.0 0.098(3))及びO3が(0.271(2) 0.0 0.3980(2))であることを確認した。結晶子パラメータxの値は、0.073で結晶子サイズを求める上記式(1)から109nmであった。また、結晶子歪みパラメータyの値は、0.10であった。   The atomic positions are Ce (0.0 0.0 0.0), Ti (0.873 (1) 0.0 0.313 (1)), and O1 (0.971 (2). 0 0.300 (1)), O2 is (0.634 (1) 0.0 0.098 (3)) and O3 is (0.271 (2) 0.0 0.3980 (2)). It was confirmed. The value of the crystallite parameter x was 109 nm from the above formula (1) for obtaining the crystallite size at 0.073. Moreover, the value of the crystallite strain parameter y was 0.10.

(複合酸化物研磨剤の作製)
上記作製の複合酸化物粒子50gを用いた以外は実施例1と同様にして固形分1質量%のスラリー状の複合酸化物研磨剤を得た。研磨剤のpHは8.1であった。
(Preparation of composite oxide abrasive)
A slurry-like composite oxide abrasive having a solid content of 1% by mass was obtained in the same manner as in Example 1 except that 50 g of the prepared composite oxide particles were used. The pH of the abrasive was 8.1.

研磨剤中の粒子の粒度分布およびゼータ電位を実施例1と同様に測定した。粒度分布は中央値が210nmで、最大粒子径は980nmであった。ゼータ電位はマイナスに荷電し、−78mVと絶対値が大きく分散性が良好であることを確認した。   The particle size distribution and zeta potential of the particles in the abrasive were measured in the same manner as in Example 1. The particle size distribution had a median value of 210 nm and a maximum particle size of 980 nm. It was confirmed that the zeta potential was negatively charged, had an absolute value of -78 mV and a large dispersibility.

(絶縁膜層の研磨)
上記で作製した研磨剤(固形分:1質量%)を使用した以外は実施例1と同様にして同条件下で絶縁膜を1分間研磨した。
(Polishing the insulating film layer)
The insulating film was polished for 1 minute under the same conditions as in Example 1 except that the abrasive prepared above (solid content: 1% by mass) was used.

研磨後、実施例1と同様に、洗浄し、乾燥させ、研磨前後の膜厚変化を測定した結果、この研磨により332nm(研磨速度:332nm/分)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。
また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。
After polishing, the film was washed and dried in the same manner as in Example 1. As a result of measuring the change in film thickness before and after polishing, the insulating film of 332 nm (polishing rate: 332 nm / min) was cut by this polishing, and the entire surface of the wafer was removed. It was found that the thickness was uniform.
Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

比較例1
(酸化セリウム粒子の作製方法)
メタノール200ml、エチレングリコール200ml、クエン酸153g及び硝酸セリウム6水和物177gをビーカーで混合・攪拌し、15時間・100℃加熱処理を行って、エステル化をした。その後、ポリマー状になるまで約200℃で濃縮させ、その後450℃で6時間、熱分解させて酸化セリウムの前駆体を作製した。その後、850℃で焼成し、酸化セリウムを70g得た。
Comparative Example 1
(Method for producing cerium oxide particles)
200 ml of methanol, 200 ml of ethylene glycol, 153 g of citric acid and 177 g of cerium nitrate hexahydrate were mixed and stirred in a beaker and subjected to heat treatment for 15 hours at 100 ° C. for esterification. Then, it concentrated at about 200 degreeC until it became polymer form, and it thermally decomposed at 450 degreeC for 6 hours after that, and the precursor of cerium oxide was produced. Then, it baked at 850 degreeC and obtained 70g of cerium oxides.

得られた酸化セリウムの粒子について実施例1と同様にXRD測定およびX線リートベルト解析を行った。リートベルト解析によってCaF型構造を有する立方晶系の酸化セリウムであることを確認した。結晶子パラメータxの値は、0.060で結晶子サイズを求める上記式(1)から120nmであった。また、結晶子歪みパラメータyの値は、0.005であった。 The obtained cerium oxide particles were subjected to XRD measurement and X-ray Rietveld analysis in the same manner as in Example 1. Rietveld analysis confirmed that it was cubic cerium oxide having a CaF 2 type structure. The value of the crystallite parameter x was 120 nm from the above formula (1) for obtaining the crystallite size at 0.060. Moreover, the value of the crystallite strain parameter y was 0.005.

(酸化セリウム研磨剤の作製方法)
上記で作製した粒子50gを使用した以外は実施例1と同様にして固形分1質量%のスラリー状の研磨剤を得た。研磨剤のpHは8.5であった。
(Production method of cerium oxide abrasive)
A slurry-like abrasive having a solid content of 1% by mass was obtained in the same manner as in Example 1 except that 50 g of the particles prepared above were used. The pH of the abrasive was 8.5.

スラリー状研磨剤中の粒子の粒度分布およびゼータ電位を実施例1と同様に測定した。粒度分布は中央値が199nmで、最大粒子径は980nmであった。ゼータ電位はマイナスに荷電し、−65mVと絶対値が大きく分散性が良好であることを確認した。   The particle size distribution and zeta potential of the particles in the slurry abrasive were measured in the same manner as in Example 1. The median value of the particle size distribution was 199 nm, and the maximum particle size was 980 nm. It was confirmed that the zeta potential was negatively charged and had a large absolute value of -65 mV and good dispersibility.

(絶縁膜層の研磨)
上記の研磨剤(固形分:1質量%)を使用した以外は実施例1と同様にして同条件下で絶縁膜を1分間研磨した。
(Polishing the insulating film layer)
The insulating film was polished for 1 minute under the same conditions as in Example 1 except that the above abrasive (solid content: 1% by mass) was used.

研磨後、実施例1と同様に洗浄し、乾燥させ、研磨前後の膜厚変化を測定した結果、この研磨により293nm(研磨速度:293nm/分)の絶縁膜が削られ、CeTi相を含む複合酸化物研磨剤の速度の84%程度であった。なお、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。 After polishing, the substrate was washed and dried in the same manner as in Example 1. As a result of measuring the change in film thickness before and after polishing, the insulating film having a thickness of 293 nm (polishing rate: 293 nm / min) was removed by this polishing, and a CeTi 2 O 6 phase was obtained. It was about 84% of the speed of the composite oxide polishing agent containing. It was found that the thickness was uniform over the entire wafer surface. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.

比較例2
(酸化チタン研磨剤の作製方法)
硫酸チタン水溶液(30%)にアンモニウム水溶液(25%)を加え中和・析出させることで水酸化チタンを作製した。この水酸化チタン遠心分離で固液分離後に、850℃で2時間焼成し、酸化チタン粒子を作製した。得られた酸化チタン粒子50gを用いた以外は実施例1と同様にして固形分1質量%の研磨剤を得た。研磨剤pHは7.9であった。
Comparative Example 2
(Production method of titanium oxide abrasive)
Titanium hydroxide was prepared by adding ammonium aqueous solution (25%) to titanium sulfate aqueous solution (30%) and neutralizing and precipitating. After solid-liquid separation by this titanium hydroxide centrifugal separation, it was fired at 850 ° C. for 2 hours to produce titanium oxide particles. An abrasive having a solid content of 1% by mass was obtained in the same manner as in Example 1 except that 50 g of the obtained titanium oxide particles were used. The abrasive pH was 7.9.

研磨剤粒子の粒度分布およびゼータ電位を実施例1と同様に測定した。粒度分布は中央値が280nmで、最大粒子径は980nmであった。ゼータ電位はマイナスに荷電し、−60mVと絶対値が大きく分散性が良好であることを確認した。   The particle size distribution and zeta potential of the abrasive particles were measured in the same manner as in Example 1. The median value of the particle size distribution was 280 nm, and the maximum particle size was 980 nm. It was confirmed that the zeta potential was negatively charged and had a large absolute value of −60 mV and good dispersibility.

(絶縁膜層の研磨)
上記の研磨剤(固形分:1質量%)を使用した以外は実施例1と同様にして同条件下で絶縁膜を1分間研磨した。
(Polishing the insulating film layer)
The insulating film was polished for 1 minute under the same conditions as in Example 1 except that the above abrasive (solid content: 1% by mass) was used.

研磨後、実施例1と同様に洗浄し、乾燥させ、研磨前後の膜厚変化を測定した結果、この研磨により15nm(研磨速度:15nm/分)しか絶縁膜が削れなかった。   After polishing, the film was washed and dried in the same manner as in Example 1, and the change in film thickness before and after polishing was measured. As a result, only 15 nm (polishing rate: 15 nm / min) was removed by this polishing.

比較例3
(酸化セリウムと酸化チタン粒子の混合研磨剤の作製方法)
比較例1と2で作製した2種類の研磨剤を48質量部と52質量部になるように混合し、組成としてCeTi相になるCe0.3Ti0.7の配合にした。この混合研磨剤を用いて前記の実施例、比較例と同様に絶縁膜層の研磨を行ったところ、101nm/分しか削れなかった。
Comparative Example 3
(Method for producing a mixed abrasive of cerium oxide and titanium oxide particles)
The two types of abrasives produced in Comparative Examples 1 and 2 were mixed so as to be 48 parts by mass and 52 parts by mass, and the composition of Ce 0.3 Ti 0.7 O 2 to become a CeTi 2 O 6 phase as a composition. did. When this mixed abrasive was used to polish the insulating film layer in the same manner as in the above-described Examples and Comparative Examples, only 101 nm / min was removed.

Claims (3)

単斜晶系のブランネル石構造を有するCeTi相を含む3元系複合酸化物粒子を含むことを特徴とする3元系複合酸化物研磨剤。 A ternary composite oxide abrasive comprising ternary composite oxide particles containing a CeTi 2 O 6 phase having a monoclinic blannelite structure. 請求項1記載の研磨剤で基板を研磨することを特徴とする基板の研磨方法。   A method for polishing a substrate, comprising polishing the substrate with the abrasive according to claim 1. 基板が、シリカ膜が形成された半導体ウエハである請求項2記載の基板の研磨方法。   The method for polishing a substrate according to claim 2, wherein the substrate is a semiconductor wafer on which a silica film is formed.
JP2006077093A 2005-09-26 2006-03-20 Ternary composite oxide abrasive and method of polishing substrate Pending JP2007116081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077093A JP2007116081A (en) 2005-09-26 2006-03-20 Ternary composite oxide abrasive and method of polishing substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005277730 2005-09-26
JP2006077093A JP2007116081A (en) 2005-09-26 2006-03-20 Ternary composite oxide abrasive and method of polishing substrate

Publications (1)

Publication Number Publication Date
JP2007116081A true JP2007116081A (en) 2007-05-10

Family

ID=38097967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077093A Pending JP2007116081A (en) 2005-09-26 2006-03-20 Ternary composite oxide abrasive and method of polishing substrate

Country Status (1)

Country Link
JP (1) JP2007116081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526724A (en) * 2006-02-13 2009-07-23 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Monoclinic CeTi2O6 thin film and manufacturing method thereof by sol-gel method
WO2019096335A1 (en) * 2017-11-20 2019-05-23 首凯汽车零部件(江苏)有限公司 Composite thermistor material, and preparation method therefor and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526724A (en) * 2006-02-13 2009-07-23 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Monoclinic CeTi2O6 thin film and manufacturing method thereof by sol-gel method
WO2019096335A1 (en) * 2017-11-20 2019-05-23 首凯汽车零部件(江苏)有限公司 Composite thermistor material, and preparation method therefor and application thereof

Similar Documents

Publication Publication Date Title
JP4221903B2 (en) Cerium oxide manufacturing method, cerium oxide abrasive, substrate polishing method using the same, and semiconductor device manufacturing method
JP5023626B2 (en) Polishing method of cerium oxide slurry and substrate
JP5287174B2 (en) Abrasive and polishing method
JP5101626B2 (en) Method for producing cerium oxide powder using organic solvent and CMP slurry containing this powder
JPH11181403A (en) Cerium oxide abrasive and grinding of substrate
JP2005048125A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP5248096B2 (en) Polishing liquid composition
JP3480323B2 (en) Cerium oxide abrasive, substrate polishing method, and semiconductor device
JP2007116081A (en) Ternary composite oxide abrasive and method of polishing substrate
JP4356636B2 (en) Cerium oxide manufacturing method, cerium oxide abrasive, substrate polishing method using the same, and semiconductor device manufacturing method
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP2010030041A (en) Cerium oxide abrasive and method of polishing substrate
JP2004200268A (en) Cmp polishing agent and polishing method of substrate
JP2000188270A (en) Cerium oxide abrasive and method of grinding substrate
JP4666138B2 (en) Polishing composition containing aqueous zirconia sol
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JP4123730B2 (en) Cerium oxide abrasive and substrate polishing method using the same
JP2003209076A (en) Cmp abrasive and abrading method for substrate
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP2005048122A (en) Cmp abrasive, polishing method, and production method for semiconductor device
JP4445820B2 (en) Cerium oxide abrasive and substrate polishing method
JP2006148158A (en) Cerium oxide polishing material and substrate-polishing method
JP2004336082A (en) Cerium oxide abrasive and method of grinding substrate
JP2005039286A (en) Cerium oxide abrasive and method for polishing substrate
JP2004250714A (en) Cerium oxide abrasive and method for grinding substrate