JP2007114361A - Patterning method for alignment film - Google Patents
Patterning method for alignment film Download PDFInfo
- Publication number
- JP2007114361A JP2007114361A JP2005304146A JP2005304146A JP2007114361A JP 2007114361 A JP2007114361 A JP 2007114361A JP 2005304146 A JP2005304146 A JP 2005304146A JP 2005304146 A JP2005304146 A JP 2005304146A JP 2007114361 A JP2007114361 A JP 2007114361A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- alignment film
- liquid crystal
- color filter
- alignment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
本発明は、液晶セルの製造工程において液晶を配向させるためにセルの内側に成膜する配向膜のパターニング方法に関する。 The present invention relates to a method for patterning an alignment film that is formed inside a cell in order to align liquid crystal in the manufacturing process of the liquid crystal cell.
液晶セルの製造工程では、基板上にTFTアレイやカラーフィルタを形成した後、液晶分子を配向させるために印刷方式により基板上の表示部のみに配向剤のパターンを印刷し、予備乾燥工程と本硬化工程を経て配向膜を形成する。
配向剤の印刷は、通常フレキソ印刷機を使用して行う。フレキソ印刷機は、図6に示すように、ディスペンサ14からポリイミド液を滴下し、回転しているドクターロール15とアニロックスロール16の間に供給する。この液は2つのロール間で練られて一定の膜厚を出すためにアニロックスロール16面に薄膜となって保持され、アニロックスロール16から版胴17上のパターン部が彫刻されたフレキソ版18に転移される。そして塗布テーブル19上に固定された基板20が版胴17直下を通過するときに、フレキソ版18に着いている液が基板20に転写塗布される。
In the manufacturing process of the liquid crystal cell, after forming a TFT array and a color filter on the substrate, a pattern of the alignment agent is printed only on the display portion on the substrate by a printing method in order to align the liquid crystal molecules. An alignment film is formed through a curing process.
The alignment agent is usually printed using a flexographic printing machine. As shown in FIG. 6, the flexographic printing machine drops the polyimide liquid from the dispenser 14 and supplies it between the rotating doctor roll 15 and the anilox roll 16. This liquid is kneaded between two rolls and is held as a thin film on the surface of the anilox roll 16 in order to obtain a certain film thickness. The flexographic plate 18 on which the pattern portion on the plate cylinder 17 is engraved is transferred from the anilox roll 16. Be transferred. Then, when the substrate 20 fixed on the coating table 19 passes just below the plate cylinder 17, the liquid that is attached to the flexographic plate 18 is transferred onto the substrate 20.
フレキソ版18には感光性樹脂を用いるが、樹脂版の精度は厚さ3/100mm以下の精密な精度を要求される。しかし、液晶セル製造で使う基板の大きさが年々大きくなり、版を精度良く製作することが難しく、それにより版の値段が高くなってきている。
また、版が大きくなるに連れて版の清掃や版の取扱が難しくなっている状況である。
A photosensitive resin is used for the flexographic plate 18, but the accuracy of the resin plate is required to be precise with a thickness of 3/100 mm or less. However, the size of the substrate used for manufacturing the liquid crystal cell is increasing year by year, making it difficult to manufacture the plate with high accuracy, and the price of the plate is increasing.
Also, as the size of the plate increases, it becomes difficult to clean the plate and handle the plate.
版の材質が樹脂なので、もう一つの問題が版の伸びである。配向膜は決まった位置のみ印刷するため、アライメント機能を使うが、版が伸びると安定して決まった位置に印刷ができなくなる。配向膜の印刷位置精度は0.1mmであるが、基板が大型になって所定の印刷位置精度を維持するのが難しくなっている。 Since the material of the plate is resin, another problem is the elongation of the plate. Since the alignment film prints only at a predetermined position, the alignment function is used. However, when the plate is stretched, printing cannot be stably performed at the predetermined position. Although the printing position accuracy of the alignment film is 0.1 mm, it is difficult to maintain the predetermined printing position accuracy because the substrate becomes large.
配向膜印刷を開始するときには、ダミー基板を最初に投入して印刷膜厚を安定化させると共に印刷性を確認し、版に異物などが無いかを確認する。そのときに流すダミー基板は約20枚程度であるが、基板が大型になったことから、ダミー基板の値段は非常に高価なものになっている。ダミー基板は本硬化後、プラズマや薬液を使ったウェット洗浄機を使ってリワークするが、基板の寿命があり、約10回以上は使えない状況である。そのために配向膜印刷工程の単価が高くなる問題がある。 When the alignment film printing is started, a dummy substrate is first introduced to stabilize the printing film thickness and printability is checked to check whether there is any foreign matter on the plate. The number of dummy substrates to be flowed at that time is about 20, but since the substrates have become large, the price of the dummy substrates is very expensive. The dummy substrate is reworked with a wet cleaning machine using plasma or chemicals after the main curing, but the substrate has a life span and cannot be used more than 10 times. Therefore, there is a problem that the unit price of the alignment film printing process becomes high.
それと、印刷機で使うアニロックスロール16の大きさも基板の大きさと同じく大きくなっている。そのため、印刷作業後のロール清掃は長時間が必要で、配向膜印刷工程での作業性が非常に悪く、大型基板の生産ラインでは、機種変更のときに版の交換やロールの清掃などで約2時間以上が必要である。 In addition, the size of the anilox roll 16 used in the printing machine is also the same as the size of the substrate. Therefore, it takes a long time to clean the roll after the printing work, and the workability in the alignment film printing process is very bad. In large-scale substrate production lines, it is difficult to replace the plate and clean the roll when changing models. 2 hours or more are required.
解決しようとする問題点は以上のような点であり、本発明は、基板の大型化に伴う配向膜印刷工程におけるコストアップや作業性低下などの問題を解消することを目的になされたものである。 The problems to be solved are as described above, and the present invention was made for the purpose of solving problems such as cost increase and workability deterioration in the alignment film printing process accompanying the increase in size of the substrate. is there.
そのため本発明は、塗布装置を用いて液晶パネル基板の全面に配向剤を塗布して配向膜を形成し、その後、レーザ光を照射して不要部分に形成された配向膜を取り除くことを最も主要な特徴とする。 Therefore, the most important aspect of the present invention is to apply an alignment agent to the entire surface of the liquid crystal panel substrate using a coating apparatus to form an alignment film, and then remove the alignment film formed in unnecessary portions by irradiating laser light. Features.
本発明により、▲1▼液晶セルの配向膜形成工程において、印刷作業終了後または機種変更時の版の交換や版の清掃などの作業はなくなる。そして、作業後のロール洗浄などの作業もなくなる。結果、印刷作業終了後や機種変更時の作業時間が短縮され、作業性が向上する。▲2▼基板全面に配向膜を塗布してからラビングを行うので、基板全面にラビングができ、ラビング時のゴミなどは基板に残らない。また、基板のザイズが同じであれば、機種変更時にロール交換なしで、同じ布のロールでラビングができる。▲3▼レーザにより高い解像度で配向膜を取り除くことができるので、印刷に比べて正確なパターン加工ができる。それにより印刷位置ズレによるシール材と配向膜の干渉の問題がなくなり、より安定した密着性を実現できる。▲4▼アレイ基板の端子部(外部接続端子)を配向膜で防護することにより、端子部の損傷が少なくなる。汚れも防げる。▲5▼配向膜の膜厚分布が印刷方式より均一になり、印刷に起因するムラを無くすことができる。 According to the present invention, (1) in the alignment film forming step of the liquid crystal cell, operations such as plate replacement and plate cleaning after the end of the printing operation or when changing the model are eliminated. Also, work such as roll cleaning after work is eliminated. As a result, the work time after the completion of the printing work or when changing the model is shortened, and workability is improved. (2) Since rubbing is performed after the alignment film is applied to the entire surface of the substrate, rubbing can be performed on the entire surface of the substrate, and dust and the like during rubbing do not remain on the substrate. If the substrate size is the same, rubbing can be done with the same cloth roll without changing the roll when changing the model. (3) Since the alignment film can be removed with high resolution by the laser, the pattern processing can be performed more accurately than printing. As a result, there is no problem of interference between the sealing material and the alignment film due to printing position deviation, and more stable adhesion can be realized. (4) By protecting the terminal portion (external connection terminal) of the array substrate with an alignment film, damage to the terminal portion is reduced. Dirt can also be prevented. (5) The film thickness distribution of the alignment film becomes more uniform than that of the printing method, and unevenness due to printing can be eliminated.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
図1に、本発明を実施した液晶セルの断面図を示す。
液晶セルは、TFTアレイ基板1と対向基板のカラーフィルタ基板2を一体に貼り合わせ、周辺にシール材3を巡らせてセルを気密封着する構成である。
基板1、2の対向面にはそれぞれ配向膜4を成膜し、その間にセルギャップを一定に保つスペーサ5と液晶材料6の薄層を挟み込む。
TFTアレイ基板1は、ガラス基板7にTFT、表示電極、蓄積容量、ゲート電極線、ソース電極線よりなるTFTアレイ8を形成し、液晶の表示領域外aにTFTアレイ8の外部接続端子9を露出する。
カラーフィルタ基板2は、ガラス基板7にブラックマトリックス、色材膜、保護膜よりなるカラーフィルタ10を成膜・パターン化し、その上に共通電極11を成膜する。
配向膜4は、塗布装置を用いて基板1、2の全面に配向剤を塗布し、配向剤を乾燥・硬化させて配向膜を形成し、ラビングした後、レーザ光を照射してシール材3の塗布領域bと外部接続端子9上に形成された配向膜4を取り除く。
FIG. 1 shows a cross-sectional view of a liquid crystal cell embodying the present invention.
The liquid crystal cell has a configuration in which a TFT array substrate 1 and a color filter substrate 2 as a counter substrate are bonded together and a cell is hermetically sealed around a sealant 3 around the periphery.
An alignment film 4 is formed on each of the opposing surfaces of the substrates 1 and 2, and a spacer 5 and a thin layer of a liquid crystal material 6 are sandwiched between the alignment films 4 between them.
The TFT array substrate 1 includes a TFT array 8 composed of TFTs, display electrodes, storage capacitors, gate electrode lines, and source electrode lines formed on a glass substrate 7, and external connection terminals 9 of the TFT array 8 outside the liquid crystal display area a. Exposed.
In the color filter substrate 2, a color filter 10 made of a black matrix, a color material film, and a protective film is formed and patterned on a glass substrate 7, and a common electrode 11 is formed thereon.
The alignment film 4 is formed by applying an alignment agent to the entire surfaces of the substrates 1 and 2 using a coating apparatus, drying and curing the alignment agent to form an alignment film, rubbing, and then irradiating a laser beam to seal material 3. The alignment film 4 formed on the coating region b and the external connection terminal 9 is removed.
塗布装置は基板1、2を回転して塗布するスピン式でなく、スロットダイコータなどのスピンレスコータを使用する。これにより、省液やタクトタイムの短縮を図り、基板端部の厚塗りや裏面への回り込みを防いでその部分のリンス処理を不要にする。 The coating apparatus uses a spinless coater such as a slot die coater instead of a spin type that rotates and coats the substrates 1 and 2. As a result, liquid saving and shortening of the tact time are achieved, thick coating of the substrate end portion and wraparound to the back surface are prevented, and the rinsing process of that portion becomes unnecessary.
図2に、本発明を実施した液晶セルの製造工程の流れ図を示す。
また、図3に、製造工程の平面図と断面図を示す。
まず、TFTアレイ基板1とカラーフィルタ基板2を洗浄して付着した汚れやゴミなどを除去し、両基板1、2の表面をクリーンにするとともに、配向剤の塗布性と付着性を高める(工程101)。
次に、図3(a)に示すように、スロットダイなどのヘッド12から有機溶剤で希釈したポリイミドなどの配向剤を吐出し、一定膜厚になるように圧力を制御して吐出液量を調整しながらヘッド12または基板1、2を移動させて基板全面に配向剤を塗布する(工程102)。
次に、塗布が完了した基板1、2は未だ配向剤が乾燥していないので、真空乾燥機またはホットプレートあるいは両者を併用して80℃前後の加熱温度で配向剤に含まれる溶剤成分を取り除いた後、本硬化炉で150〜250℃のホットプレートに置いて10〜60分の熱処理を行い、配向剤を完全に硬化させる。(工程103)。
一般に配向剤はポリイミドの前駆体で、高熱で処理することによりイミド化される。
FIG. 2 shows a flowchart of the manufacturing process of the liquid crystal cell embodying the present invention.
FIG. 3 shows a plan view and a sectional view of the manufacturing process.
First, the TFT array substrate 1 and the color filter substrate 2 are washed to remove adhered dirt and dust, and the surfaces of both the substrates 1 and 2 are cleaned, and the coating property and adhesion of the alignment agent are improved (process) 101).
Next, as shown in FIG. 3A, an alignment agent such as polyimide diluted with an organic solvent is discharged from a head 12 such as a slot die, and the pressure is controlled so as to obtain a constant film thickness. While adjusting, the head 12 or the substrates 1 and 2 are moved to apply the alignment agent to the entire surface of the substrate (step 102).
Next, since the alignment agent is not yet dried on the substrates 1 and 2 after application, the solvent component contained in the alignment agent is removed at a heating temperature of about 80 ° C. using a vacuum dryer or a hot plate or both. After that, it is placed on a hot plate at 150 to 250 ° C. in a main curing furnace, and heat treatment is performed for 10 to 60 minutes to completely cure the alignment agent. (Step 103).
In general, the aligning agent is a polyimide precursor and is imidized by treatment with high heat.
次に、図3(b)に示すように、レーヨンなどの布を巻き付けたローラ13を回転させながら配向膜4を一定方向に擦るラビング処理を行い、液晶分子の配向方位を一定方向に揃える(工程104)。
ラビングする際は外部接続端子9が配向膜4に覆われて段差のない状態なので、傷や汚れ、ゴミなどの付着を防ぎ、段差部で布の毛足が乱れることもないので、ラビングむらを防ぐことができる。
この処理で配向膜ポリイミドのポリマー主鎖がラビング方向に延伸され、この延伸方向に沿って液晶分子が配列するものと考えられる。
なお、ラビング処理は動作モードがTNモードやIPSモードの液晶に対して必要であるが、垂直配向モードの液晶に対しては必要ない。
Next, as shown in FIG. 3B, a rubbing process is performed in which the alignment film 4 is rubbed in a certain direction while rotating a roller 13 wrapped with a cloth such as rayon, so that the alignment direction of liquid crystal molecules is aligned in a certain direction ( Step 104).
When rubbing, since the external connection terminals 9 are covered with the alignment film 4 and have no step, the adhesion of scratches, dirt, dust, etc. is prevented, and the hair of the cloth is not disturbed at the step, so that the rubbing unevenness is prevented. Can be prevented.
By this treatment, it is considered that the polymer main chain of the alignment film polyimide is stretched in the rubbing direction, and the liquid crystal molecules are aligned along the stretching direction.
The rubbing process is necessary for the liquid crystal in the TN mode or IPS mode, but not for the liquid crystal in the vertical alignment mode.
次に、図3(c)に示すように、レーザ光cを照射してシール材3の塗布領域bに形成された配向膜4を取り除く(工程105)。
シール材3と配向膜4は接着性が悪く、基板1、2を貼り合わせた後、剥がれることがあるので、このようにシール材3の塗布領域bにある配向膜4を取り除く必要がある。
特開2000−243743号公報には、ポリイミド液晶配向膜の除去方法として波長が180nm以下の紫外線に露出することでポリイミド膜を完全に分解除去できるとしている。
ところが紫外線は指向性が悪く、光束が広がって照射領域を正確に制御できないので、狙った箇所の配向膜4を除去するためには高価なマスクを必要とし、生産コストがアップする。また、マスクを使用することで機種変更時の交換や位置合せなどの時間・工数が増え、紫外線を使用することで配向膜4を除去するのに長時間必要になるため、生産効率が低下する。
本発明は、指向性と集光性に優れ、エネルギー密度が高く光エネルギーを短時間に集中できるレーザ光cを使用することでマスクを使用せずに短時間で配向膜4を除去できる。
機種変更時は、レーザ彫刻装置に交換後の機種に対応する別のCADデータを登録するだけでよい。
Next, as shown in FIG. 3C, the alignment film 4 formed in the application region b of the sealing material 3 is removed by irradiating the laser beam c (step 105).
Since the sealing material 3 and the alignment film 4 have poor adhesiveness and may peel off after the substrates 1 and 2 are bonded together, it is necessary to remove the alignment film 4 in the application region b of the sealing material 3 in this way.
Japanese Unexamined Patent Publication No. 2000-243743 discloses that a polyimide film can be completely decomposed and removed by exposure to ultraviolet rays having a wavelength of 180 nm or less as a method for removing a polyimide liquid crystal alignment film.
However, since ultraviolet rays have poor directivity and the light flux spreads and the irradiation area cannot be controlled accurately, an expensive mask is required to remove the alignment film 4 at the target location, and the production cost increases. In addition, the use of a mask increases the time and man-hours required for replacement and alignment when changing models, and the use of ultraviolet rays requires a long time to remove the alignment film 4, thus reducing the production efficiency. .
In the present invention, the alignment film 4 can be removed in a short time without using a mask by using the laser beam c that has excellent directivity and light condensing property and has high energy density and can concentrate light energy in a short time.
When changing the model, it is only necessary to register another CAD data corresponding to the replaced model in the laser engraving apparatus.
次に、一方のカラーフィルタ基板2にフォトスペーサ技術を用いてセルギャップを制御するための柱状の突起物を形成する(工程106)。
次に、ディスペンサを用いてUV硬化シール材3を他方のTFTアレイ基板1の配向膜4が取り除かれた後の塗布領域bに塗布する(工程107)。
次に、TFTアレイ基板1に液晶の量を制御して滴下させた後、カラーフィルタ基板2を貼り合せ、大気圧で基板接着させる(工程108)。
次に、カラーフィルタ基板2側からUV光を照射してシール材3を硬化させる(工程109)。
次に、液晶アニールによりシール材3を加熱硬化させる(工程110)。
次に、多面取りの基板1、2から所定サイズの個々のパネルに分割し、外部接続端子9を取り出すための分断などを行う(工程111)。
分断にはスクライバやブレーカ、グラインダが使用され、スクライバでクラックラインを入れ、ブレーカで加圧して分断し、グラインダでエッジを研削する。
そのためこの工程では飛散するガラスチップから外部接続端子9を保護するため、外部接続端子9上に残った配向膜4はそのまま保存することが望ましい。
Next, columnar protrusions for controlling the cell gap are formed on one color filter substrate 2 using a photospacer technique (step 106).
Next, the UV curable sealing material 3 is applied to the application region b after the alignment film 4 of the other TFT array substrate 1 is removed using a dispenser (step 107).
Next, after dropping the liquid crystal on the TFT array substrate 1 while controlling the amount of the liquid crystal, the color filter substrate 2 is bonded and bonded to the substrate at atmospheric pressure (step 108).
Next, the sealing material 3 is cured by irradiating UV light from the color filter substrate 2 side (step 109).
Next, the sealing material 3 is heated and cured by liquid crystal annealing (step 110).
Next, the multi-sided substrates 1 and 2 are divided into individual panels of a predetermined size, and division for taking out the external connection terminals 9 is performed (step 111).
A scriber, a breaker, or a grinder is used for dividing. A crack line is inserted with a scriber, and it is divided by pressing with a breaker, and an edge is ground with a grinder.
Therefore, in this step, in order to protect the external connection terminal 9 from the scattered glass chip, it is desirable to store the alignment film 4 remaining on the external connection terminal 9 as it is.
次に、図4(a)に示すように、レーザ光cを外部接続端子9上の配向膜4に照射し、図4(b)に示すように、外部接続端子9上の配向膜4を分解除去する(工程112)。
外部接続端子9上の配向膜4は、端子間に信号を流して点灯検査などを行うので、次の検査工程前には除去する必要がある。
レーザ光cは指向性がよく、照射領域を正確に制御できるので、外部接続端子9以外の液晶セルをマスクなどで覆う必要がない。
配向膜4を除去する方法として、常圧プラズマや低波長UVを使用する方法もあるが、プラズマやUVは液晶材料6や配向膜4に悪影響を与えるので、プラズマやUVの光線が液晶セルの内部に当たらないように遮蔽するものを間に置く必要がある。
次に、異物やキズ、分断不良、偏光子間での色むらやセルギャップむら、配向不良などの外観検査や、黒点や白点の有無、各種配向欠陥の有無、点・線表示欠陥の有無などの点灯検査を行う(工程113)。
以上により液晶セルの組立が終了する。
Next, as shown in FIG. 4A, the alignment film 4 on the external connection terminal 9 is irradiated with a laser beam c, and the alignment film 4 on the external connection terminal 9 is irradiated as shown in FIG. Decomposing and removing (step 112).
Since the alignment film 4 on the external connection terminal 9 conducts a lighting inspection or the like by causing a signal to flow between the terminals, it needs to be removed before the next inspection process.
Since the laser beam c has good directivity and the irradiation area can be accurately controlled, it is not necessary to cover the liquid crystal cells other than the external connection terminals 9 with a mask or the like.
As a method for removing the alignment film 4, there is a method using atmospheric pressure plasma or low-wavelength UV. However, since plasma or UV adversely affects the liquid crystal material 6 or the alignment film 4, the plasma or UV light is emitted from the liquid crystal cell. It is necessary to put something between them so as not to hit the inside.
Next, appearance inspection such as foreign matter and scratches, poor separation, color unevenness between cell polarizers, unevenness of cell gap, orientation failure, etc., presence of black spots and white spots, presence of various orientation defects, presence of dot / line display defects A lighting inspection is performed (step 113).
This completes the assembly of the liquid crystal cell.
以下、本発明の実施例(実験結果)について説明する。
ITO膜付き基板上に形成された配向膜のみを下層のITO膜に損傷を与えないようにレーザ技術を用いて取り除くことを実験目的とする。
実験にあたり、ITO膜付き基板にスロットダイコータを用いて800Å、1000Å、1200Åの厚さの配向剤を塗布した。この基板を塗布直後に80℃のホットプレートで2分間乾燥させ、その後、210℃の熱風炉の中に60分間入れて配向剤を硬化させた。
このとき用いた配向剤は日産化学のSE―7492(062M)である。レーザ装置はラムダフィジック社製LPX220エキシマレーザ加工装置を用い、その波長は248nmである。
Examples of the present invention (experimental results) will be described below.
The purpose of the experiment is to remove only the alignment film formed on the substrate with the ITO film using laser technology so as not to damage the underlying ITO film.
In the experiment, an alignment agent having a thickness of 800 mm, 1000 mm, or 1200 mm was applied to the ITO film-coated substrate using a slot die coater. Immediately after coating, the substrate was dried on a hot plate at 80 ° C. for 2 minutes, and then placed in a 210 ° C. hot air oven for 60 minutes to cure the alignment agent.
The alignment agent used at this time is SE-7492 (062M) of Nissan Chemical. As the laser device, an LPX220 excimer laser processing device manufactured by Lambda Physics is used, and the wavelength thereof is 248 nm.
まず、配向膜を除去するにあたり、サンプルに対して、適正フルエンスを確認するためにプロセスウインドウ測定試験を行った。
その後、解像度測定マスクを使用して、サンプルに対して、どの程度の加工解像度が得られるかを確認するために解像度測定を行った。
プロセスウインドウ測定試験は、基板上の面積1160mm2の長方形の中に1452×799μm、8×8面のエリアを設定し、50〜400mJ/cm2まで50mJ/cm2ずつフルエンスを上げながら、1〜8までショット数を増加させながら各エリアにレーザ光を照射した。
その後、配向膜が適正に除去できているか、下層のITO膜の損傷がどの程度であるかを顕微鏡を用いて目視確認した。その結果を図5の表にまとめる。
First, in removing the alignment film, a process window measurement test was performed on the sample in order to confirm an appropriate fluence.
Thereafter, using a resolution measurement mask, resolution measurement was performed to confirm how much processing resolution was obtained for the sample.
Process window measurement tests, 1452 × 799μm in area 1160Mm 2 rectangular substrate, set of 8 × 8 surface area, while increasing the fluence by 50 mJ / cm 2 to 50~400mJ / cm 2, 1~ Each area was irradiated with laser light while increasing the number of shots to 8.
Thereafter, it was visually confirmed using a microscope whether the alignment film was properly removed or how much damage the underlying ITO film was. The results are summarized in the table of FIG.
この表で“△”は5%以下の配向膜層残り、加工辺の劣化等軽度の不具合あり、“×”は5%以上の配向膜残り、加工辺形状の重度劣化、下層へのダメージ等あり、“××”は重度の下層へのダメージ等あり、“◎”は良好をそれぞれ表す。
この結果から、レーザ加工としては十分な範囲(100〜200mJ/cm2)のプロセスウィンドウがあることを確認した。
次に、低フルエンスでの加工はDebris(加工時に発生するゴミ)の増大の可能性があるため、適正フルエンスを150mJ/cm2として、加工解像度の確認を行った。
その結果、加工解像度は5μmを十分に下回る、高解像度での配向膜除去加工ができることを確認した。
In this table, “△” indicates that there is a minor defect such as 5% or less of the alignment film layer remaining and deterioration of the processed side, and “×” indicates that 5% or more of the alignment film remains, severe deterioration of the processed side shape, damage to the lower layer, etc. Yes, “xx” indicates severe damage to the lower layer, and “◎” indicates good.
From this result, it was confirmed that there was a process window in a sufficient range (100 to 200 mJ / cm 2 ) for laser processing.
Next, since processing at low fluence may increase Debris (dust generated during processing), the processing resolution was confirmed with an appropriate fluence of 150 mJ / cm 2 .
As a result, it was confirmed that the processing resolution is sufficiently lower than 5 μm, and the alignment film can be removed at a high resolution.
次に、異なる膜厚800Å、1000Å、1200Åの配向膜を用いて同じ加工条件で実験を行った結果、配向膜の厚さに関係なく、下層のITO膜に損傷を与えることなく、良好な結果が得られることを確認した。
以上の実験結果からレーザ加工により、サンプルに対して、プロセスウィンドウが十分広く、安定した加工ができることを確認した。
この他、サンプルに対して、数μm程度の加工解像度が得られることを確認した。
また、レーザのパルス幅を制御して100Hz加工を行った場合でも、10Hz(低速加工)と同等の加工品質を得られることが確認できた。
また、懸念材料である加工過程で発生するDebrisは適正なフルエンスを選択することにより、ほとんど無くなることが確認できた。
Next, as a result of conducting experiments under the same processing conditions using alignment films having different film thicknesses of 800 mm, 1000 mm, and 1200 mm, good results were obtained without damaging the underlying ITO film regardless of the thickness of the alignment film. It was confirmed that
From the above experimental results, it was confirmed by laser processing that the process window was sufficiently wide for the sample and that stable processing was possible.
In addition, it was confirmed that a processing resolution of about several μm was obtained for the sample.
Moreover, even when 100 Hz processing was performed by controlling the pulse width of the laser, it was confirmed that processing quality equivalent to 10 Hz (low speed processing) could be obtained.
Further, it was confirmed that Debris generated in the processing process which is a concern material is almost eliminated by selecting an appropriate fluence.
1 TFTアレイ基板
2 カラーフィルタ基板
3 シール材
4 配向膜
5 スペーサ
6 液晶材料
7 ガラス基板
8 TFTアレイ
9 外部接続端子
10 カラーフィルタ
11 共通電極
12 ヘッド
13 ローラ
14 ディスペンサ
15 ドクターロール
16 アニロックスロール
17 版胴
18 フレキソ版
19 塗布テーブル
20 ガラス基板
a 表示領域外
b 塗布領域
c レーザ光
1 TFT array substrate 2 Color filter substrate 3 Sealing material 4 Alignment film 5 Spacer 6 Liquid crystal material 7 Glass substrate 8 TFT array 9 External connection terminal 10 Color filter 11 Common electrode 12 Head 13 Roller 14 Dispenser 15 Doctor roll 16 Anilox roll 17 Plate cylinder 18 Flexo plate 19 Application table 20 Glass substrate a Out of display area b Application area c Laser light
Claims (4)
その後、レーザ光を照射して不要部分に形成された配向膜を取り除くことを特徴とする配向膜のパターニング方法。 Applying an alignment agent to the entire surface of the liquid crystal panel substrate using a coating apparatus to form an alignment film,
Then, the alignment film formed in the unnecessary part is irradiated with a laser beam to remove the alignment film.
The alignment film patterning method according to claim 1, wherein the fluence of the laser beam is 100 to 200 mJ / cm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005304146A JP2007114361A (en) | 2005-10-19 | 2005-10-19 | Patterning method for alignment film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005304146A JP2007114361A (en) | 2005-10-19 | 2005-10-19 | Patterning method for alignment film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007114361A true JP2007114361A (en) | 2007-05-10 |
Family
ID=38096638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005304146A Pending JP2007114361A (en) | 2005-10-19 | 2005-10-19 | Patterning method for alignment film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007114361A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011086621A1 (en) | 2010-01-14 | 2011-07-21 | シャープ株式会社 | Liquid crystal display panel, and method for inspecting substrate for liquid crystal display panel |
WO2012050179A1 (en) * | 2010-10-14 | 2012-04-19 | シャープ株式会社 | Method of producing liquid crystal display device |
US8687163B2 (en) | 2009-11-16 | 2014-04-01 | Sharp Kabushiki Kaisha | Display panel and liquid crystal display device having particular sealing structure |
CN103913893A (en) * | 2014-03-24 | 2014-07-09 | 京东方科技集团股份有限公司 | Substrate and manufacturing method, liquid crystal box and manufacturing method, equipment and display device |
CN104360762A (en) * | 2014-10-10 | 2015-02-18 | 江西合力泰科技有限公司 | ON CELL solid-state full lamination module processing method |
CN106773333A (en) * | 2016-12-26 | 2017-05-31 | 武汉华星光电技术有限公司 | A kind of display panel to box assemble method |
US9798179B2 (en) | 2010-10-14 | 2017-10-24 | Merck Patent Gmbh | Liquid crystal display device |
CN110609419A (en) * | 2019-08-23 | 2019-12-24 | 武汉华星光电技术有限公司 | Display panel preparation method and display panel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0843625A (en) * | 1994-08-02 | 1996-02-16 | Fuji Photo Film Co Ltd | Production of optical compensating sheet |
JPH11183927A (en) * | 1997-12-22 | 1999-07-09 | Sharp Corp | Manufacture for liquid crystal display device |
JP2001235749A (en) * | 2000-02-21 | 2001-08-31 | Seiko Epson Corp | Method for manufacturing electrooptical device, electrooptical device and projection type display device |
JP2002221713A (en) * | 2001-01-25 | 2002-08-09 | Toshiba Corp | Liquid crystal display device and method of manufacturing the same |
-
2005
- 2005-10-19 JP JP2005304146A patent/JP2007114361A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0843625A (en) * | 1994-08-02 | 1996-02-16 | Fuji Photo Film Co Ltd | Production of optical compensating sheet |
JPH11183927A (en) * | 1997-12-22 | 1999-07-09 | Sharp Corp | Manufacture for liquid crystal display device |
JP2001235749A (en) * | 2000-02-21 | 2001-08-31 | Seiko Epson Corp | Method for manufacturing electrooptical device, electrooptical device and projection type display device |
JP2002221713A (en) * | 2001-01-25 | 2002-08-09 | Toshiba Corp | Liquid crystal display device and method of manufacturing the same |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8687163B2 (en) | 2009-11-16 | 2014-04-01 | Sharp Kabushiki Kaisha | Display panel and liquid crystal display device having particular sealing structure |
WO2011086621A1 (en) | 2010-01-14 | 2011-07-21 | シャープ株式会社 | Liquid crystal display panel, and method for inspecting substrate for liquid crystal display panel |
US8730446B2 (en) | 2010-01-14 | 2014-05-20 | Sharp Kabushiki Kaisha | Liquid crystal display panel, and method for testing substrate for liquid crystal display panel |
WO2012050179A1 (en) * | 2010-10-14 | 2012-04-19 | シャープ株式会社 | Method of producing liquid crystal display device |
US9557605B2 (en) | 2010-10-14 | 2017-01-31 | Merck Patent Gmbh | Method of producing liquid crystal display device |
US9798179B2 (en) | 2010-10-14 | 2017-10-24 | Merck Patent Gmbh | Liquid crystal display device |
CN103913893A (en) * | 2014-03-24 | 2014-07-09 | 京东方科技集团股份有限公司 | Substrate and manufacturing method, liquid crystal box and manufacturing method, equipment and display device |
CN104360762A (en) * | 2014-10-10 | 2015-02-18 | 江西合力泰科技有限公司 | ON CELL solid-state full lamination module processing method |
CN106773333A (en) * | 2016-12-26 | 2017-05-31 | 武汉华星光电技术有限公司 | A kind of display panel to box assemble method |
CN110609419A (en) * | 2019-08-23 | 2019-12-24 | 武汉华星光电技术有限公司 | Display panel preparation method and display panel |
US11360355B2 (en) | 2019-08-23 | 2022-06-14 | Wuhan China Star Optoelectronics Technology Co., Ltd. | Method of manufacturing display panel and display panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007114361A (en) | Patterning method for alignment film | |
EP2023185B1 (en) | Process for manufacturing display panel, display panel manufacturing apparatus and display panel | |
US7767555B2 (en) | Method for cutting substrate using femtosecond laser | |
JP2006058875A (en) | Liquid crystal panel, inspection device for liquid crystal panel and a method of manufacturing liquid crystal display device using the same | |
CN102520551A (en) | Method and system for forming alignment film areas on basis of UV (ultraviolet) exposure | |
JPH09166783A (en) | Method and device to form orienting film of liquid crystal display element | |
KR100251277B1 (en) | Liquid crystal display | |
US20040114089A1 (en) | Manufacturing method for liquid crystal display device | |
KR100922797B1 (en) | Apparatus and method for forming pattern | |
KR20070057494A (en) | Apparatus and method for totally patterning lcd color filter and alignment layer | |
CN109061950A (en) | The polyimide coating method of liquid crystal display panel | |
JP2004077904A (en) | Method for manufacturing color filter | |
JP2882376B2 (en) | Liquid crystal panel sealing method | |
WO2018113150A1 (en) | Panel processing device | |
JPH01210932A (en) | Orientation of liquid crystal display device | |
JP2004246092A (en) | Liquid crystal cell and method for manufacturing the same | |
JP2008014982A (en) | Method and apparatus for manufacturing liquid crystal display device | |
KR101255703B1 (en) | Method for manufacturing a liquid crystal panel | |
JP2004077905A (en) | Defect correcting device for color filter | |
KR20020087254A (en) | alignment layer printing equipment | |
JPH0756014A (en) | Color filter | |
CN109031713B (en) | Substrate alignment detection method and detection device thereof | |
JP2001183668A (en) | Manufacturing method of liquid crystal display device | |
KR20120010657A (en) | Apparatus and method for repairing defect in liquid crystal display panel | |
US20130120722A1 (en) | Method and system for forming alignment film region through uv light exposure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100622 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101019 |