JP2007113701A - Reduction gear for joint - Google Patents

Reduction gear for joint Download PDF

Info

Publication number
JP2007113701A
JP2007113701A JP2005305937A JP2005305937A JP2007113701A JP 2007113701 A JP2007113701 A JP 2007113701A JP 2005305937 A JP2005305937 A JP 2005305937A JP 2005305937 A JP2005305937 A JP 2005305937A JP 2007113701 A JP2007113701 A JP 2007113701A
Authority
JP
Japan
Prior art keywords
gear
planetary
teeth
planetary gear
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005305937A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yamamoto
耕之 山本
Hidekazu Motoda
英一 元田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Labour Health and Welfare Organization
Original Assignee
Japan Labour Health and Welfare Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Labour Health and Welfare Organization filed Critical Japan Labour Health and Welfare Organization
Priority to JP2005305937A priority Critical patent/JP2007113701A/en
Publication of JP2007113701A publication Critical patent/JP2007113701A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reduction gear for a joint suitably applied to the joint of an artificial limb or a prosthesis and having a thin thickness with a high reduction ratio using a gear with no dislocation. <P>SOLUTION: Using a 3S type planetary mechanism, a first planetary gear 2 meshed with a sun gear 1 is meshed with a first internal tooth gear 5 on the fixed side, and a second planetary gear 3 is fixed to the first planetary gear 2 so as to be integrally rotated. The second planetary gear 3 is meshed with a second internal tooth gear 4 on the driven side and rotationally driven. The difference ΔZ between the number of teeth of the first internal tooth gear 5 and that of the second internal tooth gear 4 and the difference ΔZ between the number of teeth of the first planetary gear 2 and that of the second planetary gear 3 are made equal and set to 1. Further, a train of the driven side gears 3, 4 is held by a train of the fixed side gears 1, 2, 5 from the lateral side to form a sandwich structure, thus withstanding high load torque. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、装具または義肢、義足、義手、の膝関節、股関節、肘関節等に用いる電動関節の減速機に関し、また、ロボットの関節にも適用できる減速機に関するものである。   The present invention relates to a reduction gear for an electric joint used for an orthosis, a prosthetic limb, a prosthetic leg, a prosthetic hand, a knee joint, a hip joint, an elbow joint, and the like, and also relates to a reduction gear applicable to a robot joint.

図1は、本発明に係る減速機が適用される例を示す側面図である。モータで駆動される減速機により構成される関節は様々な分野で利用される。図1(A)は一般に関節に適用した場合を示し、モータで回転駆動される減速機101の固定側が一方の骨格保持部102に結合され、従動側が他方の骨格保持部103に結合される。ここで、固定側、従動側というのは相対的な概念であり、いずれを固定側あるいは従動側と定義しても同じことである。図1(B)は義肢に適用した場合を示し、体躯104と大腿骨部分105を結合する股関節106、大腿骨部分105と下腿骨部分107を結合する膝関節108、下腿骨部分107と足109とを結合する足関節110にそれぞれ適用される。図1(C)は筋肉が麻痺した患者を補助する装具に適用した場合を示し、体躯コルセット111と大腿部保持具112とを結合する股関節113、大腿部保持具112と下腿保持具114とを結合する膝関節115、下腿保持具114と足保持具116とを結合する足関節117に適用される。図面には示さないが上肢の肩関節、肘関節等にも適用できる。   FIG. 1 is a side view showing an example to which a reduction gear according to the present invention is applied. A joint constituted by a reduction gear driven by a motor is used in various fields. FIG. 1A generally shows a case where the present invention is applied to a joint, and a fixed side of a reduction gear 101 that is rotationally driven by a motor is coupled to one skeleton holding unit 102, and a driven side is coupled to the other skeleton holding unit 103. Here, the fixed side and the driven side are relative concepts, and the same is true regardless of which is defined as the fixed side or the driven side. FIG. 1B shows a case where it is applied to a prosthetic limb. The hip joint 106 connects the body 104 and the femur 105, the knee joint 108 connects the femur 105 and the crus 107, the crus 107 and the foot 109. Are applied to the ankle joint 110. FIG. 1C shows a case where the present invention is applied to a brace that assists a patient whose muscles are paralyzed, and includes a hip joint 113, a thigh holder 112, and a crus holder 114 that connect the body corset 111 and the thigh holder 112. It is applied to the knee joint 115 that joins the leg joint 117 and the leg joint 117 that joins the lower leg holder 114 and the foot holder 116. Although not shown in the drawings, the present invention can also be applied to the shoulder joint, elbow joint, etc. of the upper limb.

このような関節に用いる減速機には、特に下肢の関節には体重がかかるため、大きなトルクに抗して回転できる減速機、つまり減速比の大きい減速機が望まれる。さらに、取付場所の制約から直径が余り大きくなく、厚さの薄いものが望まれる。減速比の大きな減速機として、まず、ハーモニックドライブが思い浮かぶ。しかし、ハーモニックドライブはたわみ円筒外周に歯を加工し楕円長径端2カ所で噛み合わせ、円筒開口端でのわずかな短径側のたわみ、即ち曲率を小さくして1歯を逃がして、1周で計2歯を減じて減速に利用するものであるため、軸方向の長さの短い円筒ではハーモニック機構そのもののたわませる力が大きくなり、実現できても集中応力が大きくなり疲労限界の低下を招くおそれがある。そこで、遊星歯車機構の採用に至る。特開2004−01990号公報(特許文献1)には、3K型(3S型)で1/217の減速比を実現したものが提案されている。ここでは固定側遊星歯車PG1と従動側遊星歯車PG2には同じ歯車を採用し、固定側内歯車RG1と従動側内歯車RG2との歯数差ΔZを1とした。そして、歯数差のある2つの内歯車GR1、GR2と一の遊星歯車との噛合を可能とするため、従動側内歯車RG2は+0.5だけ転位させている(特許文献1、段落番号0030)。この減速機は厚さが厚く、関節内に納める形になっているので、この減速機はロボットの膝関節用減速機ではないかと推定される。   As a speed reducer used for such a joint, a weight reducer that can rotate against a large torque, that is, a speed reducer with a large reduction ratio, is particularly desired because the joints of the lower limbs are heavy. Furthermore, a thin one with a small diameter is desired because of the limitation of the mounting location. The first thing that comes to mind is a harmonic drive that has a large reduction ratio. However, the harmonic drive processes teeth on the outer circumference of the flexible cylinder and engages them at the two elliptical long-diameter ends. The slight deflection of the minor axis at the open end of the cylinder, that is, the curvature is reduced, and one tooth is released. Since a total of 2 teeth are used for deceleration, a cylinder with a short axial length increases the bending force of the harmonic mechanism itself, and even if it can be realized, the concentrated stress increases and the fatigue limit decreases. There is a risk of inviting. Therefore, the planetary gear mechanism is adopted. Japanese Patent Application Laid-Open No. 2004-01990 (Patent Document 1) proposes a 3K type (3S type) that achieves a reduction ratio of 1/217. Here, the same gear is adopted as the fixed planetary gear PG1 and the driven planetary gear PG2, and the tooth number difference ΔZ between the fixed internal gear RG1 and the driven internal gear RG2 is 1. The driven internal gear RG2 is shifted by +0.5 in order to enable engagement between two internal gears GR1 and GR2 having a different number of teeth and one planetary gear (Patent Document 1, paragraph 0030). ). Since this speed reducer is thick and can be accommodated in the joint, it is estimated that this speed reducer is a speed reducer for the knee joint of the robot.

また、特開2001−90792号公報(特許文献2)には、3K型(3S型)で1/224の減速比を実現したものが提案されている。ここでは、一方の遊星歯車を大径とし太陽歯車とのみ噛合するようにし、大径の遊星歯車と一体に回転する小径の遊星歯車が固定側及び従動側内歯車に噛合するようにしている。固定側内歯車Cと従動側内歯車Dとの歯数差ΔZを3としている。そして、歯数差のある内歯車C、Dと一の遊星歯車B2との噛合を可能とするため、従動側内歯車Dは+0.9だけ転位させている(特許文献2、段落番号0012)。そして、固定側内歯車RG1と従動側内歯車RG2との歯数差ΔZを1とした。そして、転位係数と歯数差ΔZとの間に所定の条件を設けている(特許文献2、段落番号0004)。   Japanese Unexamined Patent Publication No. 2001-90792 (Patent Document 2) proposes a 3K type (3S type) that realizes a reduction ratio of 1/224. Here, one planetary gear has a large diameter so as to mesh only with the sun gear, and a small-diameter planetary gear that rotates integrally with the large-diameter planetary gear meshes with the fixed side and driven-side internal gears. The number of teeth difference ΔZ between the fixed-side internal gear C and the driven-side internal gear D is set to 3. Then, in order to allow the internal gears C and D having a difference in the number of teeth to mesh with the one planetary gear B2, the driven-side internal gear D is shifted by +0.9 (Patent Document 2, Paragraph 0012). . The tooth number difference ΔZ between the fixed side internal gear RG1 and the driven side internal gear RG2 was set to 1. A predetermined condition is provided between the dislocation coefficient and the tooth number difference ΔZ (Patent Document 2, paragraph number 0004).

3K型(3S型)の遊星歯車機構については、「機械工学便覧 1989年版 日本機械学会著作」のB1−177頁、図389に図11に示す図が掲載され、径の異なる2つの遊星歯車が一体に回転し、それぞれ固定側内歯車S2及び従動側内歯車S3に噛合するようにしたものが実質的に開示されている。   The 3K type (3S type) planetary gear mechanism is shown in FIG. 11 on page B1-177 of “Mechanical Engineering Handbook 1989 edition of the Japan Society of Mechanical Engineers” and FIG. 389. The ones that rotate integrally and mesh with the fixed-side internal gear S2 and the driven-side internal gear S3 are substantially disclosed.

特開2004−01990号公報JP 2004-01990 A 特開2004−01990号公報JP 2004-01990 A 「機械工学便覧 1989年版 日本機械学会著作」のB1−177頁、図389"Mechanical Engineering Handbook, 1989 Edition, Japan Society of Mechanical Engineers", page B1-177, Fig. 389

上記特許文献1の遊星歯車機構では、歯数差のある内歯車GR1、GR2と一の遊星歯車との噛合を可能とするため、従動側内歯車RG2を転位させている。このため歯車の噛み合い率が悪くなり、大きなトルクの掛かる膝関節用減速機としては強度上不利になると云う問題点がある。また、減速比は1/217に止まっている(特許文献1、段落番号0031)。さらに、4組の遊星歯車を等間隔で配置するため、4組のそれぞれについて固定側遊星歯車PG1と従動側遊星歯車PG2とを所定の位相差ずつずらせて組み込まなければならない(特許文献1、段落番号0035、図8)。このため構造が複雑になりコストがアップすると共に、強度が弱くなると云う問題点がある。さらに、標準歯車ではない歯車を多く使うことになり、これらを組み合わせなければならず、コストアップとなるという問題点があった。   In the planetary gear mechanism of Patent Document 1, the driven-side internal gear RG2 is shifted in order to allow the internal gears GR1 and GR2 having a difference in the number of teeth to mesh with one planetary gear. For this reason, there is a problem that the meshing rate of the gears is deteriorated, and that it is disadvantageous in terms of strength as a speed reducer for a knee joint in which a large torque is applied. Further, the reduction ratio is stopped at 1/217 (Patent Document 1, paragraph number 0031). Furthermore, in order to arrange the four planetary gears at equal intervals, the fixed planetary gear PG1 and the driven planetary gear PG2 must be incorporated with a predetermined phase difference for each of the four sets (Patent Document 1, paragraph). Number 0035, FIG. 8). For this reason, there is a problem that the structure is complicated, the cost is increased, and the strength is weakened. Further, many gears that are not standard gears are used, and these have to be combined, resulting in an increase in cost.

上記特許文献2の遊星歯車機構では、歯数差のある内歯車C、Dと一の遊星歯車B2との噛合を可能とするため、従動側内歯車Dを転位させている。そして、転位量と歯数差率に微妙な関係を持たせて歯数の異なる内歯歯車C、Dと遊星歯車B2との噛み合いを実用上可能なように確保している。このため、上記特許文献1の遊星歯車機構と同様の問題点があると共に、設計の自由度が狭くなると云う問題点がある。また、減速比も1/119に止まっている(特許文献2、段落番号0011)。   In the planetary gear mechanism of Patent Document 2, the driven-side internal gear D is displaced in order to allow the internal gears C and D having a difference in the number of teeth to mesh with the one planetary gear B2. Then, a delicate relationship is provided between the shift amount and the tooth number difference rate to ensure that the internal gears C and D having different number of teeth and the planetary gear B2 can be engaged in practice. For this reason, there are the same problems as the planetary gear mechanism of the above-mentioned Patent Document 1, and there is a problem that the degree of freedom of design is narrowed. Moreover, the reduction ratio is also stopped at 1/119 (Patent Document 2, paragraph number 0011).

本発明は、上記の課題を解決するためなされたものであり、転位歯車を使用せず標準の歯車で従来以上の高減速比を実現し、軸方向の厚さが薄く、患者の関節運動支援装具に適用するに好適な関節用減速機を提供することを目的とする。また、関節用減速機の固定側と従動側との間に大きなトルクが掛かっても、軸方向の曲げモーメントが発生せず安定して作動する関節用減速機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and achieves a higher reduction ratio than conventional with a standard gear without using a dislocation gear, and has a thin axial thickness and assists patient's joint movement. It aims at providing the reduction gear for joints suitable for applying to a brace. It is another object of the present invention to provide a joint reducer that operates stably without generating an axial bending moment even when a large torque is applied between the fixed side and the driven side of the joint reducer.

上記の課題を解決するため、本発明の関節用減速機は、入力軸と一体にされた太陽歯車と、前記太陽歯車と噛合する複数個の第1の遊星歯車と、前記第1の遊星歯車のそれぞれと一体にされて一体に回転し前記太陽歯車と噛合しない複数個の第2の遊星歯車と、前記複数個の第1の遊星歯車と噛合する第1の内歯歯車と、前記複数個の第2の遊星歯車と噛合する第2の内歯歯車と、前記第1の内歯歯車の歯数と前記第2の内歯歯車の歯数の差ΔZと、前記第1の遊星歯車の歯数と前記第2の遊星歯車の歯数の差ΔZが等しいことと、前記第1若しくは第2の内歯歯車のいずれか一方を固定側とし、いずれか他方を従動側としたことと、を備えることを特徴とする。ここで、前記歯数の差ΔZが1であること、を特徴とすることができる。   In order to solve the above problems, a reduction gear for joint according to the present invention includes a sun gear integrated with an input shaft, a plurality of first planetary gears meshed with the sun gear, and the first planetary gears. A plurality of second planetary gears that are integrally rotated with each other and do not mesh with the sun gear, a plurality of first internal gears that mesh with the plurality of first planetary gears, and the plurality of planetary gears. A second internal gear meshing with the second planetary gear, a difference ΔZ between the number of teeth of the first internal gear and the number of teeth of the second internal gear, and the first planetary gear The difference ΔZ between the number of teeth and the number of teeth of the second planetary gear is equal, one of the first or second internal gear is a fixed side, and the other is a driven side, It is characterized by providing. Here, the difference ΔZ in the number of teeth may be 1.

このように構成し、前記歯数の差ΔZを小さな値とすると、太陽歯車と従動側の内歯歯車との間に大きな減速比を得ることができる。歯数の差ΔZが1のとき、減速比がもっとも大きい。ここで、各歯車を転位歯車とする必要はない。径(歯数)の異なる内歯歯車に径(歯数)の異なる遊星歯車がそれぞれ噛合するからである。そして、前記第1の内歯歯車の歯数と前記第2の内歯歯車の歯数の差ΔZと、前記第1の遊星歯車の歯数と前記第2の遊星歯車の歯数の差ΔZが等しいことにより、複数の遊星歯車組において、第1の遊星歯車と第2の遊星歯車とを固定する際の両者の位相差を全ての組で同じにすることができ、組となった遊星歯車毎に位相差を変える必要がない。両者の歯数の差ΔZが同一であるから、1組の遊星歯車を自転させずに平行移動させながら公転させて考えると全周において1組の遊星歯車と2つの内歯歯車の歯の位相関係は一致する。従って、同じ位相差に組み立てた複数の遊星歯車組を公転軌跡上で同じ向きに配置し組み立てれば2つの内歯歯車と位相を一致させて配置することができる。   When configured in this way and the difference ΔZ in the number of teeth is set to a small value, a large reduction ratio can be obtained between the sun gear and the driven-side internal gear. When the difference ΔZ in the number of teeth is 1, the reduction ratio is the largest. Here, each gear need not be a shift gear. This is because planetary gears having different diameters (number of teeth) mesh with internal gears having different diameters (number of teeth). The difference ΔZ between the number of teeth of the first internal gear and the number of teeth of the second internal gear, and the difference ΔZ of the number of teeth of the first planetary gear and the number of teeth of the second planetary gear. Are equal to each other, the phase difference between the first planetary gear and the second planetary gear when the first planetary gear and the second planetary gear are fixed can be made the same in all the groups. There is no need to change the phase difference for each gear. Since the difference ΔZ in the number of teeth of the two is the same, the phase of the teeth of the planetary gear and the two internal gears on the entire circumference is considered when the planetary gear is revolved while revolving without rotating. The relationship is consistent. Therefore, if a plurality of planetary gear sets assembled with the same phase difference are arranged and assembled in the same direction on the revolution trajectory, they can be arranged in phase with the two internal gears.

また、前記太陽歯車と前記第1の遊星歯車と前記第1の内歯歯車とからなる第1の歯車系列と、前記第2の遊星歯車と前記第2の内歯歯車とからなる第2の歯車系列との2つの歯車系列のうちいずれか一方の歯車系列が複数組あり、複数組ある一方の歯車系列が他方の歯車系列を軸方向に挟み込むように組み込まれたサンドイッチ構造を有すること、を特徴とすることができる。このように構成すると、固定側と従動側との間に大きなトルクが掛かっても、一方の歯車系列が他方の歯車系列に挟み込まれて組み込まれているから、軸方向の曲げモーメントがキャンセルしあって外部に発生せず、安定して作動する。換言すれば、サンドイッチ構造で一体型遊星歯車群の軸支持が片持ちではなく両端支持の自動アライメントとなり遊星歯車の軸に曲げ荷重の発生が少ないので全体を薄くでき関節用減速機を薄くできる。また、逆に言えば高負荷トルクに耐えられる。   In addition, a second gear comprising the first gear train comprising the sun gear, the first planetary gear, and the first internal gear, and the second planetary gear and the second internal gear. There is a plurality of sets of one of the two gear series with the gear series, and a sandwich structure in which one of the plurality of sets is incorporated so as to sandwich the other gear series in the axial direction. Can be a feature. With this configuration, even if a large torque is applied between the fixed side and the driven side, one gear train is sandwiched and incorporated in the other gear train, so the axial bending moment is canceled. It does not occur outside and operates stably. In other words, the shaft support of the integral planetary gear group in the sandwich structure is not cantilevered, but the both ends support is automatically aligned, and the generation of bending load on the planetary gear shaft is small, so that the whole can be thinned and the joint speed reducer can be thinned. In other words, it can withstand high load torque.

図2は、本発明の基本概念を示す模式図である。45歯からなる大径の歯車201と44歯からなる小径の歯車202は一体に回転するように互いに一体にされている。大径の歯車201は従動側のラック204と噛合し、小径の歯車202は固定側のラック203と噛合する。ここで大径の歯車201と小径の歯車202の歯数差ΔZは1である。両歯車201、202のピッチ円の間隙dは1/2歯×モジュールであり、大径の歯車202のピッチ円の直径は45歯×モジュールである。従って、大径の歯車201を回転させたときの従動側ラック204の移動量は、てこの原理で考え、大径の歯車201の移動量Fの1/45/0.5=1/90となる。このように歯数差Δの少ない歯車201、202を一体として組合せ、固定側ラック203と従動側ラック204と噛合させることにより大きな減速比1/90を実現できる。この原理を減速機として実現するため、有限なラック203、204を無限化のために円形に巻いて大きな歯数をもつ内歯歯車とすることとし、固定側を遊星歯車機構として実現することにより、ラックによる減速比と遊星歯車による減速比との積でさらに大きな減速比を得ることができ、しかもウォーム減速機のように直交軸でない直線軸で省スペースを達成できる。   FIG. 2 is a schematic diagram showing the basic concept of the present invention. A large-diameter gear 201 composed of 45 teeth and a small-diameter gear 202 composed of 44 teeth are integrated with each other so as to rotate together. The large diameter gear 201 meshes with the driven side rack 204, and the small diameter gear 202 meshes with the fixed side rack 203. Here, the difference in the number of teeth ΔZ between the large-diameter gear 201 and the small-diameter gear 202 is 1. The gap d between the pitch circles of both gears 201 and 202 is ½ teeth × module, and the diameter of the pitch circle of the large-diameter gear 202 is 45 teeth × module. Therefore, the amount of movement of the driven rack 204 when the large-diameter gear 201 is rotated is considered based on the lever principle, and is 1/45 / 0.5 = 1/90 of the movement amount F of the large-diameter gear 201. Become. Thus, a large reduction gear ratio of 1/90 can be realized by combining the gears 201 and 202 having a small number of teeth difference Δ together and engaging the fixed side rack 203 and the driven side rack 204. In order to realize this principle as a speed reducer, the finite racks 203 and 204 are wound in a circular shape to make them infinite, and the internal gear has a large number of teeth, and the fixed side is realized as a planetary gear mechanism. Further, a larger reduction ratio can be obtained by the product of the reduction ratio by the rack and the reduction ratio by the planetary gear, and space saving can be achieved by a linear axis that is not an orthogonal axis like a worm reduction gear.

図3は、本発明に係る関節用減速機の概念を示す斜視図である。固定側骨格保持部102と従動側骨格保持部103の間に遊星歯車機構からなる関節115が構成される。固定側骨格保持部102にモータ120が固定される。モータ120により回転駆動される入力軸121により太陽歯車1を回転駆動する。太陽歯車1は120°毎に配置された3個の第1の遊星歯車2と噛合する。各第1の遊星歯車2にはそれぞれ第2の遊星歯車3が同心的に固定され一体に回転する。第2の遊星歯車3の径は第1の遊星歯車2の径より小さい。3個の第1の遊星歯車2は固定側骨格保持部102と一体となった固定側の第1の内歯歯車5と噛合する。3個の第2の遊星歯車3は従動側骨格保持部103と一体となった従動側の第2の内歯歯車4と噛合する。第1の内歯歯車5の径は第2の内歯歯車4の径より大きい。3組の遊星歯車2,3を保持するキャリア(アーム)は省略して描いていない。太陽歯車1を回転駆動すると第1の遊星歯車2を回転駆動し、第1の遊星歯車は固定側の第1の内歯歯車5との間で自転しながら公転する。第1の遊星歯車2と全く同じ動きをする第2の遊星歯車3の動きにより、従動側の第2の内歯歯車4が僅かに回転し従動側骨格保持部103が回転駆動される。   FIG. 3 is a perspective view showing the concept of the joint speed reducer according to the present invention. A joint 115 composed of a planetary gear mechanism is formed between the fixed side skeleton holding unit 102 and the driven side skeleton holding unit 103. The motor 120 is fixed to the fixed side skeleton holding unit 102. The sun gear 1 is rotationally driven by the input shaft 121 that is rotationally driven by the motor 120. The sun gear 1 meshes with the three first planetary gears 2 arranged every 120 °. A second planetary gear 3 is concentrically fixed to each first planetary gear 2 and rotates integrally therewith. The diameter of the second planetary gear 3 is smaller than the diameter of the first planetary gear 2. The three first planetary gears 2 mesh with the fixed-side first internal gear 5 integrated with the fixed-side skeleton holding unit 102. The three second planetary gears 3 mesh with the driven second internal gear 4 integrated with the driven skeleton holding portion 103. The diameter of the first internal gear 5 is larger than the diameter of the second internal gear 4. The carrier (arm) that holds the three sets of planetary gears 2 and 3 is not shown. When the sun gear 1 is rotationally driven, the first planetary gear 2 is rotationally driven, and the first planetary gear revolves while rotating with the first internal gear 5 on the fixed side. Due to the movement of the second planetary gear 3 that moves exactly the same as the first planetary gear 2, the second internal gear 4 on the driven side slightly rotates and the driven-side skeleton holding portion 103 is driven to rotate.

図4は、関節用減速機の遊星歯車機構を示す構成図である。太陽歯車1により回転駆動される第1の遊星歯車2は固定側の第1の内歯歯車5と噛合する。第1の遊星歯車2と一体的に回転する第2の遊星歯車3は従動側の第2の内歯歯車4と噛合する。3組の遊星歯車2、3の組はキャリア(アーム)6により保持されている。ここで、固定側の第1の内歯歯車5の歯数は従動側の第2の内歯歯車4の歯数よりΔZだけ、具体的には1だけ、多くされている。同様に、第1の遊星歯車2の歯数は第2の遊星歯車3の歯数より上記と同じΔZだけ、具体的には1だけ、多くされている。   FIG. 4 is a configuration diagram showing a planetary gear mechanism of the joint speed reducer. The first planetary gear 2 that is rotationally driven by the sun gear 1 meshes with the first internal gear 5 on the fixed side. The second planetary gear 3 that rotates integrally with the first planetary gear 2 meshes with the second internal gear 4 on the driven side. Three sets of planetary gears 2 and 3 are held by a carrier (arm) 6. Here, the number of teeth of the first internal gear 5 on the fixed side is increased by ΔZ, specifically by 1, from the number of teeth of the second internal gear 4 on the driven side. Similarly, the number of teeth of the first planetary gear 2 is made larger than the number of teeth of the second planetary gear 3 by the same ΔZ as described above, specifically by one.

図5は、遊星歯車機構を分解して示す構成図である。モジュールは0.5である。太陽歯車1の歯数はZ =18である。この歯数は圧力角20°での歯切り加工の限界が14歯なので余裕を見て18歯とした。太陽歯車1と噛合する第1の遊星歯車2の歯数はZ =45、第2の遊星歯車3の歯数はZ =44とした。歯数の差ΔZは1である。固定側の第1の内歯歯車5の歯数はZ =108とした。これは、Z =18+45+45となることによる。従動側の第2の内歯歯車4の歯数はZ =107とした。これは、Z =18+45+44となることによる。歯数の差ΔZは1である。キャリア(アーム)6は3組の遊星歯車2、3を保持する。 FIG. 5 is an exploded view showing the planetary gear mechanism. The module is 0.5. The number of teeth of the sun gear 1 is Z 1 = 18. The number of teeth is set to 18 teeth with a margin because the limit of gear cutting at a pressure angle of 20 ° is 14 teeth. The number of teeth of the first planetary gear 2 meshing with the sun gear 1 is Z 2 = 45, and the number of teeth of the second planetary gear 3 is Z 3 = 44. The difference ΔZ in the number of teeth is 1. The number of teeth of the first internal gear 5 on the fixed side was Z 5 = 108. This is because Z 5 = 18 + 45 + 45. The number of teeth of the second internal gear 4 on the driven side is Z 4 = 107. This is because Z 4 = 18 + 45 + 44. The difference ΔZ in the number of teeth is 1. The carrier (arm) 6 holds three sets of planetary gears 2 and 3.

図6は、この遊星歯車機構の減速比を「糊付け法」で計算した表である。まず、第1の内歯歯車5も自由に回転できるものとし、キャリア(アーム)6を固定して太陽歯車1を右に1回転して各歯車1,2,3,4,5の回転状態を調べる。それが図5の表の第1欄である。次に機構全体を相互に固定して(糊付けして)、右に1回転する。それが図5の表の第2欄である。次にキャリア(アーム)6を固定し第1の内歯歯車5を左方向に1回転する。それが図5の表の第3欄である。第4欄は、第2欄と第3欄の代数和をとったものである。第1の内歯歯車5の回転は0となり固定された状態を示す。図5の表の第5欄はそれを整理したものであり、太陽歯車1の1回転に対して、第2の内歯歯車4は1/535回転することが分かる。つまり、転位のない標準歯車を用いて1/535という高い減速比を達成することができた。   FIG. 6 is a table in which the reduction ratio of the planetary gear mechanism is calculated by the “glue method”. First, it is assumed that the first internal gear 5 can also freely rotate. The carrier (arm) 6 is fixed and the sun gear 1 is rotated once to the right to rotate the gears 1, 2, 3, 4, and 5. Check out. That is the first column in the table of FIG. Next, the whole mechanism is fixed to each other (glued) and rotated one time to the right. That is the second column in the table of FIG. Next, the carrier (arm) 6 is fixed, and the first internal gear 5 is rotated once in the left direction. That is the third column in the table of FIG. The fourth column is the algebraic sum of the second and third columns. The rotation of the first internal gear 5 is 0, indicating a fixed state. The 5th column of the table | surface of FIG. 5 is arranged, and it turns out that the 2nd internal gear 4 rotates 1/535 with respect to 1 rotation of the sun gear 1. FIG. That is, a high reduction ratio of 1/535 could be achieved using a standard gear without dislocation.

図7は、一体となった第1の遊星歯車2と第2の遊星歯車3の位相差が複数組(3組)の遊星歯車ですべて同じでよいことを説明する説明図である。ここでは説明を単純にするため、太陽歯車51の歯数を6、大径遊星歯車52の歯数を6、小径遊星歯車53の歯数を5、小径の従動側内歯歯車54の歯数を17、大径の固定側内歯歯車55の歯数を18とする。歯数6の大径遊星歯車52と歯数5の小径遊星歯車53は一体に結合固定され1組の遊星歯車として回転する。5歯と6歯の遊星歯車53、52で1枚の歯の歯形対称線が一致するように結合固定する。この位相が一致した方向を矢印Xで示す。図のAの位置では内歯歯車54,55も歯底形状の対称線が一致するようにしてこの方向をYとおき、これに遊星歯車53、52の一枚の歯の位相を一致させたXの方向と一致させるように55、54とそれぞれ噛み合わせれば、遊星歯車52、53がそれぞれ内歯歯車55、54と無理なく噛合する。   FIG. 7 is an explanatory diagram for explaining that the phase difference between the integrated first planetary gear 2 and the second planetary gear 3 may be the same for a plurality of sets (three sets) of planetary gears. Here, for simplicity of explanation, the number of teeth of the sun gear 51 is 6, the number of teeth of the large-diameter planetary gear 52 is 6, the number of teeth of the small-diameter planetary gear 53 is 5, and the number of teeth of the small-diameter driven-side internal gear 54 is 17 and the number of teeth of the large-diameter fixed-side internal gear 55 is 18. The large-diameter planetary gear 52 having 6 teeth and the small-diameter planetary gear 53 having 5 teeth are coupled and fixed together and rotate as a set of planetary gears. The planetary gears 53 and 52 having 5 teeth and 6 teeth are coupled and fixed so that the tooth profile symmetry lines of one tooth coincide with each other. The direction in which the phases coincide is indicated by an arrow X. In the position of A in the figure, the internal gears 54 and 55 are also set to Y so that the symmetry lines of the bottom shape coincide with each other, and the phase of one tooth of the planetary gears 53 and 52 is made to coincide with this. When meshed with 55 and 54 so as to coincide with the direction of X, the planetary gears 52 and 53 mesh with the internal gears 55 and 54 without difficulty.

次に、他の1組の遊星歯車をAの位置にある遊星歯車と同じ方向Xを方向Yに平行にしたまま移動し、120°ずれた位置Bに持ってくる。ここでは、遊星歯車上では小径遊星歯車53に対して大径遊星歯車52の位相差は1歯の2/6=1/3となる。従動側の内歯歯車54でも、固定側内歯歯車55に対し従動側内歯歯車54の位相差も1歯の6/18=1/3であるから位相のずれは一致し、噛み合わせが可能となる。位置Cでは位置Aの位置から−120°ずれているので、遊星歯車のXの方向をY方向に平行にすれば上記と同じ位相のずれが逆方向に生ずる。従って、かみ合わせは可能となる。つまり、太陽歯車51を持つ歯車列のうちの大径内歯歯車55と噛合する大径遊星歯車52に対して、太陽歯車51と噛合しない小径遊星歯車53の位相差の与え方は3組とも全て同じにすればよいことになる。しかも、各組の遊星歯車の位相一致方向Xを平行にして噛合させればよい。このように、3組の遊星歯車の位相差の与え方が同じで位相一致方向Xを平行にして遊星歯車装置を組み立てれば、それぞれの遊星歯車52、53の相手となる内歯歯車55、54との噛み合わせも同時に完了する。つまり、遊星歯車装置の組み立てが非常に簡単になると云う利点がある。このことは同じ減速機構の組合せで第1と第2の内歯歯車が108枚と107枚でない、即ち、歯数差が1でない場合や、拘束条件を満足しながら不等円弧毎に配置する遊星歯車対の数が異なる場合にも共通して成り立つ。   Next, another set of planetary gears is moved while keeping the same direction X as the planetary gear in the position A in parallel with the direction Y, and brought to a position B shifted by 120 °. Here, on the planetary gear, the phase difference of the large-diameter planetary gear 52 with respect to the small-diameter planetary gear 53 is 2/6 = 1/3 of one tooth. Even in the driven-side internal gear 54, the phase difference of the driven-side internal gear 54 with respect to the fixed-side internal gear 55 is also 6/18 = 1/3 of one tooth. It becomes possible. Since the position C is deviated by −120 ° from the position A, if the X direction of the planetary gear is parallel to the Y direction, the same phase shift as described above occurs in the reverse direction. Therefore, meshing is possible. That is, with respect to the large-diameter planetary gear 52 that meshes with the large-diameter internal gear 55 in the gear train having the sun gear 51, there are three ways to give the phase difference of the small-diameter planetary gear 53 that does not mesh with the sun gear 51. All that is the same. In addition, the planetary gears of each set may be meshed with the phase matching direction X in parallel. In this way, if the planetary gear device is assembled with the phase difference of the three sets of planetary gears being the same and the phase coincidence direction X being parallel, the internal gears 55 and 54 that are the counterparts of the planetary gears 52 and 53, respectively. Is also completed at the same time. That is, there is an advantage that the assembling of the planetary gear device becomes very simple. This means that the first and second internal gears are not 108 and 107 in the same reduction mechanism combination, that is, when the difference in the number of teeth is not 1, or are arranged for each unequal arc while satisfying the constraint conditions. The same holds true when the number of planetary gear pairs is different.

図4を参照し、固定側内歯歯車5と従動側内歯歯車4との間に大きなモーメントが掛かると、第1の遊星歯車2と第2の遊星歯車との距離の存在からキャリア(アーム)6に軸方向の曲げモーメントが発生する。キャリア(アーム)6はこれに耐えなければならない。減速比が大きくなるほど曲げモーメントは大きくなり、キャリア(アーム)6は大きな固着モーメントを稼ぐために厚くしなければならず、軸方向距離を短くできない要因となっていた。この解決のため、遊星機構をサンドイッチ構造とすれば軸は両端支持となり、片持ちモーメントを相殺した薄型の関節用減速機が提唱できる。   Referring to FIG. 4, when a large moment is applied between the fixed-side internal gear 5 and the driven-side internal gear 4, the carrier (arm) is determined from the existence of the distance between the first planetary gear 2 and the second planetary gear. ) A bending moment in the axial direction is generated at 6. The carrier (arm) 6 must withstand this. The bending moment increases as the speed reduction ratio increases, and the carrier (arm) 6 must be thickened to obtain a large sticking moment, which is a factor that the axial distance cannot be shortened. To solve this problem, if the planetary mechanism has a sandwich structure, the shaft is supported at both ends, and a thin joint speed reducer that cancels the cantilever moment can be proposed.

図8は、サンドイッチ構造を有する関節用減速機の概念を示す斜視図である。ここでは、太陽歯車と第1の遊星歯車と固定側の第1の内歯歯車とからなる固定側の歯車系列が2組用意され、第2の遊星歯車と従動側の第2の内歯歯車とからなる1組の従動側歯車系列が用意される。そして2組の固定側歯車系列が1組の従動側歯車系列を挟み込むようにしてサンドイッチ構造としている。固定側骨格保持部102は遊星歯車機構の部分で2股に分かれ大径の固定側第1の内歯歯車15、25が一体に形成されている。従動側骨格保持部103は固定側骨格保持部102の第1の内歯歯車15、25に挟まれて回転可能に支承され、小径の従動側第2の内歯歯車14を有している。   FIG. 8 is a perspective view showing the concept of a joint speed reducer having a sandwich structure. Here, two sets of fixed-side gear trains comprising a sun gear, a first planetary gear, and a fixed-side first internal gear are prepared, and a second planetary gear and a driven-side second internal gear are prepared. A set of driven side gear series consisting of And it is set as a sandwich structure so that two sets of fixed side gear series may sandwich one set of driven side gear series. The fixed-side skeleton holding portion 102 is divided into two forks at the planetary gear mechanism, and the fixed-side first internal gears 15 and 25 having a large diameter are integrally formed. The driven-side skeleton holding portion 103 is rotatably supported by being sandwiched between the first internal gears 15 and 25 of the fixed-side skeleton holding portion 102 and has a small-diameter driven-side second internal gear 14.

固定側骨格保持部102にモータ120が固定される。モータ120により回転駆動される入力軸121により2つの太陽歯車11、21を回転駆動する。各太陽歯車11、21は2系列の第1の遊星歯車12,22と噛合する。大径の第1の遊星歯車12,22は大径の固定側第1の内歯歯車15、25と噛合する。そして、各第1の遊星歯車12,22に挟まれて小径の第2の遊星歯車13が同心に固定されている。第2の遊星歯車13は小径の従動側第2の遊星歯車14と噛合する。遊星歯車12、13、22を保持するキャリア(アーム)は省略して描いていない。   The motor 120 is fixed to the fixed side skeleton holding unit 102. The two sun gears 11 and 21 are rotationally driven by an input shaft 121 that is rotationally driven by a motor 120. Each sun gear 11, 21 meshes with two series of first planetary gears 12, 22. The large-diameter first planetary gears 12 and 22 mesh with the large-diameter fixed-side first internal gears 15 and 25. A second planetary gear 13 having a small diameter is fixed concentrically between the first planetary gears 12 and 22. The second planetary gear 13 meshes with the small-diameter driven second planetary gear 14. The carrier (arm) that holds the planetary gears 12, 13, and 22 is not shown.

各歯車の歯数は図5で示したものと同じであり、太陽歯車11、21の歯数はZ =18であり、太陽歯車11、21と噛合する第1の遊星歯車12、22の歯数はZ =45、第2の遊星歯車13の歯数はZ =44とした。歯数の差ΔZは1である。大径の固定側第1の内歯歯車15、25の歯数はZ =108とし、小径の従動側第2の内歯歯車14の歯数はZ =107とした。歯数の差ΔZは1である。モジュールは0.5である。 The number of teeth of each gear is the same as that shown in FIG. 5, the number of teeth of the sun gears 11, 21 is Z 1 = 18, and the number of teeth of the first planetary gears 12, 22 meshing with the sun gears 11, 21 is The number of teeth was Z 2 = 45, and the number of teeth of the second planetary gear 13 was Z 3 = 44. The difference ΔZ in the number of teeth is 1. The number of teeth of the large-diameter fixed-side first internal gears 15 and 25 is Z 5 = 108, and the number of teeth of the small-diameter driven-side second internal gear 14 is Z 4 = 107. The difference ΔZ in the number of teeth is 1. The module is 0.5.

図9は、サンドイッチ構造を有する関節用減速機の断面図である。固定側骨格保持部102に2枚の固定側プレート31、31が固着され、その一方の固定プレート31にねじによりモータ120が固定されている。また、2枚の固定側プレート31、31の内側には略円板形状の固定ケーシング32、32がそれぞれ左右に配置されねじで固定されている。左右の固定ケーシング32、32には環状の第1の内歯歯車15、25がねじにより左右に固定されている。大径の2枚の固定側第1の内歯歯車15、25は図面の上下に描かれる。固定側第1の内歯歯車15、25の歯面を15A,25Aとして図面に示す。   FIG. 9 is a cross-sectional view of a joint speed reducer having a sandwich structure. Two fixed side plates 31, 31 are fixed to the fixed side skeleton holding portion 102, and the motor 120 is fixed to one of the fixed plates 31 with screws. Also, substantially disk-shaped fixed casings 32, 32 are respectively arranged on the left and right sides of the two fixed-side plates 31, 31 and fixed with screws. In the left and right fixed casings 32, 32, annular first internal gears 15, 25 are fixed to the left and right by screws. The two large-diameter fixed-side first internal gears 15 and 25 are depicted at the top and bottom of the drawing. The tooth surfaces of the fixed-side first internal gears 15 and 25 are shown as 15A and 25A in the drawing.

固定ケーシング32の円周端に設置された4つのベアリング33、33,33,33により従動側骨格保持部103が回転自在に支承されている。従動側骨格保持部103の中心部に延伸する部分に、環状の従動側第2の内歯歯車14が形成されている。従動側第2の内歯歯車14は固定側第1の内歯歯車15、25より僅かに小径である。従動側第2の内歯歯車14の歯面を14Aとして図面に示す。   The driven side skeleton holding part 103 is rotatably supported by four bearings 33, 33, 33, 33 installed at the circumferential end of the fixed casing 32. An annular driven second internal gear 14 is formed at a portion extending to the center of the driven skeleton holding portion 103. The driven-side second internal gear 14 has a slightly smaller diameter than the fixed-side first internal gears 15, 25. The tooth surface of the driven-side second internal gear 14 is shown as 14A in the drawing.

固定ケーシング32、32の中心部付近に設置された4つのベアリング34、34、34、34により2枚のキャリア(アーム)16、16が回転自在に支承されている。2枚のキャリア(アーム)16、16の間には3本(図面上では2本のみ図示)の遊星軸35が渡され一体とされている。その各遊星軸35に、それぞれ3枚の遊星歯車がベアリングにより回転自在に支承されている。すなわち、中心に小径の第2の遊星歯車13、左右に大径の第1の遊星歯車12、22である。3枚の遊星歯車12、13、22はピンにより一体化され一体として回転するようにされている。   Two carriers (arms) 16, 16 are rotatably supported by four bearings 34, 34, 34, 34 installed near the center of the fixed casings 32, 32. Between the two carriers (arms) 16, three planet shafts 35 (only two are shown in the drawing) are passed and integrated. Three planetary gears are rotatably supported on the planetary shafts 35 by bearings. That is, the second planetary gear 13 with a small diameter at the center and the first planetary gears 12 and 22 with a large diameter on the left and right. The three planetary gears 12, 13, and 22 are integrated by a pin so as to rotate integrally.

固定ケーシング32、32の中心部に設置されたベアリングにより太陽歯車11、21が回転自在に支承されている。太陽歯車11、21の歯面を11A,21Aで示す。太陽歯車11、21の中心には入力軸121が通り一体とされてモータ120の回転と共に回転する。太陽歯車11、21の歯面11A,21Aは左右の大径の第1の遊星歯車12、22と噛合する。第1の遊星歯車12、22は、また、それぞれ大径の固定側第1の内歯歯車15、25の歯面15A、25Aに噛合する。第1の遊星歯車12、22と一体に運動回転する小径の第2の遊星歯車13は小径の従動側第2の内歯歯車14の歯面14Aに噛合する。   The sun gears 11 and 21 are rotatably supported by bearings installed at the center of the fixed casings 32 and 32. The tooth surfaces of the sun gears 11 and 21 are indicated by 11A and 21A. The input shaft 121 passes through the center of the sun gears 11 and 21 and rotates together with the rotation of the motor 120. The tooth surfaces 11A and 21A of the sun gears 11 and 21 mesh with the first planetary gears 12 and 22 having large left and right diameters. The first planetary gears 12 and 22 mesh with the tooth surfaces 15A and 25A of the fixed-side first internal gears 15 and 25 having large diameters, respectively. The small-diameter second planetary gear 13 that moves and rotates integrally with the first planetary gears 12 and 22 meshes with the tooth surface 14A of the small-diameter driven second internal gear 14.

図10は、この関節用減速機の使用歯車の諸元を示す表である。太陽歯車11、21には第1欄に示す4つの歯車のうち最下欄に示す歯車を用いた。大径の第1の遊星歯車12、22には第2欄に示す歯車を用いた。小径の第2の遊星歯車13には第3欄に示すものを用いた。小径の従動側第2の内歯歯車14には第4欄に示すものを用いた。大径の固定側第1の内歯歯車15、25には第5欄に示すものを用いた。ここで、第4欄に示す従動側第2の内歯歯車14は歯数が素数の歯車であるため特別に作らなければならない。しかし、その他の歯車11、21、12、22、15は、転位歯車でもなく標準歯車であるので既製品から選択でき安価に調達できる。   FIG. 10 is a table showing specifications of used gears of the joint reduction gear. The sun gears 11 and 21 used the gears shown in the bottom column among the four gears shown in the first column. The gears shown in the second column were used for the large-diameter first planetary gears 12 and 22. The small diameter second planetary gear 13 used was the one shown in the third column. The small-diameter driven second internal gear 14 shown in the fourth column was used. As the large-diameter fixed-side first internal gears 15 and 25, those shown in the fifth column were used. Here, the driven-side second internal gear 14 shown in the fourth column is a gear having a prime number and must be made specially. However, since the other gears 11, 21, 12, 22, and 15 are standard gears, not shift gears, they can be selected from off-the-shelf products and can be procured at low cost.

以上の構成に基づき作動について説明する。遊星歯車機構としての機能は、図2乃至図5で説明したものと全く同じであり、入力軸121と従動側骨格保持部103との間に、1/535の高減速比を実現する。そして、従動側歯車系列13、14を固定側歯車系列11、12、15,20、22、25で挟むサンドイッチ構造を採用しているので、図9を参照し、従動側第2の内歯歯車14と固定側第1の内歯歯車15、25との間に大きなトルクが発生しても、サンドイッチ構造に支持された遊星歯車13,12、22の軸35の両端で支持するので遊星軸35内は片持ち支持とはならず、軸直角方向の曲げモーメントは相殺され、キャリア(アーム)16、16に遊星軸35を固定支持する際の曲げモーメントは生じない。しかも、歯車噛み合い歯面間の偏当たりも同時に防止する利点を有する。このため、キャリア(アーム)16、16は厚さの薄いもので良く、結果的に関節用減速機が薄いものとなり患者の筋力を補助する装具に適用しやすくなる。   The operation will be described based on the above configuration. The function as the planetary gear mechanism is exactly the same as that described in FIGS. 2 to 5, and a high reduction ratio of 1/535 is realized between the input shaft 121 and the driven side skeleton holding unit 103. Since the sandwiched structure in which the driven side gear series 13 and 14 are sandwiched between the fixed side gear series 11, 12, 15, 20, 22, and 25 is adopted, the driven side second internal gear is referred to with reference to FIG. 14 and the fixed-side first internal gears 15 and 25 are supported at both ends of the shafts 35 of the planetary gears 13, 12, and 22 supported by the sandwich structure even if a large torque is generated between the planetary shafts 35 and 15. The inside is not cantilevered, the bending moment in the direction perpendicular to the axis is canceled, and no bending moment is generated when the planet shaft 35 is fixedly supported on the carriers (arms) 16 and 16. Moreover, there is an advantage of preventing the uneven contact between the gear meshing tooth surfaces at the same time. Therefore, the carriers (arms) 16 and 16 may be thin, and as a result, the joint speed reducer becomes thin and can be easily applied to a brace that assists the patient's muscle strength.

本構成の要点は、暫定的に固定側とした完全な遊星歯車機構、と暫定的に従動側とした太陽歯車のない不完全な遊星歯車機構とのサンドイッチ構造である。中で繋がって一体に回転する部分はそれぞれの内歯車と噛み合うそれぞれの遊星歯車の1歯の位置の位相を一致させて固定し、対にしたところである。このように固定した遊星歯車対がキャリヤの腕の数だけ存在する。しかも歯を一致した方向は常時平行を保ち回転する。この遊星歯車対の部分が、てこの関係を持つ。即ち太陽歯車との噛み合い点を力点にして、固定側内歯車との噛み合い点を支点として従動側内歯車との噛み合い点を作用点とするものである。この場合てこの支点、力点、作用点は1直線上にない。サンドイッチ構造はこの偏心を相殺する。また完全遊星歯車機構側の遊星歯車配置の噛み合いの拘束条件は満足するものとする。不完全遊星歯車の方はリング状内歯車も遊星歯車側も完全遊星歯車側にサンドイッチされるあるいは、する場合もあるが、それぞれに対して同一符号の歯数差を持つ。歯数差が+の場合も?の場合も同じ範疇である。歯数差が最小の整数1の時、遊星歯車による減速比でない、ラックとてこの関係の減速比が最も大きくなる。完全側を中にしてサンドイッチにすると太陽歯車は一つで済む利点がある。不完全側を中にしてサンドイッチにすると太陽歯車が二つ必要だが、この二つの間にバネ等でわずか円周方向の位相差を加えれば、バックラッシュ除去効果を実現できる利点がある。   The main point of this configuration is a sandwich structure of a complete planetary gear mechanism that is provisionally fixed and an incomplete planetary gear mechanism that is provisionally driven and has no sun gear. The parts that are connected together and rotate integrally are fixed and matched with the phase of the position of one tooth of each planetary gear meshing with each internal gear. There are as many planetary gear pairs fixed in this way as the number of arms of the carrier. Moreover, the direction in which the teeth coincide is always kept parallel and rotates. This planetary gear pair has a lever relationship. In other words, the meshing point with the sun gear is used as a power point, and the meshing point with the driven-side internal gear is set as the working point with the meshing point with the fixed-side internal gear as a fulcrum. In this case, the fulcrum, force point, and action point are not on one straight line. The sandwich structure offsets this eccentricity. Further, it is assumed that the meshing constraint condition of the planetary gear arrangement on the complete planetary gear mechanism side is satisfied. The incomplete planetary gear may have a ring-shaped internal gear or a planetary gear side sandwiched between the complete planetary gear side, or may have a tooth number difference of the same sign. It is the same category whether the difference in the number of teeth is + or? When the difference in the number of teeth is the smallest integer 1, the reduction ratio of the relationship between the rack and the lever, which is not the reduction ratio by the planetary gear, becomes the largest. There is an advantage that only one sun gear is required when sandwiching with the complete side in. If the incomplete side is used as a sandwich, two sun gears are required. If a slight phase difference in the circumferential direction is added between the two with a spring or the like, there is an advantage that a backlash removal effect can be realized.

関節用減速機の使用例を示す側面図。The side view which shows the usage example of the reduction gear for joints. 本発明の基本概念を示す模式図である。It is a schematic diagram which shows the basic concept of this invention. 関節用減速機の概念を示す斜視図。The perspective view which shows the concept of the reduction gear for joints. 関節用減速機の遊星歯車機構を示す構成図。The block diagram which shows the planetary gear mechanism of the reduction gear for joints. 関節用減速機の遊星歯車機構を分解して示す構成図。The block diagram which decomposes | disassembles and shows the planetary gear mechanism of the reduction gear for joints. 関節用減速機の遊星歯車機構の減速比を「糊付け法」で計算した表。The table which calculated the reduction ratio of the planetary gear mechanism of the reduction gear for joints by the "gluing method". 一体となった第1の遊星歯車2と第2の遊星歯車3の位相差が複数組(3組)の遊星歯車ですべて同じでよいことを説明する説明図。Explanatory drawing explaining that the phase difference of the 1st planetary gear 2 and the 2nd planetary gear 3 which were united may be the same with multiple sets (3 sets) of planetary gears. サンドイッチ構造を有する関節用減速機の概念を示す斜視図。The perspective view which shows the concept of the reduction gear for joints which has a sandwich structure. サンドイッチ構造を有する関節用減速機の断面図。Sectional drawing of the reduction gear for joints which has a sandwich structure. 関節用減速機の使用歯車の諸元を示す表。The table | surface which shows the specification of the use gearwheel of the reduction gear for joints. 機械工学便覧に記載された3S型遊星歯車機構の構成図。The block diagram of the 3S type planetary gear mechanism described in the mechanical engineering handbook.

符号の説明Explanation of symbols

1 太陽歯車
2 大径の固定側第1の遊星歯車
3 小径の従動側第2の遊星歯車
4 小径の従動側第2の内歯歯車
5 大径の固定側第1の内歯歯車
6 キャリア(アーム)
32 固定ケーシング
33 ベアリング
35 遊星軸
DESCRIPTION OF SYMBOLS 1 Sun gear 2 Large diameter fixed side first planetary gear 3 Small diameter driven side second planetary gear 4 Small diameter driven side second internal gear 5 Large diameter fixed side first internal gear 6 Carrier ( arm)
32 fixed casing 33 bearing 35 planetary shaft

Claims (3)

入力軸と一体にされた太陽歯車と、
前記太陽歯車と噛合する複数個の第1の遊星歯車と、
前記第1の遊星歯車のそれぞれと一体にされて一体に回転し前記太陽歯車と噛合しない複数個の第2の遊星歯車と、
前記複数個の第1の遊星歯車と噛合する第1の内歯歯車と、
前記複数個の第2の遊星歯車と噛合する第2の内歯歯車と、
前記第1の内歯歯車の歯数と前記第2の内歯歯車の歯数の差ΔZと、前記第1の遊星歯車の歯数と前記第2の遊星歯車の歯数の差ΔZが等しいことと、
前記第1若しくは第2の内歯歯車のいずれか一方を固定側とし、いずれか他方を従動側としたことと、
を備えることを特徴とする関節用減速機。
A sun gear integrated with the input shaft;
A plurality of first planetary gears meshing with the sun gear;
A plurality of second planetary gears that are integrated with each of the first planetary gears and rotate integrally and do not mesh with the sun gear;
A first internal gear that meshes with the plurality of first planetary gears;
A second internal gear that meshes with the plurality of second planetary gears;
The difference ΔZ between the number of teeth of the first internal gear and the number of teeth of the second internal gear is equal to the difference ΔZ of the number of teeth of the first planetary gear and the number of teeth of the second planetary gear. And
Either one of the first or second internal gear is a fixed side, and the other is a driven side;
A reduction gear for joints, comprising:
前記歯数の差ΔZが1であること、を特徴とする請求項1に記載の関節用減速機。   The joint reduction gear according to claim 1, wherein the difference ΔZ in the number of teeth is one. 前記太陽歯車と前記第1の遊星歯車と前記第1の内歯歯車とからなる第1の歯車系列と、前記第2の遊星歯車と前記第2の内歯歯車とからなる第2の歯車系列との2つの歯車系列のうちいずれか一方の歯車系列が複数組あり、複数組ある一方の歯車系列が他方の歯車系列を軸方向に挟み込むように組み込まれたサンドイッチ構造を有すること、を特徴とする請求項1または2に記載の関節用減速機。   A first gear series comprising the sun gear, the first planetary gear, and the first internal gear; and a second gear series comprising the second planetary gear and the second internal gear. And the two gear trains have a sandwich structure in which there are a plurality of gear trains, and one gear train of the plurality of gears is incorporated so as to sandwich the other gear train in the axial direction. The joint speed reducer according to claim 1 or 2.
JP2005305937A 2005-10-20 2005-10-20 Reduction gear for joint Pending JP2007113701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305937A JP2007113701A (en) 2005-10-20 2005-10-20 Reduction gear for joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305937A JP2007113701A (en) 2005-10-20 2005-10-20 Reduction gear for joint

Publications (1)

Publication Number Publication Date
JP2007113701A true JP2007113701A (en) 2007-05-10

Family

ID=38096078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305937A Pending JP2007113701A (en) 2005-10-20 2005-10-20 Reduction gear for joint

Country Status (1)

Country Link
JP (1) JP2007113701A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163186A (en) * 2011-02-09 2012-08-30 Toyota Central R&D Labs Inc Planetary gear speed converter
CN105805244A (en) * 2016-05-31 2016-07-27 机器时代(北京)科技有限公司 Speed reducer, differential drive device, robot and mechanical arm
CN107366729A (en) * 2017-08-30 2017-11-21 北京丰隆汇技术有限公司 A kind of double output shaft decelerator
WO2018178811A1 (en) * 2017-03-31 2018-10-04 Universidad De Guadalajara Automatic knee prosthesis
WO2023221743A1 (en) * 2022-05-17 2023-11-23 郑如骏 Differential gear speed reducer having wide selection range of speed ratio and having simple structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202742A (en) * 1985-03-07 1986-09-08 Toyota Central Res & Dev Lab Inc Die structure for plastic working
JPS6298045A (en) * 1985-09-21 1987-05-07 ル−カス・インダストリ−ズ・パブリツク・リミテツド・カンパニ− Gear type actuator device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202742A (en) * 1985-03-07 1986-09-08 Toyota Central Res & Dev Lab Inc Die structure for plastic working
JPS6298045A (en) * 1985-09-21 1987-05-07 ル−カス・インダストリ−ズ・パブリツク・リミテツド・カンパニ− Gear type actuator device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163186A (en) * 2011-02-09 2012-08-30 Toyota Central R&D Labs Inc Planetary gear speed converter
CN105805244A (en) * 2016-05-31 2016-07-27 机器时代(北京)科技有限公司 Speed reducer, differential drive device, robot and mechanical arm
WO2018178811A1 (en) * 2017-03-31 2018-10-04 Universidad De Guadalajara Automatic knee prosthesis
CN107366729A (en) * 2017-08-30 2017-11-21 北京丰隆汇技术有限公司 A kind of double output shaft decelerator
CN107366729B (en) * 2017-08-30 2023-09-19 北京丰隆汇技术有限公司 Double-output-shaft speed reducer
WO2023221743A1 (en) * 2022-05-17 2023-11-23 郑如骏 Differential gear speed reducer having wide selection range of speed ratio and having simple structure

Similar Documents

Publication Publication Date Title
JP5536341B2 (en) Reduction gear
US20110241369A1 (en) Robot hand
WO2009011682A1 (en) Gear bearing drive
JP2007113701A (en) Reduction gear for joint
WO2019114033A1 (en) Thickness-variable transmission structure for robot joint
US11168762B2 (en) Gearbox
CN104728354A (en) Prepressing compensation anti-backlash speed reducer
Penčić et al. Development of the low backlash planetary gearbox for humanoid robots
RU2506477C1 (en) Planetary cycloidal reduction gear with preliminary stage
WO2018135552A1 (en) Planetary gear device
JP6061022B2 (en) Compound drive and robot
JP6208820B2 (en) Reduction gear
JP2017125596A (en) Wave gear transmission device
JP5337088B2 (en) Power transmission structure
JP2017040348A (en) Planetary gear device and its design method
EP3823563B1 (en) Wrist prosthesis
JP2016118283A (en) Planetary gear device and design method of the same
CN109464227B (en) Multi-degree-of-freedom artificial limb arm joint
JP5961214B2 (en) Reduction gear
WO2017176980A1 (en) System for alternative gearing solutions
CN102691752A (en) Composite rolling active-tooth transmission device and method for performing transmission by using the same
JPS63229287A (en) Joint unit
CN219570756U (en) Planetary gear reducer structure with large transmission ratio
Penčić et al. Development of the planetary gear for humanoid robots
US20180259054A1 (en) Sliding contact-type wave generator and strain wave gearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206