JP2007113333A - Method of managing facing of tunnel using spring water pressure - Google Patents

Method of managing facing of tunnel using spring water pressure Download PDF

Info

Publication number
JP2007113333A
JP2007113333A JP2005307916A JP2005307916A JP2007113333A JP 2007113333 A JP2007113333 A JP 2007113333A JP 2005307916 A JP2005307916 A JP 2005307916A JP 2005307916 A JP2005307916 A JP 2005307916A JP 2007113333 A JP2007113333 A JP 2007113333A
Authority
JP
Japan
Prior art keywords
face
spring
pressure
spring pressure
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005307916A
Other languages
Japanese (ja)
Other versions
JP4455471B2 (en
Inventor
Hideo Kitani
日出男 木谷
Takehiro Ota
岳洋 太田
Atsushi Hasegawa
淳 長谷川
Masatoshi Toyohara
正俊 豊原
Junichi Yoda
淳一 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Japan Railway Construction Transport and Technology Agency
Original Assignee
Railway Technical Research Institute
Japan Railway Construction Transport and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Japan Railway Construction Transport and Technology Agency filed Critical Railway Technical Research Institute
Priority to JP2005307916A priority Critical patent/JP4455471B2/en
Publication of JP2007113333A publication Critical patent/JP2007113333A/en
Application granted granted Critical
Publication of JP4455471B2 publication Critical patent/JP4455471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of managing the facing of a tunnel using a spring water pressure on the basis of the level and pressure of underwater around the facing together with the physical properties of a natural ground. <P>SOLUTION: In this method of managing the facing of the tunnel using the spring water pressure, the presence or absence of underground water is checked and the spring water pressure is measured at the front of the facing of the tunnel repeatedly each time the facing advances by a predetermined distance. When the spring water pressure exceeds a specified value when it is measured or the amount of the spring water is large, a tunneling construction is suspended and draining is performed. After it is confirmed that the level and pressure of underwater are sufficiently lowered, the tunneling construction is re-started. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、簡易な湧水圧測定装置を用いてトンネルの切羽近傍の湧水圧を測定し、その湧水圧値をもとにトンネルの切羽を管理する湧水圧を用いたトンネルの切羽管理方法に関するものである。   The present invention relates to a tunnel face management method using a spring pressure that measures a spring pressure near a tunnel face using a simple spring pressure measuring device and manages the tunnel face based on the spring pressure value. It is.

砂質土地山トンネルにおける従来の切羽管理は、トンネルの切羽を構成する砂質土の粒度などの物理特性、掘削によって生じる切羽の変形の評価、掘削に伴って発生する外力の評価などによって行われてきた。しかし、砂質土地山トンネルの切羽の安定性には地下水流動が大きく関与するため、これに対する評価の必要性が指摘されている(下記非特許文献1参照)。
応用地質,第40巻,第5号,「砂質土トンネル切羽の自立性評価試験法に関する研究」P270−280,1999 「鉄道構造物等設計基準 都市部山岳工法トンネル」;鉄道総研、2002
Conventional face management in a sandy mountain tunnel is performed by physical characteristics such as the grain size of sandy soil that constitutes the face of the tunnel, evaluation of deformation of the face caused by excavation, evaluation of external force generated by excavation, etc. I came. However, since the groundwater flow is greatly involved in the stability of the face of the sandy land mountain tunnel, the need for evaluation has been pointed out (see Non-Patent Document 1 below).
Applied Geology, Vol.40, No.5, “Study on Self-sustainability Evaluation Test of Sandy Soil Tunnel Face” P270-280, 1999 “Design standard for railway structures, etc. Urban mountain tunnel”; Railway Research Institute, 2002

上記したように、砂質地山においてトンネル掘削を行う場合に、切羽の安定性について評価を行うためには、上記したような切羽を構成する地層の物性とともに、切羽周辺に存在する地下水の状況を把握することが不可欠である。しかしこれまで、切羽の管理には主に地山の物性が用いられ、切羽周辺の地下水位および地下水圧をもとにした切羽管理はほとんど行われてこなかった。   As described above, when tunnel excavation is performed in sandy ground, in order to evaluate the stability of the face, in addition to the physical properties of the stratum constituting the face as described above, the situation of groundwater existing around the face is determined. It is essential to understand. Until now, however, the physical properties of the natural ground have been mainly used for the management of the face, and the face management based on the groundwater level and groundwater pressure around the face has hardly been performed.

本発明は、上記状況に鑑みて、地山の物性とともに、切羽周辺の地下水位および地下水圧をもとにした湧水圧を用いた切羽管理方法を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a face management method using spring water pressure based on groundwater level and groundwater pressure around the face along with physical properties of natural ground.

本発明は、上記目的を達成するために、
〔1〕湧水圧を用いた切羽管理方法において、トンネルの切羽において該切羽前方での地下水の有無および湧水圧を計測し、これを該切羽が所定距離進むごとに繰り返し行い、湧水圧の測定時に湧水圧が所定値を越えたり、湧水量が多い場合には、トンネル掘削工事を中断して地下水位低下工を施し、地下水位および湧水圧が十分に低下したことを確認した上でトンネル掘削工事を再開することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the face management method using spring pressure, the presence of groundwater and the spring pressure at the face of the tunnel are measured at the face of the tunnel, and this is repeated every time the face advances by a predetermined distance. If the spring water pressure exceeds the specified value or there is a large amount of spring water, the tunnel excavation work will be interrupted and groundwater level will be lowered. After confirming that the groundwater level and spring water pressure have dropped sufficiently, tunnel excavation work will be carried out. It is characterized by restarting.

〔2〕上記〔1〕記載の湧水圧を用いた切羽管理方法において、前記湧水圧の所定値が0.1MPaであることを特徴とする。   [2] In the face management method using the spring pressure described in [1] above, the predetermined value of the spring pressure is 0.1 MPa.

〔3〕上記〔1〕又は〔2〕記載の湧水圧を用いた切羽管理方法において、前記切羽前方の位置が20m程度、前記切羽が進む所定距離が10m程度であることを特徴とする。   [3] In the face management method using the spring pressure described in [1] or [2] above, a position in front of the face is about 20 m, and a predetermined distance traveled by the face is about 10 m.

本発明によれば、トンネルの切羽近傍の地下水を捕捉し、地下水位を十分低下させることでトンネル掘削工事を安全に進めることができる。   According to the present invention, tunnel excavation work can be proceeded safely by capturing groundwater near the face of the tunnel and sufficiently lowering the groundwater level.

本発明の湧水圧を用いたトンネルの切羽管理方法は、地質が未固結な土砂からなる場合、地質の不均質性に伴い地下水が局在するため、事前に施工される地下水位低下工のみでは切羽近傍に地下水が残存し、切羽を不安定化させる可能性がある。かかる場合に、トンネルの切羽において該切羽前方での地下水の有無および湧水圧を計測し、これを該切羽が所定距離進むごとに繰り返し行い、湧水圧の測定時に湧水圧が所定値を越えたり、湧水量が多い場合には、トンネル掘削工事を中断して地下水位低下工を実施し、地下水位および湧水圧が十分に低下したことを確認した上でトンネル掘削工事を再開する。   In the tunnel face management method using spring pressure of the present invention, when the geology is composed of unconsolidated earth and sand, the groundwater is localized due to the heterogeneity of the geology, so only the groundwater level lowering work to be performed in advance Then, there is a possibility that groundwater will remain near the face and destabilize the face. In such a case, the presence of groundwater and the spring pressure in front of the face are measured at the face of the tunnel, and this is repeated every time the face advances a predetermined distance, and when the spring pressure is measured, the spring pressure exceeds a predetermined value, If there is a large amount of spring water, the tunnel excavation work will be interrupted and groundwater level lowering work will be carried out. After confirming that the groundwater level and spring pressure have sufficiently decreased, the tunnel excavation work will be resumed.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、湧水圧を測定する湧水圧測定装置についてその概要を説明する。   First, an outline of a spring pressure measuring device for measuring spring pressure will be described.

図1は本発明にかかる湧水圧測定装置の構成図、図2はその測定器の正面図、図3はその測定器の側面図である。   FIG. 1 is a configuration diagram of a spring pressure measuring apparatus according to the present invention, FIG. 2 is a front view of the measuring device, and FIG. 3 is a side view of the measuring device.

図1において、1は鉄クロスビット(直径φ45mm)、2はその鉄クロスビット1を先端に有する自穿孔ロックボルト(直径φ28.5mm)、3はアダプター、4はその自穿孔ロックボルト3にアダプター3を介して連結される分岐中空管(チーズ)、5はその分岐中空管4に連結される第1のバルブ、6はその第1のバルブ5の操作レバー、7は分岐中空管4に連結される第2のバルブ、8は第2のバルブ7の操作レバー、9はブッシング、10は配管アダプター、11はOリング、12は第2のバルブ7に連通される水圧計、13は接続部、14は水圧計12に接続部13を介して接続されるケーブルである。なお、分岐中空管(チーズ)4はT字形状の中空管からなり、それぞれの中空管の先端部は自穿孔ロックボルト2の後端部、第1のバルブ5の先端部、第2のバルブ7の先端部にそれぞれ螺合して連結されるように構成されている。   In FIG. 1, 1 is an iron cross bit (diameter φ 45 mm), 2 is a self-drilling lock bolt (diameter φ 28.5 mm) having the iron cross bit 1 at the tip, 3 is an adapter, and 4 is an adapter to the self-drilling lock bolt 3. Branch hollow tube (cheese) connected through 3, 5 is a first valve connected to the branch hollow tube 4, 6 is an operating lever of the first valve 5, and 7 is a branch hollow tube. 4 is a second valve connected to 4, 8 is an operation lever of the second valve 7, 9 is a bushing, 10 is a pipe adapter, 11 is an O-ring, 12 is a water pressure gauge connected to the second valve 7, 13 Is a connection portion, and 14 is a cable connected to the water pressure gauge 12 via the connection portion 13. The branched hollow tube (cheese) 4 is formed of a T-shaped hollow tube, and the front end of each hollow tube is the rear end of the self-drilling lock bolt 2, the front end of the first valve 5, and the first It is comprised so that it may be screwed together and connected with the front-end | tip part of the 2 valve | bulb 7, respectively.

このケーブル14は、図2及び図3に示される測定器15の接続部16に接続されて、表示部17に湧水圧がデジタル表示される。   The cable 14 is connected to the connection portion 16 of the measuring instrument 15 shown in FIGS. 2 and 3, and the spring pressure is digitally displayed on the display portion 17.

この切羽近傍における湧水圧測定装置は、切羽近傍に局在する地下水についてその水圧を測定するものである。つまり、本装置は工事現場で使用される自穿孔ロックボルト2にアダプター3を介して接続することができるため、様々な現場で適用可能である。また、本装置は最大2MPa程度までの水圧を測定することができる。   This spring pressure measuring device in the vicinity of the face measures the water pressure of groundwater localized near the face. That is, since this apparatus can be connected to the self-drilling lock bolt 2 used at the construction site via the adapter 3, it can be applied at various sites. Moreover, this apparatus can measure a water pressure up to about 2 MPa.

ここで、鉄クロスビット1付きの自穿孔ロックボルト2を用いてトンネルの切羽前方を穿孔する。そこで、操作レバー6を操作して第1のバルブ5を開くと、自穿孔ロックボルト2−分岐中空管4−第1のバルブ5を通して湧水が流出する。これにより、湧水の状態を見ることができる。   Here, the front face of the tunnel is drilled using a self-drilling lock bolt 2 with an iron cross bit 1. Therefore, when the operation lever 6 is operated to open the first valve 5, spring water flows out through the self-piercing lock bolt 2 -branch hollow tube 4 -first valve 5. Thereby, the state of spring water can be seen.

さらに、第2のバルブ7の操作レバー8を操作して第2のバルブ7を開いて、第1のバルブ5の操作レバー6を操作して第1のバルブ5を閉じると、湧水圧が水圧計12に負荷されるので、水圧計12で湧水圧を測定することができる。つまり、水圧計12からの湧水圧出力はケーブル14−接続部16を介して測定器15に取り込まれ、表示部17においてデジタル表示される。   Furthermore, when the operation lever 8 of the second valve 7 is operated to open the second valve 7 and the operation lever 6 of the first valve 5 is operated to close the first valve 5, the spring water pressure is changed to the water pressure. Since the load is applied to the meter 12, the spring pressure can be measured with the water pressure meter 12. In other words, the spring pressure output from the water pressure gauge 12 is taken into the measuring device 15 via the cable 14 -connecting portion 16 and is digitally displayed on the display portion 17.

この湧水圧測定装置により、切羽近傍の湧水圧が測定できることがわかった。これらのことから、湧水圧測定に基づいた切羽管理方法を以下に示す。   It was found that the spring pressure near the face can be measured with this spring pressure measuring device. Based on these facts, the face management method based on spring pressure measurement is shown below.

図4は本発明の湧水圧を用いた切羽管理方法を用いたトンネルの掘削フローチャートである。   FIG. 4 is a tunnel excavation flowchart using the face management method using spring water pressure according to the present invention.

まず、ステップS1において事前調査を行い、この事前調査の結果に基づき、ステップS2において地山分類と地下水位による地下水位低下工の必要性を検討する。このステップS2において、地下水位低下工が必要であると判断された場合(ステップS3のYESの場合)は、第1段階の地下水位低下工(長尺水抜きボーリング)を施工する(ステップS4)。なお、ステップS2において、地下水位低下工が必要ないと判断された場合(ステップS3のNOの場合)は、ステップS13に進む。   First, a preliminary survey is performed in step S1, and based on the result of the preliminary survey, the necessity of groundwater level lowering work by ground level classification and groundwater level is examined in step S2. If it is determined in this step S2 that a groundwater level lowering work is necessary (YES in step S3), a first-stage groundwater level lowering work (long drainage boring) is performed (step S4). . If it is determined in step S2 that groundwater level lowering work is not necessary (NO in step S3), the process proceeds to step S13.

次に、ステップS5において、湧水圧測定を行う。その結果、湧水圧が基準値以上の場合(ステップS6のNOの場合)は、第2段階の地下水位低下工(短尺水抜きボーリング)を施工する(ステップS7)。なお、ステップS6において、湧水圧が基準値以下の場合は、ステップS10へ進む。   Next, in step S5, spring pressure is measured. As a result, when the spring water pressure is equal to or higher than the reference value (NO in step S6), a second-stage groundwater level lowering work (short drainage boring) is performed (step S7). In step S6, when the spring pressure is below the reference value, the process proceeds to step S10.

ここで再度、ステップS8において、湧水圧の測定を行う。その結果、湧水圧が基準値以上の場合(ステップS9のNOの場合)は、ステップS15において、水抜きボーリングで対応可能かどうかを判断する。ここで対応不可能と判断された場合は、ステップS16で、別途地下水位低下工・止水工の検討と施工を行い、ステップS13に進む。一方、ステップS15で対応可能と判断された場合は、ステップS17で、湧水量が多いかどうかを判断する。湧水量が多い場合(ステップS17のYESの場合)は、第1段階の地下水位低下工(ステップS4)に、湧水量が少ない場合(ステップS17のNOの場合)は、第2段階の地下水位低下工(ステップS7)に戻る。   Here again, in step S8, the spring pressure is measured. As a result, when the spring water pressure is equal to or higher than the reference value (NO in step S9), it is determined in step S15 whether or not it is possible to cope with drain boring. If it is determined that the response is not possible, the groundwater level lowering work / water stop work is separately examined and constructed in step S16, and the process proceeds to step S13. On the other hand, if it is determined in step S15 that the response is possible, it is determined in step S17 whether the amount of spring water is large. If the amount of spring water is large (YES in step S17), the first stage groundwater level lowering work (step S4). If the amount of spring water is small (NO in step S17), the second stage groundwater level. Return to the lowering work (step S7).

ステップS9において、湧水圧が基準値以下の場合(ステップS9のYESの場合)は、ステップS10において、探り穿孔を行う。   In step S9, when the spring water pressure is equal to or lower than the reference value (YES in step S9), probe drilling is performed in step S10.

次いで、ステップS11において、さらに湧水圧測定を行い、その結果、湧水圧が基準値以下の場合(ステップS12のYESの場合)は、ステップS13においてトンネルの掘削を行う。湧水圧が基準値以上の場合(ステップS12のNOの場合)は、ステップS15へ進み、水抜きボーリングで対応可能かどうかの判断を行う。   Next, in step S11, the spring pressure is further measured. As a result, if the spring pressure is equal to or lower than the reference value (YES in step S12), the tunnel is excavated in step S13. When the spring water pressure is equal to or higher than the reference value (NO in step S12), the process proceeds to step S15, and it is determined whether or not it is possible to cope with drain boring.

以上のステップを、掘削が終了するまで繰り返す。すなわち、ステップS14において、掘削が終了でない場合はステップS2に戻り、掘削が終了した場合には終了となる。   The above steps are repeated until excavation is completed. That is, in step S14, when excavation is not completed, the process returns to step S2, and when excavation is completed, the process ends.

次に、管理基準値の設定について説明する。   Next, the setting of the management reference value will be described.

砂質土地山における地山分類(上記非特許文献2参照)では、トンネルの切羽前方の水頭がその切羽中心より+10m未満であることを適用条件としている。このことから、湧水圧測定において水頭で約10mに相当する湧水圧(0.1MPa)を管理基準値として設定することが考えられる。   In the natural ground classification in the sandy land (see Non-Patent Document 2 above), the application condition is that the head in front of the face of the tunnel is less than +10 m from the center of the face. From this, it is conceivable that the spring pressure (0.1 MPa) corresponding to about 10 m at the head in the spring pressure measurement is set as the management reference value.

この0.1MPaを基準値として、飯山トンネル(北陸新幹線)での測定結果にあてはめると、141km541m切羽右肩部の1ヶ所が基準値以上を示したこととなる(図7参照)。飯山トンネルでは管理基準値を0.1MPaとしているため、ここで掘削を中断し、進行方向右前方へ向って水抜きボーリングを施工した。水抜きボーリング施工後に再度湧水圧測定を行った結果、湧水量と湧水圧(0.00MPa)の減少が確認されたため、掘削を再開し、切羽の不安定化は見られなかった。これまで、管理基準値である0.1MPa以下の湧水圧で切羽が不安定化した例はないことから、現状の基準値はおおむね妥当であると判断できる。   When this 0.1 MPa is used as a reference value and applied to the measurement result in the Iiyama tunnel (Hokuriku Shinkansen), one location on the right shoulder of the 141 km 541 m face shows a reference value or more (see FIG. 7). In the Iiyama Tunnel, the management standard value is set to 0.1 MPa, so the excavation was interrupted here, and draining boring was performed toward the right front in the traveling direction. As a result of measuring the spring pressure again after draining boring, the amount of spring water and the spring pressure (0.00 MPa) were confirmed to decrease, so excavation was resumed and the face was not destabilized. Up to now, there is no example where the face is destabilized at a spring pressure of 0.1 MPa or less, which is a management reference value, and therefore it can be judged that the current reference value is generally appropriate.

また、事前調査などで対象とする砂質土地山の密度試験および浸透崩壊試験が実施され、相対密度と限界動水勾配の分布が明らかにされている場合には、限界動水勾配に相当する湧水圧を管理基準値として設定することも考えられる。   In addition, if a density test and a seepage collapse test are conducted on a sandy mountain that is the subject of a prior survey, etc., and the distribution of relative density and critical hydraulic gradient is clarified, it corresponds to the critical hydraulic gradient. It is also conceivable to set the spring pressure as a management reference value.

このように設定した管理基準の変更は、以下のように行われる。   The management criteria set in this way are changed as follows.

(1)管理基準の下方修正
基準値で管理しながら掘削し、湧水による切羽の不安定化が認められた場合には、切羽安定化のための補助工法および地下水位低下工を行い、基準値の修正の検討を行う。
(1) Downward revision of management standards When excavation is carried out while managing at the reference value, and the face is unstable due to spring water, an auxiliary method for stabilizing the face and groundwater level lowering work will be performed. Consider correcting the value.

(2)管理基準の上方修正
湧水圧が管理基準値以上の場合には、地下水位低下工を施して水位を低下させ、基準値以下となってから掘削を開始することとなる。そのため、基準値以上の湧水圧で掘削した場合の切羽の状態変化を確認することはできず、湧水圧測定と切羽の状態観察だけで基準値を上方修正することはできない。
(2) Upward revision of management standards If the spring pressure is higher than the management standard value, groundwater level lowering work will be performed to lower the water level, and excavation will start after the water level falls below the standard value. Therefore, it is not possible to confirm the change in the state of the face when excavating at a spring pressure higher than the reference value, and the reference value cannot be corrected upward only by measuring the spring pressure and observing the state of the face.

管理基準を上方修正するためには、分布する砂質土の湧水圧に対する抵抗性を浸透崩壊試験などの試料試験により別途評価する必要がある。   In order to revise the management standard upward, it is necessary to separately evaluate the resistance of the distributed sandy soil to spring pressure by a sample test such as a seepage collapse test.

なお、以下の点に留意する。   Note the following points.

探り穿孔による前方調査は基本的には切羽周辺に地下水がないことを確認することが最大の目的である。一方、探り穿孔により地下水の存在が確認された場合には、レンズ状帯水砂層など長尺および短尺のボーリングでは十分に水位を低下させることのできなかった地下水である可能性が高く、切羽の安定性はその時点で地質の情報や湧水量、湧水圧により判断する必要がある。本発明で実施している切羽周辺での簡易湧水圧測定は、特に、長尺および短尺のボーリングでは水位を低下させることのできない地下水の有無を探り、その水圧を測定することで、切羽の安定性を評価することを目的としている。   The main purpose of the forward survey by exploration drilling is basically to confirm that there is no groundwater around the face. On the other hand, if the presence of groundwater is confirmed by exploration drilling, it is highly possible that the groundwater level could not be lowered sufficiently by long and short boring such as a lenticular aquifer sand layer. It is necessary to judge the stability based on geological information, spring volume and spring pressure at that time. The simple spring pressure measurement around the working face that is implemented in the present invention is the stability of the working face, especially by investigating the presence or absence of groundwater that cannot be lowered by long and short boring, and measuring the water pressure. The purpose is to evaluate sex.

このような目的を考慮し、切羽周辺における探り穿孔および簡易湧水圧測定は以下の基本的な考え方をもとに実施している。
(1)常時実施するものとする。
(2)穿孔長は、前方に高圧地下水を含み、崩壊し易い地層が分布する場合も切羽とその地層との間の地山がバルクヘッドとなり得る延長(約10m以上)とする。
(3)切羽が安定している場合も、前方地質の不均質性に伴う局所的な地下水分布を確認するために実施する。
(4)最も崩落の生じやすい天端から肩部を中心に切羽断面内で実施する。
(5)新たに滴水の見られる箇所では必ず実施する。
(6)測定をパターン化する場合でも長尺ボーリングの結果により、実施位置や頻度等のパターンを変更する。
(7)高圧湧水が確認された場合には、掘削を中止し、必要な対策の検討を行う。
In consideration of such a purpose, exploration drilling and simple spring pressure measurement around the face are carried out based on the following basic concept.
(1) It shall always be implemented.
(2) The perforation length shall be an extension (about 10 m or more) that allows the ground between the face and the formation to become a bulkhead even in the presence of high-pressure groundwater in the front and a layer that tends to collapse.
(3) Even when the face is stable, it is carried out to confirm the local groundwater distribution due to the heterogeneity of the front geology.
(4) Carry out within the cross section of the face centering on the shoulder from the top where the collapse is most likely to occur.
(5) Be sure to perform the test where there is a new drop of water.
(6) Even when patterning the measurement, the pattern such as the execution position and frequency is changed according to the result of the long boring.
(7) If high-pressure springs are confirmed, stop excavation and examine necessary measures.

次に、簡易湧水圧測定方法について説明する。   Next, a simple spring pressure measurement method will be described.

図5は本発明にかかる簡易湧水圧測定位置を示す図であり、図5(a)はその側面断面図、図5(b)はその正面断面図、図6は簡易湧水圧測定装置の使用状態を示す図である。   FIG. 5 is a view showing a simple spring pressure measurement position according to the present invention, FIG. 5 (a) is a side sectional view thereof, FIG. 5 (b) is a front sectional view thereof, and FIG. It is a figure which shows a state.

簡易湧水圧測定は、先受け工に利用されているFIT管(外径約76mm、内径約60mm、施工長約18.5m)を利用し、切羽断面内で左右両肩部および左右下半の計4箇所で行った。なお、測定は図5に示すように、9mピッチで実施している。ただし、切羽位置:151km537m(上半)以降は、施工の都合上上半での削孔長を15.5mとして実施している。   Simple spring water pressure measurement uses FIT pipe (outside diameter: about 76mm, inside diameter: about 60mm, construction length: about 18.5m) used for the receiving work. A total of four locations were conducted. Note that the measurement is performed at a pitch of 9 m as shown in FIG. However, after the face position: 151 km 537 m (upper half), the drilling length in the upper half is set to 15.5 m for the convenience of construction.

以下、本発明にかかる簡易湧水圧測定結果について説明する。   Hereinafter, the simple spring pressure measurement result concerning this invention is demonstrated.

簡易湧水圧測定は平成16年4月1日から実施し、これまで計23回の測定を行った。その簡易湧水圧測定の結果を図7に、掘削実績からまとめられた地質と湧水の状況を図8に示す。   Simple spring water pressure measurement was carried out from April 1, 2004, and a total of 23 measurements have been performed so far. The result of the simple spring pressure measurement is shown in FIG. 7, and the geology and the state of spring water summarized from the drilling results are shown in FIG.

探り穿孔による湧水圧と湧水量の測定結果は以下のとおりである。   The measurement results of spring pressure and spring volume by exploration are as follows.

(1)計測された湧水圧は、上半左肩部で0〜0.033MPa、上半右肩部で0〜0.115MPa、下半左側で0〜0.018MPa、下半右側で0〜0.033MPaであり、右肩部で高い湧水圧を示す場合が多く認められた。   (1) The measured spring pressure is 0 to 0.033 MPa at the upper left shoulder, 0 to 0.115 MPa at the upper right shoulder, 0 to 0.018 MPa at the lower left side, and 0 to 0 at the lower right side. 0.03 MPa, and a high spring pressure was often observed in the right shoulder.

(2)湧水量は、上半左肩部で0〜40l/min、上半右肩部で0〜53l/min、下半左側で0〜25l/min、下半右側で0〜63l/minである。   (2) The amount of spring water is 0-40 l / min at the upper left shoulder, 0-53 l / min at the upper right shoulder, 0-25 l / min at the lower left side, and 0-63 l / min at the lower right side. is there.

(3)切羽中の1箇所で高い湧水圧を示した場合でも、その他の箇所からはほとんど湧水が認められない場合が多い。   (3) Even when a high spring pressure is shown at one location in the face, there are many cases where almost no spring is observed from other locations.

(4)湧水圧については、上半右肩以外では起点方へ掘削が進行するにしたがい減少する傾向が見られる。また湧水量も下半の探り穿孔では起点方への掘削の進行に伴い減少する傾向がある。   (4) The spring pressure tends to decrease as excavation progresses toward the starting point except for the upper right shoulder. Also, the amount of spring water tends to decrease with the progress of excavation toward the starting point in the lower half of the drilling.

(5)探り穿孔において最も高い湧水圧が測定されたのは、切羽位置151km541mの上半右肩部で実施した場合である。ここでは、高い水圧をともなう湧水(湧水圧:測定不能、湧水量:70l/min)により深度10m地点で穿孔不能となったので、近傍から再度穿孔を行った結果、湧水圧0.115MPa、湧水量43l/minであった。前述のように、湧水圧の管理基準値を0.1MPaとしているため、ここでは掘削を中断し、進行方向右前方へ向って水抜きボーリングを施工した(図7の13−2および13−3)。掘削終了時の湧水量および湧水圧は、13−2が16l/min、0.01MPaで、13−3が93l/min、0.05MPaであった。水抜きボーリング施工後に、再度151km541m切羽右肩部付近で簡易湧水圧測定を行った。その結果、湧水圧0.000MPa、湧水量は滲水程度と湧水圧の減少が確認されたため、掘削を再開している。   (5) The highest spring pressure was measured in the exploration drilling when it was carried out at the upper right shoulder of the face position 151 km 541 m. Here, since it became impossible to pierce at a point of 10 m depth due to spring water with high water pressure (spring pressure: unmeasurable, spring volume: 70 l / min), as a result of drilling again from the vicinity, spring pressure 0.115 MPa, The amount of spring water was 43 l / min. As described above, since the management reference value of the spring water pressure is set to 0.1 MPa, the excavation is interrupted here, and draining boring is performed toward the right front in the traveling direction (13-2 and 13-3 in FIG. 7). ). The amount of spring water and the spring pressure at the end of excavation were 16 l / min and 0.01 MPa for 13-2, and 93 l / min and 0.05 MPa for 13-3. After draining boring, simple spring pressure measurement was performed again near the right shoulder of 151 km 541 m face. As a result, it was confirmed that the spring pressure was 0.000 MPa, the amount of the spring water was about the level of seepage, and the spring pressure was reduced, so excavation was resumed.

(6)切羽からの湧水はほとんど見られないことが多く、湧水がある場合でも多くて5l/min程度である。しかし、切羽からの湧水が見られない場合でも、天端や側壁のロックボルトからの湧水が見られる場合が認められた。   (6) Spring water from the face is often not seen, and even when there is spring water, it is at most about 5 l / min. However, even when no spring water was seen from the face, there were cases where spring water was seen from the rock bolts on the top and side walls.

上記した簡易湧水圧の測定結果のうち、特徴的な事項を以下に記す。   Among the measurement results of the simple spring water pressure described above, the characteristic items are described below.

(1)湧水量が少なくても比較的高い湧水圧を示す場合があった。   (1) There was a case where a relatively high spring pressure was shown even if the amount of spring was small.

(2)切羽ではほとんど湧水が認められないにもかかわらず、天端部や肩部および側壁部のロックボルトから湧水が認められる場合があった。   (2) In spite of the fact that almost no spring water was observed at the face, there was a case where spring water was observed from the top end, shoulder and side wall rock bolts.

(3)簡易湧水圧測定結果では、切羽右肩で比較的高い湧水圧を示す場合が認められた。   (3) As a result of simple spring pressure measurement, a relatively high spring pressure was observed on the right shoulder of the face.

(4)151km541mの切羽右肩での測定では多量の湧水および高い湧水圧が認められたが、同じ切羽の左肩や下半での測定では、湧水圧および湧水量ともに極めて低い値を示す。これにより、切羽右側より2箇所で実施された水抜きボーリングでは、湧水量が16l/min、93l/minと、比較的多い湧水が確認された。この水抜きボーリングの実施により、151km541m切羽右肩での湧水はほとんどなくなっている。   (4) A large amount of spring water and a high spring pressure were found in the measurement at the right shoulder of the face of 151 km 541 m. However, both the spring pressure and the amount of spring water were shown to be extremely low in the measurement at the left shoulder and lower half of the same face. As a result, in the draining boring conducted at two locations from the right side of the face, a relatively large amount of spring water was confirmed at 16 l / min and 93 l / min. As a result of this draining boring, there is almost no spring water on the right shoulder of the 151 km 541 m face.

上記(1)については、湧水量が少量であっても高い水頭を有する地下水が存在していることを示す。図9に湧水量と湧水圧の関係を示すが、全体的には顕著な相関は認められない。このような特徴の原因としては、透水性の低い地層が高い水頭を有して帯水している場合や、地下水が被圧している場合などが考えられる。   About said (1), even if the amount of spring water is small, it shows that the groundwater which has a high head exists. FIG. 9 shows the relationship between the amount of spring water and the spring pressure, but no significant correlation is found overall. As a cause of such a feature, a case where a low-permeability stratum has a high water head and is inundated, or a case where groundwater is under pressure is considered.

上記(2)〜(4)については、地質の不均質性に伴い地下水が局在していることを示唆していると考えられる。これは、本発明の切羽管理方法で特に注目している事前に施工されている水抜きボーリングでは低下させることのできない、局所的に分布する地下水を探り穿孔で捉えている可能性が高い。   About said (2)-(4), it is thought that it has suggested that the groundwater is localized with the heterogeneity of geology. There is a high possibility that the locally distributed groundwater that cannot be lowered by the pre-drained boring that has been particularly noticed in the face management method of the present invention is caught by searching and drilling.

特に、上記(4)で示した151km541m上半右肩部の探り穿孔における湧水は、先進ボーリング(11)(○付き)の掘削深度約70〜75mで捉えられた湧水量180l/min、湧水圧1.00MPaの帯水層に相当する(図8参照)。この帯水層中に残存した地下水を右肩部の探り穿孔のみで確認され、他の探り穿孔では確認できなかった。その理由としては、i)上記のような地質の不均質性に伴う地下水の局所的な分布、ii)探り穿孔による地下水の検出可能位置と帯水層の幾何学的な位置関係の差異、等が考えられる。   In particular, the spring water in the exploration drilling of the upper right shoulder of 151 km 541 m shown in (4) above is a spring volume of 180 l / min, which is captured at an excavation depth of about 70 to 75 m in advanced boring (11) (with ○). This corresponds to an aquifer having a water pressure of 1.00 MPa (see FIG. 8). The groundwater remaining in this aquifer was confirmed only by the exploration drilling of the right shoulder, but not by other exploration drilling. The reasons are as follows: i) local distribution of groundwater due to the inhomogeneity of geology as described above, ii) the difference in the geometrical relationship between the groundwater detectable position and the aquifer by exploration drilling, etc. Can be considered.

上記(3)で述べたように、上半右肩部で湧水圧が高い傾向が見られる。また、湧水圧と湧水量の関係を探り穿孔の切羽断面内における位置ごとに見ると、上半右肩部と下半右下ではある程度の関係がみられるが、左側では明瞭な関係はみられない。これは、局所的な地下水がたまたますべて切羽右肩部に分布したとも考えられるが、切羽右肩部でのみ残存する地下水が捉えられるような偏在する帯水層と探り穿孔の幾何学的な位置関係となっている可能性が強いと推定される。   As described in (3) above, there is a tendency for the spring pressure to be high in the upper right shoulder. In addition, when the relationship between the spring pressure and the spring volume was investigated and looked at each position in the cross section of the face of the perforation, there was a certain relationship between the upper right shoulder and lower lower right, but there was a clear relationship on the left. Absent. This is thought to be due to the fact that all of the local groundwater happens to be distributed in the right shoulder of the face. It is presumed that there is a strong possibility of a relationship.

次に、図8から、地質構造と湧水に関して大局的にまとめ、本発明の有効性を述べる。   Next, the effectiveness of the present invention will be described from FIG.

まず、トンネルが北北西ないし北西から南南東ないし南東へ掘削されているのに対し、地層の走向は北北東−南南西ないし北東−南西方向で、その傾斜はほぼ同様で南に傾き、切羽に対して受け盤構造である。このため、地層は切羽に対し左から現れ掘削の進行に伴い右に移動することとなる。このような地質構造から、地下水位をより早期に低下させるために切羽に対し左側の水抜きボーリングを先行させている。よって、左側の水抜きボーリングで大きな湧水量や湧水圧が観測されている。右側の水抜きボーリングや探り穿孔では湧水量、湧水圧とも小さいことから、左側の水抜きボーリングが効果的に地下水位を低下させていると判断できる。さらに、複数回の水抜きボーリングの結果、最新のボーリングによって始めて水抜きボーリングが到達したことになる層準において、多量または高圧の湧水が見られることからも、水抜きボーリングが有効であることがうかがえる。また、151km500〜540m付近の擾乱帯から終点方では、左側の水抜きボーリングで比較的高い湧水圧を確認した地層に相当する層準に到達した探り穿孔で湧水圧が高くなっている。このことは、水抜きボーリングで十分に水位低下できなかった地下水を探り穿孔により捉えるとともに、探り穿孔が水抜きの役割を果たし、切羽の安定化に効果があったものと判断される。   First, the tunnel is excavated from north-northwest to northwest to south-southeast to southeast, while the stratum strikes north-north-south-south-west or north-east-south-west, and its slope is almost the same, tilting south, against the face. It is a base structure. For this reason, the stratum appears from the left with respect to the face and moves to the right as the excavation progresses. Because of this geological structure, the drainage boring on the left side is preceded by the face to reduce the groundwater level earlier. Therefore, a large amount of spring water and spring pressure are observed in the drain boring on the left side. In the right draining boring and exploration drilling, the amount of spring water and the spring pressure are both small, so it can be judged that the draining boring on the left side effectively reduces the groundwater level. In addition, as a result of multiple water boring, water boring is effective because a large amount or high-pressure spring water is seen in the layer where the water boring has reached for the first time by the latest boring. I can see. Further, in the direction from the disturbance zone near 151 km to 500 to 540 m, the spring water pressure is high due to the search drilling that reaches the level corresponding to the formation where the relatively high spring water pressure was confirmed by draining boring on the left side. This is because groundwater that could not be sufficiently lowered by draining boring was caught by exploration and drilling, and the exploration drilling played a role of draining water and was judged to be effective in stabilizing the face.

151km525mから起点方では、地層の走向は終点方と同様であるが、傾斜は一定ではなく、周辺に分布する断層に伴う変形やせん断などを受け破砕された地質と推定される。この区間においても、切羽に向かって左側の水抜きボーリングでは、ある程度の湧水量、湧水圧が確認されているが、ここでの湧水は急激に減水・減圧する傾向がある。また、切羽の探り穿孔では湧水がほとんど確認されていない。このことから、この区間では左側の水抜きボーリングにより地下水位が十分に低下しいたものと推定される。   Starting from 151 km 525 m, the stratum direction is the same as the direction of the end point, but the slope is not constant, and it is presumed that the geology has been crushed by deformation and shearing associated with faults distributed around it. Even in this section, a certain amount of spring water and spring pressure have been confirmed in the drain boring on the left side toward the face, but the spring here has a tendency to rapidly decrease / decrease. In addition, almost no spring water has been confirmed in the drilling of the face. From this, it is presumed that the groundwater level was sufficiently lowered in this section by draining boring on the left side.

以上のように、簡易湧水圧測定の結果、比較的広域に分布する地下水は事前の水抜きボーリングにより水位が低下していることが確認された。また、この水抜きボーリングで低下させることのできない局所的に残存する地下水は、探り穿孔により確認することができることが明らかとなり、この探り穿孔や新たな水抜き孔を用いて水位を低下させている。したがって、本発明のトンネル切羽管理方法に基づくトンネル掘削では、水抜きボーリングと探り穿孔の併用により、確実に切羽周辺の水位を低下させており、切羽がほぼ安定した状態に保たれていると考えられる。   As described above, as a result of simple spring pressure measurement, it was confirmed that the water level in groundwater distributed in a relatively wide area has decreased due to preliminary draining boring. In addition, it becomes clear that locally remaining groundwater that cannot be lowered by this drain boring can be confirmed by probe drilling, and the water level is lowered using the probe drilling or new drain hole. . Therefore, in the tunnel excavation based on the tunnel face management method of the present invention, it is considered that the water level around the face is reliably lowered by the combined use of draining boring and probe drilling, and the face is maintained in a substantially stable state. It is done.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の湧水圧を用いたトンネルの切羽管理方法は、簡便で実際的なトンネルの切羽管理方法として利用可能である。   The tunnel face management method using spring pressure of the present invention can be used as a simple and practical tunnel face management method.

本発明にかかる湧水圧測定装置の構成図である。It is a block diagram of the spring pressure measuring apparatus concerning this invention. 本発明にかかる湧水圧測定装置の測定器の正面図である。It is a front view of the measuring device of the spring pressure measuring apparatus concerning this invention. 本発明にかかる湧水圧測定装置の測定器の側面図である。It is a side view of the measuring device of the spring pressure measuring apparatus concerning this invention. 本発明の湧水圧を用いた切羽管理方法を用いたトンネルの掘削フローチャートである。It is a excavation flowchart of the tunnel using the face management method using the spring pressure of this invention. 本発明にかかる簡易湧水圧測定位置を示す図である。It is a figure which shows the simple spring pressure measurement position concerning this invention. 本発明にかかる簡易湧水圧測定の使用状態を示す図である。It is a figure which shows the use condition of the simple spring pressure measurement concerning this invention. 本発明にかかる簡易湧水圧測定の結果を示す図である。It is a figure which shows the result of the simple spring pressure measurement concerning this invention. 本発明にかかる掘削の実績と湧水の状況を示す図である。It is a figure which shows the performance of excavation concerning this invention, and the condition of spring water. 本発明にかかる湧水量と湧水圧の関係を示す図である。It is a figure which shows the relationship between the amount of springs concerning this invention, and a spring pressure.

符号の説明Explanation of symbols

1 鉄クロスビット
2 自穿孔ロックボルト
3 アダプター
4 分岐中空管(チーズ)
5 第1のバルブ
6 第1のバルブの操作レバー
7 第2のバルブ
8 第2のバルブの操作レバー
9 ブッシング
10 配管アダプター
11 Oリング
12 水圧計
13,16 接続部
14 ケーブル
15 測定器
17 表示部
1 Iron cross bit 2 Self-drilling lock bolt 3 Adapter 4 Branch hollow tube (cheese)
5 1st valve 6 1st valve operation lever 7 2nd valve 8 2nd valve operation lever 9 Bushing 10 Piping adapter 11 O-ring 12 Water pressure gauge 13,16 Connection part 14 Cable 15 Measuring instrument 17 Display part

Claims (3)

トンネルの切羽において該切羽前方での地下水の有無および湧水圧を計測し、これを該切羽が所定距離進むごとに繰り返し行い、湧水圧の測定時に湧水圧が所定値を越えたり、湧水量が多い場合には、トンネル掘削工事を中断して地下水位低下工を施し、地下水位および湧水圧が十分に低下したことを確認した上でトンネル掘削工事を再開することを特徴とする湧水圧を用いた切羽管理方法。   Measure the presence of groundwater and the spring pressure in front of the face at the face of the tunnel, and repeat this every time the face advances by a predetermined distance. When measuring the spring pressure, the spring pressure exceeds the specified value or the amount of spring is large. In some cases, the tunnel excavation work was interrupted, groundwater level lowering work was performed, and after confirming that the groundwater level and the spring water pressure were sufficiently lowered, the tunnel excavation work was resumed, and spring pressure was used. Face management method. 請求項1記載の湧水圧を用いた切羽管理方法において、前記湧水圧の所定値が0.1MPaであることを特徴とする湧水圧を用いた切羽管理方法。   The face management method using the spring pressure according to claim 1, wherein the predetermined value of the spring pressure is 0.1 MPa. 請求項1又は2記載の湧水圧を用いた切羽管理方法において、前記切羽前方の位置が20m程度、前記切羽が進む所定距離が10m程度であることを特徴とする湧水圧を用いた切羽管理方法。   3. A face management method using spring water pressure according to claim 1 or 2, wherein a position in front of the face is about 20 m, and a predetermined distance traveled by the face is about 10 m. .
JP2005307916A 2005-10-24 2005-10-24 Tunnel face management method using spring water pressure Expired - Fee Related JP4455471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307916A JP4455471B2 (en) 2005-10-24 2005-10-24 Tunnel face management method using spring water pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307916A JP4455471B2 (en) 2005-10-24 2005-10-24 Tunnel face management method using spring water pressure

Publications (2)

Publication Number Publication Date
JP2007113333A true JP2007113333A (en) 2007-05-10
JP4455471B2 JP4455471B2 (en) 2010-04-21

Family

ID=38095779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307916A Expired - Fee Related JP4455471B2 (en) 2005-10-24 2005-10-24 Tunnel face management method using spring water pressure

Country Status (1)

Country Link
JP (1) JP4455471B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117997A (en) * 2014-12-18 2016-06-30 清水建設株式会社 Method and system for evaluating water permeation characteristic in front of tunnel pit face
JP2020094434A (en) * 2018-12-13 2020-06-18 鹿島建設株式会社 Face stability evaluation method and tunnel boring method
JP6917604B1 (en) * 2020-10-12 2021-08-11 株式会社カテックス Ground reinforcement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117997A (en) * 2014-12-18 2016-06-30 清水建設株式会社 Method and system for evaluating water permeation characteristic in front of tunnel pit face
JP2020094434A (en) * 2018-12-13 2020-06-18 鹿島建設株式会社 Face stability evaluation method and tunnel boring method
JP7106437B2 (en) 2018-12-13 2022-07-26 鹿島建設株式会社 Face stability evaluation method
JP6917604B1 (en) * 2020-10-12 2021-08-11 株式会社カテックス Ground reinforcement method

Also Published As

Publication number Publication date
JP4455471B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
Hencher Preferential flow paths through soil and rock and their association with landslides
CN102561330B (en) Integrated construction method for artificial dug pile and steel pipe concrete column
CN103966994B (en) Feeler inspection formula underground utilities visit shovel
CN110073075A (en) Exploit the cutting method in the vertical and horizontal channel of solid natural resource
CN111369156A (en) Method for evaluating local stability of surrounding rock excavated by oversized cross-chamber rock tunnel
Aydin Stability of saprolitic slopes: nature and role of field scale heterogeneities
JP4455471B2 (en) Tunnel face management method using spring water pressure
Flageollet et al. The 3D structure of the Super-Sauze earthflow: a first stage towards modelling its behaviour
Goel Tunnelling through weak and fragile rocks of Himalayas
CN106940453A (en) It is a kind of to exist at underground utilities carry out shallow-layer integrated exploration method and device
JP2007270542A (en) Road bridge foundation design method
JP4339277B2 (en) Spring pressure measuring device near the face of the tunnel
CN201526309U (en) Underground hydrological observation hole
CN105525925B (en) Containing the construction method for wasting reduction shield machine cutter damage in rib rock compound stratum
JP4196279B2 (en) Estimated amount of spring water and tunnel excavation method
Ward et al. Managing uncertainty and risk–The exploration program for Seattle’s proposed Light Rail Tunnels
Shooter Microtunnelling dewaters landslip area
Barlow et al. The Role of Geotechnical Investigation for Directionally Drilled River Crossings
Ishak et al. Effect of tunnel construction techniques, ground properties and tunnel geometrical to the amount of volume loss
Singh et al. Introduction to tunnels and tunneling operations in the Himalaya’s part of India
Cunningham et al. Horizontal Directional Coring (HDC) and Groundwater Inflow Testing for Deep Subsea Tunnels
Lloyd-Mills et al. Mine Plan Optimization with Effective Use of Pit Slope Horizontal Drains
Staheli et al. Large Water Distribution Pipeline Calls for Challenging Trenchless Installation in Lake Oswego, Oregon
Chung et al. A risk management system applicable to NATM tunnels: methodology development and application
Arumsari et al. Pipeline installation using horizontal directional drilling method (HDD)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees