JP2007270542A - Road bridge foundation design method - Google Patents

Road bridge foundation design method Download PDF

Info

Publication number
JP2007270542A
JP2007270542A JP2006098589A JP2006098589A JP2007270542A JP 2007270542 A JP2007270542 A JP 2007270542A JP 2006098589 A JP2006098589 A JP 2006098589A JP 2006098589 A JP2006098589 A JP 2006098589A JP 2007270542 A JP2007270542 A JP 2007270542A
Authority
JP
Japan
Prior art keywords
layer
water supply
ground
coefficient
vertical stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006098589A
Other languages
Japanese (ja)
Inventor
Yoshito Maeda
良刀 前田
Yugo Suzuki
雄吾 鈴木
Masabumi Hayase
正文 早瀬
Takeshi Hirose
剛 広瀬
Yasuo Fukunaga
靖雄 福永
Michiaki Sakate
道明 坂手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOYU DAICHI CO Ltd
EXPRESSWAY TECHNOLOGY CENTER
EXPRESSWAY TECHNOLOGY CT
West Nippon Expressway Co Ltd
Central Nippon Expressway Co Ltd
East Nippon Expressway Co Ltd
Original Assignee
DOYU DAICHI CO Ltd
EXPRESSWAY TECHNOLOGY CENTER
EXPRESSWAY TECHNOLOGY CT
West Nippon Expressway Co Ltd
Central Nippon Expressway Co Ltd
East Nippon Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOYU DAICHI CO Ltd, EXPRESSWAY TECHNOLOGY CENTER, EXPRESSWAY TECHNOLOGY CT, West Nippon Expressway Co Ltd, Central Nippon Expressway Co Ltd, East Nippon Expressway Co Ltd filed Critical DOYU DAICHI CO Ltd
Priority to JP2006098589A priority Critical patent/JP2007270542A/en
Publication of JP2007270542A publication Critical patent/JP2007270542A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road bridge foundation design method that uses measured values that are concrete to an extent that they are practicable from an original position shear friction test (SBIFT). <P>SOLUTION: First, the shear stress-vertical stress curve and the water supply volume-vertical stress curve are calculated for each layer of the ground to which this road bridge foundation design applies. Then the circumferential frictional force of each ground layer is calculated using an adhesive force and an inner friction angle obtained from the shear stress-vertical stress curve, and the side pressure value obtained from the water supply volume-vertical stress curve. Further a deformation coefficient is obtained from the water supply volume-vertical stress curve. An ordinary correction coefficient is set up at 2 and an earthquake correction coefficient is at 4 for use in the estimation of a subgrade reaction coefficient. The circumferential friction force of each ground layer is calculated using the adhesive force and the inner friction angle obtained from the shear stress-vertical stress straight line and the side pressure value obtained from the water supply volume-vertical stress curve if the layer is a clay layer, and may be estimated from the value N if the layer is a sand and gravel layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、道路における橋梁の設計方法、特に、基礎杭の配置、本数などを決定する道路橋基礎設計方法に関するものである。   The present invention relates to a bridge design method for roads, and more particularly to a road bridge foundation design method for determining the arrangement and number of foundation piles.

道路における橋梁は、「橋、高架の道路等の技術基準」(都市・地域整備局長、道路局長通達)に基づいて設計・施工されており、実際の設計・施工においては、その基準をまとめて解説した道路橋示方書が広く使用されている。   Bridges on roads are designed and constructed based on “Technical Standards for Bridges, Elevated Roads, etc.” (Director of City / Regional Development Bureau, Director General of Road Bureaus). The described road bridge specifications are widely used.

上記道路橋示方書による従来の設計法によれば、基礎杭の支持力を設定する際に使用される杭の周面摩擦力や変形係数は、標準貫入試験などで得たN値から間接的に評価された値が採用されていた。しかしながら、このN値は、その測定時に機械的誤差や人為的誤差が生じやすく、土壌によってはその性質を正確に表す指標とならない場合もあった。そのため、N値から推定した地盤定数を基に基礎設計をする場合には、安全率が見込まれる必要があり、結果として、基礎杭の数は、十分な強度を確保するために本来必要となる本数よりも過剰になる傾向があった。そして、実際の工事において、コストが嵩み工期も長くなるという問題を招致していた。   According to the conventional design method based on the above road bridge specifications, the peripheral frictional force and deformation coefficient of the pile used when setting the bearing capacity of the foundation pile are indirect from the N value obtained in the standard penetration test. The value evaluated for was adopted. However, this N value tends to cause a mechanical error or an artificial error at the time of measurement, and depending on the soil, it may not be an index that accurately represents the property. Therefore, when performing foundation design based on the ground constant estimated from the N value, it is necessary to expect a safety factor, and as a result, the number of foundation piles is originally necessary to ensure sufficient strength. There was a tendency to become more than the number. In the actual construction, the cost is increased and the construction period is prolonged.

なお、変形係数については、あらかじめボーリングした孔に変形係数測定のための測定機を挿入する方法で測定し、その測定値を補正係数によって設計用に修正して使用する場合もある。しかしながら、この方法では、既に開けられたボーリング孔内の地盤に、応力解放によるゆるみが発生するため、実地盤の正確な強さが測定されない可能性が高かった。そのため、上記周面摩擦力の場合と同様、安全率を見込む必要があった。   In some cases, the deformation coefficient is measured by a method in which a measuring machine for measuring the deformation coefficient is inserted into a hole that has been drilled in advance, and the measured value is corrected for design using a correction coefficient. However, in this method, since the looseness due to stress release occurs in the ground in the already drilled hole, there is a high possibility that the exact strength of the actual ground cannot be measured. Therefore, as in the case of the peripheral frictional force, it is necessary to allow for a safety factor.

そこで、近年では、地盤の性質をより正確に測定し、過大な安全率を見込むことなく、必要十分な杭を決定できる設計手法が研究されている。そして、そのような設計手法の前提となる、地盤の性質を正確に測定する方法として、原位置せん断摩擦試験(SBIFT)が提案されている。このSBIFTは、自然地盤の応力を緩めることなくセルフボーリングで掘削してそのボーリング孔を利用し、プローブの膨脹とせん断により地盤の強度と変形特性を一体的に測定する試験法である。そして、この試験法によれば、任意の土壌において、せん断強度定数(c、φ又はδ)と変形係数E0を直接求めることができる。なお、SBIFTが提唱されている文献として、例えば、土と基礎Vol45No12の50ページに掲載されている新技術紹介「土の原位置せん断・摩擦強度測定」、土木学会論文集第617号/III−46の191〜200ページに掲載されている「原位置摩擦試験による地盤の強度・変形定数の推定と実務への適用」、或いは土木学会全国大会研究発表会講演概要集620〜621ページに掲載されている「SBIFTによる杭の周面摩擦力の推定について」がある。また、SBIFTを実施するための装置の改良に関する文献として、例えば、実用新案登録第3065030号公報がある。
実用新案登録第3065030号公報 道路橋示方書(I共通編・IV下部構造編)同解説 社団法人日本道路協会発行 新技術紹介「土の原位置せん断・摩擦強度測定」、土と基礎、Vol45、No12、pp50 原位置摩擦試験による地盤の強度・変形定数の推定と実務への適用、土木学会論文集、第617号/III−46、pp191〜200 SBIFTによる杭の周面摩擦力の推定について、土木学会全国大会研究発表会講演概要集、pp620〜621
In recent years, therefore, research has been conducted on a design method that can measure the properties of the ground more accurately and determine necessary and sufficient piles without considering an excessive safety factor. An in-situ shear friction test (SBIFT) has been proposed as a method for accurately measuring the properties of the ground, which is the premise of such a design technique. This SBIFT is a test method for excavating by self-boring without relaxing the stress on the natural ground and utilizing the borehole, and integrally measuring the strength and deformation characteristics of the ground by the expansion and shearing of the probe. According to this test method, the shear strength constant (c, φ, or δ) and the deformation coefficient E0 can be directly obtained in any soil. In addition, SBIFT has been proposed as a literature, for example, the introduction of new technology “In-situ shear and friction strength measurement of soil” published on page 50 of soil and foundation Vol 45 No12, JSCE Proceedings No. 617 / III- 46, pages 191-200, "Estimation of ground strength and deformation constants by in-situ friction test and application to practical use", or pages 620-621 of the summary of lectures at the National Conference of the Japan Society of Civil Engineers There is “About estimation of frictional force on the surface of piles by SBIFT”. Further, for example, there is a utility model registration No. 3065030 as a document relating to improvement of an apparatus for performing SBIFT.
Utility Model Registration No. 3065030 Road bridge indication (I common edition, IV substructure edition) same comment issued by Japan Road Association New technology introduction “In-situ shear / friction strength measurement of soil”, soil and foundation, Vol45, No12, pp50 Estimation of soil strength and deformation constant by in-situ friction test and application to practical work, Proceedings of Japan Society of Civil Engineers, 617 / III-46, pp191-200 About the estimation of the frictional force of the peripheral surface of the pile by SBIFT, Japan Society of Civil Engineers National Conference Research Presentation Lecture Collection, pp 620-621

上記SBIFTでは、任意の土壌のせん断強度定数を直接求めることができるため、これらの計測値を利用して構造物基礎の設計を行うことにより、また、地盤の強さを正確に反映する変形係数を計測することができるため、その変形係数を用いることにより、従来の設計法よりも正確な結果を得ることが、理論的には可能である。しかしながら、SBIFTにより得られた計測値を利用した具体的な設計手法は、未だ提案されていないのが実状である。   Since the SBIFT can directly determine the shear strength constant of any soil, the deformation coefficient that accurately reflects the strength of the ground can be obtained by designing the structure foundation using these measured values. Therefore, it is theoretically possible to obtain a more accurate result than the conventional design method by using the deformation coefficient. However, a concrete design method using the measurement value obtained by SBIFT has not been proposed yet.

そこで、本発明の目的は、実用できる程度に具体的な、SBIFTの計測値に基づく道路橋基礎設計方法を提供することにある。   Accordingly, an object of the present invention is to provide a road bridge foundation design method based on SBIFT measurement values, which is practical enough to be practically used.

本発明にかかる道路橋基礎設計方法では、まず、原位置せん断摩擦試験(SBIFT)により、道路橋基礎設計の対象地となる地盤についてその層毎にせん断応力−垂直応力曲線、及び送水量−垂直応力曲線を求める。そして、該せん断応力−垂直応力曲線から求められる粘着力及び内部摩擦角と、該送水量−垂直応力曲線から求められる側圧値を用いて、該各層毎の周面摩擦力度を算出し、更に、該送水量−垂直応力曲線から変形係数を求める。また、地盤反力係数の推定に用いる、常時補正係数を2と、地震時補正係数を4とする。   In the road bridge foundation design method according to the present invention, first, by the in-situ shear friction test (SBIFT), the shear stress-vertical stress curve and the water supply amount-vertical are obtained for each layer of the ground which is the target site of the road bridge foundation design. Obtain the stress curve. Then, using the adhesive force and internal friction angle obtained from the shear stress-normal stress curve and the lateral pressure value obtained from the water supply amount-normal stress curve, the peripheral friction force degree for each layer is calculated, A deformation coefficient is obtained from the water supply amount-normal stress curve. In addition, the constant correction coefficient used for estimation of the ground reaction force coefficient is 2 and the earthquake correction coefficient is 4.

道路橋基礎設計の対象地となる該地盤が、粘土質層、砂質層及び礫層から構成される場合、該層毎の周面摩擦力度は、該層が粘土質層であれば、該せん断応力−垂直応力直線から求められる粘着力及び内部摩擦角と、該送水量−垂直応力曲線から求められる側圧値を用いて算出し、該層が砂質層及び礫層であれば、N値により推定してもよい。   When the ground that is the target site of the road bridge foundation design is composed of a clayey layer, a sandy layer, and a gravel layer, the circumferential frictional force for each layer is Calculated using the adhesive force and internal friction angle obtained from the shear stress-vertical stress line and the lateral pressure value obtained from the water supply amount-normal stress curve, and if the layer is a sandy layer and a gravel layer, the N value It may be estimated by

本発明にかかる設計方法によれば、SBIFTにより得られる、地盤の層毎におけるせん断応力−垂直応力直線及び送水量−垂直応力曲線を用いた、周面摩擦力度と地盤反力係数の具体的算出方法が決定しているので、道路橋基礎杭の必要最少本数を実際に決定することができる。   According to the design method according to the present invention, the specific calculation of the peripheral frictional force and the ground reaction force coefficient using the shear stress-vertical stress line and the water supply amount-vertical stress curve for each ground layer obtained by SBIFT. Since the method has been decided, the necessary minimum number of road bridge foundation piles can be actually decided.

また、道路橋基礎設計の対象地となる地盤が、粘土質層、砂質層及び礫層から構成され、砂質層及び礫層が特にもろく崩れやすい場合は、砂質層及び礫層の周面摩擦力度をN値により推定することで、より正確な設計を行うことができる。   In addition, if the ground subject to the road bridge foundation design is composed of a clayey layer, a sandy layer and a gravel layer, and the sandy layer and gravel layer are particularly fragile and easily broken, A more accurate design can be performed by estimating the surface frictional force from the N value.

本発明にかかる道路橋基礎設計方法の具体例を、図1〜8を参照しながら説明する。図1は同設計手法のフローチャート図、図2はSBIFTに用いられる試験装置の外観を示す地盤の断面図、図3はSBIFTで求められた応力−せん断変位曲線の一例を示すグラフ、図4はSBIFTで求められた送水量−垂直応力曲線の一例を示すグラフ、図5は図3のグラフを基にして得られたせん断応力−垂直応力直線を示すグラフ、図6は図4のグラフの不連続部を連続させた場合に得られる曲線の概念形状を示すグラフ、図7は変形係数から算出される水平方向地盤反力係数と載荷試験により得られた水平方向地盤反力係数を比較して示すグラフ、図8は設計対象となる道路橋基礎の橋脚構造寸法を示し、(a)は側面図、(b)は橋軸方向から見た正面図である。   A specific example of the road bridge foundation design method according to the present invention will be described with reference to FIGS. FIG. 1 is a flowchart of the design method, FIG. 2 is a cross-sectional view of the ground showing the appearance of a test apparatus used for SBIFT, FIG. 3 is a graph showing an example of a stress-shear displacement curve obtained by SBIFT, and FIG. FIG. 5 is a graph showing an example of a water supply amount-vertical stress curve obtained by SBIFT, FIG. 5 is a graph showing a shear stress-normal stress line obtained based on the graph of FIG. 3, and FIG. FIG. 7 is a graph showing the conceptual shape of the curve obtained when the continuous part is made continuous. FIG. 7 compares the horizontal ground reaction force coefficient calculated from the deformation coefficient and the horizontal ground reaction force coefficient obtained by the loading test. FIG. 8 shows the pier structure dimensions of the road bridge foundation to be designed, (a) is a side view, and (b) is a front view seen from the bridge axis direction.

この設計方法の基本的な流れは、従来と同様、道路橋示方書に従ったものとなる。具体的には、図1に示すように、ステップS1で荷重条件および地盤条件の整理を行い、ステップS2で杭種・杭径を設定し、更に、ステップS3で杭設計条件の整理を行った後、ステップS4で杭配置・杭本数の設定を行う。ただし、この設計方法では、ステップS3の杭設計条件の整理における数値設定方法、具体的には周面摩擦力度設定方法と地盤反力係数設定方法が従来の道路示橋方書に沿ったものと相違し、これらの数値設定方法において特徴を有するものとなっている。そこで、以下ではこれらの数値設定方法について詳述する。   The basic flow of this design method follows the road bridge specifications as in the past. Specifically, as shown in FIG. 1, load conditions and ground conditions were arranged in step S1, pile types and pile diameters were set in step S2, and pile design conditions were arranged in step S3. Then, pile arrangement | positioning and the number of piles are set by step S4. However, in this design method, the numerical setting method in organizing the pile design conditions in step S3, specifically the peripheral friction force degree setting method and the ground reaction force coefficient setting method are in accordance with the conventional road bridge specifications. There is a difference in these numerical value setting methods. Therefore, these numerical value setting methods will be described in detail below.

この設計方法においては、杭設計条件の整理にあたり、まず、原位置せん断摩擦試験(SBIFT)により、道路橋基礎設計の対象地となる地盤についてその層毎にせん断応力−垂直応力曲線及び送水量−垂直応力曲線を求める。   In this design method, in order to organize the pile design conditions, first of all, by in-situ shear friction test (SBIFT), the shear stress-vertical stress curve and water supply amount- Obtain the normal stress curve.

SBIFTは、既述の通り公知技術であり、図2に示すように、先端に掘削手段2を備え周面が自在に膨脹するプローブ1を使用して行う試験である。プローブ1は、内部の空隙を囲うゴム等の弾性材で構成された周壁を備え、その空隙に、水圧ポンプ3により高圧の水を注入することにより膨脹する構造となっている。   As described above, SBIFT is a known technique, and as shown in FIG. 2, is a test performed using a probe 1 having a drilling means 2 at its tip and a peripheral surface freely expanding. The probe 1 includes a peripheral wall made of an elastic material such as rubber surrounding an internal space, and has a structure that expands by injecting high-pressure water into the space by a hydraulic pump 3.

プローブ1の先端(土中に挿入された状態において下側に配置される端部)には掘削手段2としてビットが設けられ、計測地点への自己掘進による到達が可能となっている。また、基端(土中に挿入された状態において上側に配置される端部)にはボーリングロッド4が接続されており、このボーリングロッド4を介して対象地盤内のプローブ1を引っ張ることが可能となっている。そして、計測地点において、プローブ1を膨脹させ対象地盤の壁面に垂直応力を載荷するとともに、プローブ1に引っ張り力を負荷し対象地盤の壁面にせん断応力を載荷し、その際の地盤のひずみ及びせん断の生じるせん断応力を、測定機5で計測することにより、図3に示すような応力−せん断変位曲線及び図4に示すような送水量−垂直応力曲線を得ることができる。ただし、SBIFTにより得られた応力−せん断変位曲線は、設計に必要な各種値を直接示すものではないため、この曲線から、図5に示すようなせん断応力−垂直応力直線を求める。一方、SBIFTにより得られた送水量−垂直応力曲線は、試験の性質による不連続部分を有するが、図6に示すような連続曲線とその本質は同じであり、設計に必要な各種数値を直接示すものとなっている。なお、図4及び図6の縦軸は送水量となっているが、送水量はプローブ周壁の膨脹すなわち地盤の変形に比例するため、実質的には地盤のひずみを示すものである。   A bit is provided as the excavating means 2 at the tip of the probe 1 (the end disposed on the lower side when inserted into the soil), and it is possible to reach the measurement point by self-digging. Further, a boring rod 4 is connected to the base end (the end disposed on the upper side when inserted into the soil), and the probe 1 in the target ground can be pulled through the boring rod 4. It has become. At the measurement point, the probe 1 is expanded and a vertical stress is loaded on the wall surface of the target ground, and a tensile force is loaded on the probe 1 and a shear stress is loaded on the wall surface of the target ground. By measuring the shearing stress generated by the measuring machine 5, a stress-shear displacement curve as shown in FIG. 3 and a water supply amount-normal stress curve as shown in FIG. 4 can be obtained. However, since the stress-shear displacement curve obtained by SBIFT does not directly indicate various values necessary for the design, a shear stress-normal stress straight line as shown in FIG. 5 is obtained from this curve. On the other hand, the water flow-normal stress curve obtained by SBIFT has a discontinuity due to the nature of the test, but the essence is the same as the continuous curve as shown in FIG. It is meant to be shown. The vertical axis in FIGS. 4 and 6 represents the water supply amount, but the water supply amount is proportional to the expansion of the peripheral wall of the probe, that is, the deformation of the ground, and thus substantially indicates the strain of the ground.

せん断応力−垂直応力直線及び送水量−垂直応力曲線が求めることができれば、そのせん断応力−垂直応力直線のせん断応力軸切片の値から粘着力Cを、垂直応力軸に対する傾きから内部摩擦角φを求めることができる。また、送水量−垂直応力曲線の0点側変曲点Pにおける垂直応力から、側圧値P0を求めることができる。そして、各層毎の周面摩擦力度fを、f=C+P0tanφの式により算出する。   If the shear stress-vertical stress line and the water supply-vertical stress curve can be obtained, the adhesive force C is determined from the value of the shear stress axis intercept of the shear stress-normal stress line, and the internal friction angle φ is determined from the inclination with respect to the vertical stress axis. Can be sought. Moreover, the side pressure value P0 can be calculated | required from the normal stress in the 0 point side inflection point P of a water supply amount-normal stress curve. Then, the peripheral surface frictional force f for each layer is calculated by an equation of f = C + P0tanφ.

一方、送水量−垂直応力曲線については、0点側変曲点Pを越える領域の垂直応力軸に対する傾きから、変形係数E0を求める。例えば、図4において、変曲点Pが送水量V2の領域に存在する場合、変形係数E0は、領域V3、V4及びV5の直線L3、L4及びL5の傾きの平均値とする。そして、以下の数式1及び2より、地盤反力係数(鉛直方向及び水平方向)を求める。なお、数式1及び数式2は、道路示橋方書にも示されている。

Figure 2007270542
Figure 2007270542
On the other hand, for the water supply amount-vertical stress curve, the deformation coefficient E0 is obtained from the inclination with respect to the vertical stress axis in the region exceeding the zero point inflection point P. For example, in FIG. 4, when the inflection point P exists in the area of the water supply amount V2, the deformation coefficient E0 is an average value of the slopes of the straight lines L3, L4, and L5 of the areas V3, V4, and V5. Then, the ground reaction force coefficient (vertical direction and horizontal direction) is obtained from the following mathematical formulas 1 and 2. In addition, Formula 1 and Formula 2 are also shown in the road bridge bridge manual.
Figure 2007270542
Figure 2007270542

これら数式1及び2において、補正係数(地盤反力係数の推定に用いる係数)αは、変形係数Eの推定方法に応じて設定する必要があるところ、変形係数EをSBIFTで算出した場合の補正係数αは未だ解明されていない。そこで、変形係数EをSBIFTで算出した場合の補正係数αを以下のように設定する。 In these equations 1 and 2, the correction factor (using coefficients to estimate the subgrade reaction coefficient) alpha, where there must be set in accordance with the method of estimating deformation coefficient E 0, if the deformation coefficient E 0 calculated in SBIFT The correction coefficient α has not been clarified yet. Therefore, the correction coefficient α when the deformation coefficient E 0 is calculated by SBIFT is set as follows.

既述のように、SBIFTでは、ボーリング孔を予め掘ることなく、プローブのセルフボーリングで掘削したボーリング孔を利用するため、自然地盤の応力を緩めることなく、比較的精度の高い変形係数を得ることができる。しかしながら、その変形係数から算出した水平方向地盤反力係数は、載荷試験により得られた水平方向地盤反力係数に対し、若干の差があることがわかった。また、SBIFTで算出した変形係数を2倍にすると、そこから算出した水平方向地盤反力係数は、載荷試験により得られた水平方向地盤反力係数とよく一致することも判明した。図7に、SBIFTで算出した変形係数を2倍にした場合(補正係数α=2)及びSBIFTで算出した変形係数をそのまま採用した場合(補正係数α=1)に算出される水平方向地盤反力係数と、載荷試験により得られた水平方向地盤反力係数との比較を示す。なお、横軸は、基礎の載荷幅Dに対する地表面変位量Sの割合で、道路橋示方書では、変形係数EをN値から推定する場合には、この割合が1%の地点でほぼ一致する関係式E=2800Nを採用している。参考までに、変形係数Eを2800Nと推定した場合に算出される水平方向地盤反力係数も、図7に併せて示す。 As described above, SBIFT uses a bored hole drilled by probe self-boring without drilling the borehole in advance, so that it can obtain a deformation coefficient with relatively high accuracy without relaxing the stress of natural ground. Can do. However, the horizontal ground reaction force coefficient calculated from the deformation coefficient was found to be slightly different from the horizontal ground reaction force coefficient obtained by the loading test. It was also found that when the deformation coefficient calculated by SBIFT was doubled, the horizontal ground reaction force coefficient calculated therefrom was in good agreement with the horizontal ground reaction force coefficient obtained by the loading test. FIG. 7 shows the horizontal ground resistance calculated when the deformation coefficient calculated by SBIFT is doubled (correction coefficient α = 2) and when the deformation coefficient calculated by SBIFT is adopted as it is (correction coefficient α = 1). A comparison of the force coefficient and the horizontal ground reaction force coefficient obtained by the loading test is shown. The horizontal axis is the ratio of the ground surface displacement amount S for loading the width D of the basic, the specifications for highway bridges, when estimating the deformation coefficient E 0 from N values, the ratio is approximately 1% point A matching relational expression E 0 = 2800N is adopted. For reference, the horizontal ground reaction force coefficient calculated when the deformation coefficient E 0 is estimated to be 2800 N is also shown in FIG.

これらの事実を考慮し、地盤反力係数を求める際の補正係数は、常時(常時補正係数)を2とする。また、地震時(地震時補正係数)は、従来の設計方法と同様、常時の2倍とする。すなわち、この設計方法では4とする。   Considering these facts, the correction coefficient for obtaining the ground reaction force coefficient is always 2 (always correction coefficient). In addition, as in the conventional design method, the earthquake (correction coefficient at the time of earthquake) is set to twice the normal time. That is, it is 4 in this design method.

なお、道路橋基礎設計の対象地となる地盤が、粘土質層、砂質層及び礫層から構成され、砂質層及び礫層が特にもろく崩れやすい場合には、砂質層及び礫層の周面摩擦力度をN値により推定する。   In addition, if the ground that is the target site for the road bridge foundation design is composed of clayey layer, sandy layer, and gravel layer, and the sandy layer and gravel layer are particularly brittle and easily collapse, The peripheral surface friction force is estimated from the N value.

本発明にかかる道路橋基礎設計方法により、以下の条件の道路橋基礎の設計を行った。
(基本条件)
1)上部工重量:鋼5径間連続狭小箱桁橋
2)橋 長:389.000m
3)桁 長:388.000m
4)支 間 長:69.800m+78.000m+86.000m+87.000m+66.800m
(荷重条件)
1)活 荷 重:B活荷重
2)死荷重反力:Rd=13100kN
3)活荷重反力:RL=3600kN
4)L1設計震度:kh=0.25(Lg),kh=0.26(Tr)
5)地震時水平力:H=3450kN(Lg),H=3450kN(Tr)
6)L2分担重量:Wu=13100kN(Lg),Wu=13100kN(Tr)
(耐震設計に関する区分)
1)重要度別区分:B種(高速自動車国道)
2)地域区別 :B地域(新潟県)
3)地域別補正係数:Cz=0.85
4)地盤種別 :III種地盤
(構造形状・寸法)
1)基礎形式 :鋼管ソイルセメント杭(φ1.2m)
なお、構造寸法は図8に示す通りである。
By the road bridge foundation design method according to the present invention, a road bridge foundation under the following conditions was designed.
(Basic conditions)
1) Upper construction weight: Continuous narrow box girder bridge between 5 steel diameters 2) Bridge length: 389.000m
3) Girder length: 388.000m
4) Branch length: 69.800m + 78.000m + 86.000m + 87.000m + 66.800m
(Loading condition)
1) Live load: B live load 2) Dead load reaction force: Rd = 13100kN
3) Live load reaction force: RL = 3600 kN
4) L1 design seismic intensity: kh = 0.25 (Lg), kh = 0.26 (Tr)
5) Earthquake horizontal force: H = 3450 kN (Lg), H = 3450 kN (Tr)
6) L2 sharing weight: Wu = 13100 kN (Lg), Wu = 13100 kN (Tr)
(Classification for seismic design)
1) Classification by importance: Class B (National Highway Expressway)
2) Regional distinction: Region B (Niigata Prefecture)
3) Correction factor by region: Cz = 0.85
4) Ground type: Type III ground (structure shape and dimensions)
1) Foundation type: Steel pipe soil cement pile (φ1.2m)
The structural dimensions are as shown in FIG.

設計の対象地となる地盤についてSBIFT及び標準貫入試験を行い、表1に示す周面摩擦力度及び補正変形係数を求めることができた。なお、表1において、As1、Ag2、Dg1−1、Dp−2、Ds1、Dc1−2及びDg1−2の層の周面摩擦力度は、N値から求めた。そして、表2に示す結果を得ることができた。

Figure 2007270542
Figure 2007270542
The SBIFT and the standard penetration test were performed on the ground to be designed, and the peripheral frictional force and the corrected deformation coefficient shown in Table 1 were obtained. In Table 1, the peripheral frictional force of the layers of As1, Ag2, Dg1-1, Dp-2, Ds1, Dc1-2, and Dg1-2 was determined from the N value. And the result shown in Table 2 was able to be obtained.
Figure 2007270542
Figure 2007270542

また、比較用として、全層の周面摩擦力度及び補正変形係数をN値から求めた場合に得られた結果、すなわち、従来の設計方法により得られた結果を表3及び表4に示す。

Figure 2007270542
Figure 2007270542
For comparison, Tables 3 and 4 show the results obtained when the peripheral frictional force levels and the correction deformation coefficients of all layers are obtained from the N value, that is, the results obtained by the conventional design method.
Figure 2007270542
Figure 2007270542

上述の通り、この設計方法によれば、SBIFTにより得られる、地盤の層毎におけるせん断応力−垂直応力直線及び送水量−垂直応力曲線を用いた、周面摩擦力度と地盤反力係数の具体的算出方法が決定しているので、道路橋基礎杭の必要最少本数を実際に決定することができる。しかも、その本数は、N値を利用して決定した場合よりも少ないことから、この設計方法により、過大な安全率を見込むことなく、必要十分な杭を決定できることが確認できた。   As described above, according to this design method, the specifics of the peripheral frictional force and the ground reaction force coefficient using the shear stress-vertical stress line and the water supply amount-vertical stress curve for each ground layer obtained by SBIFT are used. Since the calculation method is determined, the minimum necessary number of road bridge foundation piles can be actually determined. Moreover, since the number of the piles is smaller than that determined by using the N value, it was confirmed that the necessary and sufficient piles can be determined by this design method without expecting an excessive safety factor.

本発明にかかる道路橋基礎設計方法の具体例のフローチャート図である。It is a flowchart figure of the specific example of the road bridge foundation design method concerning this invention. SBIFTに用いられる試験装置の外観を示す地盤の断面図である。It is sectional drawing of the ground which shows the external appearance of the test apparatus used for SBIFT. SBIFTで求められた応力−せん断変位曲線の一例を示すグラフである。It is a graph which shows an example of the stress-shear displacement curve calculated | required by SBIFT. SBIFTで求められた送水量−垂直応力曲線の一例を示すグラフである。It is a graph which shows an example of the water supply amount-perpendicular | vertical stress curve calculated | required by SBIFT. 図3のグラフを基にして得られたせん断応力−垂直応力直線を示すグラフである。It is a graph which shows the shear stress-normal stress straight line obtained based on the graph of FIG. 図4のグラフの不連続部を連続させた場合に得られる曲線の概念形状を示すグラフである。It is a graph which shows the conceptual shape of the curve obtained when the discontinuous part of the graph of FIG. 4 is made continuous. 変形係数から算出される水平方向地盤反力係数と載荷試験により得られた水平方向地盤反力係数を比較して示すグラフである。It is a graph which compares and shows the horizontal direction ground reaction force coefficient calculated from a deformation coefficient, and the horizontal direction ground reaction force coefficient obtained by the loading test. 設計対象となる道路橋基礎の橋脚構造寸法を示し、(a)は側面図、(b)は橋軸方向から見た正面図である。The pier structure dimension of the road bridge foundation used as design object is shown, (a) is a side view, (b) is the front view seen from the bridge axis direction.

符号の説明Explanation of symbols

1 プローブ
2 掘削手段
3 水圧ポンプ
4 ボーリングロッド
5 測定機
S1 荷重条件および地盤条件の整理工程
S2 杭種・杭径の設定工程
S3 杭設計条件の整理工程
S4 杭配置・杭本数の設定工程
DESCRIPTION OF SYMBOLS 1 Probe 2 Drilling means 3 Hydraulic pump 4 Boring rod 5 Measuring machine S1 Load condition and ground condition arrangement process S2 Pile type and pile diameter setting process S3 Pile design condition arrangement process S4 Pile arrangement and number of piles setting process

Claims (2)

原位置せん断摩擦試験(SBIFT)により、道路橋基礎設計の対象地となる地盤についてその層毎にせん断応力−垂直応力直線、及び送水量−垂直応力曲線を求め、
該せん断応力−垂直応力直線から求められる粘着力及び内部摩擦角と、該送水量−垂直応力曲線から求められる側圧値を用いて、該層毎の周面摩擦力度を算出し、
該送水量−垂直応力曲線から変形係数を求め、
地盤反力係数の推定に用いる、常時補正係数を2と、地震時補正係数を4とすることを特徴とする道路橋基礎設計方法。
By the in-situ shear friction test (SBIFT), the shear stress-vertical stress line and the water supply-vertical stress curve are obtained for each layer of the ground that is the target site of the road bridge foundation design,
Using the adhesive force and internal friction angle determined from the shear stress-vertical stress line and the lateral pressure value determined from the water supply amount-vertical stress curve, the peripheral frictional force for each layer was calculated,
The deformation coefficient is obtained from the water supply amount-normal stress curve,
A road bridge foundation design method characterized in that a constant correction coefficient is 2 and an earthquake correction coefficient is 4, which is used for estimating a ground reaction force coefficient.
該層毎の周面摩擦力度は、該層が粘土質層であれば、該せん断応力−垂直応力直線から求められる粘着力及び内部摩擦角と、該送水量−垂直応力曲線から求められる側圧値を用いて算出され、該層が砂質層及び礫層であれば、N値により推定される請求項1に記載の道路橋基礎設計方法。
If the layer is a clayey layer, the peripheral frictional force for each layer is determined by the adhesive force and internal friction angle obtained from the shear stress-normal stress line, and the lateral pressure value obtained from the water supply amount-normal stress curve. The road bridge foundation design method according to claim 1, wherein if the layer is a sandy layer and a gravel layer, it is estimated by N value.
JP2006098589A 2006-03-31 2006-03-31 Road bridge foundation design method Pending JP2007270542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098589A JP2007270542A (en) 2006-03-31 2006-03-31 Road bridge foundation design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098589A JP2007270542A (en) 2006-03-31 2006-03-31 Road bridge foundation design method

Publications (1)

Publication Number Publication Date
JP2007270542A true JP2007270542A (en) 2007-10-18

Family

ID=38673626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098589A Pending JP2007270542A (en) 2006-03-31 2006-03-31 Road bridge foundation design method

Country Status (1)

Country Link
JP (1) JP2007270542A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121098A (en) * 2007-11-13 2009-06-04 Sekisui Chem Co Ltd Foundation structure selection system
JP2009162034A (en) * 2008-01-10 2009-07-23 Tokyo Electric Power Co Inc:The Method of constructing foundation of structure
CN103245577A (en) * 2013-05-07 2013-08-14 河南省交院工程检测加固有限公司 Determination method for effective resilience moduli of bituminous pavement and bituminous roadbed
JP2013174096A (en) * 2012-02-27 2013-09-05 Taisei Corp Loading test device for pile
CN108595860A (en) * 2018-04-28 2018-09-28 重庆交通大学 A kind of computer based bridge construction vertical prestressed reinforcement detecting system
CN110424436A (en) * 2019-08-06 2019-11-08 中国电建集团福建省电力勘测设计院有限公司 Load-carrying capacity design method is pulled out on the basis of a kind of transmission line of electricity stub
CN114059573A (en) * 2021-12-17 2022-02-18 长安大学 Pile foundation rock-socketed depth design method considering bridge full life cycle karst cave erosion amount

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365030U (en) * 1989-10-30 1991-06-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365030U (en) * 1989-10-30 1991-06-25

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121098A (en) * 2007-11-13 2009-06-04 Sekisui Chem Co Ltd Foundation structure selection system
JP2009162034A (en) * 2008-01-10 2009-07-23 Tokyo Electric Power Co Inc:The Method of constructing foundation of structure
JP2013174096A (en) * 2012-02-27 2013-09-05 Taisei Corp Loading test device for pile
CN103245577A (en) * 2013-05-07 2013-08-14 河南省交院工程检测加固有限公司 Determination method for effective resilience moduli of bituminous pavement and bituminous roadbed
CN108595860A (en) * 2018-04-28 2018-09-28 重庆交通大学 A kind of computer based bridge construction vertical prestressed reinforcement detecting system
CN110424436A (en) * 2019-08-06 2019-11-08 中国电建集团福建省电力勘测设计院有限公司 Load-carrying capacity design method is pulled out on the basis of a kind of transmission line of electricity stub
CN110424436B (en) * 2019-08-06 2021-01-15 中国电建集团福建省电力勘测设计院有限公司 Method for designing pulling bearing capacity of power transmission line short pile foundation
CN114059573A (en) * 2021-12-17 2022-02-18 长安大学 Pile foundation rock-socketed depth design method considering bridge full life cycle karst cave erosion amount
CN114059573B (en) * 2021-12-17 2022-12-23 长安大学 Pile foundation rock-socketed depth design method considering bridge full life cycle karst cave erosion amount

Similar Documents

Publication Publication Date Title
Livneh et al. Axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading
Seo et al. Instrumented static load test on rock-socketed micropile
JP2007270542A (en) Road bridge foundation design method
Eslami et al. Evaluating CPT and CPTu based pile bearing capacity estimation methods using Urmiyeh Lake Causeway piling records
Hong et al. Experimental study on the pullout resistance of pressure-grouted soil nails in the field
Likitlersuang et al. Geotechnical parameters from pressuremeter tests for MRT Blue Line Extension in Bangkok
Prashant et al. Soil nailing for stabilization of steep slopes near railway tracks
Hsiung Observations of the ground and structural behaviours induced by a deep excavation in loose sands
Zhou et al. Field behavior of pre-bored grouted planted nodular pile embedded in deep clayey soil
Kou et al. Axial resistance of long rock-socketed bored piles in stratified soils
Nguyen et al. Bidirectional cell tests on non-grouted and grouted large-diameter bored piles
Zhou et al. Optimization analysis of settlement parameters for postgrouting piles in loess area of Shaanxi, China
Nam et al. Roughness and unit side resistances of drilled shafts socketed in clay shale and limestone
Paik et al. Calculation of the axial bearing capacity of tapered bored piles
Raja Shoib et al. Shaft resistance of bored piles socketed in Malaysian granite
Doherty et al. Field investigation of base resistance of pipe piles in clay
Frydman et al. Landslides and residual strength in marl profiles in Israel
Poulos et al. Geotechnical parameter assessment for tall building foundation design
Ghadrdan et al. Effect of negative excess pore-water pressure on the stability of excavated slopes
Li et al. Axial load transfer of drilled shaft foundations with and without steel casing
Bradshaw et al. Load transfer curves from a large-diameter pipe pile in silty soil
Ooi et al. Examination of proof test extrapolation for drilled shafts
Zhao et al. Effects of foundation pit width on the anti-overturn stability of its support structure under ground load
Rollins et al. Evaluation of pile capacity prediction methods based on cone penetration testing using results from I-15 load tests
Tarawneh et al. Estimated and measured settlements of shallow foundation supporting bridge substructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20090529

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Effective date: 20090529

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Effective date: 20101129

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110808

A02 Decision of refusal

Effective date: 20111205

Free format text: JAPANESE INTERMEDIATE CODE: A02