JP2007112865A - Slurry for transportation of latent heat - Google Patents

Slurry for transportation of latent heat Download PDF

Info

Publication number
JP2007112865A
JP2007112865A JP2005304236A JP2005304236A JP2007112865A JP 2007112865 A JP2007112865 A JP 2007112865A JP 2005304236 A JP2005304236 A JP 2005304236A JP 2005304236 A JP2005304236 A JP 2005304236A JP 2007112865 A JP2007112865 A JP 2007112865A
Authority
JP
Japan
Prior art keywords
latent heat
slurry
solubility
inorganic hydrate
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005304236A
Other languages
Japanese (ja)
Other versions
JP5013499B2 (en
Inventor
Hiroshi Suzuki
洋 鈴木
Hiroki Usui
洋基 薄井
Etsuji Komoda
悦之 菰田
Osamu Okuma
修 大隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Original Assignee
New Industry Research Organization NIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO filed Critical New Industry Research Organization NIRO
Priority to JP2005304236A priority Critical patent/JP5013499B2/en
Publication of JP2007112865A publication Critical patent/JP2007112865A/en
Application granted granted Critical
Publication of JP5013499B2 publication Critical patent/JP5013499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slurry for transportation of latent heat absorbing heat of fusion at high temperature zone and suppressing recrystallization at low temperature zone in minimum by reducing solubility of an inorganic hydrate to a solvent at the high temperature zone. <P>SOLUTION: The slurry for transportation of latent heat comprises a latent heat absorbing inorganic hydrate, a mixed solvent comprising a solvent with a poor solubility to the latent heat absorbing inorganic hydrate and water. The slurry has a predetermined range of solubility difference to the latent heat absorbing inorganic hydrate at a latent heat absorbing temperature with the solubility to the latent heat absorbing inorganic hydrate at 5-25°C, and the solid content to the total system is less than 30%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱機器や熱機関で使用される潜熱輸送媒体などとして用いられる潜熱輸送用スラリーに関する。   The present invention relates to a latent heat transport slurry used as a latent heat transport medium used in a thermal apparatus or a heat engine.

熱機器や熱機関は、その作動時における温度上昇を抑制するために冷却設備を有している。中には、高性能の冷却設備を必要とするものもあるが、高熱伝達を実現するために冷却媒体の輸送量を多くしたり、冷却媒体の潜熱が大きいものを使用したりすることによって対応している。   Thermal equipment and heat engines have a cooling facility in order to suppress temperature rise during operation. Some of them require high-performance cooling equipment, but this can be done by increasing the amount of cooling medium transported to achieve high heat transfer or using a cooling medium with a large latent heat. is doing.

冷却媒体の潜熱が大きいものとしては、例えば、下記特許文献1に開示されているような有機系又は無機系の2種類の水和物が挙げられる。有機系の水和物は、一般にゲスト物質として水和基を有する有機物に対して、水分子がかご状に配位したものであり、その形状から包接型水和物とも呼ばれている。このような有機系の水和物は、比較的潜熱が大きく、安定して水和物が生成され、過冷却も小さいため、有用な潜熱輸送物質として考えられている。しかしながら、有機系の水和物は、一般に高価であり、また相転移温度が低く、熱機器や熱機関によっては不向きなものがある。これに対し、無機系の水和物は、結晶水として結晶内に水分子を取り込んだ物質であり、一般に安価で高い潜熱を有する物質が存在する。したがって、一般の熱機器や熱機関には、無機系の水和物が使用されることが多い。   Examples of the cooling medium having a large latent heat include organic and inorganic hydrates as disclosed in Patent Document 1 below. In general, organic hydrates are those in which water molecules are coordinated in a cage form with respect to organic substances having a hydrating group as a guest substance, and are also called clathrate hydrates because of their shapes. Such organic hydrates are considered as useful latent heat transport materials because they have relatively large latent heat, stably produce hydrates, and have low supercooling. However, organic hydrates are generally expensive, have a low phase transition temperature, and are unsuitable for some thermal equipment and heat engines. In contrast, inorganic hydrates are substances in which water molecules are incorporated into crystals as crystallization water, and generally there are substances that are inexpensive and have high latent heat. Therefore, inorganic hydrates are often used in general thermal equipment and heat engines.

特開2005−29591号公報JP 2005-29591 A

しかし、無機系の水和物は、熱機器や熱機関の作動時におけるような高温域での溶媒に対する溶解度が比較的高いため、相転移点において融解熱を吸収できない場合がある。この対策として、高温域での溶媒に対する溶解度を上回る量の無機系の水和物を溶媒に加えて、完全には溶解してしまわないようにして、融解熱を吸収させるということも考えられる。しかし、このような冷却媒体は、例えば熱機器や熱機関の作動が停止され冷却されていく際に、低温域になると余分な無機系の水和物が析出(再結晶)してくるので、必要以上に粘度が高くなってしまう。その結果として、冷却媒体の流動速度の低下を招き、所定温度以下では冷却媒体の輸送を行うことができなくなってしまうおそれがある。   However, inorganic hydrates may not be able to absorb heat of fusion at the phase transition point because of their relatively high solubility in solvents at high temperatures such as when operating thermal equipment and heat engines. As a countermeasure, it is conceivable that an inorganic hydrate in an amount exceeding the solubility in a solvent in a high temperature range is added to the solvent so as not to be completely dissolved and the heat of fusion is absorbed. However, such a cooling medium, for example, when the operation of the thermal equipment or the heat engine is stopped and cooled, excess inorganic hydrates precipitate (recrystallize) at low temperatures, The viscosity becomes higher than necessary. As a result, the flow rate of the cooling medium is reduced, and there is a possibility that the cooling medium cannot be transported below a predetermined temperature.

そこで、本発明の目的は、高温域での溶媒に対する無機系の水和物の溶解度を下げることによって、高温域における融解熱の吸収ができるとともに、低温域における再結晶を最小限に抑制できる潜熱輸送用スラリーを提供することである。   Accordingly, an object of the present invention is to reduce the solubility of the inorganic hydrate in the solvent in the high temperature range, thereby absorbing the heat of fusion in the high temperature range and suppressing the recrystallization in the low temperature range to a minimum. It is to provide a slurry for transportation.

本発明の潜熱輸送用スラリーは、潜熱吸収無機水和物と、前記潜熱吸収無機水和物が難溶性を示す溶媒及び水からなる混合溶媒とを含む。ここでの難溶性とは、溶解度(溶媒100gに対する溶質の量)が0.5以下であることをいう。   The slurry for transporting latent heat of the present invention includes a latent heat-absorbing inorganic hydrate, and a mixed solvent composed of a solvent in which the latent heat-absorbing inorganic hydrate is hardly soluble and water. “Slightly soluble” here means that the solubility (the amount of solute with respect to 100 g of solvent) is 0.5 or less.

本発明の潜熱輸送用スラリーは、潜熱吸収温度での前記潜熱吸収無機水和物の前記混合溶媒に対する溶解度と、5〜25℃における吸収無機水和物の前記混合溶媒に対する溶解度との差が0より上で40以下であることが好ましく、5〜25℃における全体に対する固体分の割合が30%以下であることがより好ましい。このとき、本発明の潜熱輸送用スラリーは、前記潜熱吸収無機水和物が、硫酸カリウムアルミニウム十二水和物(カリウムミョウバンとも呼ばれる)、硫酸アルミニウム十四〜十八水和物、又は硫酸アルミニウムアンモニウム十二水和物であり、前記溶媒が炭素数2又は3の2価アルコールであることが好ましい。   In the slurry for transporting latent heat of the present invention, the difference between the solubility of the latent heat absorbing inorganic hydrate in the mixed solvent at the latent heat absorption temperature and the solubility of the absorbing inorganic hydrate in the mixed solvent at 5 to 25 ° C. is 0. Further, it is preferably 40 or less, and more preferably the ratio of the solid content to the whole at 5 to 25 ° C. is 30% or less. At this time, in the slurry for latent heat transport of the present invention, the latent heat absorbing inorganic hydrate is potassium aluminum sulfate dodecahydrate (also called potassium alum), aluminum sulfate 14 to 18 hydrate, or aluminum sulfate. Preferably, it is ammonium dodecahydrate, and the solvent is a dihydric alcohol having 2 or 3 carbon atoms.

別の観点から、本発明の潜熱輸送用スラリーは、潜熱吸収温度での前記潜熱吸収無機水和物の前記混合溶媒に対する溶解度と、5〜20℃における吸収無機水和物の前記混合溶媒に対する溶解度との差が0より上で40以下であることが好ましく、5〜20℃における全体に対する固体分の割合が30%以下であることがより好ましい。このとき、本発明の潜熱輸送用スラリーは、リン酸2水素ナトリウム十二水和物であり、前記溶媒が炭素数2又は3の2価アルコールであることが好ましい。あるいは、前記潜熱吸収無機水和物が酢酸ナトリウム三水和物であり、前記溶媒が炭素数3〜5の1価アルコールであってもよい。   From another point of view, the slurry for latent heat transport of the present invention has a solubility in the mixed solvent of the latent heat absorbing inorganic hydrate at a latent heat absorption temperature, and a solubility of the absorbed inorganic hydrate in the mixed solvent at 5 to 20 ° C. Is preferably 40 or less above 0, more preferably 30% or less of the solid content with respect to the whole at 5 to 20 ° C. At this time, the slurry for transporting latent heat of the present invention is preferably sodium dihydrogen phosphate dodecahydrate, and the solvent is a dihydric alcohol having 2 or 3 carbon atoms. Alternatively, the latent heat absorbing inorganic hydrate may be sodium acetate trihydrate, and the solvent may be a monohydric alcohol having 3 to 5 carbon atoms.

上記構成により、高温域での溶媒に対する無機系の水和物の溶解度を下げることができるので、高温域における融解熱の吸収ができるとともに、低温域における水和物の再結晶を最小限に抑制でき、低温域でも高流動性の潜熱輸送用スラリーを提供できる。   With the above configuration, the solubility of inorganic hydrates in solvents at high temperatures can be reduced, so that heat of fusion at high temperatures can be absorbed and recrystallization of hydrates at low temperatures is minimized. It is possible to provide a slurry for transporting latent heat having high fluidity even in a low temperature range.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に、本発明の実施形態に係る潜熱輸送用スラリーについて説明する。本実施形態の潜熱輸送用スラリーは、潜熱吸収無機水和物と、この潜熱吸収無機水和物が難溶性を示す溶媒(以下、難溶性溶媒とする)と水(純水)とからなる混合溶媒とを含むものである。   The latent heat transport slurry according to the embodiment of the present invention will be described below. The slurry for transporting latent heat according to the present embodiment is a mixture comprising a latent heat-absorbing inorganic hydrate, a solvent in which the latent heat-absorbing inorganic hydrate exhibits poor solubility (hereinafter referred to as a poorly soluble solvent), and water (pure water). And a solvent.

無機水和物と難溶性溶媒との組み合わせは、(1)硫酸カリウムアルミニウム十二水和物(92.5℃で潜熱吸収、潜熱238kJ/kg・K)、硫酸アルミニウム十四〜十八水和物112℃で潜熱吸収、潜熱182kJ/kg・K)、硫酸アルミニウムアンモニウム十二水和物(93.5℃で潜熱吸収、潜熱269kJ/kg・K)、又はリン酸2水素ナトリウム十二水和物(35℃で潜熱吸収、潜熱281kJ/kg・K)と、炭素数2又は3の2価アルコール、(2)酢酸ナトリウム三水和物(58℃で潜熱吸収、潜熱264kJ/kg・K)と、炭素数3〜5の1価アルコール、のいずれかの組み合わせである。   The combination of inorganic hydrate and sparingly soluble solvent is (1) potassium aluminum sulfate dodecahydrate (latent heat absorption at 92.5 ° C., latent heat 238 kJ / kg · K), aluminum sulfate 14 to 18 hydrate Latent heat absorption at 112 ° C., latent heat 182 kJ / kg · K), ammonium ammonium sulfate dodecahydrate (latent heat absorption at 93.5 ° C., latent heat 269 kJ / kg · K), or sodium dihydrogen phosphate dodecahydrate Product (latent heat absorption at 35 ° C., latent heat 281 kJ / kg · K) and dihydric alcohol with 2 or 3 carbon atoms, (2) sodium acetate trihydrate (latent heat absorption at 58 ° C., latent heat 264 kJ / kg · K) And a monohydric alcohol having 3 to 5 carbon atoms.

また、硫酸カリウムアルミニウム十二水和物、硫酸アルミニウム十四〜十八水和物、硫酸アルミニウムアンモニウム十二水和物に関しては、潜熱吸収温度での前記潜熱吸収無機水和物の前記混合溶媒に対する溶解度と、5〜25℃における吸収無機水和物の前記混合溶媒に対する溶解度との差が0より上で40以下とする。これにより、溶解仕切ってしまわないので、潜熱輸送が可能である。さらに、5〜25℃における全体に対する固体分の割合が30%以下とする。これにより、5〜25℃における流動性を確保できる。   In addition, regarding potassium aluminum sulfate dodecahydrate, aluminum sulfate fourteen to eighteen hydrate, aluminum ammonium sulfate dodecahydrate, the latent heat absorption inorganic hydrate at the latent heat absorption temperature with respect to the mixed solvent. The difference between the solubility and the solubility of the absorbed inorganic hydrate at 5 to 25 ° C. in the mixed solvent is set to be 40 or less above 0. Thereby, since it does not partition by melting, latent heat transport is possible. Furthermore, the ratio of the solid content with respect to the whole in 5-25 degreeC shall be 30% or less. Thereby, the fluidity | liquidity in 5-25 degreeC is securable.

次に、リン酸2水素ナトリウム十二水和物の場合は、潜熱吸収温度での前記潜熱吸収無機水和物の前記混合溶媒に対する溶解度と、5〜20℃における吸収無機水和物の前記混合溶媒に対する溶解度との差が0より上で40以下であり、5〜20℃における全体に対する固体分の割合が30%以下とする。酢酸ナトリウム三水和物の場合は、潜熱吸収温度での前記潜熱吸収無機水和物の前記混合溶媒に対する溶解度と、5〜20℃における吸収無機水和物の前記混合溶媒に対する溶解度との差が0より上で40以下であり、5〜20℃における全体に対する固体分の割合が30%以下とする。これらも上述の硫酸カリウムアルミニウム十二水和物を用いた場合と同様、潜熱輸送を可能とし、低温時における流動性を確保するために調整されるものである。   Next, in the case of sodium dihydrogen phosphate dodecahydrate, the solubility of the latent heat absorbing inorganic hydrate at the latent heat absorption temperature in the mixed solvent and the mixing of the absorbed inorganic hydrate at 5 to 20 ° C. The difference from the solubility in the solvent is 40 or less above 0, and the ratio of the solid content to the whole at 5 to 20 ° C. is 30% or less. In the case of sodium acetate trihydrate, the difference between the solubility of the latent heat absorption inorganic hydrate at the latent heat absorption temperature in the mixed solvent and the solubility of the absorption inorganic hydrate at 5 to 20 ° C. in the mixed solvent is It is 40 or less above 0, and the ratio of the solid content to the whole at 5 to 20 ° C. is 30% or less. As in the case of using the above-described potassium aluminum sulfate dodecahydrate, these are adjusted to enable latent heat transport and to ensure fluidity at low temperatures.

ここで、炭素数2又は3の2価アルコールとしては、エチレングリコール、プロピレングリコールなどが挙げられる。炭素数3〜5の1価アルコールとしては、1−ブチルアルコール、プロピルアルコールなどが挙げられる。   Here, examples of the dihydric alcohol having 2 or 3 carbon atoms include ethylene glycol and propylene glycol. Examples of the monohydric alcohol having 3 to 5 carbon atoms include 1-butyl alcohol and propyl alcohol.

上記構成により、高温域の混合溶媒に対する無機系の水和物の溶解度を下げることができるので、高温域における融解熱の吸収ができるとともに、低温域における水和物の再結晶を最小限に抑制でき、低温域でも高流動性の潜熱輸送用スラリーを提供できる。   With the above configuration, the solubility of inorganic hydrates in high-temperature mixed solvents can be reduced, so that heat of fusion can be absorbed at high temperatures and recrystallization of hydrates at low temperatures can be minimized. It is possible to provide a slurry for transporting latent heat having high fluidity even in a low temperature range.

次に、本発明に係る潜熱輸送用スラリーについて実施例を用いて説明する。ここでは、下記表1に示す実施例1〜5の組み合わせで、後述の方法を用いて無機水和物の混合溶媒に対する溶解度及び潜熱を測定した。また、実施例1〜3については、水とエチレングリコールとの混合割合が(1)10:0(比較例)、(2)7:3、(3)5:5、(4)3:7となるように調整したもの、実施例4については、(1)10:0(比較例)、(2)7:3、(3)5:5となるように調整したものについてそれぞれ測定した。実施例5については、水と1−ブチルアルコールとの混合割合が(1)10:0(比較例)、(2)7:3、(3)5:5となるように調整したものを測定した。   Next, the latent heat transport slurry according to the present invention will be described with reference to examples. Here, in the combination of Examples 1 to 5 shown in Table 1 below, the solubility and latent heat of the inorganic hydrate in the mixed solvent were measured using the method described later. Moreover, about Examples 1-3, the mixing ratio of water and ethylene glycol is (1) 10: 0 (comparative example), (2) 7: 3, (3) 5: 5, (4) 3: 7. For Example 4 adjusted to be, (1) 10: 0 (Comparative Example), (2) 7: 3, and (3) 5: 5 were measured. About Example 5, what adjusted so that the mixing ratio of water and 1-butyl alcohol might be set to (1) 10: 0 (comparative example), (2) 7: 3, (3) 5: 5 was measured. did.

Figure 2007112865
Figure 2007112865

(溶解度の測定方法)
各実施例の混合液100mlの溶液をビーカーに採取し、ビーカーごと恒温槽に浸けて温度制御を行った。これに各無機水和物を1gずつ入れて攪拌し、所定の各温度において溶解しなくなった量を溶解度とした。
(Measurement method of solubility)
100 ml of the mixed solution of each Example was collected in a beaker, and the temperature was controlled by immersing the beaker together with the thermostatic bath. 1 g of each inorganic hydrate was added to this and stirred, and the amount that did not dissolve at each predetermined temperature was defined as solubility.

(各実施例の溶解度の測定結果)
上記実施例1〜5の溶解度の測定結果を示すグラフを図1〜5に示す。なお、各図中の曲線は、測定結果から推測される溶解度曲線である。図1から、エチレングリコールを添加しない場合(水:エチレングリコール=10:0)には、硫酸カリウムアルミニウム十二水和物の相転移点(92.5℃)近傍で、250以上の溶解度を示すことと、常温(5℃〜25℃付近)において20以下の溶解度しか示さないことがわかる。硫酸カリウムアルミニウムからなる潜熱微粒子を相転移点(92.5℃)近傍で存在させるためには、この溶解度以上の硫酸カリウムアルミニウム十二水和物が必要である。したがって、相転移点において潜熱微粒子を存在させるために、硫酸カリウムアルミニウム十二水和物を純水100gに対し250g以上溶解させておいた場合、これを常温まで冷却すると、硫酸カリウムアルミニウム十二水和物が200g以上析出し、常温では流動化が全く望めないことになる。一方、エチレングリコールを添加した場合には、図1に示すように、高温時における溶解度を抑制することができているので、その分、硫酸カリウムアルミニウム十二水和物を溶解させる量を抑制できることがわかる。これは、エチレングリコールを添加する量が増加するごとに顕著になっている。この結果として、本発明に係る実施例1の潜熱輸送用スラリーにおいては、相転移点における溶解度以上に硫酸カリウムアルミニウム十二水和物を含んでいても、常温に冷却された際、硫酸カリウムアルミニウム十二水和物の析出量を抑制できるので、常温においても流動化が望めるものとなることがわかる。
(Measurement results of solubility in each example)
The graph which shows the measurement result of the solubility of the said Examples 1-5 is shown in FIGS. In addition, the curve in each figure is a solubility curve estimated from a measurement result. As shown in FIG. 1, when ethylene glycol is not added (water: ethylene glycol = 10: 0), the solubility is 250 or more near the phase transition point (92.5 ° C.) of potassium aluminum sulfate dodecahydrate. It can be seen that the solubility is only 20 or less at room temperature (around 5 ° C. to 25 ° C.). In order for the latent heat fine particles made of potassium aluminum sulfate to be present near the phase transition point (92.5 ° C.), potassium aluminum sulfate dodecahydrate having a solubility higher than this is required. Therefore, in the case where 250 g or more of potassium aluminum sulfate dodecahydrate is dissolved in 100 g of pure water in order to make the latent heat fine particles exist at the phase transition point, the potassium aluminum sulfate dodecahydrate is cooled to room temperature. 200 g or more of the Japanese precipitate is precipitated, and fluidization cannot be expected at room temperature. On the other hand, when ethylene glycol is added, the solubility at high temperatures can be suppressed as shown in FIG. 1, so that the amount of potassium aluminum sulfate dodecahydrate dissolved can be suppressed accordingly. I understand. This becomes more pronounced as the amount of ethylene glycol added increases. As a result, in the slurry for transporting latent heat of Example 1 according to the present invention, even when potassium aluminum sulfate dodecahydrate is included at a solubility higher than the phase transition point, when cooled to room temperature, potassium aluminum sulfate It can be seen that fluidization can be expected even at room temperature because the amount of twelve hydrate precipitated can be suppressed.

実施例2〜5においても、図2〜5に示すように、用いた物質によって溶解度は異なるものの、実施例1と同様の効果を示す結果が得られていることがわかる。   Also in Examples 2 to 5, as shown in FIGS. 2 to 5, it can be seen that although the solubility differs depending on the substance used, results showing the same effect as Example 1 are obtained.

(潜熱の測定方法)
次に、各実施例に係る潜熱輸送用スラリーの潜熱の測定方法を説明する。ここでは示差走査熱量計(島津製作所DSC−60)を用いて、DSC(Differential Scanning Calorimetry:示差走査熱量測定)を行って、潜熱を測定した。
(Measurement method of latent heat)
Next, a method for measuring the latent heat of the slurry for latent heat transportation according to each example will be described. Here, using a differential scanning calorimeter (Shimadzu DSC-60), DSC (Differential Scanning Calorimetry) was performed to measure latent heat.

(各実施例の潜熱の測定結果)
上記実施例1〜5の潜熱の測定結果を示すグラフを図6〜12に示す。吸熱であるので、示差走査熱量計100の表示としては、本来は負の値を示すが、ここでは、正の値に置き換えて示してある。このDSC曲線の積分値が潜熱となる。
(Measurement results of latent heat in each example)
The graph which shows the measurement result of the latent heat of the said Examples 1-5 is shown to FIGS. Since it is endothermic, the differential scanning calorimeter 100 originally displays a negative value, but here it is replaced with a positive value. The integrated value of this DSC curve is the latent heat.

図6において、硫酸カリウムアルミニウム十二水和物の粉末のみの場合のDSC曲線は、相転移温度近傍(88℃)で急激に立ち上がりはじめ、狭い温度範囲で急速に減少していることがわかる。その積分から得られた潜熱は229kJ/kg・Kであり、文献値(関信弘編集 蓄熱工学1基礎編 森北出版 1995年)とほぼ一致している。一方、水:エチレングリコール=3:7の場合には、70℃近傍で緩やかに変化し、85℃近傍まで吸熱が続いており、潜熱吸収温度が79.8℃まで低下している。この場合のDSC曲線の積分値は図6より32.1kJ/kg・Kであり、図1からは硫酸カリウムアルミニウム十二水和物微粒子の固体重量割合が14wt%となることがわかる。すなわち、水とエチレングリコールを混合した溶媒を用いた場合には、潜熱吸収温度で温熱輸送に十分な固体重量割合を維持することが可能であることがわかる。これは、水:エチレングリコールが5:5、7:3の場合においても同様である。しかし、水:エチレングリコールが2:8、0:10では潜熱を得ることができなかった。したがって、図6では、水:エチレングリコールが2:8、0:10の結果を表す線は、温度軸と一致している。   In FIG. 6, it can be seen that the DSC curve in the case of only the powder of potassium aluminum sulfate dodecahydrate starts to rise rapidly in the vicinity of the phase transition temperature (88 ° C.) and decreases rapidly in a narrow temperature range. The latent heat obtained from the integration is 229 kJ / kg · K, which is almost the same as the literature value (edited by Nobuhiro Seki, Thermal Storage Engineering 1 Basics, Morikita Publishing 1995). On the other hand, in the case of water: ethylene glycol = 3: 7, the temperature gradually changes around 70 ° C., the endotherm continues to around 85 ° C., and the latent heat absorption temperature decreases to 79.8 ° C. The integrated value of the DSC curve in this case is 32.1 kJ / kg · K from FIG. 6, and FIG. 1 shows that the solid weight ratio of the potassium aluminum sulfate dodecahydrate fine particles is 14 wt%. That is, it is understood that when a solvent in which water and ethylene glycol are mixed is used, the solid weight ratio sufficient for heat transport can be maintained at the latent heat absorption temperature. This is the same when water: ethylene glycol is 5: 5, 7: 3. However, latent heat could not be obtained when water: ethylene glycol was 2: 8, 0:10. Therefore, in FIG. 6, the lines representing the results of water: ethylene glycol 2: 8, 0:10 coincide with the temperature axis.

実施例2〜5においても、図7〜10に示すように、用いた物質によって潜熱や潜熱吸収温度が異なるものの、実施例1と同様の効果を示す結果が得られていることがわかる。   Also in Examples 2 to 5, as shown in FIGS. 7 to 10, it can be seen that although the latent heat and the latent heat absorption temperature are different depending on the substance used, results showing the same effects as Example 1 are obtained.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples.

本発明に係る実施例1の潜熱輸送用スラリーにおける無機水和物の溶解度の測定結果を示すグラフである。It is a graph which shows the measurement result of the solubility of the inorganic hydrate in the slurry for latent heat transportation of Example 1 which concerns on this invention. 本発明に係る実施例2の潜熱輸送用スラリーにおける無機水和物の溶解度の測定結果を示すグラフである。It is a graph which shows the measurement result of the solubility of the inorganic hydrate in the slurry for latent heat transportation of Example 2 which concerns on this invention. 本発明に係る実施例3の潜熱輸送用スラリーにおける無機水和物の溶解度の測定結果を示すグラフである。It is a graph which shows the measurement result of the solubility of the inorganic hydrate in the slurry for latent heat transportation of Example 3 which concerns on this invention. 本発明に係る実施例4の潜熱輸送用スラリーにおける無機水和物の溶解度の測定結果を示すグラフである。It is a graph which shows the measurement result of the solubility of the inorganic hydrate in the slurry for latent heat transportation of Example 4 which concerns on this invention. 本発明に係る実施例5の潜熱輸送用スラリーにおける無機水和物の溶解度の測定結果を示すグラフである。It is a graph which shows the measurement result of the solubility of the inorganic hydrate in the slurry for latent heat transportation of Example 5 which concerns on this invention. 本発明に係る実施例1の潜熱輸送用スラリーにおける潜熱の測定結果を示すグラフである。It is a graph which shows the measurement result of the latent heat in the slurry for latent heat transport of Example 1 which concerns on this invention. 本発明に係る実施例2の潜熱輸送用スラリーにおける潜熱の測定結果を示すグラフである。It is a graph which shows the measurement result of the latent heat in the slurry for latent heat transport of Example 2 which concerns on this invention. 本発明に係る実施例3の潜熱輸送用スラリーにおける潜熱の測定結果を示すグラフである。It is a graph which shows the measurement result of the latent heat in the slurry for latent heat transport of Example 3 which concerns on this invention. 本発明に係る実施例4の潜熱輸送用スラリーにおける潜熱の測定結果を示すグラフである。It is a graph which shows the measurement result of the latent heat in the slurry for latent heat transport of Example 4 which concerns on this invention. 本発明に係る実施例5の潜熱輸送用スラリーにおける潜熱の測定結果を示すグラフである。It is a graph which shows the measurement result of the latent heat in the slurry for latent heat transport of Example 5 which concerns on this invention.

Claims (6)

潜熱吸収無機水和物と、前記潜熱吸収無機水和物が難溶性を示す溶媒及び水からなる混合溶媒とを含むことを特徴とする潜熱輸送用スラリー。   A slurry for latent heat transport comprising a latent heat absorbing inorganic hydrate, and a mixed solvent comprising water and a solvent in which the latent heat absorbing inorganic hydrate is sparingly soluble. 潜熱吸収温度での前記潜熱吸収無機水和物の前記混合溶媒に対する溶解度と、5〜25℃における吸収無機水和物の前記混合溶媒に対する溶解度との差が0より上で40以下であることを特徴とする請求項1に記載の潜熱輸送用スラリー。   The difference between the solubility of the latent heat-absorbing inorganic hydrate in the mixed solvent at the latent heat absorption temperature and the solubility of the absorbed inorganic hydrate in the mixed solvent at 5 to 25 ° C. is from 40 to 40 inclusive. The slurry for transporting latent heat according to claim 1, wherein the slurry is a latent heat transport slurry. 潜熱吸収温度での前記潜熱吸収無機水和物の前記混合溶媒に対する溶解度と、5〜20℃における吸収無機水和物の前記混合溶媒に対する溶解度との差が0より上で40以下であることを特徴とする請求項1に記載の潜熱輸送用スラリー。   The difference between the solubility of the latent heat-absorbing inorganic hydrate at the latent heat absorption temperature in the mixed solvent and the solubility of the absorbed inorganic hydrate at 5 to 20 ° C. in the mixed solvent is from 0 to 40 or less. The slurry for transporting latent heat according to claim 1, wherein the slurry is a latent heat transport slurry. 前記潜熱吸収無機水和物が、硫酸カリウムアルミニウム十二水和物、硫酸アルミニウム十四〜十八水和物、又は硫酸アルミニウムアンモニウム十二水和物であり、
前記溶媒が炭素数2又は3の2価アルコールであることを特徴とする請求項2に記載の潜熱輸送用スラリー。
The latent heat absorbing inorganic hydrate is potassium aluminum sulfate dodecahydrate, aluminum sulfate 14 to 18 hydrate, or aluminum ammonium sulfate dodecahydrate,
The slurry for latent heat transportation according to claim 2, wherein the solvent is a dihydric alcohol having 2 or 3 carbon atoms.
前記潜熱吸収無機水和物がリン酸2水素ナトリウム十二水和物であり、前記溶媒が炭素数2又は3の2価アルコールであることを特徴とする請求項3に記載の潜熱輸送用スラリー。   4. The latent heat transport slurry according to claim 3, wherein the latent heat absorbing inorganic hydrate is sodium dihydrogen phosphate dodecahydrate and the solvent is a dihydric alcohol having 2 or 3 carbon atoms. . 前記潜熱吸収無機水和物が酢酸ナトリウム三水和物であり、前記溶媒が炭素数3〜5の1価アルコールであることを特徴とする請求項3に記載の潜熱輸送用スラリー。
The latent heat transporting slurry according to claim 3, wherein the latent heat absorbing inorganic hydrate is sodium acetate trihydrate, and the solvent is a monohydric alcohol having 3 to 5 carbon atoms.
JP2005304236A 2005-10-19 2005-10-19 Latent heat transport slurry Expired - Fee Related JP5013499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304236A JP5013499B2 (en) 2005-10-19 2005-10-19 Latent heat transport slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304236A JP5013499B2 (en) 2005-10-19 2005-10-19 Latent heat transport slurry

Publications (2)

Publication Number Publication Date
JP2007112865A true JP2007112865A (en) 2007-05-10
JP5013499B2 JP5013499B2 (en) 2012-08-29

Family

ID=38095354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304236A Expired - Fee Related JP5013499B2 (en) 2005-10-19 2005-10-19 Latent heat transport slurry

Country Status (1)

Country Link
JP (1) JP5013499B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210238A1 (en) * 2012-06-18 2013-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Latent heat storage materials based on aluminum sulfate hydrates
WO2014024883A1 (en) * 2012-08-08 2014-02-13 古河電気工業株式会社 Heat storage material composition, auxiliary heat source using same, and heat supply method
JP2014189582A (en) * 2013-03-26 2014-10-06 Toppan Forms Co Ltd Cold retaining tool
JPWO2015079891A1 (en) * 2013-11-26 2017-03-16 シャープ株式会社 Heat storage material, heat storage member using the same, storage container, transport / storage container, building material, building
US9732264B2 (en) 2013-09-30 2017-08-15 Panasonic Corporation Heat storage material composition and method for using heat storage material composition
WO2022071414A1 (en) * 2020-09-30 2022-04-07 ダイキン工業株式会社 Heat transfer method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503838A (en) * 1982-09-15 1985-03-12 American Hospital Supply Corporation Latent heat storage and supply system and method
JPS61272281A (en) * 1985-05-28 1986-12-02 Hinoya:Kk Heat storage material composition
JPH02269180A (en) * 1989-04-07 1990-11-02 Takasugi Seiyaku Kk Gel-like instantaneously cooling and low-temperature flexible cold storage agent
JPH08218063A (en) * 1995-02-10 1996-08-27 Asahi Denka Kogyo Kk Latent heat-storing material composition
JP2002173671A (en) * 2000-12-06 2002-06-21 Inoac Corp Cold storage agent and cooling pad
JP2004307772A (en) * 2003-04-03 2004-11-04 Yamaguchi Michiko Eutectic crystal composition for latent cold heat storage
JP2005029591A (en) * 2003-07-07 2005-02-03 New Industry Research Organization Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry
JP4853851B2 (en) * 2006-03-10 2012-01-11 国立大学法人神戸大学 High-temperature cooling device using latent heat transport inorganic hydrate slurry

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503838A (en) * 1982-09-15 1985-03-12 American Hospital Supply Corporation Latent heat storage and supply system and method
JPS61272281A (en) * 1985-05-28 1986-12-02 Hinoya:Kk Heat storage material composition
JPH02269180A (en) * 1989-04-07 1990-11-02 Takasugi Seiyaku Kk Gel-like instantaneously cooling and low-temperature flexible cold storage agent
JPH08218063A (en) * 1995-02-10 1996-08-27 Asahi Denka Kogyo Kk Latent heat-storing material composition
JP2002173671A (en) * 2000-12-06 2002-06-21 Inoac Corp Cold storage agent and cooling pad
JP2004307772A (en) * 2003-04-03 2004-11-04 Yamaguchi Michiko Eutectic crystal composition for latent cold heat storage
JP2005029591A (en) * 2003-07-07 2005-02-03 New Industry Research Organization Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry
JP4853851B2 (en) * 2006-03-10 2012-01-11 国立大学法人神戸大学 High-temperature cooling device using latent heat transport inorganic hydrate slurry

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210238A1 (en) * 2012-06-18 2013-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Latent heat storage materials based on aluminum sulfate hydrates
DE102012210238B4 (en) * 2012-06-18 2017-01-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Latent heat storage materials based on aluminum sulfate hydrates and their use
WO2014024883A1 (en) * 2012-08-08 2014-02-13 古河電気工業株式会社 Heat storage material composition, auxiliary heat source using same, and heat supply method
JPWO2014024883A1 (en) * 2012-08-08 2016-07-25 古河電気工業株式会社 Heat storage material composition, auxiliary heat source and heat supply method using the same
US10359237B2 (en) 2012-08-08 2019-07-23 Furukawa Electric Co., Ltd. Heat source material composition, and auxiliary heat source and heat supply method using the same
JP2014189582A (en) * 2013-03-26 2014-10-06 Toppan Forms Co Ltd Cold retaining tool
US9732264B2 (en) 2013-09-30 2017-08-15 Panasonic Corporation Heat storage material composition and method for using heat storage material composition
JPWO2015079891A1 (en) * 2013-11-26 2017-03-16 シャープ株式会社 Heat storage material, heat storage member using the same, storage container, transport / storage container, building material, building
WO2022071414A1 (en) * 2020-09-30 2022-04-07 ダイキン工業株式会社 Heat transfer method
JP2022057218A (en) * 2020-09-30 2022-04-11 ダイキン工業株式会社 Heat transfer method
JP7064156B2 (en) 2020-09-30 2022-05-10 ダイキン工業株式会社 Heat transfer method

Also Published As

Publication number Publication date
JP5013499B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5013499B2 (en) Latent heat transport slurry
JP6386852B2 (en) Heat storage material composition and method using the heat storage material composition
JP5003213B2 (en) Method to increase heat storage rate of heat storage agent, clathrate hydrate
Zeng et al. Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material
JP6598076B2 (en) Latent heat storage material
ES2833288T3 (en) Coolant composition for extended operation engines
JP6500152B1 (en) Latent heat storage material composition
JP2007239697A (en) High temperature region cooling device using latent heat transporting inorganic hydrate slurry
JP6596549B1 (en) Latent heat storage material composition
JP5044539B2 (en) Thermal storage material composition
WO2015177964A1 (en) Heat transport system
JP5660949B2 (en) Thermal storage material composition
JPS5951586B2 (en) heat storage material
JP2013224770A (en) Working fluid for heat pipe
US10168080B2 (en) Eutectic mixtures of ionic liquids in absorption chillers
JP2001031956A (en) Latent heat storage material composition
JP2015183973A (en) Supercooling-type latent heat storage material composition and heat storage system
JP2009051905A (en) Aqueous solution having property for forming clathrate hydrate, clathrate hydrate containing quaternary ammonium salt as guest compound, slurry of the clathrate hydrate, method for producing clathrate hydrate, method for increasing rate of generating or growing clathrate hydrate, and method for preventing or reducing supercooling phenomenon caused when generating or growing clathrate hydrate
JPS60243189A (en) Heat storage material
JPH02286777A (en) Heat storage material
JP7121673B2 (en) Latent heat storage material composition
RU2017120795A (en) STABILIZATION OF HEXAGONAL NANOPARTICLES OF BORON NITRIDE
JP6287607B2 (en) Heat transport system
JP2008238169A (en) Method of adjusting concentration of solution containing hydrate slurry producing agent, and method of supplying hydrate slurry producing agent
JP2019135275A (en) Heat storage composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5013499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees