JP2007112730A - Method for producing 4-[2-(2-aminoethoxy)ethyl]morpholines - Google Patents

Method for producing 4-[2-(2-aminoethoxy)ethyl]morpholines Download PDF

Info

Publication number
JP2007112730A
JP2007112730A JP2005304303A JP2005304303A JP2007112730A JP 2007112730 A JP2007112730 A JP 2007112730A JP 2005304303 A JP2005304303 A JP 2005304303A JP 2005304303 A JP2005304303 A JP 2005304303A JP 2007112730 A JP2007112730 A JP 2007112730A
Authority
JP
Japan
Prior art keywords
aminoethoxy
morpholine
ethyl
morpholines
metal catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005304303A
Other languages
Japanese (ja)
Inventor
Satoru Yamakawa
哲 山川
Yasushi Hara
靖 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Priority to JP2005304303A priority Critical patent/JP2007112730A/en
Publication of JP2007112730A publication Critical patent/JP2007112730A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for readily and efficiently producing 4-[2-(2-aminoethoxy)ethyl]morpholines. <P>SOLUTION: The 4-[2-(2-aminoethoxy)ethyl]morpholines are obtained by bringing morpholines into contact with a metal catalyst containing palladium. In the production method, the reaction can be carried out in the coexistence of 2-(2-aminoethoxy)ethanols, and the reaction temperature and the reaction pressure can be selected from the range of 50-350°C, and the range of from normal pressure to 10 MPa respectively. The metal catalyst is preferably a supported metal catalyst, and more preferably the supported metal catalyst containing the palladium. The metal catalyst is preferably subjected to pretreatment in hydrogen flow, and more preferably the pretreatment in the hydrogen flow at a temperature selected from the range of from 50°C to 400°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、4−[2−(2−アミノエトキシ)エチル]モルホリン類の製造方法に関するものである。   The present invention relates to a method for producing 4- [2- (2-aminoethoxy) ethyl] morpholines.

4−[2−(2−アミノエトキシ)エチル]モルホリンは広範な工業的用途がある化合物である。例えば、非特許文献1には4−[2−(2−アミノエトキシ)エチル]モルホリンの医薬中間体用原料としての用途が開示されている。そのため、簡便な合成法が望まれているが、合成例は2例しか開示されていない。非特許文献1には、2−(2−クロロエトキシ)エタノールを塩基の存在下にモルホリンと反応させ4−[2−(2−ヒドロキシエトキシ)エチル]モルホリンを得、これを亜鉛アジド−ピリジン複合物とアゾジカルボン酸ジイソプロピルにより水酸基をアジ化し、次いで水素還元により4−[2−(2−アミノエトキシ)エチル]モルホリンを得る方法が開示されている。しかしながら、多段階の反応であること、環境的に不適合な含塩素化合物を原料に用いること、および爆発性のアジド化合物を用いること、が工業的に問題である。また特許文献1には、触媒を用いてジエチレングリコールとアンモニアからモルホリンを製造する際に、副生成物として4−[2−(2−アミノエトキシ)エチル]モルホリンが1.6から3.4%と微量生成することが開示されている。   4- [2- (2-Aminoethoxy) ethyl] morpholine is a compound with a wide range of industrial uses. For example, Non-Patent Document 1 discloses the use of 4- [2- (2-aminoethoxy) ethyl] morpholine as a raw material for pharmaceutical intermediates. Therefore, a simple synthesis method is desired, but only two synthesis examples are disclosed. In Non-Patent Document 1, 2- (2-chloroethoxy) ethanol is reacted with morpholine in the presence of a base to give 4- [2- (2-hydroxyethoxy) ethyl] morpholine, which is a zinc azide-pyridine complex. And a method for obtaining 4- [2- (2-aminoethoxy) ethyl] morpholine by hydrogenation, and then hydrogen reduction with diisopropyl azodicarboxylate. However, it is an industrial problem to be a multistage reaction, to use environmentally incompatible chlorine-containing compounds as raw materials, and to use explosive azide compounds. In addition, Patent Document 1 discloses that when morpholine is produced from diethylene glycol and ammonia using a catalyst, 4- [2- (2-aminoethoxy) ethyl] morpholine is 1.6 to 3.4% as a by-product. It is disclosed to produce trace amounts.

Journal of Medicinal Chemistry,第37巻,2285ページ,1994年Journal of Medicinal Chemistry, 37, 2285, 1994 米国特許第4,582,904号明細書US Pat. No. 4,582,904

本発明は、4−[2−(2−アミノエトキシ)エチル]モルホリン類の簡便な製造方法を開発することを目的とする。   The object of the present invention is to develop a simple method for producing 4- [2- (2-aminoethoxy) ethyl] morpholines.

本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、金属触媒の存在下にモルホリンから4−[2−(2−アミノエトキシ)エチル]モルホリンが生成すること、およびモルホリンと2−(2−アミノエトキシ)エタノールを金属触媒の存在下に反応させることにより4−[2−(2−アミノエトキシ)エチル]モルホリンが生成すること、を見出し本発明を完成するに至った。すなわち本発明は、モルホリン類を金属触媒と接触させることを特徴とする、4−[2−(2−アミノエトキシ)エチル]モルホリン類の製造方法に関するものである。以下に本発明をさらに詳細に説明する。   As a result of intensive studies to solve the above problems, the present inventors have produced 4- [2- (2-aminoethoxy) ethyl] morpholine from morpholine in the presence of a metal catalyst, and It has been found that 4- [2- (2-aminoethoxy) ethyl] morpholine is produced by reacting 2- (2-aminoethoxy) ethanol in the presence of a metal catalyst, and the present invention has been completed. That is, the present invention relates to a method for producing 4- [2- (2-aminoethoxy) ethyl] morpholines, which comprises contacting morpholines with a metal catalyst. The present invention is described in further detail below.

本発明においてモルホリン類とは、環状構造を形成するエチレン基上に置換基を有していてもよいモルホリンである。また4−[2−(2−アミノエトキシ)エチル]モルホリン類とは、環状構造を形成するエチレン基上、および側鎖2−(2−アミノエトキシ)エチル基の対応するエチレン基上に同様の置換基を有していてもよい4−[2−(2−アミノエトキシ)エチル]モルホリンである。さらに2−(2−アミノエトキシ)エタノール類とは、共存させるモルホリン類が置換基を有する場合にはそれと同様の置換基をエチレン基上に有する2−(2−アミノエトキシ)エタノールである。   In the present invention, morpholines are morpholines optionally having a substituent on the ethylene group forming the cyclic structure. Further, 4- [2- (2-aminoethoxy) ethyl] morpholines are the same on the ethylene group forming a cyclic structure and on the corresponding ethylene group of the side chain 2- (2-aminoethoxy) ethyl group. It is 4- [2- (2-aminoethoxy) ethyl] morpholine which may have a substituent. Furthermore, 2- (2-aminoethoxy) ethanol is 2- (2-aminoethoxy) ethanol having the same substituent on the ethylene group when the morpholine to be coexisted has a substituent.

本発明に記載の方法によって4−[2−(2−アミノエトキシ)エチル]モルホリン類は、金属触媒と接触させることによりモルホリン類のみからも製造できるが、モルホリン類と2−(2−アミノエトキシ)エタノール類からも製造することができる。モルホリン類と2−(2−アミノエトキシ)エタノール類から製造するばあいのモルホリン類と2−(2−アミノエトキシ)エタノール類のモル比は特に限定はないが、好ましくは1:10から10:1の範囲から選ぶことができる。収率が良い点で、モルホリン類のみを原料とすることが更に望ましい。   Although 4- [2- (2-aminoethoxy) ethyl] morpholine can be produced from morpholines alone by contacting with a metal catalyst by the method described in the present invention, morpholines and 2- (2-aminoethoxy) can be produced. ) It can also be produced from ethanol. In the case of producing from morpholines and 2- (2-aminoethoxy) ethanol, the molar ratio of morpholines to 2- (2-aminoethoxy) ethanol is not particularly limited, but preferably 1:10 to 10: 1. You can choose from a range of From the viewpoint of good yield, it is more desirable to use only morpholines as a raw material.

本発明で金属触媒として用いることのできる金属は例えば、パラジウム、ルテニウム、白金、レニウム、ロジウム、イリジウム、オスミウム、鉄、コバルト、ニッケル、クロム、銅、ランタン、セリウム、ネオジウム、プラセオジウム、バナジウム、モリブデン、タングステン等を列挙することができ、またこれらの塩化物塩、臭化物塩、ヨウ化物塩、硝酸塩、硫酸塩、炭酸塩、シュウ酸塩、酢酸塩、酸化物塩等の金属塩やアンミン錯体、アセチルアセトナト錯体等の錯化合物を用いてもよく、さらにこれらの金属、金属塩または錯化合物を必要に応じて組合わせて用いても良い。収率が良い点でパラジウム、ルテニウム、白金、レニウム、ロジウム、イリジウム、コバルト、ニッケル、クロム、銅、ランタン、セリウム、ネオジウムまたはこれらの金属塩もしくは錯化合物が望ましく、パラジウムまたはパラジウムの金属塩もしくは錯化合物を単独で用いることがさらに望ましい。   Examples of the metal that can be used as the metal catalyst in the present invention include palladium, ruthenium, platinum, rhenium, rhodium, iridium, osmium, iron, cobalt, nickel, chromium, copper, lanthanum, cerium, neodymium, praseodymium, vanadium, molybdenum, Tungsten and the like can be listed, and metal salts such as chloride salts, bromide salts, iodide salts, nitrates, sulfates, carbonates, oxalates, acetates, oxide salts, etc., ammine complexes, acetyl A complex compound such as an acetonato complex may be used, and these metals, metal salts, or complex compounds may be used in combination as necessary. Palladium, ruthenium, platinum, rhenium, rhodium, iridium, cobalt, nickel, chromium, copper, lanthanum, cerium, neodymium, or a metal salt or complex thereof is desirable, and a metal salt or complex of palladium or palladium is preferable. It is further desirable to use the compound alone.

パラジウムの金属塩および錯化合物としてはテトラクロロパラジウム(II)酸ナトリウム、テトラクロロパラジウム(II)酸カリウム、ヘキサクロロパラジウム(IV)酸ナトリウム、ヘキサクロロパラジウム(IV)酸カリウム、テトラアンミンパラジウム(II)塩化物およびジクロロジアンミンパラジウム(II)等を列挙することができる。   Metal salts and complex compounds of palladium include sodium tetrachloropalladium (II), potassium tetrachloropalladium (II), sodium hexachloropalladium (IV), potassium hexachloropalladium (IV), tetraamminepalladium (II) chloride And dichlorodiammine palladium (II) and the like.

これらの金属触媒は、金属、金属塩または錯化合物等を適当な担体に担持して担持金属触媒として用いることが望ましい。担体としては例えば、γ−アルミナ、α−アルミナ、シリカ、マグネシア、ジルコニア、チタニア、酸化亜鉛、酸化トリウム、二酸化マンガン、Y型ゼオライト、A型ゼオライト、X型ゼオライト、モルデナイト、ZSM−5、スメクタイト、ヒドロキシアパタイト、ハイドロタルサイト、四フッ化ケイ雲母、モンモリロナイト、活性炭、硫酸バリウム、炭酸バリウム、炭酸カルシウム、ポリエチレン−ポリスチレン樹脂、ポリスチレン樹脂等を列挙することができ、これらを必要に応じて組合わせて用いても良い。収率が良い点で、γ−アルミナ、α−アルミナ、シリカ、マグネシア、ジルコニア、チタニア、酸化亜鉛、酸化トリウム、二酸化マンガン、活性炭が望ましく、γ−アルミナを単独で用いることがさらに望ましい。   These metal catalysts are desirably used as a supported metal catalyst by supporting a metal, a metal salt, a complex compound or the like on a suitable support. Examples of the carrier include γ-alumina, α-alumina, silica, magnesia, zirconia, titania, zinc oxide, thorium oxide, manganese dioxide, Y-type zeolite, A-type zeolite, X-type zeolite, mordenite, ZSM-5, smectite, Hydroxyapatite, hydrotalcite, mica tetrafluoride, montmorillonite, activated carbon, barium sulfate, barium carbonate, calcium carbonate, polyethylene-polystyrene resin, polystyrene resin, etc. can be listed, and these can be combined as necessary It may be used. From the viewpoint of good yield, γ-alumina, α-alumina, silica, magnesia, zirconia, titania, zinc oxide, thorium oxide, manganese dioxide, and activated carbon are desirable, and γ-alumina is more desirably used alone.

担持金属触媒は、市販品を用いても良いが、必要に応じて、上記の金属、金属塩または錯化合物等と担体を用いて調製しても良い。担持金属触媒の調製法に特に制限はなく、汎用的な含浸法、共沈法、ゾル−ゲル法、混練法、化学気相蒸着法、イオン交換法等を用いることができる。   A commercially available product may be used as the supported metal catalyst, but it may be prepared using the above-mentioned metal, metal salt, complex compound, or the like and a carrier as necessary. There is no restriction | limiting in particular in the preparation method of a supported metal catalyst, A general purpose impregnation method, a coprecipitation method, a sol-gel method, a kneading method, a chemical vapor deposition method, an ion exchange method etc. can be used.

金属触媒の使用量は、モルホリン類に対して金属換算で0.001から10モル%が好ましく、0.05から5モル%がさらに好ましい。   The amount of the metal catalyst used is preferably 0.001 to 10 mol%, more preferably 0.05 to 5 mol% in terms of metal relative to morpholines.

金属触媒は、反応前に水素気流中で前処理してから使用することが望ましい。前処理温度は50℃から400℃の範囲から適宜選ばれた温度で行うことが望ましい。触媒能が良い点で100℃から350℃がさらに望ましい。   The metal catalyst is preferably used after pretreatment in a hydrogen stream before the reaction. The pretreatment temperature is preferably set at a temperature appropriately selected from a range of 50 ° C to 400 ° C. 100 ° C. to 350 ° C. is more desirable in terms of good catalytic ability.

本反応は、水素、アルゴン、窒素、空気などの雰囲気下で行うことができる。初期圧は大気圧(0.10MPa)から10MPaで行うことができる。収率が良い点で0.5MPaから5MPaがさらに望ましい。   This reaction can be carried out in an atmosphere of hydrogen, argon, nitrogen, air or the like. The initial pressure can be from atmospheric pressure (0.10 MPa) to 10 MPa. 0.5 MPa to 5 MPa is more desirable in terms of good yield.

本発明では、収率が良い点で溶媒を用いずに反応を行うことが望ましい。しかしながら本反応に溶媒を用いる場合は、反応を阻害するものでなければ限定はなく、例えば、水、テトラヒドロフラン、ジエチルエーテル、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、ジクロロメタン、テトラクロロエタン、アセトニトリル、酢酸エチルなどが例示できる。   In the present invention, it is desirable to carry out the reaction without using a solvent in terms of a good yield. However, when a solvent is used in this reaction, there is no limitation as long as it does not inhibit the reaction. For example, water, tetrahydrofuran, diethyl ether, benzene, toluene, o-xylene, m-xylene, p-xylene, dichloromethane, tetra Examples include chloroethane, acetonitrile, ethyl acetate and the like.

反応温度に特に制限はないが、50℃から350℃の範囲から適宜選ばれた温度で行うことが好ましい。また反応時間は、反応温度にもよるが、10分から48時間である。   Although there is no restriction | limiting in particular in reaction temperature, It is preferable to carry out at the temperature suitably selected from the range of 50 to 350 degreeC. The reaction time is 10 minutes to 48 hours depending on the reaction temperature.

反応後の溶液から目的物を単離する方法に特に限定はないが、精密蒸留、溶媒抽出、カラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を得ることができる。   The method for isolating the target product from the solution after the reaction is not particularly limited, but general-purpose methods such as precision distillation, solvent extraction, column chromatography, preparative thin layer chromatography, preparative liquid chromatography, recrystallization or sublimation The object can be obtained by a simple method.

本発明の製造方法は、医薬中間体など広範な工業的用途がある重要な化合物である4−[2−(2−アミノエトキシ)エチル]モルホリン類を簡便に得る製造方法として有効である。   The production method of the present invention is effective as a production method for easily obtaining 4- [2- (2-aminoethoxy) ethyl] morpholine, which is an important compound having a wide range of industrial uses such as pharmaceutical intermediates.

次に本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。なお、本実施例で、モルホリンのみを基質とした反応(実施例1から8)における転化率、生成率および収率は以下の式(1)から(3)で計算したものである。   EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not limited to these. In this example, the conversion, production rate and yield in the reactions (Examples 1 to 8) using only morpholine as a substrate are calculated by the following formulas (1) to (3).

式(1)
転化率(%)=(1−[反応後のモルホリンのモル数]÷[仕込みのモルホリンのモル数])×100
式(2)
生成率(%)=(2×[GC分析により得られた反応後の4−[2−(2−アミノエトキシ)エチル]モルホリンのモル数]÷[仕込みのモルホリンのモル数])×100
式(3)
収率(%)=(2×[単離後の4−[2−(2−アミノエトキシ)エチル]モルホリンのモル数]÷[仕込みのモルホリンのモル数])×100
また、モルホリンと2−(2−アミノエトキシ)エタノールを基質とした反応(実施例9)における転化率および生成率は以下の式(4)および(5)で計算したものである。
Formula (1)
Conversion (%) = (1− [number of moles of morpholine after reaction] ÷ [number of moles of morpholine charged)] × 100
Formula (2)
Production rate (%) = (2 × [number of moles of 4- [2- (2-aminoethoxy) ethyl] morpholine after reaction obtained by GC analysis) ÷ [number of moles of morpholine charged]] × 100
Formula (3)
Yield (%) = (2 × [number of moles of 4- [2- (2-aminoethoxy) ethyl] morpholine after isolation] ÷ [number of moles of morpholine charged]) × 100
Further, the conversion rate and production rate in the reaction using morpholine and 2- (2-aminoethoxy) ethanol as substrates (Example 9) are calculated by the following formulas (4) and (5).

式(4)
転化率(%)=(1−[反応後のモルホリンのモル数]÷[仕込みのモルホリンのモル数])×100
式(5)
生成率(%)=([GC分析により得られた反応後の4−[2−(2−アミノエトキシ)エチル]モルホリンのモル数]÷[仕込みのモルホリンのモル数])×100
(触媒調製例1)
テトラクロロパラジウム(II)酸ナトリウム0.691g(3.68mmol)を水2.3mLに80℃で溶解し,室温まで冷却した。これに空気中、450℃で3時間焼成した粒径3mmのSaint−Gobain製アルミナ5.0gを加え,1時間室温で放置した。その後、エバポレータを用いて40℃で溶媒を除去し、5wt%パラジウム担持アルミナ触媒を得た。
Formula (4)
Conversion (%) = (1− [number of moles of morpholine after reaction] ÷ [number of moles of morpholine charged)] × 100
Formula (5)
Production rate (%) = ([number of moles of 4- [2- (2-aminoethoxy) ethyl] morpholine after reaction obtained by GC analysis) ÷ [number of moles of morpholine charged]] × 100
(Catalyst Preparation Example 1)
0.691 g (3.68 mmol) of sodium tetrachloropalladium (II) was dissolved in 2.3 mL of water at 80 ° C. and cooled to room temperature. To this was added 5.0 g of Saint-Gobain alumina having a particle size of 3 mm, which was baked in air at 450 ° C. for 3 hours, and left at room temperature for 1 hour. Thereafter, the solvent was removed at 40 ° C. using an evaporator to obtain a 5 wt% palladium-supported alumina catalyst.

(触媒調製例2)
テトラクロロパラジウム(II)酸ナトリウム0.691g(3.68mmol)を水7.1mLに80℃で溶解し,室温まで冷却した。これに空気中、450℃で3時間焼成した粒径6mmの水澤化学製アルミナ10gを加え,1時間室温で放置した。その後、エバポレータを用いて40℃で溶媒を除去し、2.5wt%パラジウム担持アルミナ触媒を得た。
(Catalyst preparation example 2)
0.691 g (3.68 mmol) of sodium tetrachloropalladium (II) was dissolved in 7.1 mL of water at 80 ° C. and cooled to room temperature. To this was added 10 g of Mizusawa Chemical's alumina with a particle size of 6 mm, which was calcined in air at 450 ° C. for 3 hours, and left at room temperature for 1 hour. Thereafter, the solvent was removed at 40 ° C. using an evaporator to obtain a 2.5 wt% palladium-supported alumina catalyst.

(触媒調製例3)
テトラクロロパラジウム(II)酸ナトリウム0.691g(3.68mmol)を水4.4mLに80℃で溶解し,室温まで冷却した。これに空気中、450℃で3時間焼成した粒径3mmのSaint−Gobain製アルミナ10gを加え,1時間室温で放置した。その後、エバポレータを用いて40℃で溶媒を除去し、2.5wt%パラジウム担持アルミナ触媒を得た。
(Catalyst Preparation Example 3)
0.691 g (3.68 mmol) of sodium tetrachloropalladium (II) was dissolved in 4.4 mL of water at 80 ° C. and cooled to room temperature. To this was added 10 g of alumina made by Saint-Gobain having a particle diameter of 3 mm, which was fired at 450 ° C. for 3 hours in air, and left at room temperature for 1 hour. Thereafter, the solvent was removed at 40 ° C. using an evaporator to obtain a 2.5 wt% palladium-supported alumina catalyst.

(触媒調製例4)
テトラクロロパラジウム(II)酸ナトリウム0.374g(1.27mmol)を水7.0mLに80℃で溶解し,室温まで冷却した。これに空気中、450℃で3時間焼成した粒径3mmのSaint−Gobain製アルミナをめのう乳鉢で粉砕した後に3.0g加え,1時間室温で放置した。その後、エバポレータを用いて40℃で溶媒を除去し、4.3wt%パラジウム担持アルミナ触媒を得た。
(Catalyst Preparation Example 4)
0.374 g (1.27 mmol) of sodium tetrachloropalladium (II) was dissolved in 7.0 mL of water at 80 ° C. and cooled to room temperature. To this, 3.0 g of alumina made by Saint-Gobain having a particle diameter of 3 mm, which was baked at 450 ° C. for 3 hours in air, was pulverized in an agate mortar, and left at room temperature for 1 hour. Thereafter, the solvent was removed at 40 ° C. using an evaporator to obtain a 4.3 wt% palladium-supported alumina catalyst.

(実施例1)
100mLのステンレス製オートクレーブに触媒調製例1で得た触媒0.5gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、300℃まで5℃/minで加熱・昇温して300℃で3時間保持した。室温まで冷却後、モルホリン15mL(172mmol)を水素気流中で加え、オートクレーブを密封し、水素初期圧を1.0MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で6時間保持した。室温まで冷却後、触媒をろ別した。ろ液をH−NMR、13C−NMR,IR,GC−MSで分析し、主生成物が4−[2−(2−アミノエトキシ)エチル]モルホリンであることを確認した。さらに内部標準としてジオキサンを加えたGC分析の結果、モルホリン転化率52.3%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率28.2%であった。ろ液を減圧下に濃縮して未反応のモルホリンならびに低沸点成分を留去した後、精密蒸留することにより、4−[2−(2−アミノエトキシ)エチル]モルホリンを収率19.3%で単離した(無色液体)。
Example 1
After putting 0.5 g of the catalyst obtained in Catalyst Preparation Example 1 into a 100 mL stainless steel autoclave, hydrogen gas was circulated at 25 mL / min in the autoclave, heated to 300 ° C. at 5 ° C./min and heated to 300 ° C. Hold at 3 ° C. for 3 hours. After cooling to room temperature, 15 mL (172 mmol) of morpholine was added in a hydrogen stream, the autoclave was sealed, and the initial hydrogen pressure was set to 1.0 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated to 200 ° C. and heated at a rate of 5 ° C./min, and held at 200 ° C. for 6 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed by 1 H-NMR, 13 C-NMR, IR, and GC-MS, and it was confirmed that the main product was 4- [2- (2-aminoethoxy) ethyl] morpholine. Furthermore, as a result of GC analysis in which dioxane was added as an internal standard, the morpholine conversion rate was 52.3% and the 4- [2- (2-aminoethoxy) ethyl] morpholine production rate was 28.2%. The filtrate was concentrated under reduced pressure to remove unreacted morpholine and low-boiling components, followed by precision distillation to obtain 4- [2- (2-aminoethoxy) ethyl] morpholine in a yield of 19.3%. (Colorless liquid).

H−NMR(CDCl,ppm)
δ1.39(s,2H),2.52(t,J=4.8Hz,4H),2.60(t,J=5.8Hz,2H),2.86(t,J=5.3Hz,2H),3.48(t,J=5.3Hz,2H),3.59(t,J=5.8Hz,2H),3.70(t,J=4.8Hz,4H).
13C−NMR(重アセトン,ppm)
δ51.7(CH),54.9(CH×2),58.9(CH),67.2(CH×2),69.4(CH),71.8(CH
IR(neat)
δ(NH)=1592cm−1.ν(NH)=3293cm−1,3372cm−1
MS
M/z=174(分子量ピーク)。
1 H-NMR (CDCl 3 , ppm)
δ 1.39 (s, 2H), 2.52 (t, J = 4.8 Hz, 4H), 2.60 (t, J = 5.8 Hz, 2H), 2.86 (t, J = 5.3 Hz) , 2H), 3.48 (t, J = 5.3 Hz, 2H), 3.59 (t, J = 5.8 Hz, 2H), 3.70 (t, J = 4.8 Hz, 4H).
13 C-NMR (heavy acetone, ppm)
δ 51.7 (CH 2 ), 54.9 (CH 2 × 2), 58.9 (CH 2 ), 67.2 (CH 2 × 2), 69.4 (CH 2 ), 71.8 (CH 2 )
IR (neat)
[delta] (NH) = 1592 cm < -1 >. ν (NH) = 3293 cm −1 , 3372 cm −1 .
MS
M / z = 174 (molecular weight peak).

(実施例2)
100mLのステンレス製オートクレーブに触媒調製例1で得た触媒0.5gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、300℃まで5℃/minで加熱・昇温して300℃で3時間保持した。室温まで冷却後、モルホリン15mL(172mmol)を水素気流中で加え、オートクレーブを密封し、水素初期圧を1.0MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で3時間保持した。室温まで冷却後、触媒をろ別した。実施例1と同様にろ液を分析し、モルホリン転化率28.9%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率20.4%であった。
(Example 2)
After putting 0.5 g of the catalyst obtained in Catalyst Preparation Example 1 into a 100 mL stainless steel autoclave, hydrogen gas was circulated at 25 mL / min in the autoclave, heated to 300 ° C. at 5 ° C./min and heated to 300 ° C. Hold at 3 ° C. for 3 hours. After cooling to room temperature, 15 mL (172 mmol) of morpholine was added in a hydrogen stream, the autoclave was sealed, and the initial hydrogen pressure was set to 1.0 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated up to 200 ° C. at a rate of 5 ° C./min and held at 200 ° C. for 3 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed in the same manner as in Example 1. The conversion rate of morpholine was 28.9%, and the yield of 4- [2- (2-aminoethoxy) ethyl] morpholine was 20.4%.

(実施例3)
100mLのステンレス製オートクレーブに触媒調製例2で得た触媒1.0gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、250℃まで5℃/minで加熱・昇温して250℃で3時間保持した。室温まで冷却後、モルホリン15mL(172mmol)を水素気流中で加え、オートクレーブを密封し、水素初期圧を1.0MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で3時間保持した。室温まで冷却後、触媒をろ別した。実施例1と同様にろ液を分析し、モルホリン転化率25.2%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率17.0%を得た。
(Example 3)
After putting 1.0 g of the catalyst obtained in Catalyst Preparation Example 2 into a 100 mL stainless steel autoclave, hydrogen gas was circulated at 25 mL / min in the autoclave, heated to 250 ° C at 5 ° C / min and heated to 250 ° C. Hold at 3 ° C. for 3 hours. After cooling to room temperature, 15 mL (172 mmol) of morpholine was added in a hydrogen stream, the autoclave was sealed, and the initial hydrogen pressure was set to 1.0 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated up to 200 ° C. at a rate of 5 ° C./min and held at 200 ° C. for 3 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed in the same manner as in Example 1 to obtain a morpholine conversion rate of 25.2% and a 4- [2- (2-aminoethoxy) ethyl] morpholine production rate of 17.0%.

(実施例4)
100mLのステンレス製オートクレーブに触媒調製例3で得た触媒1.0gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、300℃まで5℃/minで加熱・昇温して300℃で3時間保持した。室温まで冷却後、モルホリン15mL(172mmol)を水素気流中で加え、オートクレーブを密封し、水素初期圧を1.0MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で3時間保持した。室温まで冷却後、触媒をろ別した。実施例1と同様にろ液を分析し、モルホリン転化率23.0%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率15.4%を得た
(実施例5)
100mLのステンレス製オートクレーブにエヌ・イー ケムキャット製5wt%パラジウム担持アルミナ触媒0.5gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、300℃まで5℃/minで加熱・昇温し、300℃で3時間保持した。室温まで冷却後、モルホリン15mL(172mmol)を水素気流中で加え、オートクレーブを密封し、水素初期圧を1.0MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で3時間保持した。室温まで冷却後、触媒をろ別した。実施例1と同様にろ液を分析し、モルホリン転化率19.8%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率16.0%を得た。
Example 4
After putting 1.0 g of the catalyst obtained in Catalyst Preparation Example 3 into a 100 mL stainless steel autoclave, hydrogen gas was circulated at 25 mL / min in the autoclave, heated to 300 ° C. at 5 ° C./min and heated to 300 ° C. Hold at 3 ° C. for 3 hours. After cooling to room temperature, 15 mL (172 mmol) of morpholine was added in a hydrogen stream, the autoclave was sealed, and the initial hydrogen pressure was set to 1.0 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated up to 200 ° C. at a rate of 5 ° C./min and held at 200 ° C. for 3 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed in the same manner as in Example 1 to obtain a morpholine conversion rate of 23.0% and a 4- [2- (2-aminoethoxy) ethyl] morpholine production rate of 15.4% (Example 5).
After 0.5 g of 5 wt% palladium-supported alumina catalyst made by N Chemcat is put into a 100 mL stainless steel autoclave, hydrogen gas is circulated in the autoclave at 25 mL / min and heated to 300 ° C. at 5 ° C./min. And kept at 300 ° C. for 3 hours. After cooling to room temperature, 15 mL (172 mmol) of morpholine was added in a hydrogen stream, the autoclave was sealed, and the initial hydrogen pressure was set to 1.0 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated up to 200 ° C. at a rate of 5 ° C./min and held at 200 ° C. for 3 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed in the same manner as in Example 1 to obtain a morpholine conversion rate of 19.8% and a 4- [2- (2-aminoethoxy) ethyl] morpholine production rate of 16.0%.

(実施例6)
100mLのステンレス製オートクレーブに触媒調製例1で得た触媒0.5gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、300℃まで5℃/minで加熱・昇温して300℃で3時間保持した。室温まで冷却後、モルホリン15mL(172mmol)と水0.3mL(16.7mmol)を水素気流中で加え、オートクレーブを密封し、水素初期圧を1.0MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で3時間保持した。室温まで冷却後、触媒をろ別した。実施例1と同様にろ液を分析し、モルホリン転化率33.4%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率25.7%を得た。
(Example 6)
After putting 0.5 g of the catalyst obtained in Catalyst Preparation Example 1 into a 100 mL stainless steel autoclave, hydrogen gas was circulated at 25 mL / min in the autoclave, heated to 300 ° C. at 5 ° C./min and heated to 300 ° C. Hold at 3 ° C. for 3 hours. After cooling to room temperature, 15 mL (172 mmol) of morpholine and 0.3 mL (16.7 mmol) of water were added in a hydrogen stream, the autoclave was sealed, and the initial hydrogen pressure was set to 1.0 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated up to 200 ° C. at a rate of 5 ° C./min and held at 200 ° C. for 3 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed in the same manner as in Example 1 to obtain a morpholine conversion rate of 33.4% and a 4- [2- (2-aminoethoxy) ethyl] morpholine production rate of 25.7%.

(実施例7)
100mLのステンレス製オートクレーブに触媒調製例1で得た触媒0.5gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、300℃まで5℃/minで加熱・昇温して300℃で3時間保持した。室温まで冷却後、モルホリン15mL(172mmol)を水素気流中で加え、オートクレーブを密封し、アルゴン初期圧を0.5MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で3時間保持した。室温まで冷却後、触媒をろ別した。実施例1と同様にろ液を分析し、モルホリン転化率35.0%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率25.3%を得た。
(Example 7)
After putting 0.5 g of the catalyst obtained in Catalyst Preparation Example 1 into a 100 mL stainless steel autoclave, hydrogen gas was circulated at 25 mL / min in the autoclave, heated to 300 ° C. at 5 ° C./min and heated to 300 ° C. Hold at 3 ° C. for 3 hours. After cooling to room temperature, 15 mL (172 mmol) of morpholine was added in a hydrogen stream, the autoclave was sealed, and the initial argon pressure was set to 0.5 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated up to 200 ° C. at a rate of 5 ° C./min and held at 200 ° C. for 3 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed in the same manner as in Example 1 to obtain a morpholine conversion rate of 35.0% and a 4- [2- (2-aminoethoxy) ethyl] morpholine production rate of 25.3%.

(実施例8)
100mLのステンレス製オートクレーブに触媒調製例4で得た触媒2.0gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、300℃まで5℃/minで加熱・昇温して300℃で3時間保持した。室温まで冷却後、モルホリン60mL(688mmol)を水素気流中で加え、オートクレーブを密封し、アルゴン初期圧を0.5MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で6時間保持した。室温まで冷却後、触媒をろ別した。実施例1と同様にろ液を分析し、モルホリン転化率52.9%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率30.7%を得た。
(Example 8)
After putting 2.0 g of the catalyst obtained in Catalyst Preparation Example 4 into a 100 mL stainless steel autoclave, hydrogen gas was circulated at 25 mL / min in the autoclave, heated to 300 ° C. at 5 ° C./min and heated to 300 ° C. Hold at 3 ° C. for 3 hours. After cooling to room temperature, 60 mL (688 mmol) of morpholine was added in a hydrogen stream, the autoclave was sealed, and the initial argon pressure was set to 0.5 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated up to 200 ° C. at a rate of 5 ° C./min and held at 200 ° C. for 6 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed in the same manner as in Example 1 to obtain a morpholine conversion rate of 52.9% and a 4- [2- (2-aminoethoxy) ethyl] morpholine production rate of 30.7%.

(実施例9)
100mLのステンレス製オートクレーブに触媒調製例1で得た触媒0.5gを入れた後、オートクレーブ内に水素ガスを25mL/minで流通し、300℃まで5℃/minで加熱・昇温して300℃で3時間保持した。室温まで冷却後、モルホリン15mL(172mmol)および2−(2−アミノエトキシ)エタノール17.2mL(172mmol)を水素気流中で加え、オートクレーブを密封し、水素初期圧を1.0MPaに設定した。磁気撹拌器で1000rpmで撹拌しながら、200℃まで5℃/minで加熱・昇温し、200℃で3時間保持した。室温まで冷却後、触媒をろ別した。実施例1と同様にろ液を分析し、モルホリン転化率8.1%、2−(2−アミノエトキシ)エタノール転化率8.1%、4−[2−(2−アミノエトキシ)エチル]モルホリン生成率1.1%を得た。
Example 9
After putting 0.5 g of the catalyst obtained in Catalyst Preparation Example 1 into a 100 mL stainless steel autoclave, hydrogen gas was circulated at 25 mL / min in the autoclave, heated to 300 ° C. at 5 ° C./min and heated to 300 ° C. Hold at 3 ° C. for 3 hours. After cooling to room temperature, morpholine 15 mL (172 mmol) and 2- (2-aminoethoxy) ethanol 17.2 mL (172 mmol) were added in a hydrogen stream, the autoclave was sealed, and the initial hydrogen pressure was set to 1.0 MPa. While stirring at 1000 rpm with a magnetic stirrer, the mixture was heated up to 200 ° C. at a rate of 5 ° C./min and held at 200 ° C. for 3 hours. After cooling to room temperature, the catalyst was filtered off. The filtrate was analyzed in the same manner as in Example 1. The morpholine conversion was 8.1%, the 2- (2-aminoethoxy) ethanol conversion was 8.1%, and 4- [2- (2-aminoethoxy) ethyl] morpholine. A yield of 1.1% was obtained.

Claims (8)

モルホリン類を金属触媒と接触させることを特徴とする、4−[2−(2−アミノエトキシ)エチル]モルホリン類の製造方法。 A method for producing 4- [2- (2-aminoethoxy) ethyl] morpholines, which comprises contacting morpholines with a metal catalyst. 2−(2−アミノエトキシ)エタノール類の共存下に反応を実施することを特徴とする、請求項1に記載の製造方法。 The process according to claim 1, wherein the reaction is carried out in the presence of 2- (2-aminoethoxy) ethanols. 反応温度が50℃から350℃であることを特徴とする、請求項1または請求項2に記載の製造方法。 The production method according to claim 1 or 2, wherein the reaction temperature is from 50 ° C to 350 ° C. 反応圧が大気圧から10MPaであることを特徴とする、請求項1から3いずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the reaction pressure is from atmospheric pressure to 10 MPa. 金属触媒が担持金属触媒であることを特徴とする、請求項1から請求項4いずれかに記載の製造方法。 The method according to any one of claims 1 to 4, wherein the metal catalyst is a supported metal catalyst. 金属触媒がパラジウムを含むことを特徴とする、請求項1から請求項5いずれかに記載の製造方法。 The production method according to claim 1, wherein the metal catalyst contains palladium. 水素気流中で前処理した金属触媒を用いることを特徴とする、請求項1から請求項6いずれかに記載の製造方法。 The production method according to any one of claims 1 to 6, wherein a metal catalyst pretreated in a hydrogen stream is used. 50℃から400℃で前処理した金属触媒を用いることを特徴とする、請求項7に記載の製造方法。
The production method according to claim 7, wherein a metal catalyst pretreated at 50 ° C. to 400 ° C. is used.
JP2005304303A 2005-10-19 2005-10-19 Method for producing 4-[2-(2-aminoethoxy)ethyl]morpholines Pending JP2007112730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304303A JP2007112730A (en) 2005-10-19 2005-10-19 Method for producing 4-[2-(2-aminoethoxy)ethyl]morpholines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304303A JP2007112730A (en) 2005-10-19 2005-10-19 Method for producing 4-[2-(2-aminoethoxy)ethyl]morpholines

Publications (1)

Publication Number Publication Date
JP2007112730A true JP2007112730A (en) 2007-05-10

Family

ID=38095240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304303A Pending JP2007112730A (en) 2005-10-19 2005-10-19 Method for producing 4-[2-(2-aminoethoxy)ethyl]morpholines

Country Status (1)

Country Link
JP (1) JP2007112730A (en)

Similar Documents

Publication Publication Date Title
JP6049757B2 (en) Process for the production of secondary amines in the liquid phase
JP2008074754A (en) METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE
JP5825027B2 (en) Method for producing diol compound
JP6365549B2 (en) Process for producing nitro compounds
KR101577362B1 (en) Preparation method of 1,4-cyclohexanedimethanol
JP2007112730A (en) Method for producing 4-[2-(2-aminoethoxy)ethyl]morpholines
JP4979230B2 (en) Tetrahydropyran compound production method and tetrahydropyran compound produced by the production method
JP2016529220A (en) Process for producing furan and its derivatives
JP5468324B2 (en) Process for producing N-alkyl-tert-butylamine
JP5434919B2 (en) Method for producing carbamate compound
JP2002539180A (en) Method for producing cyclic α, β-unsaturated ketone
CN112638890A (en) Method for preparing acetone glycidylamine by direct amination
JP5911468B2 (en) Process for producing asymmetric secondary tert-butylamine in gas phase
JP5144138B2 (en) Process for producing α-methylene-β-alkyl-γ-butyrolactone
JP5762288B2 (en) Method for producing allylamine
JP2005015382A (en) Method for producing alicyclic oxime
JP3008296B2 (en) Method for producing diaryl glycolic acid
JP2008543914A (en) Continuous production of amines
JPH0251413B2 (en)
JP4412451B2 (en) Method for producing lactone
JP4709369B2 (en) Esters and their synthesis
JP3971875B2 (en) Process for producing trans-4- (4&#39;-oxocyclohexyl) cyclohexanols
JP3089772B2 (en) Method for producing diol compound having cyclohexane ring
JP5564088B2 (en) Process for producing trans-1,4-diaminocyclohexane
JP4332777B2 (en) Process for producing trifluoromethoxycyclohexanes