JP2007112656A - Method for producing silicon fine particle - Google Patents

Method for producing silicon fine particle Download PDF

Info

Publication number
JP2007112656A
JP2007112656A JP2005304751A JP2005304751A JP2007112656A JP 2007112656 A JP2007112656 A JP 2007112656A JP 2005304751 A JP2005304751 A JP 2005304751A JP 2005304751 A JP2005304751 A JP 2005304751A JP 2007112656 A JP2007112656 A JP 2007112656A
Authority
JP
Japan
Prior art keywords
silicon
fine particles
silicon fine
source
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005304751A
Other languages
Japanese (ja)
Other versions
JP4980603B2 (en
Inventor
Shinobu Endo
忍 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005304751A priority Critical patent/JP4980603B2/en
Publication of JP2007112656A publication Critical patent/JP2007112656A/en
Application granted granted Critical
Publication of JP4980603B2 publication Critical patent/JP4980603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for producing silicon fine particles. <P>SOLUTION: This method for producing silicon fine particles comprises (1) a step of heating and firing a mixture containing a silicon source and a carbon source under inert atmosphere, (2) a step of extracting the generated gas from the inert atmosphere, quenching the gas to solidify to obtain a powder mixture containing silicon fine particles, and (3) a step of extracting the silicon fine particles from the powder mixture. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ケイ素微粒子の製造方法に関する。   The present invention relates to a method for producing silicon fine particles.

近年のナノテクノロジーの進歩とともに、その原料としての粉体に要求されるサイズは微小化している。研究開発のターゲットはサブミクロン粒子からナノ粒子に移行しつつある。特に20nm以下のナノ粒子においては、電子状態の変化に伴う特異な電磁的効果の発現や、表面原子が占める割合の増大などによって、バルク素材にない優れた特性を持つことが知られている。そのため、例えばケイ素微粒子は発光素子としての応用等が期待されている。かかるケイ素微粒子の製造方法としては種々のものが提案されている(例えば特許文献1、非特許文献1参照)。
特開平6―279015号 「レーザーアブレーションによるナノ粒子の合成」、瀬戸章文、粉体工学会誌(J. Soc. Powder Technology. Japan)第42巻(2005)、pp. 39-44
With recent advances in nanotechnology, the size required for powders as raw materials is becoming smaller. Research and development targets are shifting from submicron particles to nanoparticles. In particular, it is known that nanoparticles of 20 nm or less have excellent characteristics that are not found in bulk materials due to the expression of a unique electromagnetic effect associated with changes in the electronic state and the increase in the proportion of surface atoms. Therefore, for example, silicon fine particles are expected to be applied as light emitting elements. Various methods for producing such silicon fine particles have been proposed (see, for example, Patent Document 1 and Non-Patent Document 1).
JP-A-6-279015 “Synthesis of Nanoparticles by Laser Ablation”, Akifumi Seto, Journal of Powder Technology (J. Soc. Powder Technology. Japan), Volume 42 (2005), pp. 39-44

ところが、特許文献1、非特許文献1に開示された製造方法では、製造装置の取扱いが複雑であった。そのため、簡易なケイ素微粒子の製造方法が求められていた。   However, in the manufacturing methods disclosed in Patent Document 1 and Non-Patent Document 1, the handling of the manufacturing apparatus is complicated. Therefore, a simple method for producing silicon fine particles has been demanded.

即ち、本発明は、以下の記載事項に関する:
(1)不活性雰囲気下においてケイ素源と炭素源を含む混合物を加熱焼成する工程と、上記不活性雰囲気から生成ガスを抜き出し急冷固化してケイ素微粒子を含む混合粉体を得る工程と、上記混合粉体からケイ素微粒子を抽出する工程と、を備えることを特徴とするケイ素微粒子の製造方法。
(2)上記ケイ素源は加熱により一酸化ケイ素を生成することを特徴とする上記(1)記載のケイ素微粒子の製造方法。
(3)上記ケイ素源はエチルシリケートであることを特徴とする上記(2)記載のケイ素微粒子の製造方法。
(4)上記炭素源は、フェノール樹脂であることを特徴とする上記(1)〜(3)のいずれかに記載のケイ素微粒子の製造方法。
(5)上記混合粉体をフッ酸水溶液に浸漬して得られた溶解液からケイ素微粒子を抽出することを特徴とする上記(1)〜(4)のいずれかに記載のケイ素微粒子の製造方法。
That is, the present invention relates to the following items:
(1) A step of heating and baking a mixture containing a silicon source and a carbon source in an inert atmosphere, a step of extracting a product gas from the inert atmosphere and rapidly solidifying it to obtain a mixed powder containing silicon fine particles, and the above mixing And a step of extracting silicon fine particles from the powder.
(2) The method for producing silicon fine particles according to (1), wherein the silicon source produces silicon monoxide by heating.
(3) The method for producing silicon fine particles according to (2) above, wherein the silicon source is ethyl silicate.
(4) The method for producing silicon fine particles according to any one of (1) to (3), wherein the carbon source is a phenol resin.
(5) The method for producing silicon fine particles according to any one of (1) to (4), wherein silicon fine particles are extracted from a solution obtained by immersing the mixed powder in a hydrofluoric acid aqueous solution. .

ケイ素微粒子の簡易な製造方法が提供される。   A simple method for producing silicon fine particles is provided.

以下に実施形態を挙げて本発明を説明するが、本発明が以下の実施形態に限定されないことはいうまでもない。
炭化ケイ素焼結体の製造方法の中間工程である炭化ケイ素粉末の製造工程では、例えばケイ素源と炭素源とを混合した後、非酸化雰囲気下にて1600℃以上の温度で加熱することで炭化ケイ素(SiC)粉末が得られる。この化学反応形態としては、(1)式に示されるように中間生成物として一酸化ケイ素(SiO)ガスがまず生成される。この一酸化ケイ素ガスをそのまま1600℃以上の温度で加熱し続けると(2)式に示されるように炭化ケイ素粉末となる。ところが生成後速やかに1600℃未満の温度にて冷却すると(3)式に示されるようにケイ素(Si)微粒子を含む混合物が得られることを本発明者は知見した。本発明は上記知見に基づくものである。かかる知見は簡易にケイ素微粒子を製造できる観点からも、また炭化ケイ素焼結体の製造工程において出される副生成物の再利用を図ることができる観点からも有益なものである。
Hereinafter, the present invention will be described with reference to embodiments, but it goes without saying that the present invention is not limited to the following embodiments.
In the silicon carbide powder manufacturing process, which is an intermediate process of the method for manufacturing a silicon carbide sintered body, for example, after mixing a silicon source and a carbon source, carbonization is performed by heating at a temperature of 1600 ° C. or higher in a non-oxidizing atmosphere. Silicon (SiC) powder is obtained. As this chemical reaction form, silicon monoxide (SiO) gas is first generated as an intermediate product as shown in the equation (1). When this silicon monoxide gas is continuously heated at a temperature of 1600 ° C. or higher, silicon carbide powder is obtained as shown in the equation (2). However, the present inventor has found that a mixture containing silicon (Si) fine particles can be obtained as shown in the formula (3) when cooled immediately at a temperature of less than 1600 ° C. after the production. The present invention is based on the above findings. Such knowledge is useful from the viewpoint that silicon fine particles can be easily produced and from the viewpoint that the by-product produced in the production process of the silicon carbide sintered body can be reused.

SiO+C→SiO+CO (1)
SiO+2C→SiC+CO (2)
2SiO→Si+SiO (3)
(成分)
本発明の実施形態に用いられる成分としては、炭化ケイ素焼結体の製造方法の中間工程である、炭化ケイ素粉末の製造工程で用いられる成分を用いることができる。炭化ケイ素粉末の説明を介して本発明の実施形態に用いられる成分について説明する。
炭化ケイ素粉末としては、α型、β型、非晶質あるいはこれらの混合物等が挙げられる。また、高純度の炭化ケイ素焼結体を得るためには、原料の炭化ケイ素粉末として、高純度の炭化ケイ素粉末を用いることが好ましい。
このβ型炭化ケイ素粉末のグレードには特に制限はなく、例えば、一般に市販されているβ型炭化ケイ素を用いることができる。炭化ケイ素粉末の粒径は、高密度の観点からは、小さいことが好ましく、具体的には、0.01μm〜10μm程度、さらに好ましくは、0.05μm〜5μmである。粒径が、0.01μm未満であると、計量、混合等の処理工程における取扱いが困難となりやすく、10μmを超えると、比表面積が小さく、即ち、隣接する粉末との接触面積が小さくなり、高密度化し難くなるため好ましくない。
SiO 2 + C → SiO + CO (1)
SiO + 2C → SiC + CO (2)
2SiO → Si + SiO 2 (3)
(component)
As a component used for embodiment of this invention, the component used at the manufacturing process of the silicon carbide powder which is an intermediate process of the manufacturing method of a silicon carbide sintered compact can be used. The component used for embodiment of this invention is demonstrated through description of a silicon carbide powder.
Examples of the silicon carbide powder include α-type, β-type, amorphous, and mixtures thereof. In order to obtain a high-purity silicon carbide sintered body, it is preferable to use a high-purity silicon carbide powder as the raw material silicon carbide powder.
The grade of the β-type silicon carbide powder is not particularly limited, and for example, commercially available β-type silicon carbide can be used. The particle size of the silicon carbide powder is preferably small from the viewpoint of high density, specifically, about 0.01 μm to 10 μm, and more preferably 0.05 μm to 5 μm. If the particle size is less than 0.01 μm, handling in processing steps such as weighing and mixing tends to be difficult, and if it exceeds 10 μm, the specific surface area is small, that is, the contact area with the adjacent powder is small, and high This is not preferable because it is difficult to increase the density.

高純度の炭化ケイ素粉末は、例えば、少なくとも1種以上のケイ素化合物を含むケイ素源と、少なくとも1種以上の加熱により炭素を生成する有機化合物を含む炭素源と、重合又は架橋触媒と、を溶媒中で溶解し、乾燥した後に得られた粉末を非酸化性雰囲気下で焼成する工程により得ることができる。   The high-purity silicon carbide powder includes, for example, a silicon source containing at least one silicon compound, a carbon source containing an organic compound that generates carbon by heating at least one kind, and a polymerization or crosslinking catalyst. It can be obtained by a step of firing in a non-oxidizing atmosphere the powder obtained after being dissolved in and dried.

上記ケイ素化合物を含むケイ素源(以下、「ケイ素源」という。)としては、液状のものと固体のものとを併用することができるが、少なくとも1種は液状のものから選ばれなくてはならない。液状のものとしては、アルコキシシラン(モノ−、ジ−、トリ−、テトラ−)及びテトラアルコキシシランの重合体が用いられる。アルコキシシランの中ではテトラアルコキシシランが好適に用いられ、具体的には、メトキシシラン、エトキシシラン、プロポキシシラン、ブトキシシラン等が挙げられるが、ハンドリングの点からは、エトキシシランが好ましい。また、テトラアルコキシシランの重合体としては、重合度が2〜15程度の低分子量重合体(オリゴマー)及びさらに重合度が高いケイ酸ポリマーで液状のものが挙げられる。これらと併用可能な固体状のものとしては、酸化ケイ素が挙げられる。上記反応焼結法において酸化ケイ素とは、SiOの他、シリカゲル(コロイド状超微細シリカ含有液、内部にOH基やアルコキシル基を含む)、二酸化ケイ素(シリカゲル、微細シリカ、石英粉末)等を含む。これらケイ素源は、単独で用いてもよいし、2種以上併用してもよい。これらケイ素源の中でも、均質性やハンドリング性が良好な観点から、テトラエトキシシランのオリゴマー及びテトラエトキシシランのオリゴマーと微粉末シリカとの混合物等が好適である。また、これらのケイ素源は高純度の物質が用いられ、初期の不純物含有量が20ppm以下であることが好ましく、5ppm以下であることがさらに好ましい。ケイ素源としては、加熱により一酸化ケイ素を生成するものであることが好ましく、具体的にはエチルシリケートが好ましい。   As the silicon source containing the silicon compound (hereinafter referred to as “silicon source”), a liquid source and a solid source can be used in combination, but at least one of them must be selected from a liquid source. . As the liquid, a polymer of alkoxysilane (mono-, di-, tri-, tetra-) and tetraalkoxysilane is used. Among alkoxysilanes, tetraalkoxysilane is preferably used, and specific examples include methoxysilane, ethoxysilane, propoxysilane, butoxysilane, and the like. From the viewpoint of handling, ethoxysilane is preferable. Examples of the tetraalkoxysilane polymer include a low molecular weight polymer (oligomer) having a degree of polymerization of about 2 to 15 and a silicate polymer having a higher degree of polymerization, which are liquid. Examples of solid materials that can be used in combination with these include silicon oxide. In the above reaction sintering method, silicon oxide includes silica gel (colloidal ultrafine silica-containing liquid, containing OH group or alkoxyl group inside), silicon dioxide (silica gel, fine silica, quartz powder), etc. in addition to SiO. . These silicon sources may be used alone or in combination of two or more. Among these silicon sources, from the viewpoint of good homogeneity and handling properties, an oligomer of tetraethoxysilane, a mixture of an oligomer of tetraethoxysilane and fine powder silica, and the like are preferable. These silicon sources are high-purity substances, and the initial impurity content is preferably 20 ppm or less, more preferably 5 ppm or less. The silicon source is preferably one that generates silicon monoxide by heating, and specifically, ethyl silicate is preferred.

炭素源として用いられる物質は、酸素を分子内に含有し、加熱により炭素を残留する高純度有機化合物であることが好ましい。具体的には、フェノール樹脂、フラン樹脂、エポキシ樹脂、フェノキシ樹脂やグルコース等の単糖類、蔗糖等の少糖類、セルロース、デンプン等の多糖類などの等の各種糖類が挙げられる。これらはケイ素源と均質に混合するという目的から、常温で液状のもの、溶媒に溶解するもの、熱可塑性あるいは熱融解性のように加熱することにより軟化するものあるいは液状となるものが主に用いられる。なかでも、レゾール型フェノール樹脂やノボラック型フェノール樹脂が好適である。特に、レゾール型フェノール樹脂が好適に使用される。   The substance used as the carbon source is preferably a high-purity organic compound that contains oxygen in the molecule and remains carbon by heating. Specific examples include various sugars such as phenol resin, furan resin, epoxy resin, phenoxy resin, monosaccharides such as glucose, oligosaccharides such as sucrose, polysaccharides such as cellulose and starch. For the purpose of homogeneously mixing with the silicon source, these are mainly used in liquid form at room temperature, those that dissolve in a solvent, those that soften or become liquid when heated, such as thermoplasticity or heat melting properties. It is done. Of these, resol type phenol resins and novolac type phenol resins are preferred. In particular, a resol type phenol resin is preferably used.

高純度の炭化ケイ素粉末の製造に用いられる重合及び架橋触媒としては、炭素源に応じて適宜選択でき、炭素源がフェノール樹脂やフラン樹脂の場合、トルエンスルホン酸、トルエンカルボン酸、酢酸、しゅう酸、硫酸等の酸類が挙げられる。これらの中でも、トルエンスルホン酸が好適に用いられる。   The polymerization and crosslinking catalyst used in the production of high-purity silicon carbide powder can be appropriately selected according to the carbon source. When the carbon source is a phenol resin or a furan resin, toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid And acids such as sulfuric acid. Among these, toluenesulfonic acid is preferably used.

反応焼結法に使用される原料粉末である高純度炭化ケイ素粉末を製造する工程における、炭素とケイ素の比(以下、C/Si比と略記)は、混合物をl000℃にて炭化して得られる炭化物中間体を、元素分析することにより定義される。化学量論的には、C/Si比が3.0の時に生成炭化ケイ素中の遊離炭素が0%となるばずであるが、実際には同時に生成するSiOガスの揮散により低C/Si比において遊離炭素が発生する。この生成炭化ケイ素粉末中の遊離炭素量が焼結体等の製造用途に適当でない量にならないように予め配合を決定することが重要である。通常、1気圧近傍で1600℃以上での焼成では、C/Si比を2.0〜2.5にすると遊離炭素を抑制することができ、この範囲を好適に用いることができる。C/Si比を2.55以上にすると遊離炭素が顕著に増加するが、この遊離炭素は結晶成長を抑制する効果を持つため、得ようとする結晶成長サイズに応じてC/Si比を適宜選択しても良い。但し、雰囲気の圧力を低圧又は高圧とする場合は、純粋な炭化ケイ素を得るためのC/Si比は変動するので、この場合は必ずしも上記C/Si比の範囲に限定するものではない。   The ratio of carbon to silicon (hereinafter abbreviated as C / Si ratio) in the process of producing high-purity silicon carbide powder, which is a raw material powder used in the reaction sintering method, is obtained by carbonizing the mixture at 1000 ° C. The carbide intermediate is defined by elemental analysis. Stoichiometrically, the free carbon in the generated silicon carbide should be 0% when the C / Si ratio is 3.0, but in practice, the low C / Si is reduced due to volatilization of the SiO gas generated at the same time. Free carbon is generated in the ratio. It is important to determine the blending in advance so that the amount of free carbon in the generated silicon carbide powder does not become an amount that is not suitable for manufacturing applications such as sintered bodies. Usually, in firing at 1600 ° C. or more near 1 atm, free carbon can be suppressed when the C / Si ratio is set to 2.0 to 2.5, and this range can be suitably used. When the C / Si ratio is 2.55 or more, free carbon increases remarkably, but since this free carbon has an effect of suppressing crystal growth, the C / Si ratio is appropriately set according to the crystal growth size to be obtained. You may choose. However, when the atmospheric pressure is low or high, the C / Si ratio for obtaining pure silicon carbide varies, and in this case, the range is not necessarily limited to the above C / Si ratio.

以上より、特に高純度の炭化ケイ素粉末を得る方法としては、本願出願人が先に出願した特開平9−48605号の単結晶の製造方法に記載の原料粉末の製造方法が挙げられる。即ち、高純度のテトラアルコキシシラン、テトラアルコキシシラン重合体から選択される1種以上をケイ素源とし、加熱により炭素を生成する高純度有機化合物を炭素源とし、これらを均質に混合して得られた混合物を非酸化性雰囲気下において加熱焼成して炭化ケイ素粉末を得る炭化ケイ素生成工程と;得られた炭化ケイ素粉末を、1700℃以上2000℃未満の温度に保持し、上記温度の保持中に、2000℃〜2100℃の温度において5〜20分間にわたり加熱する処理を少なくとも1回行う後処理工程と;を含み、上記2工程を行うことにより、各不純物元素の含有量が0.5ppm以下である炭化ケイ素粉末を得る高純度炭化ケイ素粉末の製造方法等を利用することができる。この様にして得られた炭化ケイ素粉末は、大きさが不均一であるため、解粉、分級により上記粒度に適合するように処理することが好ましい。   From the above, as a method for obtaining particularly high purity silicon carbide powder, the raw material powder production method described in the method for producing a single crystal in Japanese Patent Application Laid-Open No. 9-48605 previously filed by the applicant of the present application can be mentioned. That is, one or more selected from high-purity tetraalkoxysilane and tetraalkoxysilane polymer is used as a silicon source, and a high-purity organic compound that generates carbon by heating is used as a carbon source. A silicon carbide production step for obtaining a silicon carbide powder by heating and firing the obtained mixture in a non-oxidizing atmosphere; and maintaining the obtained silicon carbide powder at a temperature of 1700 ° C. or higher and lower than 2000 ° C. A post-treatment step of performing at least one treatment for 5 to 20 minutes at a temperature of 2000 ° C. to 2100 ° C., and by performing the above two steps, the content of each impurity element is 0.5 ppm or less A production method of high-purity silicon carbide powder to obtain a certain silicon carbide powder can be used. Since the silicon carbide powder obtained in this manner is non-uniform in size, it is preferable to treat the silicon carbide powder so as to meet the above particle size by pulverization and classification.

炭化ケイ素粉末を製造する工程において窒素を導入する場合は、まずケイ素源と、炭素源と、窒素源からなる有機物質と、重合又は架橋触媒と、を均質に混合するが、上記如く、フェノール樹脂等の炭素源と、ヘキサメチレンテトラミン等の窒素源からなる有機物質と、トルエンスルホン酸等の重合又は架橋触媒とを、エタノール等の溶媒に溶解する際に、テトラエトキシシランのオリゴマー等のケイ素源と十分に混合することが好ましい。   In the case of introducing nitrogen in the process of producing silicon carbide powder, first, a silicon source, a carbon source, an organic substance composed of a nitrogen source, and a polymerization or crosslinking catalyst are homogeneously mixed. When dissolving an organic substance composed of a carbon source such as hexamethylenetetramine and a polymerization or crosslinking catalyst such as toluenesulfonic acid in a solvent such as ethanol, a silicon source such as an oligomer of tetraethoxysilane And thoroughly mixed.

(ケイ素微粒子の製造装置)
ケイ素微粒子の製造に用いられる加熱装置1の概略図を図3に示す。加熱装置1は、
ケイ素源と炭素源を含む混合物を収容し加熱雰囲気を形成する加熱容器2と、
加熱容器2を保持するステージ6と、
上記混合物(焼結体)Wを加熱する加熱体10a、10bと、
加熱容器2と加熱体10a、10bを覆う断熱材12と、
加熱容器2から吸引管21を介して反応ガスを吸引するブロア23、混合粉体を収容する集塵機22、ガスを供給する供給管24を有する吸引装置20と、を備える。吸引装置20は加熱容器2内に加熱及び不活性雰囲気を維持しながらSiOガスを吸引することができる。吸引装置20の内はアルゴンガスが循環するように設けられている。また設定圧力により自動開閉する電磁弁25を備える。
(Silicon fine particle production equipment)
FIG. 3 shows a schematic diagram of the heating device 1 used for the production of silicon fine particles. The heating device 1
A heating container 2 containing a mixture containing a silicon source and a carbon source and forming a heating atmosphere;
A stage 6 for holding the heating container 2;
Heating bodies 10a and 10b for heating the mixture (sintered body) W;
A heat insulating material 12 covering the heating container 2 and the heating bodies 10a, 10b;
A blower 23 for sucking a reaction gas from the heating container 2 through a suction pipe 21, a dust collector 22 for containing the mixed powder, and a suction device 20 having a supply pipe 24 for supplying a gas are provided. The suction device 20 can suck SiO gas while maintaining a heated and inert atmosphere in the heating container 2. Argon gas is circulated in the suction device 20. In addition, an electromagnetic valve 25 that automatically opens and closes according to the set pressure is provided.

(ケイ素微粒子の製造方法)
本発明の実施形態にかかるケイ素微粒子の製造方法は、
(イ)不活性雰囲気下においてケイ素源と炭素源を含む混合物を加熱焼成する工程と、
(ロ)上記不活性雰囲気から生成ガスを抜き出し急冷固化してケイ素微粒子を含む混合粉体を得る工程と、
(ハ)上記混合粉体からケイ素微粒子を抽出する工程と、を備える。以下工程毎に詳細に説明する。
(Method for producing silicon fine particles)
A method for producing silicon fine particles according to an embodiment of the present invention includes:
(A) a step of heating and baking a mixture containing a silicon source and a carbon source in an inert atmosphere;
(B) extracting the generated gas from the inert atmosphere and rapidly solidifying it to obtain a mixed powder containing silicon fine particles;
(C) a step of extracting silicon fine particles from the mixed powder. Hereinafter, each process will be described in detail.

(イ)加熱焼成工程
まずケイ素源としてのエチルシリケートと、炭素源としてのフェノール樹脂と、重合触媒としてのマレイン酸とからなる混合物を加熱容器に配置する。Si/C比は0.5〜3.0が好ましい。そして上記混合物を150℃程度で加熱して硬化させる。次に硬化物を窒素雰囲気下800〜1200℃で、0.5〜2時間加熱する。その後、アルゴン雰囲気下1500〜2000℃で加熱する。
(I) Heating and firing step First, a mixture of ethyl silicate as a silicon source, a phenol resin as a carbon source, and maleic acid as a polymerization catalyst is placed in a heating vessel. The Si / C ratio is preferably 0.5 to 3.0. And the said mixture is heated and hardened at about 150 degreeC. Next, the cured product is heated at 800 to 1200 ° C. in a nitrogen atmosphere for 0.5 to 2 hours. Then, it heats at 1500-2000 degreeC under argon atmosphere.

(ロ)急冷固化工程
次にブロア23を作動させる。そして吸引管21を介して加熱容器2内からアルゴンガス気流に乗せて生成ガスを抜き出す。断熱材12の外部は室温に保たれているため生成ガスは室温まで急冷される。そして生成ガスからケイ素(Si)とシリカ(SiO)からなる混合粉が得られる。得られた混合粉を集塵機22に集塵する。またアルゴン気流を供給管24を介して加熱容器2に送り込む。
(B) Rapid cooling and solidification step Next, the blower 23 is operated. Then, the generated gas is extracted from the inside of the heating container 2 through the suction pipe 21 by being put on an argon gas stream. Since the outside of the heat insulating material 12 is kept at room temperature, the generated gas is rapidly cooled to room temperature. A mixed powder composed of silicon (Si) and silica (SiO 2 ) is obtained from the generated gas. The obtained mixed powder is collected in the dust collector 22. Further, an argon stream is sent into the heating container 2 through the supply pipe 24.

(ハ)ケイ素抽出工程
ケイ素とシリカからなる混合物をフッ酸水溶媒に加える。そして二酸化ケイ素を溶媒に溶解させる。その後ケイ素を溶媒から抽出し、適宜乾燥させることでケイ素微粒子が得られる。
(C) Silicon extraction step A mixture of silicon and silica is added to a hydrofluoric acid aqueous solvent. Then, silicon dioxide is dissolved in a solvent. Thereafter, silicon is extracted from the solvent and appropriately dried to obtain silicon fine particles.

(ケイ素微粒子)
上記製造方法により得られる本実施形態にかかるケイ素微粒子の平均粒径は、30nm以下、好ましくは20〜30nmである。かかる物性を備えることより、例えば発光素子材料、紫外線(UV)カット用化粧料として用いることができる。
(Silicon fine particles)
The average particle diameter of the silicon fine particles according to this embodiment obtained by the above production method is 30 nm or less, preferably 20 to 30 nm. By providing such physical properties, it can be used, for example, as a light-emitting element material or an ultraviolet (UV) cut cosmetic.

以下に、本発明の実施例を示すが、本発明はこれら実施例に何ら制限されない。
ケイ素源としてエチルシリケート620gと、炭素源としてのフェノール樹脂288gと、重合触媒としてのマレイン酸水溶液92g(35重量%)とからなる混合溶液を図3の加熱容器2内に配置した。そして上記混合溶液を150℃で加熱して固化させた。次に得られた固化物を窒素雰囲気下において90℃で1時間炭化させた。得られた炭化物をアルゴン雰囲気下において1600℃で加熱した。
次に加熱容器2内で生成された副生ガスを、吸引装置20とアルゴンガスのキャリアガスを用いて加熱容器2の外へ搬送し、1500℃以下で冷却して粉体を得た。
得られた粉体について透過型電子顕微鏡(TEM)写真分析を行ったところ、図1,2に示されるように二酸化ケイ素に包み混まれるようにしてケイ素微粒子を包含する粉体が得られたことが確認された。
次にケイ素微粒子を包含する粉体をフッ酸水溶液に加え二酸化ケイ素を溶解し、その後ケイ素微粒子を回収した。回収率は11%であった。以上より、簡易に効率良くケイ素微粒子が得られることが確認された。透過型電子顕微鏡(TEM)により撮影した写真から任意に選んだ200個のケイ素微粒子について個々の粒子の粒径を測定したところ、ケイ素微粒子の平均粒径は、25nmであった。
Examples of the present invention will be shown below, but the present invention is not limited to these examples.
A mixed solution composed of 620 g of ethyl silicate as a silicon source, 288 g of phenol resin as a carbon source, and 92 g (35 wt%) of an aqueous maleic acid solution as a polymerization catalyst was placed in the heating container 2 of FIG. The mixed solution was heated at 150 ° C. to solidify. Next, the obtained solidified product was carbonized at 90 ° C. for 1 hour in a nitrogen atmosphere. The resulting carbide was heated at 1600 ° C. under an argon atmosphere.
Next, the by-product gas generated in the heating container 2 was conveyed out of the heating container 2 using the suction device 20 and a carrier gas of argon gas, and cooled at 1500 ° C. or less to obtain a powder.
As a result of transmission electron microscope (TEM) photographic analysis of the obtained powder, it was found that a powder containing silicon fine particles was obtained so as to be wrapped in silicon dioxide as shown in FIGS. Was confirmed.
Next, a powder containing silicon fine particles was added to a hydrofluoric acid aqueous solution to dissolve silicon dioxide, and then the silicon fine particles were recovered. The recovery rate was 11%. From the above, it was confirmed that silicon fine particles can be obtained simply and efficiently. When the particle size of each particle was measured for 200 silicon fine particles arbitrarily selected from a photograph taken with a transmission electron microscope (TEM), the average particle size of the silicon fine particles was 25 nm.

図1はケイ素微粒子を含む混合粉体の透過型電子顕微鏡写真を示す。FIG. 1 shows a transmission electron micrograph of a mixed powder containing silicon fine particles. 図2はケイ素微粒子を含む混合粉体の透過型電子顕微鏡写真を示す。FIG. 2 shows a transmission electron micrograph of a mixed powder containing silicon fine particles. 図3はケイ素微粒子の製造装置を示す。FIG. 3 shows an apparatus for producing silicon fine particles.

符号の説明Explanation of symbols

1:加熱装置
2:加熱容器
W:混合物(焼結体)
6:混合物
8:ステージ
10a、10b:加熱体
12:断熱材
1: Heating device 2: Heating vessel W: Mixture (sintered body)
6: Mixture 8: Stages 10a, 10b: Heating body 12: Insulating material

Claims (5)

不活性雰囲気下においてケイ素源と炭素源を含む混合物を加熱焼成する工程と、
前記不活性雰囲気から生成ガスを抜き出し急冷固化してケイ素微粒子を含む混合粉体を得る工程と、
前記混合粉体からケイ素微粒子を抽出する工程と、
を備えることを特徴とするケイ素微粒子の製造方法。
Heating and baking a mixture containing a silicon source and a carbon source under an inert atmosphere;
Extracting the generated gas from the inert atmosphere and rapidly solidifying it to obtain a mixed powder containing silicon fine particles; and
Extracting silicon fine particles from the mixed powder;
A method for producing silicon fine particles, comprising:
前記ケイ素源は加熱により一酸化ケイ素を生成することを特徴とする請求項1記載のケイ素微粒子の製造方法。   The method for producing silicon fine particles according to claim 1, wherein the silicon source generates silicon monoxide by heating. 前記ケイ素源はエチルシリケートであることを特徴とする請求項2記載のケイ素微粒子の製造方法。   3. The method for producing silicon fine particles according to claim 2, wherein the silicon source is ethyl silicate. 前記炭素源は、フェノール樹脂であることを特徴とする請求項1〜3のいずれかに記載のケイ素微粒子の製造方法。   The said carbon source is a phenol resin, The manufacturing method of the silicon particulates in any one of Claims 1-3 characterized by the above-mentioned. 前記混合粉体をフッ酸水溶液に浸漬して得られた溶解液からケイ素微粒子を抽出することを特徴とする請求項1〜4のいずれかに記載のケイ素微粒子の製造方法。   5. The method for producing silicon fine particles according to claim 1, wherein silicon fine particles are extracted from a solution obtained by immersing the mixed powder in a hydrofluoric acid aqueous solution.
JP2005304751A 2005-10-19 2005-10-19 Method for producing silicon fine particles Expired - Fee Related JP4980603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304751A JP4980603B2 (en) 2005-10-19 2005-10-19 Method for producing silicon fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304751A JP4980603B2 (en) 2005-10-19 2005-10-19 Method for producing silicon fine particles

Publications (2)

Publication Number Publication Date
JP2007112656A true JP2007112656A (en) 2007-05-10
JP4980603B2 JP4980603B2 (en) 2012-07-18

Family

ID=38095177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304751A Expired - Fee Related JP4980603B2 (en) 2005-10-19 2005-10-19 Method for producing silicon fine particles

Country Status (1)

Country Link
JP (1) JP4980603B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017205A1 (en) * 2007-08-01 2009-02-05 Bridgestone Corporation Method for manufacturing silicon fine particle coating agent
WO2009060820A1 (en) * 2007-11-05 2009-05-14 Bridgestone Corporation Process for producing light-emitting fine silicon particle
JP2009132872A (en) * 2007-11-05 2009-06-18 Bridgestone Corp Method for producing light-emitting fine silicon particle
JP2010155766A (en) * 2009-01-05 2010-07-15 Bridgestone Corp Production method for mixed powder containing silicon fine particle
JP2010195637A (en) * 2009-02-25 2010-09-09 Bridgestone Corp Method for manufacturing silicon fine particle illuminant
WO2011111830A1 (en) * 2010-03-12 2011-09-15 株式会社ブリヂストン Light-emitting body containing silicon microparticles and method for producing silicon microparticle light-emitting body
WO2012023512A1 (en) 2010-08-19 2012-02-23 株式会社ブリヂストン Method for producing silicon microparticles
WO2012033203A1 (en) 2010-09-10 2012-03-15 株式会社ブリヂストン Method of producing silicon fine particles and method of controlling particle size of silicon fine particles
WO2012060418A1 (en) * 2010-11-02 2012-05-10 株式会社ブリヂストン Method for manufacturing resin material, resin material, method for manufacturing solar cell module, and solar cell module
CN102460822A (en) * 2009-04-30 2012-05-16 株式会社普利司通 Semiconductor electrode, solar cell using semiconductor electrode, and method for producing semiconductor electrode
EP2796409A4 (en) * 2011-12-21 2015-09-23 Bridgestone Corp Method and apparatus for producing silicon microparticles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144822A (en) * 1992-10-30 1994-05-24 Tonen Chem Corp Production of highly pure fine silicon particle and production of highly pure polycrystalline silicon using the same particle
WO1999033749A1 (en) * 1997-12-25 1999-07-08 Nippon Steel Corporation PROCESS FOR THE PREPARATION OF HIGH-PURITY Si AND EQUIPMENT THEREFOR
JP2000034116A (en) * 1998-07-14 2000-02-02 Nippon Steel Corp Production of silicon carbide and silicon
JP2003176122A (en) * 2001-09-13 2003-06-24 Wacker Chemie Gmbh Silica with low silanol group content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144822A (en) * 1992-10-30 1994-05-24 Tonen Chem Corp Production of highly pure fine silicon particle and production of highly pure polycrystalline silicon using the same particle
WO1999033749A1 (en) * 1997-12-25 1999-07-08 Nippon Steel Corporation PROCESS FOR THE PREPARATION OF HIGH-PURITY Si AND EQUIPMENT THEREFOR
JP2000034116A (en) * 1998-07-14 2000-02-02 Nippon Steel Corp Production of silicon carbide and silicon
JP2003176122A (en) * 2001-09-13 2003-06-24 Wacker Chemie Gmbh Silica with low silanol group content

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017205A1 (en) * 2007-08-01 2009-02-05 Bridgestone Corporation Method for manufacturing silicon fine particle coating agent
WO2009060820A1 (en) * 2007-11-05 2009-05-14 Bridgestone Corporation Process for producing light-emitting fine silicon particle
JP2009132872A (en) * 2007-11-05 2009-06-18 Bridgestone Corp Method for producing light-emitting fine silicon particle
JP2010155766A (en) * 2009-01-05 2010-07-15 Bridgestone Corp Production method for mixed powder containing silicon fine particle
JP2010195637A (en) * 2009-02-25 2010-09-09 Bridgestone Corp Method for manufacturing silicon fine particle illuminant
CN102460822A (en) * 2009-04-30 2012-05-16 株式会社普利司通 Semiconductor electrode, solar cell using semiconductor electrode, and method for producing semiconductor electrode
WO2011111830A1 (en) * 2010-03-12 2011-09-15 株式会社ブリヂストン Light-emitting body containing silicon microparticles and method for producing silicon microparticle light-emitting body
US9085731B2 (en) 2010-03-12 2015-07-21 Bridgestone Corporation Methods for producing light-emitting body containing silicon fine particles and light-emitting silicon fine particles
JP5707388B2 (en) * 2010-03-12 2015-04-30 株式会社ブリヂストン Silicon fine particle-containing light emitter and method for producing silicon fine particle light emitter
CN103201217A (en) * 2010-08-19 2013-07-10 株式会社普利司通 Method for producing silicon microparticles
WO2012023512A1 (en) 2010-08-19 2012-02-23 株式会社ブリヂストン Method for producing silicon microparticles
JP5010058B1 (en) * 2010-09-10 2012-08-29 株式会社ブリヂストン Method for producing silicon fine particles and method for controlling particle size of silicon fine particles
CN103097292A (en) * 2010-09-10 2013-05-08 株式会社普利司通 Method of producing silicon fine particles and method of controlling particle size of silicon fine particles
US8673168B2 (en) 2010-09-10 2014-03-18 Bridgestone Corporation Method for producing silicon fine particles and method for controlling particle diameter of silicon fine particles
AU2011299789B2 (en) * 2010-09-10 2014-05-08 Bridgestone Corporation Method for producing silicon fine particles and method for controlling particle diameter of silicon fine particles
WO2012033203A1 (en) 2010-09-10 2012-03-15 株式会社ブリヂストン Method of producing silicon fine particles and method of controlling particle size of silicon fine particles
WO2012060418A1 (en) * 2010-11-02 2012-05-10 株式会社ブリヂストン Method for manufacturing resin material, resin material, method for manufacturing solar cell module, and solar cell module
EP2796409A4 (en) * 2011-12-21 2015-09-23 Bridgestone Corp Method and apparatus for producing silicon microparticles

Also Published As

Publication number Publication date
JP4980603B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4980603B2 (en) Method for producing silicon fine particles
JP7029465B2 (en) Method for Purifying Boron Nitride Nanotubes
JP5563755B2 (en) Method for producing silicon fine particle light emitter
JP2009269797A (en) Method for producing silicon carbide powder
JP5261230B2 (en) Method for producing silicon fine particle light emitter
JPH1067565A (en) Sintered silicon carbide body and its production
JP2008050201A (en) Method for producing silicon carbide powder, and silicon carbide powder
JP5465884B2 (en) Method for producing mixed powder containing silicon fine particles
WO2013094458A1 (en) Method and apparatus for producing silicon microparticles
JP4619118B2 (en) Sputtering target and manufacturing method thereof
Clark et al. Polymer Precursor‐Based Preparation of Carbon Nanotube–Silicon Carbide Nanocomposites
JPH0653564B2 (en) Method for purifying hexagonal boron nitride
KR101397237B1 (en) Method of producing silicon fine particles and method of controlling particle size of silicon fine particles
JP4918316B2 (en) Plasma-resistant silicon carbide sintered body and method for producing the same
JP2014156364A (en) Method for producing fine silicon carbide particle
KR102413929B1 (en) Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JP2014156363A (en) Method for producing fine silicon particle
JP2006248807A (en) Silicon carbide sintered compact having silicon carbide surface rich layer
CN103833039B (en) A kind of preparation method of coralliform silicon-dioxide amorphous nano/micron structure
JP2014156361A (en) Method for producing fine silicon carbide particle
JP2013216550A (en) Method for manufacturing silicon carbide sintered body, and silicon carbide sintered body
JPH10101432A (en) Part for dry etching device
JP2009256115A (en) Method for producing silicon carbide sintered compact
JP2001146473A (en) Method for producing silicon carbide porous body
EP2607311A1 (en) Method for producing silicon microparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees