JP2007111581A - Solid catalyst for synthesizing methacrylic acid, its preparing method and manufacturing method of methacrylic acid - Google Patents

Solid catalyst for synthesizing methacrylic acid, its preparing method and manufacturing method of methacrylic acid Download PDF

Info

Publication number
JP2007111581A
JP2007111581A JP2005302734A JP2005302734A JP2007111581A JP 2007111581 A JP2007111581 A JP 2007111581A JP 2005302734 A JP2005302734 A JP 2005302734A JP 2005302734 A JP2005302734 A JP 2005302734A JP 2007111581 A JP2007111581 A JP 2007111581A
Authority
JP
Japan
Prior art keywords
methacrylic acid
solid catalyst
catalyst
soluble
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005302734A
Other languages
Japanese (ja)
Other versions
JP4880969B2 (en
Inventor
Shingo Tanaka
伸吾 田中
Harumoto Sato
晴基 佐藤
Tomomichi Hino
智道 日野
Daisuke Yasuda
大介 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005302734A priority Critical patent/JP4880969B2/en
Publication of JP2007111581A publication Critical patent/JP2007111581A/en
Application granted granted Critical
Publication of JP4880969B2 publication Critical patent/JP4880969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid catalyst for synthesizing methacrylic acid which can be hardly powdered or collapsed at the time of transferring or filling a reactor and increase the amount of filling of catalyst components in the reactor compared with solid catalysts using conventional binders, and its preparing method and a manufacturing method of methacrylic acid which keeps the pressure loss of reaction and the load of a blower reduced. <P>SOLUTION: Methacrylic acid is manufactured by vapor-phase catalytic oxidizing methacrolein by molecular state oxygen by using the solid catalyst synthesizing methacrylic acid of which at least a part of surface is coated with a water-soluble or an organic-soluble cellulose. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、機械的強度に優れたメタクリル酸合成用固体触媒、その製造方法、およびこれを用いるメタクリル酸の製造方法に関する。   The present invention relates to a solid catalyst for synthesizing methacrylic acid having excellent mechanical strength, a method for producing the same, and a method for producing methacrylic acid using the same.

成形触媒、担持触媒等の固体触媒は、移送する際および反応器に充填する際に、粉化および崩壊することのないよう、ある程度以上の機械的強度を有する必要がある。固体触媒の機械的強度は、成形圧力を調節したり、成形の操作を工夫したりすることで、ある程度は改善される。しかし、このような方法で機械的強度を高くした固体触媒は、比表面積が小さくなる、反応に有効な活性点の数が減少する、反応に有効な細孔分布が制御できない等の理由で、目的生成物の収率が低くなる欠点を有している。   A solid catalyst such as a shaped catalyst and a supported catalyst needs to have a mechanical strength of a certain level or more so as not to be pulverized and disintegrated when transported and charged into a reactor. The mechanical strength of the solid catalyst can be improved to some extent by adjusting the molding pressure or devising the molding operation. However, the solid catalyst having increased mechanical strength by such a method has a small specific surface area, the number of active sites effective for the reaction decreases, and the pore distribution effective for the reaction cannot be controlled. It has the disadvantage that the yield of the desired product is low.

これらの問題を解決することを目的とした固体触媒が、いくつか提案されている。
(1)触媒粉体とセルロース類等の結合剤とを混合し、該混合物を成形し、焼成したメタクリル酸合成用触媒(特許文献1)。
(2)固体触媒の表面を有機高分子化合物(ポリスチレン、ポリ−α−メチルスチレン、ポリメタクリル酸メチル)でコーティングした固体触媒(特許文献2)。
Several solid catalysts aimed at solving these problems have been proposed.
(1) A catalyst for synthesizing methacrylic acid obtained by mixing catalyst powder and a binder such as cellulose, forming the mixture, and firing the mixture (Patent Document 1).
(2) A solid catalyst in which the surface of the solid catalyst is coated with an organic polymer compound (polystyrene, poly-α-methylstyrene, polymethyl methacrylate) (Patent Document 2).

(1)の触媒は、セルロース類が内部に均一に分散したもので、セルロース類の量が少ないと機械的強度が低くなり、多いと反応器中の触媒成分の充填量が、セルロース類の分だけ減少することによる触媒の寿命減少の弊害が発生して生産性が悪化または製造コストが上昇する懸念がある。
(2)の解重合性の有機高分子化合物でコーティングされた固体触媒は、工業的に機械的強度が不充分という問題がある。
特開2003−251188号公報 特開平04−358542号公報
In the catalyst (1), celluloses are uniformly dispersed inside. When the amount of cellulose is small, the mechanical strength is low. When the amount is large, the packing amount of the catalyst component in the reactor becomes small. Therefore, there is a concern that productivity may be deteriorated or manufacturing cost may be increased due to the adverse effect of reducing the lifetime of the catalyst.
The solid catalyst coated with the depolymerizable organic polymer compound (2) has a problem that the mechanical strength is industrially insufficient.
JP 2003-251188 A Japanese Patent Laid-Open No. 04-358542

本発明の目的は、移送時、反応器への充填時等に粉化または崩壊することが少なく、従来の結合剤を用いた固体触媒に比べ、反応器中の触媒成分の充填量を増やすことができるメタクリル酸合成用固体触媒、その製造方法、および反応時の圧力損失が小さく、ブロワーの負荷が低減されたメタクリル酸の製造方法を提供することにある。   The object of the present invention is to reduce the amount of catalyst components in the reactor in comparison with a solid catalyst using a conventional binder, because it is less likely to be pulverized or disintegrated during transfer or filling into the reactor. It is an object of the present invention to provide a solid catalyst for synthesizing methacrylic acid, a method for producing the same, and a method for producing methacrylic acid in which the pressure loss during the reaction is small and the load on the blower is reduced.

本発明のメタクリル酸合成用固体触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成するための固体触媒であって、固体触媒本体の表面の少なくとも一部が水溶性または有機溶媒溶性セルロースでコーティングされた固体触媒である。
水溶性または有機溶媒溶性セルロースの量は、固体触媒本体100質量部に対し、0.1〜5質量部であることが好ましい。
The solid catalyst for synthesizing methacrylic acid of the present invention is a solid catalyst for synthesizing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, and at least a part of the surface of the solid catalyst main body is water-soluble or Solid catalyst coated with organic solvent soluble cellulose.
The amount of water-soluble or organic solvent-soluble cellulose is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the solid catalyst body.

本発明のメタクリル酸合成用固体触媒の製造方法は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成するための固体触媒の製造方法であって、水溶性または有機溶媒溶性セルロースを溶媒に溶解したコーティング液を霧状に噴霧して固体触媒本体に付着させ、溶媒を気化させることを特徴とする。
本発明のメタクリル酸の製造方法は、本発明のメタクリル酸合成用固体触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造することを特徴とする。
The method for producing a solid catalyst for synthesizing methacrylic acid according to the present invention is a method for producing a solid catalyst for synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, which is water-soluble or organic solvent-soluble cellulose. A coating solution in which is dissolved in a solvent is sprayed in the form of a mist to adhere to the solid catalyst body, and the solvent is vaporized.
The method for producing methacrylic acid of the present invention is characterized in that methacrylic acid is produced by vapor-phase catalytic oxidation of methacrolein with molecular oxygen using the solid catalyst for methacrylic acid synthesis of the present invention.

本発明のメタクリル酸合成用固体触媒は、移送時、反応器への充填時等に粉化または崩壊することが少なく、また、従来の結合剤を用いた固体触媒に比べ、反応器中の触媒成分の充填量を増やすことができる。
本発明のメタクリル酸合成用固体触媒によれば、移送時、反応器への充填時等に粉化または崩壊することが少なく、従来の結合剤を用いた固体触媒に比べ、反応器中の触媒成分の充填量を増やすことができるメタクリル酸合成用固体触媒を製造できる。
本発明のメタクリル酸の製造方法によれば、反応時の圧力損失が小さく、ブロワーの負荷が低減される。
The solid catalyst for synthesizing methacrylic acid of the present invention is less likely to be pulverized or disintegrated at the time of transfer, filling into the reactor, etc., and the catalyst in the reactor compared to a solid catalyst using a conventional binder. The filling amount of the components can be increased.
According to the solid catalyst for synthesizing methacrylic acid of the present invention, the catalyst in the reactor is less likely to be pulverized or disintegrated at the time of transfer, filling into the reactor, etc., compared to the solid catalyst using the conventional binder. A solid catalyst for synthesizing methacrylic acid capable of increasing the filling amount of components can be produced.
According to the method for producing methacrylic acid of the present invention, the pressure loss during the reaction is small, and the load on the blower is reduced.

<固体触媒>
本発明のメタクリル酸合成用固体触媒は、固体触媒本体の表面の少なくとも一部が水溶性または有機溶媒溶性セルロースでコーティングされたものである。
<Solid catalyst>
The solid catalyst for synthesizing methacrylic acid of the present invention is one in which at least a part of the surface of the solid catalyst main body is coated with water-soluble or organic solvent-soluble cellulose.

(固体触媒本体)
固体触媒本体としては、触媒成分を所望の形状に成形した成形触媒、所望の形状を有する担体に触媒成分を担持させた担持触媒が挙げられる。ここでいう触媒成分としては、焼成等の活性化処理を施していない触媒前駆体も含むものとする。固体触媒本体は、触媒成分以外の他の添加成分を含んでいてもよい。
(Solid catalyst body)
Examples of the solid catalyst main body include a molded catalyst in which the catalyst component is formed into a desired shape, and a supported catalyst in which the catalyst component is supported on a carrier having a desired shape. The catalyst component here includes a catalyst precursor that has not been subjected to an activation treatment such as firing. The solid catalyst main body may contain an additional component other than the catalyst component.

成形触媒の形状としては、球状、円柱状、円筒状、星形状、井形等が挙げられる。成形触媒は、公知の打錠機、押出成形機、転動造粒機等で触媒成分を成形して得られる。
担持触媒の形状としては、球状、円柱状、円筒状、板状等が挙げられる。担体の材料としては、シリカ、アルミナ、シリカ・アルミナ、マグネシウム、チタニア等が挙げられる。
Examples of the shape of the molded catalyst include a spherical shape, a columnar shape, a cylindrical shape, a star shape, and a well shape. The molded catalyst is obtained by molding the catalyst component with a known tableting machine, extrusion molding machine, rolling granulator or the like.
Examples of the shape of the supported catalyst include a spherical shape, a columnar shape, a cylindrical shape, and a plate shape. Examples of the carrier material include silica, alumina, silica / alumina, magnesium, titania and the like.

(触媒成分)
触媒成分としては、下記一般式で表される組成を有する複合酸化物触媒が好ましい。
a Mobc Cudefgh
(Catalyst component)
As the catalyst component, a composite oxide catalyst having a composition represented by the following general formula is preferable.
P a Mo b V c Cu d X e Y f Z g O h

式中、P、Mo、V、CuおよびOは、それぞれリン、モリブデン、バナジウム、銅および酸素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種類の元素を示し、a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。   In the formula, P, Mo, V, Cu and O respectively represent phosphorus, molybdenum, vanadium, copper and oxygen, and X represents antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron. And Y represents at least one element selected from the group consisting of iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium, and lanthanum. Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and a, b, c, d, e, f, g and h represent the atomic ratio of each element. When b = 12, a = 0.5-3, c = 0.01-3, d = 0.01-2, e = 0-3, f = 0-3 g = a 0.01 to 3, h is an atomic ratio of oxygen required to satisfy the valence of each element.

以下、触媒成分の調製方法について説明する。
まず、モリブデン、リン等の触媒構成元素の原料を含有する混合溶液またはスラリーを調製する。
ついで、混合溶液またはスラリーを乾燥し、触媒前駆体の乾燥物を得る。
ついで、触媒前駆体の乾燥物を必要により粉砕することで触媒成分の粉体が得られる。
Hereinafter, a method for preparing the catalyst component will be described.
First, a mixed solution or slurry containing raw materials for catalyst constituent elements such as molybdenum and phosphorus is prepared.
Next, the mixed solution or slurry is dried to obtain a dried catalyst precursor.
Then, the catalyst precursor powder is obtained by pulverizing the dried catalyst precursor as necessary.

混合溶液またはスラリーの調製方法としては、従来からよく知られている、沈殿法、酸化物混合法等が挙げられる。具体的には、触媒構成元素を含む原料の所要量を、水等の溶媒中に適宜溶解または懸濁させて混合溶液またはスラリーを調製する。   Examples of methods for preparing the mixed solution or slurry include precipitation methods and oxide mixing methods that are well known in the art. Specifically, a mixed solution or slurry is prepared by appropriately dissolving or suspending a required amount of a raw material containing a catalyst constituent element in a solvent such as water.

触媒構成元素の原料としては、通常は酸化物、または強熱することにより酸化物により得る塩化物、硫酸塩、硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、ハロゲン化物、またはそれらの混合物が挙げられる。   Examples of the raw material of the catalyst constituent element include oxides, chlorides, sulfates, nitrates, carbonates, acetates, ammonium salts, halides, or a mixture obtained from the oxides by igniting. .

モリブデン原料としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が挙げられる。
リン原料としては、正リン酸、メタリン酸、五酸化リン、ピロリン酸、リン酸アンモニウム等が挙げられる。
モリブデンとリンの原料として、リンモリブデン酸、リンモリブデン酸アンモニウム等のヘテロポリ酸化合物を用いてもよい。
Examples of the molybdenum raw material include ammonium paramolybdate, molybdenum trioxide, molybdic acid, and molybdenum chloride.
Examples of the phosphorus raw material include orthophosphoric acid, metaphosphoric acid, phosphorus pentoxide, pyrophosphoric acid, and ammonium phosphate.
As raw materials for molybdenum and phosphorus, heteropoly acid compounds such as phosphomolybdic acid and ammonium phosphomolybdate may be used.

溶媒としては、水、エチルアルコール、アセトン等が挙げられ、水が好ましい。
原料と溶媒との含有比(質量比)は、通常、1:0.1〜1:100が好ましく、1:0.5〜1:50がより好ましい。
Examples of the solvent include water, ethyl alcohol, acetone and the like, and water is preferable.
The content ratio (mass ratio) between the raw material and the solvent is usually preferably from 1: 0.1 to 1: 100, more preferably from 1: 0.5 to 1:50.

乾燥方法としては、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法、静置乾燥法等が挙げられる。
乾燥機の機種、乾燥時の温度、時間等は、特に限定されず、目的に応じて適宜選択すればよい。乾燥によって、混合溶液または水性スラリーから実質的に固体状の触媒成分が得られればよく、乾燥物における残存溶媒の量は特に限定されない。
乾燥物の形状としては、粉状、ブロック状等が挙げられる。
Examples of the drying method include evaporation to dryness, spray drying, drum drying, airflow drying, and stationary drying.
The model of the dryer, the temperature during drying, the time, and the like are not particularly limited, and may be appropriately selected depending on the purpose. A substantially solid catalyst component may be obtained from the mixed solution or the aqueous slurry by drying, and the amount of the residual solvent in the dried product is not particularly limited.
Examples of the shape of the dried product include powder and block shapes.

(水溶性または有機溶媒溶性セルロース)
水溶性セルロースとは、セルロースの水酸基の水素原子の一部をメチル基またはヒドロキシプロピル基あるいはヒドロキシエチル基で置換したものである。水溶性セルロースとしては、具体的には、信越化学(株)製のメチルセルロース(商標:メトローズSM−15)、信越化学(株)製のヒドロキシプロピルメチルセルロース(商標:メトローズ60SH−15)、日本曹達(株)製のヒドロキシプロピルセルロース(商標:HPC−L)、米国・アクアロン社製のヒドロキシプロピルセルロース(商標:クルーセルL)等が挙げられる。また、有機溶媒溶性セルロースとは、親油性の高いメトキシル基またはヒドロキシプロピル基を有するものである。有機溶媒溶性セルロースとしては、具体的には、日本曹達(株)製のヒドロキシプロピルセルロース(商標:HPC−L)、米国・アクアロン社製のヒドロキシプロピルセルロース(商標:クルーセルL)等が挙げられる。水溶性または有機溶媒溶性セルロースを用いることにより、溶剤に溶解させてコーティング液を調製する際に、均一な溶液ができ、結果、均一なコーティングを行うことができる。
水溶性または有機溶媒溶性セルロースとしては、触媒に対して無害であるものが好ましく、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース等が挙げられる。水溶性または有機溶媒溶性セルロースは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(Water-soluble or organic solvent-soluble cellulose)
Water-soluble cellulose is obtained by substituting a part of hydrogen atoms of a hydroxyl group of cellulose with a methyl group, a hydroxypropyl group or a hydroxyethyl group. Specific examples of water-soluble cellulose include methyl cellulose (trademark: Metrols SM-15) manufactured by Shin-Etsu Chemical Co., Ltd., hydroxypropyl methylcellulose (trademark: Metroles 60SH-15) manufactured by Shin-Etsu Chemical Co., Ltd., Nippon Soda ( And hydroxypropylcellulose (trade name: HPC-L) manufactured by Aqualand Corporation, and hydroxypropylcellulose (trademark: Crucell L) manufactured by Aqualon, Inc. The organic solvent-soluble cellulose has a highly lipophilic methoxyl group or hydroxypropyl group. Specific examples of the organic solvent-soluble cellulose include hydroxypropylcellulose (trademark: HPC-L) manufactured by Nippon Soda Co., Ltd., hydroxypropylcellulose (trademark: Crucell L) manufactured by Aqualon, USA. By using water-soluble or organic solvent-soluble cellulose, a uniform solution can be formed when a coating solution is prepared by dissolving in a solvent, and as a result, uniform coating can be performed.
As the water-soluble or organic solvent-soluble cellulose, those that are harmless to the catalyst are preferable, and examples thereof include methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, and hydroxypropyl cellulose. One kind of water-soluble or organic solvent-soluble cellulose may be used alone, or two or more kinds thereof may be mixed and used.

コーティングされている水溶性または有機溶媒溶性セルロースの量は、固体触媒本体100質量部に対し、0.1〜5質量部が好ましく、0.2〜2質量部がより好ましく、0.3〜1質量部が特に好ましい。水溶性または有機溶媒溶性セルロースの量を0.1質量部以上とすることにより、充分な機械的強度が得られる。なお、水溶性または有機溶媒溶性セルロースの量が5質量部を超えても、機械的強度はあまり向上せず、経済的に不利である。   The amount of water-soluble or organic solvent-soluble cellulose coated is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 2 parts by mass, and 0.3 to 1 with respect to 100 parts by mass of the solid catalyst body. Part by mass is particularly preferred. By setting the amount of water-soluble or organic solvent-soluble cellulose to 0.1 parts by mass or more, sufficient mechanical strength can be obtained. Even if the amount of water-soluble or organic solvent-soluble cellulose exceeds 5 parts by mass, the mechanical strength is not improved so much, which is economically disadvantageous.

(メタクリル酸合成用固体触媒の製造)
水溶性または有機溶媒溶性セルロースのコーティング方法としては、水溶性または有機溶媒溶性セルロースを溶媒に溶解したコーティング液を霧状に噴霧して、固体触媒本体に付着させ、同時に溶媒を気化、蒸発させる方法が挙げられる。この方法によれば、容易にかつ均一にコーティングすることができる。
溶媒としては、水、アルコール等が挙げられ、水が好ましい。
コーティング液中の水溶性または有機溶媒溶性セルロースの濃度は、0.5〜10質量%が好ましい。水溶性または有機溶媒溶性セルロースの濃度が高過ぎると、コーティング液の粘度が高くなり、固体触媒どうしが粘着し、操作上困難を招く。
(Production of solid catalyst for methacrylic acid synthesis)
As a coating method of water-soluble or organic solvent-soluble cellulose, a coating solution in which water-soluble or organic solvent-soluble cellulose is dissolved in a solvent is sprayed in a mist form and attached to the solid catalyst body, and at the same time, the solvent is vaporized and evaporated. Is mentioned. According to this method, coating can be performed easily and uniformly.
Examples of the solvent include water and alcohol, and water is preferable.
The concentration of water-soluble or organic solvent-soluble cellulose in the coating solution is preferably 0.5 to 10% by mass. If the concentration of the water-soluble or organic solvent-soluble cellulose is too high, the viscosity of the coating liquid becomes high, the solid catalysts stick to each other, and operation is difficult.

コーティング装置としては、簡易的にはオニオンパン等のパンと呼ばれる容器に回転機構を付加したものが好ましい。この装置を用いることにより、固体触媒本体を転動させながら、コーティング液を霧状に噴霧して固体触媒本体に付着させ、同時に熱風を吹きかけて溶媒を除去することができる。コーティング装置として、医薬業界、食品業界で用いられている錠剤の糖衣加工機、コーティング機等を用いてもよい。   As a coating device, a device in which a rotation mechanism is added to a container called a pan such as an onion pan is simply preferable. By using this apparatus, it is possible to spray the coating liquid in the form of a mist and make it adhere to the solid catalyst body while rolling the solid catalyst body, and simultaneously blow hot air to remove the solvent. As the coating apparatus, a sugar coating machine or a coating machine for tablets used in the pharmaceutical industry or the food industry may be used.

<メタクリル酸の製造方法>
本発明のメタクリル酸の製造方法は、本発明のメタクリル酸合成用固体触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法である。
メタクロレインと分子状酸素との反応は、通常、固定床で行う。触媒層は、1層でもよく、2層以上でもよい。
<Method for producing methacrylic acid>
The method for producing methacrylic acid of the present invention is a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen using the solid catalyst for methacrylic acid synthesis of the present invention.
The reaction between methacrolein and molecular oxygen is usually carried out in a fixed bed. The catalyst layer may be one layer or two or more layers.

メタクリル酸を製造する際には、メタクロレインと分子状酸素とを含む原料ガスを、本発明の固体触媒に接触させる。
原料ガス中のメタクロレイン濃度は、1〜20容量%が好ましく、3〜10容量%が特に好ましい。
原料ガス中の分子状酸素濃度は、メタクロレイン1モルに対して0.4〜4モルが好ましく、0.5〜3モルが特に好ましい。
分子状酸素源としては、経済性の点から空気が好ましい。必要ならば、空気に純酸素を加えて分子状酸素を富化した気体等を用いてもよい。
When producing methacrylic acid, a raw material gas containing methacrolein and molecular oxygen is brought into contact with the solid catalyst of the present invention.
The concentration of methacrolein in the raw material gas is preferably 1 to 20% by volume, particularly preferably 3 to 10% by volume.
The molecular oxygen concentration in the raw material gas is preferably 0.4 to 4 mol, particularly preferably 0.5 to 3 mol, relative to 1 mol of methacrolein.
The molecular oxygen source is preferably air from the viewpoint of economy. If necessary, a gas or the like enriched with molecular oxygen by adding pure oxygen to air may be used.

原料ガスは、メタクロレインおよび分子状酸素源を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。
原料ガスに、水蒸気を加えてもよい。水の存在下で反応を行うことにより、メタクリル酸をより高収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1〜50容量%が好ましく、1〜40容量%が特に好ましい。
原料ガスは、低級飽和アルデヒド等の不純物を少量含んでいてもよいが、その量はできるだけ少ないことが好ましい。
The source gas may be obtained by diluting methacrolein and a molecular oxygen source with an inert gas such as nitrogen or carbon dioxide.
Water vapor may be added to the source gas. By performing the reaction in the presence of water, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably from 0.1 to 50% by volume, particularly preferably from 1 to 40% by volume.
The source gas may contain a small amount of impurities such as a lower saturated aldehyde, but the amount is preferably as small as possible.

原料ガスとメタクリル酸合成用固体触媒との接触時間は、通常1.5〜15秒であり、2〜5秒が好ましい。
反応圧力は、大気圧〜数気圧が好ましい。
反応温度は、230〜450℃が好ましく、250〜400℃が特に好ましい。
The contact time between the source gas and the solid catalyst for synthesizing methacrylic acid is usually 1.5 to 15 seconds, and preferably 2 to 5 seconds.
The reaction pressure is preferably from atmospheric pressure to several atmospheres.
The reaction temperature is preferably 230 to 450 ° C, particularly preferably 250 to 400 ° C.

以上説明した本発明のメタクリル酸合成用固体触媒にあっては、固体触媒本体の表面の少なくとも一部が水溶性または有機溶媒溶性セルロースでコーティングされているため、機械的強度が向上し、移送時、反応器への充填時等における粉化および崩壊を少なくすることができ、メタクリル酸合成用固体触媒の取り扱い性が著しく向上する。また、コーティングされた水溶性または有機溶媒溶性セルロースは、加熱による熱分解または燃焼により大部分を除去できる。したがって、メタクリル酸合成用固体触媒を反応器へ落下充填し、メタクリル酸の製造等の反応を開始する前に、コーティングされた水溶性または有機溶媒溶性セルロースを除去することにより、コーティングされていないメタクリル酸合成用固体触媒と同等の性能を安定して発揮できる。また、水溶性または有機溶媒溶性セルロースを除去できることにより、従来の結合剤を用いたメタクリル酸合成用固体触媒に比べ、反応器中の触媒成分の充填量を増やすことができる。
また、本発明のメタクリル酸の製造方法にあっては、充填時のメタクリル酸合成用固体触媒の粉化率が小さいため、反応時の圧力損失が小さく、ブロワーの負荷が低減される。
In the solid catalyst for synthesizing methacrylic acid according to the present invention described above, at least a part of the surface of the solid catalyst main body is coated with water-soluble or organic solvent-soluble cellulose, so that the mechanical strength is improved and at the time of transfer. Further, pulverization and disintegration at the time of charging into the reactor can be reduced, and the handleability of the solid catalyst for synthesizing methacrylic acid is remarkably improved. Further, most of the coated water-soluble or organic solvent-soluble cellulose can be removed by thermal decomposition or combustion by heating. Therefore, the solid catalyst for synthesizing methacrylic acid is dropped into the reactor and uncoated methacrylic acid is removed by removing the coated water-soluble or organic solvent-soluble cellulose before starting the reaction such as production of methacrylic acid. The same performance as the solid catalyst for acid synthesis can be exhibited stably. In addition, since water-soluble or organic solvent-soluble cellulose can be removed, the amount of catalyst components in the reactor can be increased as compared with a solid catalyst for synthesizing methacrylic acid using a conventional binder.
Further, in the method for producing methacrylic acid of the present invention, since the pulverization rate of the solid catalyst for synthesizing methacrylic acid at the time of filling is small, the pressure loss at the time of reaction is small and the load on the blower is reduced.

以下、実施例を示す。
実施例および比較例中の「部」は質量部を意味する。
Examples are shown below.
“Parts” in Examples and Comparative Examples means parts by mass.

(充填粉化率)
メタクリル酸合成用固体触媒の充填時における充填粉化率は、以下のように求めた。
メタクリル酸合成用固体触媒(a部)を水平方向に対して垂直に設置した内径3cm、長さ6mのステンレス製円筒容器上部より落下させながら充填した。落下充填後、容器底部より回収された触媒体のうち、14メッシュのふるいを通過しないメタクリル酸合成用固体触媒の質量(b部)を計り、下記式から充填粉化率を求めた。
充填粉化率(%)={(a−b)/a}×100
(Filled powder rate)
The packing powder ratio at the time of filling the solid catalyst for methacrylic acid synthesis was determined as follows.
The solid catalyst for synthesis of methacrylic acid (part a) was filled while being dropped from the upper part of a stainless steel cylindrical container having an inner diameter of 3 cm and a length of 6 m installed perpendicularly to the horizontal direction. After dropping and filling, the mass (part b) of the solid catalyst for synthesizing methacrylic acid that does not pass through a 14-mesh sieve among the catalyst bodies recovered from the bottom of the container was measured, and the packed powder rate was determined from the following formula.
Filling powder rate (%) = {(ab) / a} × 100

(触媒組成)
触媒組成は、触媒成分の原料仕込み量から求めた。
(圧壊強度)
圧壊強度の測定には、藤井精機(株)製の圧縮試験機を用いた。
(Catalyst composition)
The catalyst composition was determined from the raw material charge of the catalyst component.
(Crushing strength)
For the measurement of the crushing strength, a compression tester manufactured by Fujii Seiki Co., Ltd. was used.

(メタクロレインの反応率、メタクリル酸の選択率、メタクリル酸の単流収率)
反応原料ガスおよび生成物の分析は、ガスクロマトグラフィーを用いて行った。
ガスクロマトグラフィーの結果から、メタクロレインの反応率、生成したメタクリル酸の選択率、メタクリル酸の単流収率を下記式にて求めた。
メタクロレインの反応率(%)=(B/A)×100
メタクリル酸の選択率(%)=(C/B)×100
メタクリル酸の単流収率(%)=(C/A)×100
式中、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
(Reaction rate of methacrolein, selectivity of methacrylic acid, single flow yield of methacrylic acid)
The reaction raw material gas and the product were analyzed using gas chromatography.
From the results of gas chromatography, the reaction rate of methacrolein, the selectivity of the produced methacrylic acid, and the single flow yield of methacrylic acid were determined by the following formula.
Reaction rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Single flow yield of methacrylic acid (%) = (C / A) × 100
In the formula, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

(触媒成分粉末の調製)
純水400部に、三酸化モリブデン100部、85質量%リン酸水溶液7.3部、五酸化バナジウム4.2部、酸化銅0.9部、酸化鉄0.2部を加え、還流下で5時間攪拌した。この液を50℃まで冷却した後、硝酸セシウム9.0部を純水30部に溶解した溶液を滴下し15分間攪拌した。その後、50℃を維持したまま29質量%アンモニア水37.4部を滴下した後、15分間攪拌し、水性スラリーを得た。得られた水性スラリーを101℃まで加熱し、攪拌しながら濃縮を開始した。スラリーの粘度が0.70Pa・sとなった時点で加熱を停止し、濃縮スラリーを得た。濃縮に有した時間は2時間であった。濃縮スラリーを70℃まで冷却した後、2時間保持した。保持後の濃縮スラリーの粘度は0.40Pa・sであった。この濃縮スラリーを101℃まで加熱し、攪拌しながら再度濃縮を開始した。濃縮中は温度を101℃に保ち、スラリーの粘度が0.70Pa・s、比重が1.64×103 kg/m3 となった時点で加熱を停止し、濃縮スラリーを得た。濃縮に有した時間は0.5時間であった。濃縮直後のスラリーをドラムドライヤーで120℃にて乾燥して触媒成分粉末を得た。得られた触媒成分粉末の水分含有率は1.0質量%であった。
(Preparation of catalyst component powder)
To 400 parts of pure water, 100 parts of molybdenum trioxide, 7.3 parts of 85 mass% phosphoric acid aqueous solution, 4.2 parts of vanadium pentoxide, 0.9 parts of copper oxide, and 0.2 parts of iron oxide are added and refluxed. Stir for 5 hours. After cooling this solution to 50 ° C., a solution prepared by dissolving 9.0 parts of cesium nitrate in 30 parts of pure water was added dropwise and stirred for 15 minutes. Thereafter, 37.4 parts of 29 mass% ammonia water was dropped while maintaining 50 ° C., and the mixture was stirred for 15 minutes to obtain an aqueous slurry. The obtained aqueous slurry was heated to 101 ° C., and concentration was started while stirring. When the viscosity of the slurry reached 0.70 Pa · s, the heating was stopped to obtain a concentrated slurry. The time it took to concentrate was 2 hours. The concentrated slurry was cooled to 70 ° C. and held for 2 hours. The viscosity of the concentrated slurry after the retention was 0.40 Pa · s. The concentrated slurry was heated to 101 ° C., and concentration was started again with stirring. During concentration, the temperature was kept at 101 ° C., and when the viscosity of the slurry became 0.70 Pa · s and the specific gravity reached 1.64 × 10 3 kg / m 3 , heating was stopped to obtain a concentrated slurry. The time to concentrate was 0.5 hours. The slurry immediately after concentration was dried at 120 ° C. with a drum dryer to obtain catalyst component powder. The moisture content of the obtained catalyst component powder was 1.0% by mass.

〔実施例1〕
触媒成分粉末100部に対してグラファイト3部を添加した後、打錠成型機により、直径5mm、長さ5mmの円柱状に成形し、固体触媒本体を得た。固体触媒本体をオニオンパンに充填し、オニオンパンの回転によって固体触媒本体を転動させながら、触媒成分粉末100部に対してメチルセルロース(商標:メトローズSM−15、信越化学(株))0.5部を4質量%水溶液に調合した液を、転動中の固体触媒本体へ95℃の熱風をあてながらスプレーコーティングし、メタクリル酸合成用固体触媒を得た。
[Example 1]
After adding 3 parts of graphite to 100 parts of the catalyst component powder, it was molded into a cylindrical shape having a diameter of 5 mm and a length of 5 mm by a tableting machine to obtain a solid catalyst body. Filling the onion pan with the solid catalyst main body and rolling the solid catalyst main body with the rotation of the onion pan, 0.5 parts of methylcellulose (trademark: Metrolse SM-15, Shin-Etsu Chemical Co., Ltd.) 0.5 with respect to 100 parts of the catalyst component powder A liquid prepared by mixing 4 parts by mass with a 4% by weight aqueous solution was spray-coated while applying hot air at 95 ° C. to the rolling solid catalyst body to obtain a solid catalyst for methacrylic acid synthesis.

固定床反応管を模した内径3cm、長さ6mのステンレスチューブに、メタクリル酸合成用固体触媒を400g充填し、3.2Nm3 /hrで空気をステンレスチューブ上部より流通したところ、圧力損失は6.25kPaであった。また、充填粉化率は0.03質量%であった。また、メタクリル酸合成用固体触媒の縦方向と横方向の圧壊強度を測定した。結果を表1に示す。 A stainless steel tube having an inner diameter of 3 cm and a length of 6 m imitating a fixed bed reaction tube was charged with 400 g of a solid catalyst for synthesizing methacrylic acid, and air was circulated from the top of the stainless steel tube at 3.2 Nm 3 / hr. It was .25 kPa. Moreover, the filling powdering rate was 0.03 mass%. Moreover, the crushing strength in the vertical direction and the horizontal direction of the solid catalyst for methacrylic acid synthesis was measured. The results are shown in Table 1.

メタクリル酸合成用固体触媒を反応管に落下充填し、反応管内部で空気流通下、375℃にて10時間焼成して焼成触媒を得た。焼成触媒の組成は、P1.5Mo120.6Cu0.1Fe0.2Cs1であった。焼成触媒に、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の混合ガスを、常圧下、反応温度285℃、接触時間3.6秒で通じて、メタクリル酸を合成した。結果を表1に示す。 A solid catalyst for synthesizing methacrylic acid was dropped into the reaction tube and calcined at 375 ° C. for 10 hours under air flow inside the reaction tube to obtain a calcined catalyst. The composition of the calcined catalyst was P 1.5 Mo 12 V 0.6 Cu 0.1 Fe 0.2 Cs 1 . A mixed gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, and 55% by volume of nitrogen is passed through the calcined catalyst under normal pressure at a reaction temperature of 285 ° C. and a contact time of 3.6 seconds. Synthesized. The results are shown in Table 1.

〔実施例2〕
メトローズSM−15の量を0.3部とした以外は、実施例1と同様にしてメタクリル酸合成用固体触媒を製造し、評価を行った。結果を表1に示す。
[Example 2]
A solid catalyst for synthesizing methacrylic acid was produced and evaluated in the same manner as in Example 1 except that the amount of Metrose SM-15 was 0.3 parts. The results are shown in Table 1.

〔実施例3〕
メトローズSM−15の量を0.1部とした以外は、実施例1と同様にしてメタクリル酸合成用固体触媒を製造し、評価を行った。結果を表1に示す。
Example 3
A solid catalyst for synthesizing methacrylic acid was produced and evaluated in the same manner as in Example 1 except that the amount of Metrose SM-15 was changed to 0.1 part. The results are shown in Table 1.

〔実施例4〕
メトローズSM−15をヒドロキシプロピルメチルセルロース(商標:メトローズ60SH−15、信越化学(株))に変更した以外は、実施例1と同様にしてメタクリル酸合成用固体触媒を製造し、評価を行った。結果を表1に示す。
Example 4
A solid catalyst for synthesizing methacrylic acid was produced and evaluated in the same manner as in Example 1 except that Metroze SM-15 was changed to hydroxypropyl methylcellulose (trademark: Metroze 60SH-15, Shin-Etsu Chemical Co., Ltd.). The results are shown in Table 1.

〔実施例5〕
メトローズSM−15をヒドロキシプロピルセルロース(商標:HPC−L、日本曹達(株))に変更した以外は、実施例1と同様にしてメタクリル酸合成用固体触媒を製造し、評価を行った。結果を表1に示す。
Example 5
A solid catalyst for synthesizing methacrylic acid was produced and evaluated in the same manner as in Example 1 except that Metroze SM-15 was changed to hydroxypropylcellulose (trademark: HPC-L, Nippon Soda Co., Ltd.). The results are shown in Table 1.

〔実施例6〕
HPC−Lを溶解させる溶媒を、水からメチルアルコールに変更し、かつコーティングの際の熱風温度を80℃に変更した以外は、実施例5と同様にしてメタクリル酸合成用固体触媒を製造し、評価を行った。結果を表1に示す。
Example 6
A solid catalyst for synthesizing methacrylic acid was produced in the same manner as in Example 5 except that the solvent for dissolving HPC-L was changed from water to methyl alcohol and the hot air temperature during coating was changed to 80 ° C. Evaluation was performed. The results are shown in Table 1.

〔実施例7〕
メトローズSM−15をヒドロキシプロピルセルロース(商標:クルーセルL、米国・アクアロン社)に変更した以外は、実施例1と同様にしてメタクリル酸合成用固体触媒を製造し、評価を行った。結果を表1に示す。
Example 7
A solid catalyst for synthesizing methacrylic acid was produced and evaluated in the same manner as in Example 1 except that Metroze SM-15 was changed to hydroxypropylcellulose (trademark: Crucell L, Aqualon, USA). The results are shown in Table 1.

〔比較例1〕
メチルセルロースのコーティングを行わない以外は、実施例1と同様にしてメタクリル酸合成用固体触媒を製造し、評価を行った。結果を表1に示す。
[Comparative Example 1]
A solid catalyst for synthesizing methacrylic acid was produced and evaluated in the same manner as in Example 1 except that methylcellulose coating was not performed. The results are shown in Table 1.

Figure 2007111581
Figure 2007111581

本発明のメタクリル酸合成用固体触媒は、移送時、反応器への充填時等に粉化または崩壊することが少なく、メタクリル酸の製造に有用である。
The solid catalyst for synthesizing methacrylic acid of the present invention is less likely to be pulverized or disintegrated at the time of transfer or filling into a reactor, and is useful for the production of methacrylic acid.

Claims (4)

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成するための固体触媒であって、
固体触媒本体の表面の少なくとも一部が水溶性または有機溶媒溶性セルロースでコーティングされた、メタクリル酸合成用固体触媒。
A solid catalyst for synthesizing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen,
A solid catalyst for synthesizing methacrylic acid, wherein at least a part of the surface of the solid catalyst main body is coated with water-soluble or organic solvent-soluble cellulose.
水溶性または有機溶媒溶性セルロースの量が、固体触媒本体100質量部に対し、0.1〜5質量部である、請求項1に記載のメタクリル酸合成用固体触媒。   The solid catalyst for methacrylic acid synthesis according to claim 1, wherein the amount of water-soluble or organic solvent-soluble cellulose is 0.1 to 5 parts by mass with respect to 100 parts by mass of the solid catalyst main body. メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成するための固体触媒の製造方法であって、
水溶性または有機溶媒溶性セルロースを溶媒に溶解したコーティング液を霧状に噴霧して固体触媒本体に付着させ、溶媒を気化させる、メタクリル酸合成用固体触媒の製造方法。
A method for producing a solid catalyst for synthesizing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
A method for producing a solid catalyst for methacrylic acid synthesis, wherein a coating liquid obtained by dissolving water-soluble or organic solvent-soluble cellulose in a solvent is sprayed in the form of a mist to adhere to the solid catalyst main body, and the solvent is vaporized.
請求項1または2に記載のメタクリル酸合成用固体触媒を用いてメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する、メタクリル酸の製造方法。
A method for producing methacrylic acid, wherein methacrolein is vapor-phase contact oxidized with molecular oxygen using the solid catalyst for methacrylic acid synthesis according to claim 1 or 2 to produce methacrylic acid.
JP2005302734A 2005-10-18 2005-10-18 Solid catalyst for synthesizing methacrylic acid, method for producing the same, and method for producing methacrylic acid Active JP4880969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302734A JP4880969B2 (en) 2005-10-18 2005-10-18 Solid catalyst for synthesizing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302734A JP4880969B2 (en) 2005-10-18 2005-10-18 Solid catalyst for synthesizing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2007111581A true JP2007111581A (en) 2007-05-10
JP4880969B2 JP4880969B2 (en) 2012-02-22

Family

ID=38094249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302734A Active JP4880969B2 (en) 2005-10-18 2005-10-18 Solid catalyst for synthesizing methacrylic acid, method for producing the same, and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP4880969B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155693A (en) * 2007-12-27 2009-07-16 Sonac Kk Substrate unit
JP2012005992A (en) * 2010-06-28 2012-01-12 Mitsubishi Rayon Co Ltd Method for manufacturing coated solid catalyst for synthesis of methacrylic acid
US10252254B2 (en) * 2013-03-22 2019-04-09 Clariant International Ltd. Removable protective coating for the receipt of a dust free catalyst
CN111565843A (en) * 2018-03-13 2020-08-21 株式会社Lg化学 Method for preparing ferrite-based coating catalyst and method for preparing butadiene using the same
WO2020196150A1 (en) * 2019-03-28 2020-10-01 三菱ケミカル株式会社 Molded catalyst body, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9974563B2 (en) 2014-05-28 2018-05-22 Cook Medical Technologies Llc Medical devices having a releasable member and methods of using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731460B2 (en) * 1977-08-29 1982-07-05
JPH04363147A (en) * 1991-06-06 1992-12-16 Mitsubishi Rayon Co Ltd Molded or supported catalyst for synthesis of methacrolein and methacrylic acid having excellent mechanical strength and its production
JPH11226411A (en) * 1998-02-13 1999-08-24 Mitsui Chem Inc Catalyst for production of methacrylic acid and production of methacrylic acid
JPH11226410A (en) * 1998-02-13 1999-08-24 Mitsui Chem Inc Catalyst for production of methacrylic acid and production of methacrylic acid
JP2000024502A (en) * 1997-09-25 2000-01-25 Mitsui Chemicals Inc Catalyst for producing methacrylic acid and production thereof
JP2005230720A (en) * 2004-02-20 2005-09-02 Mitsubishi Rayon Co Ltd Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731460B2 (en) * 1977-08-29 1982-07-05
JPH04363147A (en) * 1991-06-06 1992-12-16 Mitsubishi Rayon Co Ltd Molded or supported catalyst for synthesis of methacrolein and methacrylic acid having excellent mechanical strength and its production
JP2000024502A (en) * 1997-09-25 2000-01-25 Mitsui Chemicals Inc Catalyst for producing methacrylic acid and production thereof
JPH11226411A (en) * 1998-02-13 1999-08-24 Mitsui Chem Inc Catalyst for production of methacrylic acid and production of methacrylic acid
JPH11226410A (en) * 1998-02-13 1999-08-24 Mitsui Chem Inc Catalyst for production of methacrylic acid and production of methacrylic acid
JP2005230720A (en) * 2004-02-20 2005-09-02 Mitsubishi Rayon Co Ltd Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155693A (en) * 2007-12-27 2009-07-16 Sonac Kk Substrate unit
JP2012005992A (en) * 2010-06-28 2012-01-12 Mitsubishi Rayon Co Ltd Method for manufacturing coated solid catalyst for synthesis of methacrylic acid
US10252254B2 (en) * 2013-03-22 2019-04-09 Clariant International Ltd. Removable protective coating for the receipt of a dust free catalyst
JP7019918B2 (en) 2018-03-13 2022-02-16 エルジー・ケム・リミテッド A method for producing a ferrite-based coating catalyst and a method for producing butadiene using the same.
JP2021510622A (en) * 2018-03-13 2021-04-30 エルジー・ケム・リミテッド A method for producing a ferrite-based coating catalyst and a method for producing butadiene using the same.
CN111565843A (en) * 2018-03-13 2020-08-21 株式会社Lg化学 Method for preparing ferrite-based coating catalyst and method for preparing butadiene using the same
US11465131B2 (en) 2018-03-13 2022-10-11 Lg Chem, Ltd. Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
CN111565843B (en) * 2018-03-13 2023-04-07 株式会社Lg化学 Method for preparing ferrite-based coating catalyst and method for preparing butadiene using the same
WO2020196150A1 (en) * 2019-03-28 2020-10-01 三菱ケミカル株式会社 Molded catalyst body, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same
CN113613785A (en) * 2019-03-28 2021-11-05 三菱化学株式会社 Molded catalyst, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same
KR20210137210A (en) * 2019-03-28 2021-11-17 미쯔비시 케미컬 주식회사 Catalyst molded article, and method for producing unsaturated aldehydes and unsaturated carboxylic acids using the same
JPWO2020196150A1 (en) * 2019-03-28 2021-11-18 三菱ケミカル株式会社 A catalyst molded product and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid using the catalyst molded product.
JP7264235B2 (en) 2019-03-28 2023-04-25 三菱ケミカル株式会社 Molded catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same
KR102612173B1 (en) * 2019-03-28 2023-12-08 미쯔비시 케미컬 주식회사 Catalyst molded body and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same
CN113613785B (en) * 2019-03-28 2023-12-29 三菱化学株式会社 Catalyst molded body and method for producing unsaturated aldehyde and unsaturated carboxylic acid using same

Also Published As

Publication number Publication date
JP4880969B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4880969B2 (en) Solid catalyst for synthesizing methacrylic acid, method for producing the same, and method for producing methacrylic acid
WO2015053269A1 (en) Method for producing unsaturated carboxylic acid, and supported catalyst
CN110709163A (en) Catalyst and process for preparing same
KR101524392B1 (en) Method for producing unsaturated nitrile
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
TWI417138B (en) Oxide catalyst, process for producing acrylic acid and process for producing water-absorbent resin
JP2009220052A (en) Manufacturing method of catalyst for acrylonitrile synthesis, and manufacturing method of acrylonitrile
WO2012141076A1 (en) Method for preparing catalyst for production of methacrylic acid
JP5533341B2 (en) Method for producing coated solid catalyst for synthesis of methacrylic acid
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP6837749B2 (en) Catalyst for methacrylic acid production
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP3342794B2 (en) Method for producing supported catalyst for synthesis of methacrolein and methacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2010131576A (en) Method of producing catalyst for synthesizing acrylonitrile, and method of producing acrylonitrile
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JPWO2018030384A1 (en) METHOD FOR PRODUCING OXIDE CATALYST AND METHOD FOR PRODUCING UNSATURATED NITRILE AND UNSATURATED ACID
JPH052375B2 (en)
JP2004160342A (en) Catalyst and method for producing acrylic acid
JP4961132B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4236415B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP4875480B2 (en) Method for producing metal-containing catalyst
CN106881128B (en) Heteropolyacid salt catalyst, preparation method and application thereof
JP6487242B2 (en) Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst
JP7468290B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R151 Written notification of patent or utility model registration

Ref document number: 4880969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250