JP2007105452A - System and method for multiple processing tub control - Google Patents

System and method for multiple processing tub control Download PDF

Info

Publication number
JP2007105452A
JP2007105452A JP2006143578A JP2006143578A JP2007105452A JP 2007105452 A JP2007105452 A JP 2007105452A JP 2006143578 A JP2006143578 A JP 2006143578A JP 2006143578 A JP2006143578 A JP 2006143578A JP 2007105452 A JP2007105452 A JP 2007105452A
Authority
JP
Japan
Prior art keywords
tank
processing
steam
treatment
tanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006143578A
Other languages
Japanese (ja)
Inventor
Akira Wakasa
暁 若狭
Masatoshi Miura
正敏 三浦
Hideki Higashiura
秀樹 東浦
Taizo Matsukawa
泰三 松川
Koji Matsubayashi
浩司 松林
Yasunori Kano
泰範 狩野
Hironori Matsumoto
宏典 松本
Yoshitake Sando
由健 三堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Miura Protec Co Ltd
Original Assignee
Miura Co Ltd
Miura Protec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Miura Protec Co Ltd filed Critical Miura Co Ltd
Priority to JP2006143578A priority Critical patent/JP2007105452A/en
Publication of JP2007105452A publication Critical patent/JP2007105452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Commercial Cooking Devices (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system which can share a decompression means or a steam supply means in multiple processing tubs and its control method. <P>SOLUTION: The system comprises multiple processing tubs 2 (8, 9) which can be opened and closed, the steam supply means 3 which supplies steam to the inside of the processing tub 2, the decompression means 4 which decompresses the inside of the processing tub 2, a pressure recovering means 5 which recovers the pressure of the inside of the decompressed processing tub 2, and a control means 7 which controls each of these means 3-5. In one side or both sides of the steam supply means 3 and the decompression means 4, at least a part of them is thought to be common equipment which is used in common with the multiple processing tubs 2. The control means 7 controls each of the means 3-5 so that different processes can be performed for each of the processing tubs 2 and performs the treating of each of the processing tubs 2 with shifting when the process using the common equipment falls on in the two or more processing tubs 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、複数の処理槽の制御システムおよび制御方法に関するものである。特に、複数の処理槽に共通して用いられる共用設備を備える蒸煮機(蒸し庫を含む)、蒸煮冷却機、真空解凍機、蒸気滅菌機(オートクレーブを含む)などに関するものである。   The present invention relates to a control system and a control method for a plurality of treatment tanks. In particular, the present invention relates to a steamer (including a steamer), a steam cooler, a vacuum thawing machine, a steam sterilizer (including an autoclave) and the like equipped with common facilities commonly used for a plurality of treatment tanks.

食材を収容した処理槽内へ蒸気を供給することで、食材を蒸し煮(蒸煮)して調理すると共に、加熱調理後には処理槽内を減圧することで真空冷却を図る蒸煮冷却機が知られている。
特許第2781373号公報
Steaming coolers are known in which steam is supplied to the processing tank containing the ingredients so that the ingredients are steamed (cooked) and cooked, and after the cooking, the processing tank is depressurized for vacuum cooling. ing.
Japanese Patent No. 2781373

しかしながら、従来の蒸煮冷却機は、一つの処理槽のみを備えるだけであった。食材の処理量によっては複数の蒸煮冷却機を並列的に運転することになるが、各蒸煮冷却機間には構造上および制御上、何らの繋がりもなかった。そのため、たとえば処理槽内の空気を外部へ吸引排出するための真空ポンプなどの減圧手段は、処理槽の数だけ必要であった。   However, the conventional steam cooler has only one processing tank. Depending on the amount of food processed, a plurality of steam coolers are operated in parallel, but there is no connection between the steam coolers in terms of structure and control. For this reason, for example, decompression means such as a vacuum pump for sucking and discharging the air in the processing tank to the outside is required by the number of processing tanks.

ところが、密閉された処理槽内へ蒸気供給して処理槽内の食材を大気圧よりも高圧下で加熱調理する加圧蒸煮工程中は、減圧手段は停止している。従って、このような蒸煮冷却機では、減圧手段の稼働率は低いものである。そのため、複数の処理槽それぞれに減圧手段を設置する必要性は乏しく、そのような構成はコストアップを招くものである。その一方で、減圧手段の性能をこれまでと同様、一つの処理槽を前提とした能力のままとする場合、複数の処理槽で減圧手段を用いる工程が重なると、減圧能力が不足するおそれがある。   However, the depressurizing means is stopped during the pressure cooking process in which steam is supplied into the sealed processing tank and the food in the processing tank is cooked at a pressure higher than atmospheric pressure. Therefore, in such a steam cooler, the operating rate of the decompression means is low. For this reason, it is not necessary to install decompression means in each of the plurality of treatment tanks, and such a configuration increases costs. On the other hand, if the performance of the decompression means remains the same on the premise of a single processing tank as before, the decompression capacity may be insufficient if the processes using the decompression means overlap in a plurality of treatment tanks. is there.

また、このことは、蒸煮冷却機に限らず、真空解凍機などの他の装置においても同様である。さらに、減圧手段に代えてまたはそれに加えて、処理槽内へ蒸気を供給する給蒸手段などの他の構成も、複数の処理槽で共用したい場合がある。ところが、上述した減圧手段の場合と同様に、共用設備として、単純に処理槽の数を掛けた能力のものを用意するのでは無駄を生じ易い反面、それ未満の能力では能力不足を生じるおそれがある。   In addition, this is not limited to the steam cooler, and the same applies to other devices such as a vacuum thawing machine. Furthermore, in place of or in addition to the decompression means, there may be a case where other structures such as a steam supply means for supplying steam into the treatment tank are desired to be shared by a plurality of treatment tanks. However, as in the case of the depressurization means described above, as a shared facility, it is easy to waste if it is prepared simply by multiplying the number of treatment tanks, but if it is less than that, there is a risk of insufficient capability. is there.

この発明が解決しようとする課題は、減圧手段や給蒸手段などの所望設備を、複数の処理槽で低コストに共用可能なシステムとその制御方法を提供することにある。   The problem to be solved by the present invention is to provide a system capable of sharing desired equipment such as decompression means and steam supply means at a low cost among a plurality of treatment tanks and a control method therefor.

この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、複数の処理槽と、この複数の処理槽に共通して用いられる共用設備とを備え、前記共用設備の使用が重なることにより前記共用設備の能力を超えないように、前記各処理槽の処理をずらして実行することを特徴とする複数処理槽制御システムである。   This invention was made in order to solve the said subject, and the invention of Claim 1 is provided with the some processing tank and the common equipment used in common with this some processing tank, The said common use The multi-treatment tank control system is characterized in that processing of each treatment tank is shifted and executed so as not to exceed the capacity of the shared equipment due to overlapping use of equipment.

請求項1に記載の発明によれば、少なくとも一部構成が、複数の処理槽に共通して用いられる共用設備とされているが、複数の処理槽を並列して運転しても、共用設備の使用が重なることにより共用設備の能力を超えることはない。従って、各処理槽で必要とされる最大能力を合算した能力未満の共用設備であっても、各工程に必要な能力を確保することができる。   According to the first aspect of the present invention, at least a part of the configuration is shared equipment that is commonly used for a plurality of treatment tanks. It does not exceed the capacity of the shared facilities due to the overlapping use of the. Therefore, even if it is a common facility less than the capability which added the maximum capability required by each processing tank, the capability required for each process is securable.

請求項2に記載の発明は、前記各処理槽内の気体を外部へ吸引排出して前記各処理槽内を減圧する減圧手段と、減圧された前記各処理槽内へ外気を導入して前記各処理槽内を復圧する復圧手段と、前記各処理槽内、および/または前記減圧手段を構成する蒸気エゼクタのノズルへ蒸気供給する給蒸手段と、一または複数の前記処理槽ごとに異なる工程を実行可能に前記各手段を制御する制御手段とを備え、前記給蒸手段、前記減圧手段および前記復圧手段の内、いずれか一以上の手段は、その一部または全部が前記共用設備とされており、前記制御手段は、前記共用設備を用いる工程が重なることにより前記共用設備の能力を超える場合には、その各処理槽の処理をずらして実行することを特徴とする請求項1に記載の複数処理槽制御システムである。   The invention according to claim 2 is a pressure reducing means for sucking and discharging the gas in each processing tank to the outside and decompressing each processing tank, and introducing the outside air into each decompressed processing tank Different for each one or a plurality of the treatment tanks, the pressure-reduction means for restoring the pressure in each treatment tank, the steam supply means for supplying steam to the nozzles of the steam ejectors constituting the treatment tanks and / or the pressure-reducing means. Control means for controlling each means such that a process can be performed, and any one or more of the steam supply means, the pressure reducing means, and the pressure-reducing means are partially or entirely part of the shared equipment. The control means, when the process of using the shared equipment exceeds the capacity of the shared equipment due to the overlap, the processing of each processing tank is shifted and executed. Multiple treatment tank control system described in It is.

請求項2に記載の発明によれば、給蒸手段、減圧手段、および復圧手段を備えることで、処理槽内の食材を蒸気で加熱調理する蒸煮機、さらにその加熱調理後に処理槽内の食材を冷却する蒸煮冷却機、処理槽内の食材を蒸気で加熱解凍する真空解凍機、または処理槽内の物品を蒸気で加熱滅菌する蒸気滅菌機などとすることができる。そして、複数の処理槽を備えるが、給蒸手段、減圧手段および復圧手段の内、いずれか一以上の手段は、その少なくとも一部が複数の処理槽で共用される構成である。また、複数の処理槽を並列して運転しても、共用設備を用いる工程が重なることにより共用設備の能力を超える場合には、各処理槽の処理をずらして実行することで、各工程に必要な能力を確保することができる。   According to the second aspect of the present invention, a steaming device that cooks the food in the treatment tank with steam by providing the steam supply means, the decompression means, and the decompression means, and further, after the cooking in the treatment tank It can be a steaming chiller that cools the food, a vacuum thawing machine that heats and thaws the food in the processing tank, or a steam sterilizer that heat-sterilizes the goods in the processing tank with steam. A plurality of treatment tanks are provided, and at least a part of one or more of the steam supply means, the decompression means, and the decompression means is configured to be shared by the plurality of treatment tanks. In addition, even if a plurality of treatment tanks are operated in parallel, if the process of using the shared equipment exceeds the capacity of the shared equipment due to the overlap, the process of each treatment tank is shifted and executed. Necessary ability can be secured.

請求項3に記載の発明は、前記給蒸手段は、複数の前記処理槽に共通して設けられたボイラからの蒸気を、前記各処理槽への各給蒸ラインを介して前記各処理槽へ供給可能であり、前記減圧手段は、複数の前記処理槽に共通または個別に設けられ、前記各処理槽からの各減圧ラインを介して、前記各処理槽内の空気および/または蒸気を排出する手段であり、前記制御手段は、前記各処理槽に対応して前記各給蒸ラインの中途に設けられる各給蒸操作弁と、前記各処理槽に対応して前記各処理槽内への外気導入用の各復圧ラインの中途に設けられる各復圧操作弁の開閉、および前記各処理槽ごとに減圧可能に前記減圧手段の作動または前記各減圧ラインの中途に設けられる各減圧操作弁の開閉を制御すると共に、複数の前記処理槽で前記共用設備を用いる工程が重なることにより前記共用設備の能力を超える場合には、いずれかの処理槽の処理を継続または実行し、その間、他の処理槽の処理を待機させることを特徴とする請求項2に記載の複数処理槽制御システムである。   According to a third aspect of the present invention, the steam supply means supplies the steam from a boiler provided in common to the plurality of the processing tanks to the processing tanks via the steaming lines to the processing tanks. The decompression means is provided in common or individually in the plurality of treatment tanks, and exhausts air and / or steam in the treatment tanks via the decompression lines from the treatment tanks. Each of the steam supply operation valves provided in the middle of each steam supply line corresponding to each of the treatment tanks, and each of the treatment tanks corresponding to each of the treatment tanks. Opening / closing of each pressure-reducing operation valve provided in the middle of each pressure-reducing line for introducing outside air, and operation of the pressure-reducing means or each pressure-reducing operation valve provided in the middle of each pressure-reducing line so that the pressure can be reduced for each processing tank. Control the opening and closing of the process, and the shared by a plurality of the treatment tanks The process of any of the treatment tanks is continued or executed while waiting for the treatment of other treatment tanks when the capacity of the shared equipment exceeds the capacity of the shared equipment due to overlapping of the steps using the equipment. 2 is a multi-treatment tank control system according to 2.

請求項3に記載の発明によれば、給蒸手段の主要部をなすボイラを、複数の処理槽で共用することができる。そして、制御手段は、各処理槽に対応してそれぞれ設けられた各給蒸操作弁と各復圧操作弁の開閉と、各処理槽ごとに減圧可能に減圧手段の作動または各減圧操作弁の開閉を制御すればよく、システム全体の構成および制御を簡易なものとすることができる。   According to invention of Claim 3, the boiler which makes the principal part of a steam supply means can be shared by a some processing tank. Then, the control means opens and closes each steam supply operation valve and each return pressure operation valve provided corresponding to each treatment tank, and operates the decompression means or each decompression operation valve so that the pressure can be reduced for each treatment tank. It is only necessary to control opening and closing, and the configuration and control of the entire system can be simplified.

請求項4に記載の発明は、複数の処理槽と、この複数の処理槽に共通して用いられる共用設備とを備え、一または複数の前記処理槽ごとに異なる工程を実行可能であると共に、前記共用設備を用いる工程が重なる場合には、予め定められた工程種別の優先順位に基づき、その優先順位の高い工程を優先して実行することを特徴とする複数処理槽制御システムである。   The invention according to claim 4 includes a plurality of treatment tanks and a common facility used in common for the plurality of treatment tanks, and can perform different processes for each of the one or more treatment tanks. When the processes using the shared facilities overlap, a multi-treatment tank control system is characterized in that a process with a higher priority is preferentially executed based on a predetermined priority of a process type.

請求項4に記載の発明によれば、複数の処理槽で共用設備を共用することで、コストの低減を図ることができる。また、複数の処理槽を並列して運転することができ、しかも処理槽ごとに異なる工程を実行可能である。さらに、共用設備を用いる工程が複数の処理槽で重なる場合には、優先順位の高い工程を優先することで、各工程に必要な能力を確保することができる。   According to the invention described in claim 4, the cost can be reduced by sharing the shared equipment among the plurality of treatment tanks. In addition, a plurality of treatment tanks can be operated in parallel, and different processes can be executed for each treatment tank. Furthermore, when the process using a shared equipment overlaps with a some process tank, the capability required for each process can be ensured by giving priority to the process with a high priority.

請求項5に記載の発明は、前記共用設備は、減圧手段であることを特徴とする請求項4に記載の複数処理槽制御システムである。   The invention according to claim 5 is the multiple processing tank control system according to claim 4, wherein the shared facility is a decompression unit.

請求項5に記載の発明によれば、複数の処理槽で減圧手段を共用することで、コストの低減を図ることができる。さらに、減圧手段を用いる工程が複数の処理槽で重なる場合には、優先順位の高い工程を優先することで、各工程に必要な減圧能力を確保することができる。   According to the fifth aspect of the present invention, the cost can be reduced by sharing the decompression means among the plurality of treatment tanks. Furthermore, when the process using a decompression means overlaps with a some process tank, the decompression capability required for each process can be ensured by giving priority to the process with a high priority.

請求項6に記載の発明は、複数の処理槽と、前記処理槽内へ蒸気供給する給蒸手段と、複数の前記処理槽に共通して設けられ、前記処理槽内を減圧する減圧手段と、減圧された前記処理槽内を復圧する復圧手段と、前記処理槽ごとに異なる工程を実行可能に、前記給蒸手段、前記減圧手段および前記復圧手段を制御すると共に、前記減圧手段を用いる工程が重なる場合には、予め定められた工程種別の優先順位に基づき、その優先順位の高い工程を行う処理槽の処理を優先して実行する制御手段とを備えることを特徴とする複数処理槽制御システムである。   The invention described in claim 6 includes a plurality of processing tanks, steam supply means for supplying steam into the processing tanks, and a decompression means that is provided in common to the plurality of processing tanks and depressurizes the processing tanks. The decompression means for restoring the reduced pressure inside the treatment tank, and the steam supply means, the decompression means and the return pressure means are controlled so that different processes can be performed for each treatment tank, and the decompression means is A plurality of processes characterized by comprising control means for preferentially executing processing of a processing tank for performing a process with a high priority based on a priority of a predetermined process type when the processes to be used overlap. It is a tank control system.

請求項6に記載の発明によれば、給蒸手段、減圧手段、および復圧手段を備えることで、処理槽内の食材を蒸気で加熱調理する蒸煮機、さらにその加熱調理後に処理槽内の食材を冷却する蒸煮冷却機、処理槽内の食材を蒸気で加熱解凍する真空解凍機、または処理槽内の物品を蒸気で加熱滅菌する蒸気滅菌機などとすることができる。そして、複数の処理槽を備えるが、減圧手段は複数の処理槽で共用することができる。また、複数の処理槽を並列して運転することができ、しかも処理槽ごとに異なる工程を実行可能である。さらに、減圧手段を用いる工程が複数の処理槽で重なる場合には、工程種別の優先順位に基づき順次に実行することで、各工程に必要な減圧能力を確保することができる。   According to the invention described in claim 6, by providing the steam supply means, the decompression means, and the decompression means, the steamer for cooking the ingredients in the treatment tank with steam, and further, after the cooking in the treatment tank It can be a steaming chiller that cools the food, a vacuum thawing machine that heats and thaws the food in the processing tank, or a steam sterilizer that heat-sterilizes the goods in the processing tank with steam. And although a some processing tank is provided, a pressure reduction means can be shared by a some processing tank. In addition, a plurality of treatment tanks can be operated in parallel, and different processes can be executed for each treatment tank. Furthermore, when the process using a decompression means overlaps with a some processing tank, the decompression capability required for each process is securable by performing sequentially based on the priority of a process classification.

請求項7に記載の発明は、前記給蒸手段は、複数の前記処理槽に共通して設けられたボイラからの蒸気を、前記各処理槽への各給蒸ラインを介して前記各処理槽へ供給する手段であり、前記減圧手段は、複数の前記処理槽に共通して設けられ、前記各処理槽からの各減圧ラインを介して、前記各処理槽内の空気および/または蒸気を排出する手段であり、前記制御手段は、前記各処理槽に対応して前記各給蒸ラインの中途に設けられる各給蒸操作弁と、前記各処理槽に対応して前記各減圧ラインの中途に設けられる各減圧操作弁と、前記各処理槽に対応して前記各処理槽内への外気導入用の各復圧ラインの中途に設けられる各復圧操作弁と、前記各処理槽に対応して前記各処理槽内からの蒸気やその凝縮水の各排出ラインの中途に設けられる各排出弁の開閉、および前記減圧手段の作動を制御することを特徴とする請求項6に記載の複数処理槽制御システムである。   According to a seventh aspect of the present invention, the steam supply means supplies the steam from a boiler provided in common to the plurality of processing tanks to the processing tanks via the steaming lines to the processing tanks. The pressure reducing means is provided in common to the plurality of processing tanks, and discharges air and / or steam in the processing tanks through the pressure reducing lines from the processing tanks. The control means includes a steaming operation valve provided in the middle of the steaming line corresponding to the processing tanks, and a midway of the pressure reducing lines corresponding to the processing tanks. Corresponding to each pressure reducing operation valve provided, each pressure reducing operation valve provided in the middle of each pressure return line for introducing outside air into each processing tank corresponding to each processing tank, and each processing tank Provided in the middle of each discharge line of steam and its condensed water from each treatment tank Opening and closing of the discharge valve, and a plurality treatment tank control system according to claim 6, characterized in that for controlling the operation of the pressure reducing means.

請求項7に記載の発明によれば、減圧手段に加えて、給蒸手段の主要部をなすボイラも、複数の処理槽で共用することができる。そして、制御手段は、各処理槽に対応してそれぞれ設けられた各給蒸操作弁、各減圧操作弁、各復圧操作弁、および各排出弁の開閉と、減圧手段の作動を制御すればよく、システム全体の構成および制御を簡易なものとすることができる。   According to the invention described in claim 7, in addition to the decompression means, the boiler which forms the main part of the steam supply means can be shared by the plurality of treatment tanks. The control means controls the opening and closing of each steam supply operation valve, each pressure reducing operation valve, each pressure reducing operation valve, and each discharge valve provided corresponding to each treatment tank, and the operation of the pressure reducing means. Well, the configuration and control of the entire system can be simplified.

請求項8に記載の発明は、前記減圧手段による前記処理槽内の減圧下で、前記給蒸手段により前記処理槽内へ蒸気供給して、前記処理槽内の食材を加熱調理する減圧蒸煮工程の優先順位を最も高くした蒸煮機もしくは蒸煮冷却機、運転開始直後の前記減圧手段の作動による前記処理槽内からの空気排除工程の優先順位を最も高くした真空解凍機、前記給蒸手段により前記処理槽内へ蒸気供給して、前記処理槽内の物品を加熱する滅菌工程後に、前記減圧手段を作動させて前記処理槽内を減圧して前記物品を乾かす乾燥工程の優先順位を最も高くした蒸気滅菌機、のいずれかであることを特徴とする請求項6または請求項7に記載の複数処理槽制御システムである。   The invention according to claim 8 is a reduced-pressure steaming step in which steam is supplied into the treatment tank by the steam supply means under reduced pressure in the treatment tank by the decompression means, and the food in the treatment tank is cooked. The steaming machine or steaming cooler with the highest priority, the vacuum thawing machine with the highest priority of the air removal process from the inside of the treatment tank by the operation of the decompression means immediately after the start of operation, the steam supply means After the sterilization process in which steam is supplied into the processing tank and the article in the processing tank is heated, the decompression means is operated to depressurize the processing tank and dry the article to give the highest priority. The multi-treatment tank control system according to claim 6 or 7, wherein the control system is a steam sterilizer.

請求項8に記載の発明によれば、複数の処理槽に対し一つの減圧手段しか有しなくても、それによる不都合を必要最小限に抑えた蒸煮機、蒸煮冷却機、真空解凍機、または蒸気滅菌機を実現することができる。   According to invention of Claim 8, even if it has only one decompression means for a plurality of processing tanks, a steamer, steam cooler, vacuum defroster, or A steam sterilizer can be realized.

請求項9に記載の発明は、共用設備を用いた複数の処理槽の制御方法であって、前記共用設備の使用が重なることにより前記共用設備の能力を超えないように、前記各処理槽の処理をずらして実行することを特徴とする複数処理槽制御方法である。   The invention according to claim 9 is a method for controlling a plurality of treatment tanks using a shared facility, wherein the use of the shared facilities overlaps so that the capacity of the shared facility is not exceeded. It is a multiple processing tank control method characterized by shifting and performing processing.

請求項9に記載の発明によれば、共用設備の使用が重なることにより共用設備の能力を超えないので、各処理槽において各工程に必要な能力を確保することができる。このようにして、各処理槽で必要とされる最大能力を合算した能力未満の共用設備であっても、各工程に必要な能力を確保することができる。   According to the ninth aspect of the present invention, since the use of the shared equipment does not exceed the capacity of the shared equipment, the capacity required for each process can be ensured in each treatment tank. Thus, even if it is a common facility less than the capability which added the maximum capability required by each processing tank, the capability required for each process is securable.

請求項10に記載の発明は、複数の前記処理槽で同時に実行すると、前記共用設備の能力を超える一または複数種の工程を、優先工程として予め定めておき、各処理槽における次工程への工程切替時に、次工程が優先工程に属し、且つ他の処理槽で優先工程に属する工程を実行中の場合には、この実行中工程の完了まで待機するステップ、その後、前記次工程を実行すると共に、前記他の処理槽の後続工程が優先工程に属する場合には、前記次工程の完了まで前記他の処理槽の処理を待機させるステップを含むことを特徴とする請求項9に記載の複数処理槽制御方法である。   When the invention according to claim 10 is executed simultaneously in a plurality of the treatment tanks, one or a plurality of kinds of processes exceeding the capacity of the shared facility are determined in advance as priority processes, and the next process in each treatment tank is performed. When the next process belongs to the priority process and the process belonging to the priority process is being executed in another processing tank at the time of the process switching, the step of waiting until the completion of the process being executed is executed, and then the next process is executed. In addition, when a subsequent process of the other processing tank belongs to a priority process, the plurality of processes according to claim 9, further comprising the step of waiting for the processing of the other processing tank until the completion of the next process. It is a processing tank control method.

請求項10に記載の発明によれば、優先工程に属する工程は、複数の処理槽で同時に実行されることなく、各処理槽で順次に実行されるので、各工程に必要な能力を確保することができる。   According to the invention described in claim 10, since the processes belonging to the priority process are sequentially executed in each processing tank without being simultaneously executed in a plurality of processing tanks, the necessary capacity for each process is ensured. be able to.

請求項11に記載の発明は、共通の減圧手段を用いた複数の処理槽の制御方法であって、複数の処理槽で前記減圧手段の使用が重なる場合には、予め定められた工程種別の優先順位に基づき、その優先順位の高い工程を行う処理槽の処理を優先して実行することを特徴とする複数処理槽制御方法である。   The invention according to claim 11 is a method for controlling a plurality of treatment tanks using a common decompression means, and when the use of the decompression means overlaps in a plurality of treatment tanks, The multi-treatment tank control method is characterized in that, based on the priority order, the treatment tank that performs a process with a high priority order is preferentially executed.

請求項11に記載の発明によれば、複数の処理槽を並列して運転することができ、その際、減圧手段を用いる工程が複数の処理槽で重なる場合には、優先順位の高い工程を優先することで、各工程に必要な減圧能力を確保することができる。このようにして、複数の処理槽で減圧手段を共用することが可能となる。   According to the eleventh aspect of the present invention, it is possible to operate a plurality of treatment tanks in parallel, and in this case, when the process using the decompression means overlaps in the plurality of treatment tanks, a process having a high priority is performed. By giving priority, it is possible to ensure the decompression capacity necessary for each step. In this way, the decompression means can be shared by a plurality of treatment tanks.

さらに、請求項12に記載の発明は、各処理槽における次工程への工程切替時に、次工程が減圧手段を必要とし、且つ他の処理槽で減圧手段を用いる工程を実行中の場合には、この実行中工程の完了まで待機するステップ、前記他の処理槽の後続工程が減圧手段を必要とする場合には、前記次工程の工程種別と前記他の処理槽の後続工程の工程種別とを対比し、前記次工程の工程種別が前記他の処理槽の後続工程の工程種別よりも優先順位が低い場合には、前記他の処理槽の後続工程の完了まで待機し、前記次工程の工程種別が前記他の処理槽の後続工程の工程種別よりも優先順位が高い場合には、前記他の処理槽の処理を待機させつつ前記次工程を実行し、前記次工程の工程種別が前記他の処理槽の後続工程の工程種別と優先順位が同じ場合には、待機時間の長い方の処理槽の処理を実行するステップを含むことを特徴とする請求項11に記載の複数処理槽制御方法である。   Furthermore, in the invention according to claim 12, when the process is switched to the next process in each processing tank, the next process requires a pressure reducing means, and the process using the pressure reducing means is being executed in another processing tank. A step of waiting until the completion of the process being executed, and a process type of the next process and a process type of the subsequent process of the other process tank when the subsequent process of the other process tank requires a decompression means. In contrast, when the process type of the next process is lower in priority than the process type of the subsequent process of the other processing tank, the process waits until the subsequent process of the other processing tank is completed, If the process type has a higher priority than the process type of the subsequent process of the other treatment tank, the next process is executed while waiting for the process of the other process tank, and the process type of the next process is the When the process types and priorities of the subsequent processes in other treatment tanks are the same In is a multi-processing tanks control method according to claim 11, characterized in that it comprises the step of performing the processing of the processing tank of the longer standby time.

請求項12に記載の発明によれば、工程種別の優先順位に基づき、優先順位が低い処理を行う処理槽の処理を待機させた状態で、優先順位が高い処理を行う処理槽の処理を実行することで、順次に各工程を実行し、各工程に必要な減圧能力を確保することができる。   According to the twelfth aspect of the invention, based on the priority of the process type, the processing tank that performs the process with the higher priority is executed while the processing of the processing tank that performs the process with the lower priority waits. By doing so, it is possible to execute each step sequentially and to secure the decompression capacity necessary for each step.

この発明によれば、減圧手段や給蒸手段などの所望設備を、複数の処理槽で低コストに共用可能なシステムとその制御方法を提供することができる。   According to the present invention, it is possible to provide a system capable of sharing desired equipment such as a decompression unit and a steam supply unit at a low cost among a plurality of treatment tanks and a control method therefor.

つぎに、この発明の実施の形態について説明する。   Next, an embodiment of the present invention will be described.

本実施形態の複数処理槽制御システムは、食材もしくは食品または各種物品からなる被処理物を収容する複数の処理槽と、この複数の処理槽に共通して用いられる共用設備と、この共用設備の使用が重なることにより共用設備の能力を超えないように、前記各処理槽の処理をずらして実行する制御手段とを備える。   The multi-treatment tank control system of the present embodiment includes a plurality of treatment tanks for storing objects to be processed made of food, food, or various articles, a common facility used in common for the plurality of treatment tanks, And control means for shifting and executing the processing of each processing tank so as not to exceed the capacity of the shared facilities due to overlapping use.

すなわち、本システムでは、まず、少なくとも一部構成が、複数の処理槽に共通して用いられる共用設備とされる。いずれの構成を共用設備とするかは、特に問わず適宜に設定される。典型的には、各処理槽には、後述するように、処理槽内へ蒸気を供給する給蒸手段、処理槽内の気体を外部へ吸引排出して処理槽内を減圧する減圧手段、減圧された処理槽内へ外気を導入して処理槽内を復圧する復圧手段などの各種手段が備えられるが、この内のいずれか一以上の手段の一部または全部が共用設備とされる。   That is, in this system, first, at least a part of the configuration is a shared facility used in common for a plurality of treatment tanks. Which configuration is used as a shared facility is set as appropriate regardless of the particular configuration. Typically, in each treatment tank, as will be described later, steam supply means for supplying steam into the treatment tank, decompression means for sucking and discharging the gas in the treatment tank to the outside, and decompressing the treatment tank, decompression Various means such as a return pressure means for introducing outside air into the treated tank and restoring the pressure in the treatment tank are provided, and some or all of one or more of these means are shared facilities.

そして、前記制御手段は、前記各手段を制御して、各処理槽において所定の工程を順次に実行する。その際、通常は、各処理槽ごとに異なる工程を実行するが、所望により、二以上の処理槽ごとにグループ分けして、そのグループごとに異なる工程を実行してもよい。以下では、各処理槽ごとに制御する例について説明するが、各グループごとに制御する場合も同様である。   And the said control means controls the said each means, and performs a predetermined | prescribed process sequentially in each processing tank. In that case, although a different process is normally performed for each processing tank, if desired, it may be divided into two or more processing tanks, and a different process may be performed for each group. Below, although the example controlled for every process tank is demonstrated, the case where it controls for every group is also the same.

本システムの運転中、各処理槽で共用設備に要求する能力は、工程により異なるが、制御手段は、全処理槽で同時に要求する合算能力が共用設備の能力を超えないように、所望により各処理槽の処理をずらして実行する。逆にいうと、共用設備の能力を超えない範囲では、複数の処理槽で並列して処理が実行される。たとえば、並列して実行しても共用設備の能力を超えない工程同士の組合せの場合、それぞれの工程が各処理槽で並列して実行される。一方、複数の処理槽で並列して共用設備を使用しつつ実行すると、共用設備の能力を超える場合には、各処理槽の処理をずらして順次に実行する。つまり、他の処理槽の処理を待機させつつ、いずれかの処理槽の処理を実行する。   During the operation of this system, the capacity required for the shared equipment in each treatment tank varies depending on the process, but the control means can be set as required so that the total capacity required for all treatment tanks simultaneously does not exceed the capacity of the shared equipment. The processing tank is shifted and executed. In other words, the processing is executed in parallel in a plurality of processing tanks as long as the capacity of the shared facility is not exceeded. For example, in the case of a combination of processes that do not exceed the capacity of the shared facility even if executed in parallel, the respective processes are executed in parallel in each treatment tank. On the other hand, when it is executed while using a shared facility in parallel in a plurality of processing tanks, when the capacity of the shared equipment is exceeded, the processing of each processing tank is shifted and executed sequentially. That is, the processing of one of the processing tanks is performed while waiting for the processing of another processing tank.

ところで、共用設備の種別に応じた給蒸、給水、または減圧などについて、共用設備に要求される能力は、各処理槽で実行される工程に応じて異なるのが通常である。そして、共用設備に要求される能力は、全工程を通じて各処理槽で必要とされる最大能力を、全ての処理槽分だけ合算した値となるのが原則である。しかしながら、本実施形態では、その合算能力未満の能力であっても、各処理槽で必要とされる最大能力以上の能力であれば足りる。なぜなら、制御手段は、各処理槽で所定の工程を順次に実行させるが、複数の処理槽で共用設備を用いる工程が重なることにより共用設備の能力を超える場合には、いずれかの処理槽の処理を継続または実行し、その間、他の処理槽の処理を待機させるからである。   By the way, regarding steaming, water supply, or decompression according to the type of shared equipment, the capacity required for the shared equipment is usually different depending on the process executed in each treatment tank. And the capacity | capacitance requested | required of a shared facility is a value which adds up the maximum capacity | capacitance required for each processing tank through all the processes tanks in principle. However, in this embodiment, even if the capacity is less than the total capacity, it is sufficient if the capacity is equal to or greater than the maximum capacity required in each processing tank. This is because the control means sequentially executes a predetermined process in each processing tank, but when the capacity of the shared equipment is exceeded by overlapping processes using the shared equipment in a plurality of processing tanks, This is because the processing is continued or executed, and the processing of other processing tanks is kept waiting during that time.

以下、より具体的に説明すると、本実施形態のシステムは、食材(食品を含む)などの被処理物を収容する処理槽と、処理槽内へ蒸気供給する給蒸手段と、処理槽内の空気や蒸気を外部へ吸引排出して処理槽内を減圧する減圧手段と、減圧下の処理槽内へ外気を導入して処理槽内を復圧する復圧手段とを備えて構成される。また、処理槽内の蒸気やその凝縮水を外部へ排出する排出手段を別途さらに備える場合がある。そして、前記各手段は、制御手段にて制御される。   Hereinafter, more specifically, the system of the present embodiment includes a processing tank that contains an object to be processed such as food (including food), steam supply means that supplies steam into the processing tank, and a processing tank A decompression unit that sucks and discharges air and steam to the outside and decompresses the inside of the treatment tank, and a decompression unit that introduces outside air into the treatment tank under reduced pressure and decompresses the inside of the treatment tank. Further, there may be a case where a discharge means for discharging the steam in the treatment tank and its condensed water to the outside is additionally provided. Each means is controlled by a control means.

処理槽は、食材などの被処理物を収容する中空容器である。本実施形態では、二つ、もしくは三つ、またはそれ以上の数の処理槽を備える。各処理槽の容量は、同じとするが、互いに異なる容量とすることもできる。各処理槽は、被処理物を収容して密閉可能に構成される。たとえば、前面に開閉可能な扉を設けた略直方体状の缶体、あるいは、上面に開閉可能な蓋を設けた有底筒状の缶体とされる。   A processing tank is a hollow container which accommodates to-be-processed objects, such as a foodstuff. In the present embodiment, two, three, or more processing tanks are provided. Although the capacity | capacitance of each processing tank shall be the same, it can also be set as a mutually different capacity | capacitance. Each processing tank accommodates an object to be processed and is configured to be hermetically sealed. For example, a substantially rectangular parallelepiped can body provided with a door that can be opened and closed on the front surface, or a bottomed cylindrical can body body provided with a lid that can be opened and closed on the upper surface.

各処理槽内には、食材などの被処理物が収容される。この際、被処理物は、調理鍋などの各種容器や袋などに入れられていてもよい。そして、被処理物は、処理槽内に設けられた棚板や、処理槽に出し入れされるワゴンの棚板に保持される。この棚板は、金網もしくはパンチングメタルなどのメッシュ状、または複数の棒材が水平に架け渡されたスノコ状などに構成しておくのが好ましい。このようにして被処理物は処理槽の底面から浮いた状態で保持され、給蒸手段による蒸気を処理槽内に供給した際には、その蒸気が被処理物の全周囲に行き渡ることになる。また、処理槽内の底部に凝縮水が溜まっても、その凝縮水が被処理物に接触するのが防止される。   In each processing tank, an object to be processed such as food is accommodated. Under the present circumstances, the to-be-processed object may be put into various containers, bags, etc., such as a cooking pot. And a to-be-processed object is hold | maintained on the shelf board provided in the processing tank, or the shelf board of the wagon withdrawn / inserted in a processing tank. The shelf board is preferably configured in a mesh shape such as a wire mesh or punching metal, or a slat-like shape in which a plurality of bars are stretched horizontally. In this way, the object to be processed is held in a state of being floated from the bottom surface of the processing tank, and when the steam from the steam supply means is supplied into the processing tank, the steam spreads all around the object to be processed. . Moreover, even if condensed water accumulates in the bottom part in a processing tank, it is prevented that the condensed water contacts a to-be-processed object.

給蒸手段は、処理槽内へボイラからの蒸気を供給する手段である。この蒸気は、一次ボイラからの蒸気を熱源とする二次ボイラ(リボイラ)にて純水または軟水を加熱して得られる清浄蒸気とするのがよい。これにより、配管内の錆や、防錆剤などのボイラ水処理薬品が、処理槽への蒸気に混入されるおそれがなく衛生的である。但し、一次ボイラのみを用いて、その蒸気を処理槽内へ供給する構成としてもよいのは勿論である。   The steam supply means is means for supplying steam from the boiler into the treatment tank. This steam is preferably a clean steam obtained by heating pure water or soft water in a secondary boiler (reboiler) using steam from the primary boiler as a heat source. Thereby, boiler water treatment chemicals, such as rust in piping and a rust preventive agent, are not sanitized and are hygienic. However, it is needless to say that only the primary boiler may be used to supply the steam into the treatment tank.

このような給蒸手段は、複数の処理槽それぞれに設置してもよいし、複数または全部の処理槽にて少なくとも一部を共用するように設置してもよい。たとえば、前記二次ボイラを複数の処理槽に共通して一つだけ設置する。この場合、前記一次ボイラも共通化できる。すなわち、給蒸手段として一次ボイラと二次ボイラとを用いる構成において、複数の処理槽でボイラを共用する場合、一次ボイラと二次ボイラとを共用することができる。   Such steam supply means may be installed in each of the plurality of processing tanks, or may be installed so as to share at least a part of the plurality or all of the processing tanks. For example, only one secondary boiler is installed in common with a plurality of treatment tanks. In this case, the primary boiler can also be shared. That is, in the configuration using the primary boiler and the secondary boiler as the steam supply means, when the boiler is shared by a plurality of treatment tanks, the primary boiler and the secondary boiler can be shared.

いずれの場合も、給蒸手段からの蒸気は、蒸気導入管路としての給蒸ラインを介して、各処理槽内へ供給される。各処理槽への各給蒸ラインの中途には、それぞれ給蒸操作弁が設けられる。複数の処理槽でボイラを共用する場合には、ボイラからの給蒸ラインは、分岐して各処理槽へ接続され、その各分岐ラインにそれぞれ給蒸操作弁が設けられる。各処理槽に対応した各給蒸操作弁を開閉することで、対応する処理槽内への蒸気供給の有無が切り替えられる。   In any case, the steam from the steam supply means is supplied into each processing tank via a steam supply line as a steam introduction line. A steaming operation valve is provided in the middle of each steaming line to each treatment tank. When a boiler is shared by a plurality of treatment tanks, a steam supply line from the boiler is branched and connected to each treatment tank, and a steam supply operation valve is provided in each branch line. By opening or closing each steam supply operation valve corresponding to each processing tank, the presence or absence of steam supply to the corresponding processing tank can be switched.

減圧手段は、処理槽内の空気や蒸気を真空引きすることで、処理槽内を減圧する手段である。減圧手段は、真空ポンプ、またはそれに代えてもしくはそれに加えて、蒸気エゼクタまたは水エゼクタなどを備える。このような減圧手段は、複数の処理槽それぞれに設置するのではなく、複数または全部の処理槽にて少なくとも一部を共用するよう設置することができる。たとえば、減圧手段として真空ポンプを用いる場合、複数の処理槽に共通して一つの真空ポンプのみを設置する。   The decompression means is means for decompressing the inside of the processing tank by evacuating the air or steam in the processing tank. The decompression means includes a vacuum pump or a steam ejector or a water ejector instead of or in addition to the vacuum pump. Such a decompression means is not installed in each of a plurality of processing tanks, but can be installed so that at least a part is shared by a plurality or all of the processing tanks. For example, when a vacuum pump is used as the decompression means, only one vacuum pump is installed in common with a plurality of processing tanks.

各処理槽は、空気導出管路としての減圧ラインを介して、減圧手段に接続される。複数の処理槽で減圧手段を共用する場合、各処理槽からの減圧ラインは、一本にまとめられて減圧手段に接続される。また、特にこの場合は、各処理槽に対応した各減圧ラインの中途には、それぞれ減圧操作弁が設けられる。この減圧操作弁を開閉することで、対応する処理槽内からの真空引きの可否が切り替えられる。但し、各処理槽ごとに個別に減圧手段を設ける場合は、減圧操作弁を設けずに、各処理槽に対応した減圧手段の作動の有無を制御してもよい。   Each processing tank is connected to a decompression means via a decompression line as an air outlet conduit. When the decompression means is shared by a plurality of treatment tanks, the decompression lines from the treatment tanks are combined into one and connected to the decompression means. Particularly in this case, a decompression operation valve is provided in the middle of each decompression line corresponding to each treatment tank. By opening and closing the pressure reducing operation valve, whether or not evacuation from the corresponding processing tank is possible is switched. However, in the case where a pressure reducing means is provided for each processing tank, the presence or absence of the operation of the pressure reducing means corresponding to each processing tank may be controlled without providing a pressure reducing operation valve.

ところで、減圧手段として蒸気エゼクタを用いる場合、そのノズルへの蒸気供給は、前記給蒸手段を用いて行うことができる。この場合、給蒸手段は、各処理槽内への蒸気供給の他、減圧手段を構成する蒸気エゼクタのノズルへの蒸気供給を行う手段となる。ここで、給蒸手段として、一次ボイラと二次ボイラとを用いる場合、蒸気エゼクタのノズルへは処理槽内への蒸気と同様に、二次ボイラからの蒸気を用いてもよいが、通常は一次ボイラからの蒸気が供給される。つまり、この場合、一次ボイラの蒸気は、二次ボイラへ供給されて軟水または純水を蒸気化するのに使用されると共に、蒸気エゼクタのノズルへも供給可能とされる。   By the way, when using a steam ejector as a decompression means, the steam supply to the nozzle can be performed using the steam supply means. In this case, the steam supply means is a means for supplying steam to the nozzles of the steam ejector constituting the decompression means in addition to supplying steam into each processing tank. Here, when the primary boiler and the secondary boiler are used as the steam supply means, the steam from the secondary boiler may be used for the nozzle of the steam ejector in the same manner as the steam into the treatment tank. Steam from the primary boiler is supplied. That is, in this case, the steam of the primary boiler is supplied to the secondary boiler and used to vaporize the soft water or pure water, and can also be supplied to the nozzle of the steam ejector.

また、減圧手段として蒸気エゼクタを用いる場合、減圧ラインには蒸気エゼクタより下流側に、凝縮器としての熱交換器が通常備えられる。また、減圧手段として真空ポンプを用いる場合、減圧ラインには真空ポンプより上流側に、凝縮器としての熱交換器を備えるのが望ましい。ここで、熱交換器は、減圧ライン内の蒸気を冷却し凝縮させる凝縮器であり、処理槽内を減圧することで被処理物から生じる蒸気や、蒸気エゼクタのノズルからの蒸気を、冷却し凝縮させる。この冷却および凝縮作用をなすために、熱交換器には冷却用水が供給され、減圧ラインの冷却が図られる。熱交換器の下流側に真空ポンプが配置される場合、減圧ライン内の蒸気を予め熱交換器で凝縮させておくことで、その後の真空ポンプの負荷を軽減して、減圧能力を高めることができる。   When a steam ejector is used as the decompression means, the decompression line is usually provided with a heat exchanger as a condenser on the downstream side of the steam ejector. Moreover, when using a vacuum pump as a pressure reduction means, it is desirable to provide a heat exchanger as a condenser upstream of the vacuum pump in the pressure reduction line. Here, the heat exchanger is a condenser that cools and condenses the steam in the decompression line, and cools the steam generated from the object to be processed by reducing the pressure in the treatment tank and the steam from the nozzle of the steam ejector. Condense. In order to perform this cooling and condensation action, cooling water is supplied to the heat exchanger, and the pressure reduction line is cooled. When a vacuum pump is arranged on the downstream side of the heat exchanger, it is possible to reduce the load on the subsequent vacuum pump and increase the decompression capacity by condensing the steam in the decompression line with the heat exchanger in advance. it can.

復圧手段は、減圧手段により減圧された処理槽内を復圧する手段である。具体的には、減圧された処理槽内へ外気を導入して、処理槽内を大気圧まで復圧することができる。処理槽内への外気の導入は、衛生面を考慮して、フィルターを介して行うのが望ましい。このような復圧手段は、複数の処理槽それぞれに設置してもよいし、複数または全部の処理槽にて少なくとも一部を共用するように設置してもよい。たとえば、前記フィルターを複数の処理槽に共通して一箇所に設置する。   The return pressure means is means for returning the pressure in the treatment tank decompressed by the pressure reduction means. Specifically, the outside air can be introduced into the decompressed treatment tank and the pressure inside the treatment tank can be restored to atmospheric pressure. It is desirable to introduce outside air into the treatment tank through a filter in consideration of hygiene. Such decompression means may be installed in each of the plurality of processing tanks, or may be installed so as to share at least a part of the plurality or all of the processing tanks. For example, the filter is installed in one place in common with a plurality of treatment tanks.

いずれの場合も、フィルターを介した清浄空気は、外気導入管路としての復圧ラインを介して、各処理槽内へ供給される。各処理槽への各復圧ラインの中途には、それぞれ復圧操作弁が設けられる。複数の処理槽で前記フィルターを共用する場合には、フィルターからの復圧ラインは、分岐して各処理槽へ接続され、その各分岐ラインにそれぞれ復圧操作弁が設けられる。各処理槽に対応した各復圧操作弁を開閉することで、対応する処理槽内への外気導入の有無が切り替えられる。   In either case, the clean air that has passed through the filter is supplied into each treatment tank via a return pressure line as an outside air introduction conduit. A return pressure operation valve is provided in the middle of each return pressure line to each treatment tank. When the filter is shared by a plurality of treatment tanks, the return pressure line from the filter is branched and connected to each treatment tank, and a return pressure operation valve is provided in each branch line. By opening and closing each return pressure operation valve corresponding to each processing tank, the presence or absence of introduction of outside air into the corresponding processing tank can be switched.

排出手段は、処理槽内の蒸気やその凝縮水を外部へ排出する手段である。この排出手段は、処理槽内から蒸気を排出する蒸気導出管路としての排蒸ラインと、スチームトラップを介して処理槽内の底部から凝縮水と残存空気を排出する排水管路としてのトラップラインとから構成される。ここで、前記排蒸ラインは、処理槽の底部に接続することで、蒸気に加えてその凝縮水も排出可能となる。   The discharge means is means for discharging the steam in the treatment tank and its condensed water to the outside. This discharging means includes a steaming line as a steam outlet line for discharging steam from the processing tank, and a trap line as a draining line for discharging condensed water and residual air from the bottom of the processing tank through a steam trap. It consists of. Here, by connecting the steaming line to the bottom of the treatment tank, the condensed water can be discharged in addition to the steam.

各処理槽からの各排蒸ラインの中途には、それぞれ排蒸操作弁が設けられる。また、各処理槽からの各トラップラインの中途には、それぞれトラップ弁が設けられる。各処理槽に対応した排蒸操作弁および/またはトラップ弁を開閉することで、対応する処理槽内からの蒸気および/または凝縮水の排出の有無が切り替えられる。なお、排蒸ラインとトラップラインは、処理槽内から凝縮水などを外部へ排出する点で共通するので、排蒸ラインまたはトラップラインを排出ラインと呼び、排蒸操作弁またはトラップ弁を排出弁と呼ぶことができる。また、この排出手段についても、他の手段と同様に、複数(通常は全部)の処理槽にて少なくとも一部を共用するよう設置できる。   A steaming operation valve is provided in the middle of each steaming line from each treatment tank. A trap valve is provided in the middle of each trap line from each processing tank. By opening / closing the steaming operation valve and / or trap valve corresponding to each processing tank, the presence or absence of the discharge of steam and / or condensed water from the corresponding processing tank can be switched. The exhaust steam line and trap line are common in that condensed water is discharged from the treatment tank to the outside, so the exhaust steam line or trap line is called the exhaust line, and the exhaust steam operation valve or trap valve is the exhaust valve. Can be called. In addition, as with other means, this discharging means can be installed so that at least a part is shared by a plurality (usually all) of the treatment tanks.

制御手段は、給蒸手段、減圧手段、復圧手段、および排出手段などを制御する手段であり、通常は少なくとも一部が複数の処理槽に共通して設けられる。但し、各処理槽ごとに個別に制御手段を設けて、それらをネットワーク化するなどして、他の処理槽の状態を監視しながら各処理槽を制御もよい。いずれにしても、前記各手段は、制御手段により制御され、各処理槽において所定の運転工程が順次に実行される。その際、処理槽内の圧力を検出する圧力センサからの出力、および/または、処理槽内の被処理物の温度を検出する温度センサからの出力、さらには前記各手段を作動させる時間を調整して制御できる。また、制御手段は、一または複数の処理槽ごとに、異なる工程を実行可能に前記各手段を制御する。   The control means is means for controlling the steam supply means, the decompression means, the decompression means, the discharge means, and the like, and is usually provided at least partially in common with the plurality of treatment tanks. However, each processing tank may be controlled while monitoring the state of other processing tanks by providing a control means for each processing tank and networking them. In any case, each means is controlled by the control means, and predetermined operation steps are sequentially executed in each processing tank. At that time, the output from the pressure sensor for detecting the pressure in the processing tank and / or the output from the temperature sensor for detecting the temperature of the object to be processed in the processing tank, and the time for operating each means are adjusted. Can be controlled. Moreover, a control means controls each said means so that a different process can be performed for every 1 or several process tank.

制御手段には、種々の設定値を入力するタッチパネルなどの入力手段を備えるが、その態様としてつぎのものが含まれる。第一の態様として、制御手段および入力手段をそれぞれ各処理槽に共通で一つ設ける態様、第二の態様として、制御手段を各処理槽に共通の一つのものとし、入力手段を各処理槽毎に設ける態様,第三の態様として、制御手段および入力手段を各処理槽毎に設ける態様である。   The control means includes input means such as a touch panel for inputting various set values, and includes the following modes. As a first aspect, an aspect in which one control means and an input means are provided in common to each treatment tank, and as a second aspect, a control means is one common to each treatment tank, and an input means is provided in each treatment tank. As an aspect provided every time, as a third aspect, a control means and an input means are provided for each processing tank.

本システムは、処理槽内の食材を蒸気で加熱調理する蒸煮機、さらにその加熱調理後に処理槽内の食材を冷却する蒸煮冷却機、処理槽内の食材を蒸気で加熱解凍する真空解凍機、または処理槽内の物品を蒸気で加熱滅菌する蒸気滅菌機などとすることができる。また、前記各手段の内のいずれか一以上の手段は、その一部または全部が複数の処理槽で共通化されている。ここでは、減圧手段が共通化されているとして説明するが、それに代えてまたはそれに加えて、給蒸手段などの他の構成も共通化することができる。   This system is a steaming machine that cooks food in the processing tank with steam, a steaming cooler that cools the food in the processing tank after the cooking, a vacuum thawing machine that heats and thaws the food in the processing tank, Or it can be set as the steam sterilizer etc. which heat-sterilize the articles | goods in a processing tank with steam. In addition, any one or more of the above means are partly or wholly shared by a plurality of processing tanks. Here, the description will be made on the assumption that the decompression means is shared, but other configurations such as the steam supply means can be shared instead of or in addition thereto.

たとえば、蒸煮冷却機の場合、典型的には、減圧手段による減圧後に給蒸手段により蒸気供給して処理槽を温める予熱工程、処理槽内の空気を外部へ排出するために減圧手段により減圧してから給蒸手段により蒸気供給する空気排除工程、処理槽内が所望圧力になるまで給蒸手段により蒸気供給する給蒸工程、処理槽内を設定圧力に保持するよう給蒸手段による蒸気供給の有無または量を調整して処理槽内の食材を加熱調理する蒸煮工程、加熱調理後の食材の冷却を図る冷却工程が順次に行われる。   For example, in the case of a steam cooler, typically, a preheating step of heating the treatment tank by supplying steam with the steam supply means after depressurization by the depressurization means, and depressurization by the depressurization means to discharge the air in the treatment tank to the outside. The steam exhausting process for supplying steam by the steaming means, the steaming process for supplying steam by the steaming means until the inside of the processing tank reaches a desired pressure, and the steam supply by the steaming means to keep the inside of the processing tank at the set pressure. A steaming step of cooking the ingredients in the treatment tank by adjusting the presence or absence or amount, and a cooling step of cooling the ingredients after cooking are sequentially performed.

ここで、前記蒸煮工程は、二以上の段階に分けて行ってもよい。たとえば、第一設定圧力に維持するように、圧力センサの出力に基づき給蒸操作弁を開閉操作する第一蒸煮工程後に、第二設定圧力に維持するように、圧力センサの出力に基づき給蒸操作弁を開閉操作する第二蒸煮工程が行われる。   Here, the steaming process may be performed in two or more stages. For example, after the first cooking step of opening and closing the steaming operation valve based on the output of the pressure sensor so as to maintain the first set pressure, the steaming based on the output of the pressure sensor so as to maintain the second set pressure. A second cooking step for opening and closing the operation valve is performed.

ところで、処理槽内へ蒸気供給して食材を加熱調理する蒸煮には、大気圧下で行う無圧蒸煮(吹き抜け蒸煮)の他に、大気圧を超える圧力で蒸煮を行う加圧蒸煮や、所望時に減圧手段を作動させて大気圧未満の圧力で蒸煮を行う減圧蒸煮がある。いずれの場合も、蒸気供給による処理槽内の加圧要因と、供給された蒸気の凝縮による処理槽内の減圧要因とがバランスを保つように、給蒸操作弁を開閉制御して、処理槽内の圧力を設定範囲に維持して蒸煮がなされる。   By the way, steaming into the treatment tank to cook food by cooking is not limited to pressureless steaming (blow-through steaming) performed at atmospheric pressure, or pressure steaming that steams at a pressure exceeding atmospheric pressure, or desired There is vacuum steaming, in which the decompression means is sometimes operated and steaming is performed at a pressure below atmospheric pressure. In either case, the steaming operation valve is controlled to open and close so that the pressurization factor in the treatment tank due to steam supply and the decompression factor in the treatment tank due to condensation of the supplied steam are kept in balance. Steaming is performed while maintaining the pressure within the set range.

また、前記冷却工程は、典型的には食材の粗熱を取る工程である。この粗熱冷却工程には、復圧操作弁を開いた状態で減圧手段を作動させて処理槽内の食材を送風冷却する吹き抜け粗熱冷却工程と、復圧操作弁を閉じた状態で減圧手段を作動させて処理槽内の食材の真空冷却を図る真空粗熱冷却工程とがある。そして、通常、そのいずれか一方の冷却工程が実行される。   Moreover, the said cooling process is a process of taking the rough heat of a foodstuff typically. The rough heat cooling process includes a blow-through rough heat cooling process in which the pressure reducing means is operated with the pressure reducing operation valve opened to blow and cool the food in the processing tank, and a pressure reducing means with the pressure reducing operation valve closed. There is a vacuum rough heat cooling step in which the foodstuff in the treatment tank is vacuum-cooled by operating. In general, either one of the cooling steps is performed.

上述したように、本実施形態では、複数の処理槽に減圧手段を共通して設置している。それによる減圧能力の不足を防止するために、複数の処理槽で減圧手段を用いる工程が重なる場合には、いずれかの処理槽ごとに順次に処理するよう制御される。その際、予め定められた工程種別の優先順位に基づき、その優先順位の高い工程を行う処理槽の処理を優先して実行するよう制御する。   As described above, in the present embodiment, the decompression means is commonly installed in the plurality of treatment tanks. In order to prevent shortage of the decompression capacity due to this, when processes using decompression means are overlapped in a plurality of treatment tanks, control is performed so that any one of the treatment tanks is sequentially processed. In that case, based on the priority order of the predetermined process type, control is performed so that processing in the processing tank that performs the process with the higher priority order is executed with priority.

但し、他の処理槽で減圧手段を用いる工程が実行中の場合には、たとえ更に優先順位の高い工程であっても、前記実行中工程の完了まで待機した後に処理するよう制御する。これにより、減圧手段を用いる工程は、いずれかの処理槽でのみ実行されると共に、優先順位の高いものから順次に実行されることになる。また、複数の処理槽で優先順位の同じ工程が重なる場合には、先発のもの(待機時間の長いもの)から処理する。   However, when the process using the decompression means is being executed in another processing tank, even if the process has a higher priority, the process is controlled after waiting until the completion of the process being executed. Thereby, the process using the decompression means is executed only in one of the treatment tanks, and is sequentially executed in descending order of priority. Moreover, when the process of the same priority overlaps in a some processing tank, it processes from the first thing (one with a long waiting time).

優先順位は、各工程の性質に応じて適宜に設定されるが、蒸煮冷却機の場合には、優先順位の高い工程順に、蒸煮工程、真空粗熱冷却工程、空気排除工程、予熱工程、吹き抜け粗熱冷却工程となる。なお、給蒸工程においては、減圧手段は用いられないので、優先順位の制御から外すか、最も優先順位を下げておけばよい。   Priorities are appropriately set according to the nature of each process, but in the case of a steaming cooler, the steaming process, the vacuum rough heat cooling process, the air exclusion process, the preheating process, and the blow-through are performed in the order of priority. It becomes a rough heat cooling process. In the steam supply process, since the pressure reducing means is not used, it may be removed from the priority order control or the priority order may be lowered most.

以上のとおり、本実施形態の複数処理槽制御システムおよび複数処理槽制御方法によれば、複数の処理槽を並列して運転することができ、しかも処理槽ごとに異なる工程を実行可能である。また、減圧手段を用いる工程が複数の処理槽で重なる場合には、工程種別の優先順位に基づき順次に制御することで、各工程に必要な減圧能力を確保することができる。このようにして、複数の処理槽を備えながらも、減圧手段は複数の処理槽で共用することができる。   As described above, according to the multiple treatment tank control system and the multiple treatment tank control method of the present embodiment, it is possible to operate a plurality of treatment tanks in parallel, and it is possible to execute different processes for each treatment tank. Moreover, when the process using a decompression means overlaps with a some processing tank, the decompression capability required for each process is securable by controlling sequentially based on the priority of a process classification. In this way, the pressure reducing means can be shared by a plurality of processing tanks while having a plurality of processing tanks.

ところで、前記実施形態では、工程種別の優先順位に基づき制御する例について説明したが、共用設備(前記実施形態では減圧手段)の使用の有無や、使用する際の必要能力に応じて優先工程を予め定めておき、この優先工程に属するか否かにより制御してもよい。このような処理は、優先工程に属するか否かという観点で、各工程を二つに種類分けした上での優先順位に基づく制御に相当する。つまり、優先工程に属する工程は、優先順位が等しく、且つ優先工程に属さない工程よりも優先順位が高い制御に相当する。   By the way, in the said embodiment, although the example controlled based on the priority order of a process type was demonstrated, a priority process was decided according to the presence or absence of use of a shared facility (in the said embodiment, pressure reduction means), and the required capability at the time of use. It may be determined in advance and controlled depending on whether or not it belongs to this priority process. Such processing corresponds to control based on the priority order after classifying each process into two from the viewpoint of whether or not the process belongs to the priority process. That is, the process belonging to the priority process corresponds to the control having the same priority and higher priority than the process not belonging to the priority process.

より具体的に説明すると、複数の処理槽で同時に実行すると共用設備の能力を超える一または複数種の工程を優先工程として予め定めておく。そして、各処理槽における次工程への工程切替時に、次工程が優先工程に属し、且つ他の処理槽で優先工程に属する工程を実行中の場合には、この実行中工程の完了まで待機した後、次工程を実行すればよい。この際、他の処理槽の後続工程が優先工程に属する場合には、次工程の完了まで他の処理槽の処理を待機させればよい。   More specifically, one or a plurality of types of processes that exceed the capacity of the shared facility when executed in a plurality of treatment tanks at the same time are determined in advance as priority processes. And when the next process belongs to the priority process at the time of the process switching to the next process in each processing tank, and the process belonging to the priority process is being executed in another processing tank, it waits until the completion of this executing process. Thereafter, the next step may be executed. At this time, if the subsequent process of the other processing tank belongs to the priority process, the process of the other processing tank may be waited until the next process is completed.

ところで、前記実施形態では、減圧手段を共通化した蒸煮冷却機について説明したが、共通化するのは減圧手段に限られないし、また蒸煮冷却機以外にも適用可能である。たとえば、複数の処理槽で給蒸手段を共通化した真空解凍機にも適用できる。このような真空解凍機では、減圧手段により処理槽内の空気排除を図る第一空気排除工程の後、給蒸手段により処理槽内へ蒸気供給する解凍工程と、給蒸手段により処理槽内へ蒸気供給しつつ減圧手段により処理槽内の空気排除を図る第二空気排除工程とが適宜繰り返し実行される。この場合、第一空気排除工程と第二空気排除工程とを優先工程として、これら空気排除工程が複数の処理槽で重なる場合には、いずれかから順次に実行するよう制御する。   By the way, in the said embodiment, although the steaming cooler which shared the pressure_reduction | reduced_pressure means was demonstrated, what is shared is not restricted to a pressure-reducing means, It is applicable besides a steaming cooler. For example, the present invention can be applied to a vacuum thawing machine in which a plurality of processing tanks share a steam supply means. In such a vacuum thawing machine, after the first air evacuation step for evacuating the air in the treatment tank by the decompression means, a thawing step for supplying steam into the treatment tank by the steam supply means, and into the treatment tank by the steam supply means A second air evacuation step is performed as appropriate, in which the air in the treatment tank is evacuated by the decompression means while supplying steam. In this case, the first air exclusion process and the second air exclusion process are set as priority processes, and when these air exclusion processes overlap in a plurality of treatment tanks, control is performed so that the processes are sequentially performed from either one.

ところで、第一空気排除工程は、前段と後段とに分けることができ、前段では設定圧力まで真空ポンプだけで減圧し、後段では真空ポンプに加えて蒸気エゼクタや熱交換器を機能させて処理槽内をさらに減圧する。そして、蒸気エゼクタのノズルへは、給蒸手段からの蒸気が供給されることを考慮し、前記後段のみを優先工程とするのがよい。   By the way, the first air removal process can be divided into a front stage and a rear stage. In the front stage, the pressure is reduced only by a vacuum pump to the set pressure, and in the rear stage, a steam ejector and a heat exchanger are made to function in addition to the vacuum pump. The inside is further depressurized. Then, considering that the steam from the steam supply means is supplied to the nozzle of the steam ejector, it is preferable that only the latter stage is set as the priority process.

さらに、その第一空気排除工程後、減圧手段の作動を継続させつつ給蒸手段により処理槽内へ蒸気供給する初期給蒸工程も、優先工程とすることができる。また、解凍工程は、処理槽内を解凍圧力に保持する急速解凍工程と、それよりも低いシメ圧力に保持するシメ工程とに分けてもよく、そのいずれの工程中の空気排除工程も優先工程とすることができる。さらに、急速解凍工程後、減圧手段を作動させてシメ工程へ移行する際のシメ減圧工程も優先工程とすることができる。   Furthermore, an initial steaming process in which steam is supplied into the treatment tank by the steaming means while continuing the operation of the decompression means after the first air exclusion process can also be set as a priority process. In addition, the thawing process may be divided into a rapid thawing process that maintains the inside of the treatment tank at a thawing pressure and a squeezing process that maintains a lower squeeze pressure, and the air exclusion process in any of these processes is a priority process. It can be. Furthermore, after the rapid thawing step, the squeeze decompression step when the decompression means is operated to shift to the squeeze step can be set as the priority step.

但し、このような真空解凍機においても、前記各工程に優先順位を付けて、前記蒸煮冷却機の場合と同様に、優先順位の高い工程の処理を優先して制御してもよい。逆に、前記蒸煮冷却機において、一または複数種の工程を優先工程として、前記真空解凍機と同様に制御してもよい。また、前記蒸煮冷却機で、減圧手段に代えてまたはそれに加えて給蒸手段などを共通化することができるし、前記真空解凍機において、給蒸手段に代えてまたはそれに加えて減圧手段などを共通化することもできる。   However, even in such a vacuum thawing machine, priority may be given to each process, and the process of a process with higher priority may be prioritized and controlled as in the case of the steam cooler. On the contrary, in the steam cooler, one or more kinds of processes may be controlled as priority processes and controlled in the same manner as the vacuum defroster. Further, in the steam cooler, instead of or in addition to the decompression means, a steaming means or the like can be shared, and in the vacuum defroster, a decompression means or the like can be used instead of or in addition to the steaming means. It can also be shared.

以下、この発明の具体的実施例を図面に基づいて詳細に説明する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の複数処理槽制御システムの実施例1を示す概略構成図であり、蒸煮冷却機に適用した例を示している。この図に示すように、本実施例のシステムは、食材1が収容されて密閉可能な複数の処理槽2と、各処理槽2内へ蒸気供給する給蒸手段3と、各処理槽2内の空気や蒸気を外部へ吸引排出して処理槽2内を減圧する減圧手段4と、減圧下の処理槽2内へ外気を導入して処理槽2内を復圧する復圧手段5と、各処理槽2内の蒸気やその凝縮水を外部へ排出する排出手段6と、これら各手段3〜6を制御する制御手段7とを備えている。   FIG. 1: is a schematic block diagram which shows Example 1 of the multiple processing tank control system of this invention, and has shown the example applied to the steaming cooler. As shown in this figure, the system of the present embodiment includes a plurality of processing tanks 2 that contain food 1 and can be sealed, steam supply means 3 that supplies steam into each processing tank 2, and each processing tank 2 Decompression means 4 that sucks and discharges the air and steam to the outside and decompresses the inside of the treatment tank 2, a decompression means 5 that introduces outside air into the treatment tank 2 under decompression and decompresses the inside of the treatment tank 2, A discharge means 6 for discharging the steam in the treatment tank 2 and its condensed water to the outside and a control means 7 for controlling these means 3 to 6 are provided.

本実施例では、第一処理槽8と第二処理槽9との二つの処理槽を備える。各処理槽2(8,9)は、耐圧性を備えたボックス状の缶体であり、正面に開閉可能な扉(不図示)を有している。各処理槽2には、メッシュ状の棚板10,10…が上下に複数段保持され、調理鍋などに入れられた食材1が各棚板10に載せられる。但し、処理槽2内にワゴン(不図示)を出し入れ可能とし、そのワゴンの棚板に食材1を載せるようにしてもよい。ところで、各処理槽2には、前記食材1の温度を検出するための温度センサ11と、処理槽2内の圧力を検出するための圧力センサ(不図示)とが備えられている。   In this embodiment, two treatment tanks, a first treatment tank 8 and a second treatment tank 9 are provided. Each processing tank 2 (8, 9) is a box-shaped can having pressure resistance, and has a door (not shown) that can be opened and closed on the front. In each processing tank 2, mesh-like shelf boards 10, 10 are held in a plurality of stages, and food 1 placed in a cooking pan or the like is placed on each shelf board 10. However, a wagon (not shown) can be taken in and out of the treatment tank 2, and the food material 1 may be placed on the shelf of the wagon. By the way, each processing tank 2 is provided with a temperature sensor 11 for detecting the temperature of the food 1 and a pressure sensor (not shown) for detecting the pressure in the processing tank 2.

給蒸手段3は、各処理槽2内へ蒸気を供給する手段である。本実施例の給蒸手段3は、一次ボイラ(不図示)と二次ボイラ(リボイラ)12とを備え、一次ボイラからの蒸気を熱源として、二次ボイラ12にて軟水を加熱して蒸気化し、そのようにして生成された清浄蒸気を各処理槽2内へ供給する。一次ボイラは、通常の一般的なボイラから構成されるが、そのような一次ボイラによる蒸気には、配管内の錆や、防錆剤などのボイラ水処理薬品が混入するおそれが残る。ところが、各処理槽2内へ供給される蒸気は、直接に食材1に接触し得るものである。そこで、二次ボイラ12にて軟水を加熱して清浄蒸気を生成し、この清浄蒸気を各処理槽2内へ供給する。   The steam supply means 3 is means for supplying steam into each treatment tank 2. The steam supply means 3 of the present embodiment includes a primary boiler (not shown) and a secondary boiler (reboiler) 12, and heats the soft water in the secondary boiler 12 to vaporize it using the steam from the primary boiler as a heat source. The clean steam thus generated is supplied into each treatment tank 2. Although a primary boiler is comprised from a normal common boiler, there exists a possibility that boiler water treatment chemicals, such as rust in a piping and a rust preventive agent, may mix in the steam by such a primary boiler. However, the steam supplied into each treatment tank 2 can directly contact the food 1. Therefore, soft water is heated in the secondary boiler 12 to generate clean steam, and this clean steam is supplied into each treatment tank 2.

二次ボイラ12は、ステンレス製の熱交換器であり、軟水を加熱して蒸気へ変換する。軟水を加熱するために、二次ボイラ12には、一次ボイラからの蒸気が二次ボイラ給蒸弁13を介して供給される。このようにして一次ボイラから供給された蒸気は、二次ボイラ12にてステンレス配管内へ供給される軟水を加熱し、清浄蒸気を生成する。一次ボイラからの蒸気は、二次ボイラ12にて使用後、第一スチームトラップ14および第一逆止弁15を介して排出される。   The secondary boiler 12 is a heat exchanger made of stainless steel, and heats soft water to convert it into steam. In order to heat the soft water, the secondary boiler 12 is supplied with steam from the primary boiler via the secondary boiler steam supply valve 13. Thus, the steam supplied from the primary boiler heats the soft water supplied into the stainless steel pipe by the secondary boiler 12 to generate clean steam. The steam from the primary boiler is discharged through the first steam trap 14 and the first check valve 15 after being used in the secondary boiler 12.

二次ボイラ12へ軟水を供給するために、給蒸手段3は軟水機16を備える。本実施例の軟水機(軟水器)16は、イオン交換樹脂を使用して、供給された水を軟水へ変換する。この軟水機16にて作られた軟水は給水タンク17に貯留され、この給水タンク17の軟水が給水ポンプ18により、二次ボイラ給水弁19および第二逆止弁20を介して二次ボイラ12へ供給される。   In order to supply soft water to the secondary boiler 12, the steam supply means 3 includes a water softener 16. The water softener (water softener) 16 of this embodiment converts the supplied water into soft water using an ion exchange resin. The soft water produced by the water softener 16 is stored in the water supply tank 17, and the soft water in the water supply tank 17 is supplied by the water supply pump 18 through the secondary boiler water supply valve 19 and the second check valve 20 to the secondary boiler 12. Supplied to.

二次ボイラ12に供給された軟水は、上述したように、一次ボイラからの蒸気にて加熱されて清浄蒸気へ変換され、給蒸ライン21を介して、ノズル22から各処理槽2内へ供給される。給蒸ライン21の中途には、給蒸操作弁23が設けられている。本実施例の給蒸操作弁23は、電磁弁から構成され、処理槽2内への蒸気供給の有無を切り替える。   As described above, the soft water supplied to the secondary boiler 12 is heated by the steam from the primary boiler, converted into clean steam, and supplied from the nozzle 22 into each treatment tank 2 via the steam supply line 21. Is done. A steam supply operation valve 23 is provided in the middle of the steam supply line 21. The steam supply operation valve 23 of the present embodiment is configured by an electromagnetic valve, and switches presence / absence of steam supply into the processing tank 2.

給蒸手段3は、各処理槽2それぞれに個別に設けてもよいが、本実施例では複数の処理槽8,9に共通的に設けている。すなわち、軟水機16、給水タンク17、および二次ボイラ12を、複数の処理槽8,9に対し共通化し、統一した一つのものとしている。具体的には、一つの軟水機16と、この軟水機16からの軟水を貯留する一つの給水タンク17と、この給水タンク17からの軟水が給水ポンプ18により供給される一つの二次ボイラ12とを、第一処理槽8と第二処理槽9とに共通的に設置している。そして、この共通の二次ボイラ12からの給蒸ライン21を分岐させて各処理槽8,9へそれぞれ接続し、この分岐した各給蒸ライン21にそれぞれ給蒸操作弁23を設けている。従って、各給蒸操作弁23を操作することで、対応する処理槽2(8,9)内への給蒸の有無を切り替えることができる。   The steam supply means 3 may be provided for each of the treatment tanks 2 individually, but in the present embodiment, it is commonly provided for the plurality of treatment tanks 8 and 9. That is, the water softener 16, the water supply tank 17, and the secondary boiler 12 are made common to the plurality of treatment tanks 8 and 9 and unified. Specifically, one water softener 16, one water supply tank 17 for storing soft water from the water softener 16, and one secondary boiler 12 to which soft water from the water supply tank 17 is supplied by a water supply pump 18. Are commonly installed in the first treatment tank 8 and the second treatment tank 9. Then, the steam supply line 21 from the common secondary boiler 12 is branched and connected to the treatment tanks 8 and 9, and a steam supply operation valve 23 is provided in each of the branched steam supply lines 21. Therefore, by operating each steam supply operation valve 23, the presence or absence of steam supply to the corresponding processing tank 2 (8, 9) can be switched.

減圧手段4は、各処理槽2内の空気や蒸気を外部へ真空引きして、各処理槽2内を減圧する手段である。この減圧手段4は、各処理槽2にそれぞれ設置するのではなく、第一処理槽8と第二処理槽9とに共通して一つ設けられる。本実施例では、各処理槽2に接続された減圧ライン24が一本にまとめられた後、熱交換器25と第三逆止弁26とを介して、水封式真空ポンプ27に接続されている。各処理槽2に対応して、前記各減圧ライン24には減圧操作弁28が設けられている。本実施例の減圧操作弁28は、モータバルブから構成され、処理槽2内からの減圧の可否を切り替える。   The decompression means 4 is a means for decompressing the inside of each processing tank 2 by evacuating the air and steam in each processing tank 2 to the outside. This decompression means 4 is not installed in each processing tank 2 but is provided in common in the first processing tank 8 and the second processing tank 9. In the present embodiment, the decompression lines 24 connected to the treatment tanks 2 are combined into one, and then connected to the water ring vacuum pump 27 via the heat exchanger 25 and the third check valve 26. ing. Corresponding to each treatment tank 2, a decompression operation valve 28 is provided in each decompression line 24. The pressure reducing operation valve 28 of the present embodiment is constituted by a motor valve, and switches whether pressure reduction from the processing tank 2 is possible.

水封式真空ポンプ27には、電磁弁からなる封水給水弁29を介して水が供給され、真空ポンプ27からの排水は、排水口へ排出される。真空ポンプ27へ給水用の封水給水弁29は、真空ポンプ27に連動して開かれる。一方、熱交換器25には、電磁弁からなる熱交給水弁30および第四逆止弁31を介して冷却用の水が供給され、排水口へ排出される。これにより、処理槽2内から吸引した空気中の蒸気は、熱交換器25にて冷却され凝縮される。このようにして、減圧ライン24中の蒸気を熱交換器25で予め凝縮させることで、真空ポンプ27の負荷を軽減して減圧能力を高めることができる。ところで、熱交換器25や真空ポンプ27への各給水ラインには、それぞれ定流量弁(不図示)が設けられており、給水圧力が変動しても、それぞれに所望の一定流量が供給可能とされている。   Water is supplied to the water-sealed vacuum pump 27 via a sealed water supply valve 29 made of an electromagnetic valve, and the waste water from the vacuum pump 27 is discharged to a drain outlet. A sealed water supply valve 29 for supplying water to the vacuum pump 27 is opened in conjunction with the vacuum pump 27. On the other hand, cooling water is supplied to the heat exchanger 25 via a heat exchange water supply valve 30 and a fourth check valve 31 made of electromagnetic valves, and is discharged to a drain outlet. Thereby, the vapor | steam in the air attracted | sucked from the inside of the processing tank 2 is cooled and condensed by the heat exchanger 25. In this way, by condensing the vapor in the decompression line 24 in advance with the heat exchanger 25, the load on the vacuum pump 27 can be reduced and the decompression capability can be increased. By the way, each water supply line to the heat exchanger 25 and the vacuum pump 27 is provided with a constant flow valve (not shown), and even if the water supply pressure fluctuates, a desired constant flow rate can be supplied to each. Has been.

復圧手段5は、減圧手段4などにより減圧された処理槽2内を復圧する手段である。本実施例の復圧手段5は、各処理槽2に接続された復圧ライン32,32が一本にまとめられた後、除菌フィルター33を介して外気と連通可能に設けられている。各処理槽2に対応して、各復圧ライン32には、処理槽2側から順に、第五逆止弁34と復圧操作弁35とが設けられている。本実施例の復圧操作弁35は、電磁弁から構成され、これを開くことで処理槽2内は大気圧に開放される。   The return pressure means 5 is a means for returning the pressure in the processing tank 2 decompressed by the decompression means 4 or the like. The return pressure means 5 of the present embodiment is provided so as to be able to communicate with the outside air through the sterilization filter 33 after the return pressure lines 32 and 32 connected to each processing tank 2 are combined into one. Corresponding to each treatment tank 2, each return pressure line 32 is provided with a fifth check valve 34 and a return pressure operation valve 35 in order from the treatment tank 2 side. The return pressure operation valve 35 of the present embodiment is constituted by an electromagnetic valve, and the processing tank 2 is opened to the atmospheric pressure by opening it.

排出手段6は、処理槽2内の蒸気やその凝縮水を外部へ排出する手段である。本実施例の排出手段6は、上部排蒸手段36と、下部排蒸手段37と、排水手段38とに分けられる。上部排蒸手段36は、処理槽2の中央部または上部に接続された上部排蒸ライン39から構成される。この上部排蒸ライン39には、処理槽2側から順に、上部排蒸弁40と第六逆止弁41とが設けられており、処理槽2内の蒸気を外部へ排出する。本実施例の上部排蒸弁40は、電磁弁から構成され、処理槽2内からの蒸気排出の有無を切り替える。   The discharge means 6 is a means for discharging the steam in the treatment tank 2 and its condensed water to the outside. The discharging means 6 of this embodiment is divided into an upper steaming means 36, a lower steaming means 37, and a draining means 38. The upper steaming means 36 is composed of an upper steaming line 39 connected to the center or upper part of the treatment tank 2. The upper exhaust steam line 39 is provided with an upper exhaust steam valve 40 and a sixth check valve 41 in order from the processing tank 2 side, and discharges the steam in the processing tank 2 to the outside. The upper steaming valve 40 of the present embodiment is composed of an electromagnetic valve, and switches whether steam is discharged from the processing tank 2.

また、下部排蒸手段37は、処理槽2の下部に接続された下部排蒸ライン42から構成される。この下部排蒸ライン42には、処理槽2側から順に、下部排蒸弁43と第七逆止弁44とが設けられており、処理槽2内の蒸気や残存空気、処理槽2内の底部に溜まる凝縮水を外部へ排出する。本実施例の下部排蒸弁43は、モータバルブから構成され、処理槽2内からの蒸気およびその凝縮水の排出の有無を切り替える。   The lower steaming means 37 includes a lower steaming line 42 connected to the lower part of the processing tank 2. The lower exhaust steam line 42 is provided with a lower exhaust steam valve 43 and a seventh check valve 44 in order from the processing tank 2 side. Steam and residual air in the processing tank 2, Condensate accumulated at the bottom is discharged to the outside. The lower steaming valve 43 of the present embodiment is constituted by a motor valve, and switches whether steam and its condensed water are discharged from the processing tank 2 or not.

さらに、排水手段38は、処理槽2の下部に接続されたトラップライン45から構成される。このトラップライン45には、処理槽2側から順に、トラップ弁46、第二スチームトラップ47、および第八逆止弁48が設けられており、凝縮水を外部へ排出する。本実施例のトラップ弁46は、モータバルブから構成され、処理槽2内からの凝縮水の排出の有無を切り替える。   Further, the drainage means 38 is constituted by a trap line 45 connected to the lower part of the processing tank 2. The trap line 45 is provided with a trap valve 46, a second steam trap 47, and an eighth check valve 48 in order from the processing tank 2 side, and discharges condensed water to the outside. The trap valve 46 of the present embodiment is constituted by a motor valve, and switches whether condensed water is discharged from the processing tank 2.

制御手段7は、前記給蒸手段3、減圧手段4、復圧手段5、および排出手段6を制御する制御器49から構成される。この制御器49は、複数の処理槽2(8,9)に共通的に設けられる。すなわち、一つの制御器49にて、複数の処理槽8,9の前記各手段3〜6を制御可能とする。この際、一または複数の処理槽2ごとに、その運転の有無や運転内容を個別に制御可能とする。   The control means 7 includes a controller 49 that controls the steam supply means 3, the decompression means 4, the return pressure means 5, and the discharge means 6. The controller 49 is provided in common for the plurality of treatment tanks 2 (8, 9). That is, the respective means 3 to 6 of the plurality of treatment tanks 8 and 9 can be controlled by one controller 49. At this time, the presence / absence of the operation and the operation content can be individually controlled for each of the one or a plurality of treatment tanks 2.

制御手段7は、それが把握する時間や前記温度センサ11や圧力センサ(不図示)からの検出信号などに基づいて前記各手段3〜6を制御する。具体的には、給蒸操作弁23、減圧操作弁28、熱交給水弁30、封水給水弁29、水封式真空ポンプ27、復圧操作弁35、上部排蒸弁40、下部排蒸弁43、トラップ弁46、温度センサ11、圧力センサ(不図示)などは、制御器49に接続されている。そして、この制御器49は、所定のプログラムに基づき、後述するように、処理槽2内の食材1の蒸煮とその後の冷却とを行う。   The control means 7 controls the means 3 to 6 based on the time grasped by the control means 7 and detection signals from the temperature sensor 11 and pressure sensor (not shown). Specifically, the steam supply operation valve 23, the pressure reduction operation valve 28, the heat exchange water supply valve 30, the sealed water supply water valve 29, the water seal vacuum pump 27, the return pressure operation valve 35, the upper steaming valve 40, the lower steaming The valve 43, the trap valve 46, the temperature sensor 11, the pressure sensor (not shown) and the like are connected to the controller 49. And this controller 49 performs cooking of the foodstuff 1 in the processing tank 2, and subsequent cooling based on a predetermined program so that it may mention later.

また、制御器49は、二次ボイラ給蒸弁13と二次ボイラ給水弁19とに接続されており、二次ボイラ12の圧力制御と水位制御とを行う。二次ボイラ12の圧力制御は、前記ステンレス配管内に設けた二次ボイラ用圧力センサ(不図示)を用いて行う。すなわち、この二次ボイラ用圧力センサ(不図示)に基づき、二次ボイラ12にて生成される清浄蒸気の圧力を検出し、一次ボイラ(不図示)から二次ボイラ12へ蒸気供給するための二次ボイラ給蒸弁13の開閉を操作する。また、二次ボイラ12の水位制御は、二次ボイラ12の前記ステンレス配管内の軟水の水位を、水位センサ(不図示)に基づき前記二次ボイラ給水弁19を開閉制御して行う。   The controller 49 is connected to the secondary boiler steam supply valve 13 and the secondary boiler water supply valve 19, and performs pressure control and water level control of the secondary boiler 12. The pressure control of the secondary boiler 12 is performed using a secondary boiler pressure sensor (not shown) provided in the stainless steel pipe. That is, based on the pressure sensor (not shown) for the secondary boiler, the pressure of clean steam generated in the secondary boiler 12 is detected, and steam is supplied from the primary boiler (not shown) to the secondary boiler 12. The opening and closing of the secondary boiler steam supply valve 13 is operated. Moreover, the water level control of the secondary boiler 12 is performed by controlling the water level of the soft water in the stainless steel pipe of the secondary boiler 12 by opening and closing the secondary boiler feed valve 19 based on a water level sensor (not shown).

次に、本実施例のシステムを用いた蒸煮冷却処理について説明する。図2は、本実施例のシステムの各処理槽2(8,9)にて実行される蒸煮冷却処理の一例を示すフローチャートである。この図に示すように、各処理槽2では、予熱工程(ST1)、空気排除工程(ST2)、給蒸工程(ST3)、第一蒸煮工程(ST4)、第二蒸煮工程(ST5)、粗熱冷却工程(ST6)が順次に行われる。   Next, the steaming cooling process using the system of the present embodiment will be described. FIG. 2 is a flowchart showing an example of the steaming cooling process executed in each processing tank 2 (8, 9) of the system of the present embodiment. As shown in this figure, in each treatment tank 2, a preheating step (ST1), an air exclusion step (ST2), a steaming step (ST3), a first cooking step (ST4), a second cooking step (ST5), a rough A thermal cooling process (ST6) is performed sequentially.

予熱工程(ST1)は、減圧手段4による減圧後に、給蒸手段3により蒸気供給して処理槽2を温める工程である。具体的には、まず、給蒸操作弁23、復圧操作弁35、上部排蒸弁40、下部排蒸弁43、トラップ弁46を閉じた状態で、減圧手段4を作動させる。但し、ここでは熱交換器25は機能させずに、真空ポンプ27のみを作動させて処理槽2内を減圧する。すなわち、熱交給水弁30を閉じた状態で、減圧操作弁28および封水給水弁29を開いて真空ポンプ27を作動させる。   The preheating step (ST1) is a step of heating the treatment tank 2 by supplying steam by the steam supply means 3 after the pressure reduction by the pressure reducing means 4. Specifically, first, the decompression means 4 is operated in a state in which the steam supply operation valve 23, the return pressure operation valve 35, the upper steaming valve 40, the lower steaming valve 43, and the trap valve 46 are closed. However, here, the heat exchanger 25 does not function, and only the vacuum pump 27 is operated to decompress the inside of the processing tank 2. That is, with the heat exchange water supply valve 30 closed, the pressure reducing operation valve 28 and the sealed water supply valve 29 are opened to operate the vacuum pump 27.

このようにして、処理槽2内を所望時間または所望圧力まで減圧した後、減圧手段4の作動を停止して、給蒸手段3により処理槽2内へ蒸気を供給する。すなわち、減圧操作弁28、熱交給水弁30、封水給水弁29、復圧操作弁35、上部排蒸弁40、下部排蒸弁43を閉じると共に、真空ポンプ27の作動を停止した状態で、給蒸操作弁23を開いて、処理槽2内へ蒸気を供給する。この際、処理槽2内が大気圧を超える場合、トラップ弁46を開いておくことで、処理槽2内の底部から凝縮水を外部へ排出する。   In this way, after reducing the pressure in the processing tank 2 to a desired time or a desired pressure, the operation of the pressure reducing means 4 is stopped, and steam is supplied into the processing tank 2 by the steam supply means 3. That is, the pressure reducing operation valve 28, the heat exchange water supply valve 30, the sealed water supply water valve 29, the return pressure operation valve 35, the upper steaming valve 40, and the lower steaming valve 43 are closed and the operation of the vacuum pump 27 is stopped. Then, the steam supply operation valve 23 is opened to supply steam into the processing tank 2. At this time, when the inside of the processing tank 2 exceeds the atmospheric pressure, the condensed water is discharged from the bottom of the processing tank 2 by opening the trap valve 46.

空気排除工程(ST2)は、減圧手段4により処理槽2内の空気を外部へ排出する工程である。具体的には、まず、給蒸操作弁23、復圧操作弁35、上部排蒸弁40、下部排蒸弁43、トラップ弁46を閉じた状態で、減圧手段4を作動させる。但し、ここでは熱交換器25は機能させずに、真空ポンプ27のみを作動させて処理槽2内を減圧する。すなわち、熱交給水弁30を閉じた状態で、減圧操作弁28および封水給水弁29を開いて真空ポンプ27を作動させる。このようにして、処理槽2内の空気を減圧手段4により外部へ真空引きして、処理槽2内の空気を排除することで、後の蒸煮工程(ST4,ST5)における食材1の加熱調理を効果的に行うことができる。   The air exclusion step (ST2) is a step of discharging the air in the processing tank 2 to the outside by the decompression means 4. Specifically, first, the decompression means 4 is operated in a state in which the steam supply operation valve 23, the return pressure operation valve 35, the upper steaming valve 40, the lower steaming valve 43, and the trap valve 46 are closed. However, here, the heat exchanger 25 does not function, and only the vacuum pump 27 is operated to decompress the inside of the processing tank 2. That is, with the heat exchange water supply valve 30 closed, the pressure reducing operation valve 28 and the sealed water supply valve 29 are opened to operate the vacuum pump 27. In this way, the air in the processing tank 2 is evacuated to the outside by the decompression means 4, and the air in the processing tank 2 is excluded, so that the food 1 is cooked in the subsequent cooking step (ST4, ST5). Can be carried out effectively.

このようにして処理槽2内から空気を排除した後、給蒸手段3により処理槽2内へ蒸気を供給する。すなわち、減圧操作弁28、熱交給水弁30、封水給水弁29、復圧操作弁35、上部排蒸弁40、下部排蒸弁43を閉じると共に、真空ポンプ27の作動を停止した状態で、給蒸操作弁23を開いて、処理槽2内へ蒸気を供給する。この際、処理槽2内が大気圧を超える場合、トラップ弁46を開いておくことで、処理槽2内の底部から凝縮水を外部へ排出する。   In this way, after removing air from the processing tank 2, steam is supplied into the processing tank 2 by the steam supply means 3. That is, the pressure reducing operation valve 28, the heat exchange water supply valve 30, the sealed water supply water valve 29, the return pressure operation valve 35, the upper steaming valve 40, and the lower steaming valve 43 are closed and the operation of the vacuum pump 27 is stopped. Then, the steam supply operation valve 23 is opened to supply steam into the processing tank 2. At this time, when the inside of the processing tank 2 exceeds the atmospheric pressure, the condensed water is discharged from the bottom of the processing tank 2 by opening the trap valve 46.

給蒸工程(ST3)は、処理槽2内が所望の目標圧力になるまで、給蒸手段3により処理槽2内へ蒸気を供給する工程である。具体的には、減圧操作弁28、熱交給水弁30、封水給水弁29、復圧操作弁35、上部排蒸弁40、下部排蒸弁43を閉じると共に、真空ポンプ27の作動を停止した状態で、給蒸操作弁23を開いて、処理槽2内へ蒸気を供給する。この際、処理槽2内が大気圧を超える場合、トラップ弁46を開いておくことで、処理槽2内の底部から凝縮水を外部へ排出する。   The steaming step (ST3) is a step of supplying steam into the processing tank 2 by the steaming means 3 until the inside of the processing tank 2 reaches a desired target pressure. Specifically, the pressure reducing operation valve 28, the heat exchange water supply valve 30, the sealed water supply water valve 29, the return pressure operation valve 35, the upper steaming valve 40 and the lower steaming valve 43 are closed and the operation of the vacuum pump 27 is stopped. In this state, the steam supply operation valve 23 is opened to supply steam into the treatment tank 2. At this time, when the inside of the processing tank 2 exceeds the atmospheric pressure, the condensed water is discharged from the bottom of the processing tank 2 by opening the trap valve 46.

第一蒸煮工程(ST4)および第二蒸煮工程(ST5)は、いずれも処理槽2内を設定圧力に保持するように、給蒸手段3による処理槽2内への蒸気供給の有無を調整して、処理槽2内の食材1を加熱調理する工程である。第一蒸煮工程(ST4)と第二蒸煮工程(ST5)は、前記設定圧力が異なるだけであるから、両工程を合わせて蒸煮工程と呼ぶことができる。逆にいうと、本実施例では、蒸煮工程は、第一蒸煮工程(ST4)と第二蒸煮工程(ST5)とに分けられている。第一蒸煮工程(ST4)は、第一設定圧力に維持するように、圧力センサの出力に基づき給蒸操作弁23を開閉操作する工程である。また、第二蒸煮工程(ST5)は、第二設定圧力に維持するように、圧力センサの出力に基づき給蒸操作弁23を開閉操作する工程である。   In both the first cooking step (ST4) and the second cooking step (ST5), the presence or absence of steam supply to the processing tank 2 by the steam supply means 3 is adjusted so that the inside of the processing tank 2 is maintained at a set pressure. In this process, the food 1 in the treatment tank 2 is cooked. Since the first cooking step (ST4) and the second cooking step (ST5) differ only in the set pressure, both steps can be collectively referred to as a cooking step. Conversely, in this embodiment, the cooking process is divided into a first cooking process (ST4) and a second cooking process (ST5). The first cooking step (ST4) is a step of opening and closing the steam supply operation valve 23 based on the output of the pressure sensor so as to maintain the first set pressure. The second steaming step (ST5) is a step of opening / closing the steaming operation valve 23 based on the output of the pressure sensor so as to maintain the second set pressure.

ところで、処理槽2内へ蒸気供給して食材を加熱調理する蒸煮には、大気圧下で行う無圧蒸煮(吹き抜け蒸煮)と、大気圧を超える圧力で蒸煮を行う加圧蒸煮と、所望時に減圧手段を作動させて大気圧未満の圧力で蒸煮を行う減圧蒸煮とに分けられる。   By the way, steaming into the treatment tank 2 and cooking the ingredients by heating includes pressureless steaming (blow-through steaming) performed at atmospheric pressure, pressure steaming performed at a pressure exceeding atmospheric pressure, and when desired. It can be divided into reduced-pressure steaming that operates at a pressure lower than atmospheric pressure by operating the pressure-reducing means.

無圧蒸煮の場合、減圧操作弁28、熱交給水弁30、封水給水弁29、復圧操作弁35を閉じると共に、真空ポンプ27の作動を停止した状態で、給蒸操作弁23、上部排蒸弁40、下部排蒸弁43、トラップ弁46を開いて、処理槽2内へ蒸気を供給する。   In the case of non-pressure steaming, the depressurization operation valve 28, the heat exchange water supply valve 30, the sealed water supply valve 29, and the return pressure operation valve 35 are closed and the operation of the vacuum pump 27 is stopped, and the steam supply operation valve 23 The steam exhaust valve 40, the lower steam exhaust valve 43 and the trap valve 46 are opened to supply steam into the treatment tank 2.

加圧蒸煮の場合、減圧操作弁28、熱交給水弁30、封水給水弁29、復圧操作弁35、上部排蒸弁40、下部排蒸弁43を閉じると共に、真空ポンプ27の作動を停止した状態で、給蒸操作弁23、トラップ弁46を開いて、処理槽2内へ蒸気を供給する。従って、加圧蒸煮の場合には、トラップライン45から自動的に凝縮水が外部へ排出される。   In the case of pressure steaming, the pressure reducing operation valve 28, the heat exchange water supply valve 30, the sealed water supply water valve 29, the return pressure operation valve 35, the upper steaming valve 40 and the lower steaming valve 43 are closed and the vacuum pump 27 is operated. In the stopped state, the steam supply operation valve 23 and the trap valve 46 are opened to supply steam into the processing tank 2. Therefore, in the case of pressurized steaming, condensed water is automatically discharged from the trap line 45 to the outside.

減圧蒸煮の場合は、復圧操作弁35、上部排蒸弁40、下部排蒸弁43、トラップ弁46を閉じた状態で、給蒸操作弁23を開いて、処理槽2内へ蒸気を供給する。この際、処理槽2内が設定上限圧力を超えると、減圧手段4を作動させて、設定下限圧力まで処理槽2内を減圧する。すなわち、減圧操作弁28、熱交給水弁30、封水給水弁29を開いた状態で、真空ポンプ27を作動させて、設定下限圧力まで処理槽2内を減圧し、設定下限圧力になると、これら各弁28〜30を閉じると共に真空ポンプ27の作動を停止する。   In the case of vacuum steaming, the steam supply operation valve 23 is opened and steam is supplied into the processing tank 2 with the decompression operation valve 35, the upper exhaust valve 40, the lower exhaust valve 43, and the trap valve 46 closed. To do. At this time, when the inside of the treatment tank 2 exceeds the set upper limit pressure, the decompression means 4 is operated to decompress the inside of the treatment tank 2 to the set lower limit pressure. That is, when the pressure reducing operation valve 28, the heat exchange water supply valve 30, and the sealed water supply water valve 29 are opened, the vacuum pump 27 is operated to depressurize the inside of the processing tank 2 to the set lower limit pressure. The valves 28 to 30 are closed and the operation of the vacuum pump 27 is stopped.

いずれの蒸煮の場合も、基本的には、蒸気供給による処理槽2内の加圧要因と、供給された蒸気の凝縮による処理槽2内の減圧要因とがバランスを保つように、給蒸操作弁23を開閉制御して、処理槽2内の圧力を設定範囲に維持して蒸煮がなされる。但し、減圧蒸煮の場合には、設定上限圧力を超えると、上述のとおり減圧手段4を作動させる場合がある。   In any case, steaming operation is basically performed so that the pressure factor in the treatment tank 2 due to the supply of steam is balanced with the pressure reduction factor in the treatment tank 2 due to the condensation of the supplied steam. Steaming is performed by controlling the opening and closing of the valve 23 to maintain the pressure in the processing tank 2 within a set range. However, in the case of reduced-pressure steaming, if the set upper limit pressure is exceeded, the decompression means 4 may be operated as described above.

そして、加圧蒸煮工程の終了時には、給蒸操作弁23を閉じると共に、下部排蒸弁43を開いて、処理槽2内が大気圧になるまで、排水および排蒸がなされる。一方、減圧蒸煮工程の終了時には、減圧手段4および排出手段6を作動させず、且つ、給蒸操作弁23を閉じると共に復圧操作弁35を開いて、処理槽2内を大気圧まで復圧する。   And at the time of completion | finish of a pressurization steaming process, while closing the steam supply operation valve 23 and opening the lower exhaust_gas | exhaustion valve 43, draining and exhausting are made until the inside of the processing tank 2 becomes atmospheric pressure. On the other hand, at the end of the reduced pressure steaming process, the decompression means 4 and the discharge means 6 are not operated, and the steam supply operation valve 23 is closed and the return pressure operation valve 35 is opened to restore the pressure in the treatment tank 2 to atmospheric pressure. .

但し、第一蒸煮工程(ST4)および第二蒸煮工程(ST5)が共に加圧蒸煮であり、且つ第一設定圧力よりも第二設定圧力の方が高い場合には、第一蒸煮工程(ST4)終了時の前記排水および排蒸処理は省略される。また、第一蒸煮工程(ST4)および第二蒸煮工程(ST5)が共に減圧蒸煮であり、且つ第一設定圧力よりも第二設定圧力の方が更に真空度が高い場合には、第一蒸煮工程(ST4)終了時の前記復圧処理は省略される。   However, when both the first cooking step (ST4) and the second cooking step (ST5) are pressure cooking, and the second set pressure is higher than the first set pressure, the first cooking step (ST4) ) The drainage and exhaust steam treatment at the end is omitted. When both the first cooking step (ST4) and the second cooking step (ST5) are reduced-pressure cooking, and the second set pressure has a higher degree of vacuum than the first set pressure, the first cook The return pressure process at the end of the step (ST4) is omitted.

いずれにしても、蒸煮工程(ST4,ST5)では、処理槽2内へ蒸気が供給されることで、処理槽2内に収容された食材1を加熱調理することができる。この際、上述したように、処理槽2内へ供給される蒸気は、二次ボイラ12にて軟水から生成された清浄蒸気である。従って、安全で安心の加熱調理を実現することができる。また、食材1の全周囲に清浄蒸気を行き渡らせることで、短時間で均一の加熱料理がなされる。ところで、蒸煮工程では、給蒸により処理槽2内の圧力を調整することで、処理槽2内の温度を調整することができる。本実施例では、60℃から120℃の範囲にて、自由な温度に設定して加熱調理を可能としている。この際、上述したように、本実施例では、第一蒸煮工程(ST4)と第二蒸煮工程(ST5)とで、段階的に圧力(温度)を変更する操作がなされる。   In any case, in the steaming step (ST4, ST5), the food 1 accommodated in the processing tank 2 can be cooked by supplying steam into the processing tank 2. At this time, as described above, the steam supplied into the processing tank 2 is clean steam generated from soft water in the secondary boiler 12. Therefore, safe and reliable cooking can be realized. Moreover, uniform heating dishes are made in a short time by spreading clean steam around the entire periphery of the food material 1. By the way, in a steaming process, the temperature in the processing tank 2 can be adjusted by adjusting the pressure in the processing tank 2 by steam supply. In the present embodiment, cooking is possible by setting the temperature freely within the range of 60 ° C to 120 ° C. At this time, as described above, in this embodiment, the operation of changing the pressure (temperature) stepwise is performed in the first cooking step (ST4) and the second cooking step (ST5).

粗熱冷却工程(ST6)は、蒸煮工程(ST4,ST5)により加熱調理された食材1の粗熱を取る工程である。この粗熱冷却工程(ST6)には、吹き抜け粗熱冷却工程と真空粗熱冷却工程とがあり、通常、そのいずれか一方の冷却工程が実行される。   A rough heat cooling process (ST6) is a process of taking the rough heat of the foodstuff 1 cooked by the cooking process (ST4, ST5). This rough heat cooling step (ST6) includes a blow-through rough heat cooling step and a vacuum rough heat cooling step, and usually one of the cooling steps is executed.

吹き抜け粗熱冷却工程は、復圧操作弁35を開いた状態で減圧手段4を作動させて処理槽2内の食材1を送風冷却する工程である。具体的には、給蒸操作弁23、上部排蒸弁40、下部排蒸弁43、トラップ弁46を閉じた状態で、減圧操作弁28、熱交給水弁30、封水給水弁29、復圧操作弁35を開くと共に、真空ポンプ27を作動させる。   The blow-through rough heat cooling step is a step of blowing and cooling the food 1 in the processing tank 2 by operating the pressure-reducing means 4 with the return pressure operation valve 35 opened. Specifically, with the steam supply operation valve 23, the upper exhaust valve 40, the lower exhaust valve 43, and the trap valve 46 closed, the pressure reducing operation valve 28, the heat exchange water supply valve 30, the sealed water supply valve 29, While opening the pressure control valve 35, the vacuum pump 27 is operated.

真空粗熱冷却工程は、復圧操作弁35を閉じた状態で減圧手段4を作動させて処理槽2内の食材1の真空冷却を図る工程である。具体的には、給蒸操作弁23、上部排蒸弁40、下部排蒸弁43、トラップ弁46、復圧操作弁35を閉じた状態で、減圧操作弁28、熱交給水弁30、封水給水弁29を開くと共に、真空ポンプ27を作動させる。   The vacuum rough heat cooling step is a step of evacuating the food 1 in the processing tank 2 by operating the pressure-reducing means 4 in a state in which the return pressure operation valve 35 is closed. Specifically, with the steam supply operation valve 23, the upper steaming valve 40, the lower steaming valve 43, the trap valve 46 and the return pressure control valve 35 closed, the pressure reducing operation valve 28, the heat exchange water supply valve 30, the seal While opening the water supply valve 29, the vacuum pump 27 is operated.

各処理槽2では、それぞれ独自に、上述した図2の各工程が順次に行われるが、本実施例のシステムでは、第一処理槽8と第二処理槽9の二つの処理槽に対し、真空ポンプ27などの減圧手段4が共通化されている。減圧手段4を複数の処理槽8,9で共用した場合の減圧能力の不足を防止するために、本実施例のシステムでは、次に説明するような複数処理槽制御方法がなされる。   In each processing tank 2, each process of FIG. 2 described above is performed sequentially, but in the system of the present embodiment, for the two processing tanks of the first processing tank 8 and the second processing tank 9, The decompression means 4 such as the vacuum pump 27 is shared. In order to prevent shortage of decompression capacity when the decompression means 4 is shared by the plurality of treatment tanks 8 and 9, the system of this embodiment employs a multiple treatment tank control method as described below.

図3は、本実施例の複数処理槽制御方法の一例を示すフローチャートである。図3では、第一処理槽8における処理フローを示しているが、第二処理槽9における処理フローもこれと同様である。本実施例の複数処理槽制御方法は、複数の処理槽2(8,9)で減圧手段4を用いる工程が重なる場合には、いずれかの処理槽2ごとに順次に処理する制御方法である。その際、予め定められた工程種別の優先順位に基づき、その優先順位の高い工程を行う処理槽2の処理を優先して実行するよう制御する。但し、本実施例では制御を簡易になすために、ある処理槽2の次工程への切替時に、他の処理槽2で減圧手段4を用いる工程が実行中の場合には、仮に前記次工程が更に優先順位の高い工程であっても、前記実行中工程の完了まで待機した後に処理するよう制御する。   FIG. 3 is a flowchart showing an example of the multi-treatment tank control method of the present embodiment. In FIG. 3, although the processing flow in the 1st processing tank 8 is shown, the processing flow in the 2nd processing tank 9 is the same as this. The multiple treatment tank control method of the present embodiment is a control method for sequentially treating each of the treatment tanks 2 when a plurality of treatment tanks 2 (8, 9) use the process using the decompression unit 4 overlap. . In that case, based on the priority order of the predetermined process type, control is performed so as to preferentially execute the processing of the processing tank 2 that performs the process with the higher priority order. However, in this embodiment, in order to simplify the control, when a process using the decompression unit 4 is being performed in another processing tank 2 when switching to a next process of a certain processing tank 2, the next process is temporarily performed. However, even if the process has a higher priority, the process is controlled after waiting until the process being executed is completed.

優先順位は、各工程の性質に応じて適宜に設定されるが、本実施例では、図2に示すように、優先順位の高い工程順に、蒸煮工程、真空粗熱冷却工程、空気排除工程、予熱工程、吹き抜け粗熱冷却工程となる。   Priorities are appropriately set according to the nature of each process, but in this embodiment, as shown in FIG. 2, in order of higher priority order, steaming process, vacuum crude heat cooling process, air exclusion process, It becomes a preheating process and a blow-through rough heat cooling process.

本実施例の複数処理槽制御方法について、図3に基づき更に詳細に説明する。いま、たとえば第一処理槽8の運転が開始され(ST11)、図2における各工程が順次に実行される場合を考える。この場合、制御器49は、次工程(最初の工程を含む)が減圧手段4を必要とするか否かに基づき(ST12)、次工程で減圧手段4を用いない場合には、直ちにその次工程を実行する(ST13)。一方、次工程で減圧手段4が必要な場合には、まず他の処理槽(ここでは第二処理槽9)で減圧手段4が必要な工程を実行中か否かに基づき(ST14)、第二処理槽9で減圧手段4を使用中の場合には、その第二処理槽9における実行中工程の完了まで待機する(ST15)。   The multiple treatment tank control method of the present embodiment will be described in more detail based on FIG. Now, for example, consider the case where the operation of the first treatment tank 8 is started (ST11) and each step in FIG. In this case, the controller 49 determines whether the next step (including the first step) requires the decompression unit 4 (ST12). If the decompression unit 4 is not used in the next step, the controller 49 immediately follows. A process is executed (ST13). On the other hand, when the decompression means 4 is necessary in the next process, first, based on whether or not the process requiring the decompression means 4 is being performed in another processing tank (here, the second treatment tank 9) (ST14), When the decompression means 4 is being used in the second treatment tank 9, the process waits until the process being executed in the second treatment tank 9 is completed (ST15).

第二処理槽9で減圧手段4を必要とする工程が実行中でない場合(ST14)、第一処理槽8の次工程の工程種別と、第二処理槽9の次工程の工程種別とを対比して(ST16)、各工程種別の優先順位に基づき、優先順位の高い工程が実行される(ST17〜ST19)。   When the process which requires the decompression means 4 is not being executed in the second treatment tank 9 (ST14), the process type of the next process of the first process tank 8 is compared with the process type of the next process of the second process tank 9. Then, based on the priority of each process type (ST16), processes with higher priority are executed (ST17 to ST19).

すなわち、第一処理槽8の次工程の工程種別の方が、第二処理槽9の次工程の工程種別よりも優先順位が高い場合には、第一処理槽8の次工程を実行し、第二処理槽9は待機させる(ST17)。一方、第一処理槽8の次工程の工程種別の方が、第二処理槽9の次工程の工程種別よりも優先順位が低い場合には、第二処理槽9の次工程を実行し、第一処理槽8は待機させる(ST18)。また、第一処理槽8と第二処理槽9の各次工程の工程種別が同じで優先順位が同じ場合には、先発の処理を優先する(ST19)。つまり、ここでは、待機時間の長い方の第一処理槽8の次工程が実行され、第二処理槽9は待機させる。   That is, when the process type of the next process of the first treatment tank 8 is higher in priority than the process type of the next process of the second process tank 9, the next process of the first process tank 8 is executed, The 2nd processing tank 9 is made to stand by (ST17). On the other hand, when the priority of the process type of the next process of the first treatment tank 8 is lower than the process type of the next process of the second process tank 9, the next process of the second process tank 9 is executed, The 1st processing tank 8 is made to stand by (ST18). Moreover, when the process classification of each next process of the 1st process tank 8 and the 2nd process tank 9 is the same, and a priority is the same, a priority process is given priority (ST19). That is, here, the next process of the first treatment tank 8 with the longer waiting time is executed, and the second treatment tank 9 is made to wait.

ここで、第二処理槽9の次工程を実行して、第一処理槽8を待機させた場合には、ステップST14へ戻される(ST20)。逆に、第二処理槽9を待機させて、第一処理槽8の次工程を実行した場合、あるいは前述のステップST13にて、第一処理槽8の次工程を実行した場合には、その実行中工程の終了まで待機する(ST21)。そして、その実行中工程の処理が完了すると、次工程がある限り、前記各処理(ST12〜ST21)が繰り返し行われる(ST22)。このようにして、減圧手段4を用いる工程は、いずれかの処理槽2でのみ実行されると共に、優先順位の高いものから順次に実行されることになる。これにより、減圧手段4の性能を高めることなく、一つの減圧手段4を複数の処理槽2で共用しても、減圧能力が不足することが防止される。   Here, when the next process of the second treatment tank 9 is executed and the first treatment tank 8 is made to stand by, the process returns to step ST14 (ST20). Conversely, when the second processing tank 9 is put on standby and the next process of the first processing tank 8 is executed, or when the next process of the first processing tank 8 is executed in the above-described step ST13, Wait until the current process is completed (ST21). And when the process of the process in execution is completed, as long as there exists a next process, each said process (ST12-ST21) is performed repeatedly (ST22). In this way, the process using the decompression means 4 is executed only in one of the treatment tanks 2 and is sequentially executed in descending order of priority. Thereby, even if one decompression means 4 is shared by a plurality of processing tanks 2 without increasing the performance of the decompression means 4, it is prevented that the decompression capacity is insufficient.

ところで、本実施例では、蒸煮後の冷却は、たとえば50℃程度まで粗熱を取る粗熱冷却工程(ST6)とし、その後に、真空冷却機やブラストチラーなどで最終的な目標温度まで冷却する構成としている。しかしながら、所望により、本実施例の蒸煮冷却機自体で、最終的な目標温度まで冷却可能に構成してもよい。また、本実施例のシステムは、蒸煮工程(ST4,ST5)後に冷却工程(ST6)を行う蒸煮冷却機としたが、冷却工程(ST6)を省略した蒸煮機とすることもできる。   By the way, in a present Example, the cooling after cooking is made into the rough heat cooling process (ST6) which takes rough heat to about 50 degreeC, for example, and it cools to final target temperature with a vacuum cooler, a blast chiller, etc. after that. It is configured. However, if desired, the steam cooler itself of the present embodiment may be configured to be cooled to the final target temperature. Moreover, although the system of a present Example was set as the steaming cooler which performs a cooling process (ST6) after a steaming process (ST4, ST5), it can also be set as the steaming machine which abbreviate | omitted the cooling process (ST6).

図4は、図1の複数処理槽制御システムを真空解凍機に適用した場合の処理フローを示すフローチャートである。本実施例2も、基本的には前記実施例1の複数処理槽制御システムおよび制御方法と同様であるから、以下においては、両者の異なる点を中心に説明する。   FIG. 4 is a flowchart showing a processing flow when the multiple processing tank control system of FIG. 1 is applied to a vacuum thawing machine. Since the second embodiment is basically the same as the multiple processing tank control system and the control method of the first embodiment, the following description will focus on the differences between the two.

図1の複数処理槽制御システムを真空解凍機として使用する場合には、図4に示すように、各処理槽2(8,9)では、第一空気排除工程(ST25)がなされた後、解凍工程(ST26)と第二空気排除工程(ST27)が適宜繰り返し実行される。   When using the multiple treatment tank control system of FIG. 1 as a vacuum thawing machine, as shown in FIG. 4, in each treatment tank 2 (8, 9), after the first air exclusion step (ST25), The thawing step (ST26) and the second air exclusion step (ST27) are repeatedly executed as appropriate.

各空気排除工程(ST25,ST27)は、減圧手段4により処理槽2内の空気を外部へ排出する工程である。具体的には、給蒸操作弁23、復圧操作弁35を閉じた状態で、熱交給水弁30、封水給水弁29を開いて真空ポンプ27を作動させる。一方、解凍工程(ST26)は、減圧手段4の作動を停止した状態で、処理槽2内へ蒸気を供給して、処理槽2内の冷凍食材1の解凍を図る工程である。具体的には、熱交給水弁30、封水給水弁29、復圧操作弁35を閉じると共に、真空ポンプ27を停止した状態で、給蒸操作弁23を開いて処理槽2内へ蒸気を供給する。   Each air exclusion step (ST25, ST27) is a step of discharging the air in the processing tank 2 to the outside by the decompression means 4. Specifically, with the steam supply operation valve 23 and the return pressure operation valve 35 closed, the heat exchange water supply valve 30 and the sealed water supply valve 29 are opened to operate the vacuum pump 27. On the other hand, the thawing step (ST26) is a step of thawing the frozen food 1 in the processing tank 2 by supplying steam into the processing tank 2 with the operation of the decompression means 4 stopped. Specifically, the heat exchange water supply valve 30, the sealed water supply valve 29, and the return pressure operation valve 35 are closed, and the steam supply operation valve 23 is opened while the vacuum pump 27 is stopped, and steam is supplied into the treatment tank 2. Supply.

第一空気排除工程(ST25)では、所望の第一設定圧力まで処理槽2内を減圧する。その後の解凍工程(ST26)では、減圧手段4の作動を停止して、所望の第二設定圧力の上限圧力まで、給蒸手段3により処理槽2内へ蒸気供給される。この上限圧力まで蒸気供給後、給蒸操作弁23を閉めれば、処理槽2内の蒸気は被解凍物(冷凍食材)1によって凝縮するため、減圧手段4を用いなくても、処理槽2内の圧力は徐々に低下する。そのため第二設定圧力を保持するために給蒸操作弁23は比例制御弁とし、一定圧力となるように給蒸する。このようにして、解凍工程(ST26)では、所望時間だけ第二設定圧力に保持される。そして、再び第一設定圧力まで減圧する第二空気排除工程(ST27)と、その後の第二設定圧力における解凍工程(ST26)とが繰り返し行われて、処理槽2内の冷凍食材1の解凍が図られる。但し、このような処理フローは一例であり、適宜に変更される。   In a 1st air exclusion process (ST25), the inside of the processing tank 2 is pressure-reduced to desired 1st setting pressure. In the subsequent thawing step (ST26), the operation of the decompression means 4 is stopped, and steam is supplied into the processing tank 2 by the steam supply means 3 up to a desired upper limit pressure of the second set pressure. If the steam supply valve 23 is closed after supplying the steam to the upper limit pressure, the steam in the processing tank 2 is condensed by the material to be thawed (frozen food) 1, so that the inside of the processing tank 2 can be used without using the decompression means 4. The pressure of gradually decreases. For this reason, in order to maintain the second set pressure, the steaming operation valve 23 is a proportional control valve, and steams so as to be a constant pressure. In this way, in the thawing step (ST26), the second set pressure is maintained for a desired time. And the 2nd air exclusion process (ST27) which decompresses to a 1st preset pressure again, and the thawing | decompression process (ST26) in the 2nd preset pressure after that are performed repeatedly, and the thawing | defrosting of the frozen food 1 in the processing tank 2 is carried out. Figured. However, such a processing flow is an example, and is changed as appropriate.

図1における複数の処理槽2(8,9)で真空解凍処理を行う場合、複数処理槽制御方法における優先順位は、優先順位の高い順に、第一空気排除工程、第二空気排除工程となる。従って、この優先順位に基づき、図3における複数処理槽制御方法が実行される。   When performing the vacuum thawing process in the plurality of treatment tanks 2 (8, 9) in FIG. 1, the priority order in the multiple treatment tank control method is the first air exclusion process and the second air exclusion process in descending order of priority. . Therefore, based on this priority, the multiple treatment tank control method in FIG. 3 is executed.

図5は、図1の複数処理槽制御システムを蒸気滅菌機に適用した場合の処理フローを示すフローチャートである。本実施例3も、基本的には前記実施例1および前記実施例2の複数処理槽制御システムおよび制御方法と同様であるから、以下においては、両者の異なる点を中心に説明する。   FIG. 5 is a flowchart showing a processing flow when the multi-treatment tank control system of FIG. 1 is applied to a steam sterilizer. Since the third embodiment is also basically the same as the multi-treatment tank control system and the control method of the first embodiment and the second embodiment, the following description will focus on the differences between them.

図1の複数処理槽制御システムを蒸気滅菌機として使用する場合には、図5に示すように、各処理槽では、空気排除工程(ST31)、給蒸工程(ST32)、滅菌工程(ST33)、乾燥工程(ST34)が順次に実行される。空気排除工程(ST31)は、図4における第一空気排除工程に相当し、給蒸工程(ST32)は、図2における給蒸工程に相当し、滅菌工程(ST33)は、図2における加圧蒸煮工程に相当し、乾燥工程(ST34)は、図2における真空粗熱冷却工程に相当する。   When the multi-treatment tank control system of FIG. 1 is used as a steam sterilizer, as shown in FIG. 5, in each treatment tank, an air exclusion process (ST31), a steaming process (ST32), and a sterilization process (ST33) The drying step (ST34) is sequentially performed. The air exclusion step (ST31) corresponds to the first air exclusion step in FIG. 4, the steaming step (ST32) corresponds to the steaming step in FIG. 2, and the sterilization step (ST33) is the pressurization in FIG. It corresponds to the steaming process, and the drying process (ST34) corresponds to the vacuum rough heat cooling process in FIG.

このようにして、空気排除工程(ST31)により処理槽2内から空気排除を行った後、所望の設定圧力まで処理槽2内に蒸気供給し(ST32)、処理槽2内を設定圧力に所望時間だけ保持して被処理物1の滅菌を図った後(ST33)、被処理物1の冷却と乾燥(ST34)が図られる。   In this way, after the air is exhausted from the processing tank 2 by the air exhausting step (ST31), the steam is supplied into the processing tank 2 up to a desired set pressure (ST32), and the inside of the processing tank 2 is set to the set pressure. After the object 1 is sterilized by holding for a time (ST33), the object 1 is cooled and dried (ST34).

図1における複数の処理槽で蒸気滅菌処理を行う場合、複数処理槽制御方法における優先順位は、優先順位の高い順に、乾燥工程、空気排除工程となる。従って、この優先順位に基づき、図3における複数処理槽制御方法が実行される。   When steam sterilization is performed in a plurality of treatment tanks in FIG. 1, the priority order in the multiple treatment tank control method is a drying process and an air exclusion process in descending order of priority. Therefore, based on this priority, the multiple treatment tank control method in FIG. 3 is executed.

図6は、本発明の複数処理槽制御システムの実施例4を示す概略構成図であり、真空解凍機に適用した例を示している。本実施例4も、基本的には前記実施例1および前記実施例2と同様であるから、以下においては、両者の異なる点を中心に説明し、対応する箇所には同一の符号を付して説明する。   FIG. 6: is a schematic block diagram which shows Example 4 of the multiple processing tank control system of this invention, and has shown the example applied to the vacuum thawing machine. Since the fourth embodiment is basically the same as the first embodiment and the second embodiment, the following description will focus on the differences between the two, and the corresponding parts will be denoted by the same reference numerals. I will explain.

本実施例4のシステムも、前記実施例1と同様に、複数の処理槽2(8,9)と、各処理槽2内へ蒸気供給する給蒸手段3と、各処理槽2内を減圧する減圧手段4と、減圧下の各処理槽内2を復圧する復圧手段5と、これら各手段3〜5を制御する制御手段7とを備える。但し、前記実施例1では、処理槽2内の蒸気やその凝縮水を外部へ排出する排出手段6(上部排蒸手段36,下部排蒸手段37,排水手段38)を設けたが、本実施例1では、そのような排出手段6は設けられない。   In the system of the fourth embodiment, as in the first embodiment, a plurality of processing tanks 2 (8, 9), steam supply means 3 for supplying steam into the processing tanks 2, and the pressure in each processing tank 2 are reduced. Pressure reducing means 4, pressure reducing means 5 for returning the pressure in each processing tank 2 under reduced pressure, and control means 7 for controlling these means 3 to 5. However, in the first embodiment, the discharge means 6 (upper steaming means 36, lower steaming means 37, drainage means 38) for discharging the steam in the treatment tank 2 and its condensed water to the outside is provided. In Example 1, such a discharge means 6 is not provided.

本実施例4のシステムも、前記実施例1と同様に、複数の処理槽2を備える。典型的には、図示例のように第一処理槽8と第二処理槽9との二つの処理槽を備える。但し、処理槽2の数は、三つあるいはそれ以上としてもよく、その場合でも以下に述べる構成および制御が同様に適用可能である。   Similarly to the first embodiment, the system of the fourth embodiment also includes a plurality of treatment tanks 2. Typically, two processing tanks, a first processing tank 8 and a second processing tank 9, are provided as in the illustrated example. However, the number of the processing tanks 2 may be three or more, and even in that case, the configuration and control described below can be similarly applied.

各処理槽2は、前記実施例1と同様に、処理槽本体50に扉51が開閉可能に設けられて構成される。そして、処理槽2内に設けた棚板10に、食材(食品を含む)1が載せられて収容される。本実施例4では、冷凍状態の食材1が、その解凍を図るために収容される。また、処理槽2には、処理槽2内の圧力を検出するための圧力センサ52が備えられる。   Each processing tank 2 is configured by providing a door 51 to the processing tank main body 50 so that it can be opened and closed, as in the first embodiment. And the foodstuff (a foodstuff is included) 1 is mounted on the shelf board 10 provided in the processing tank 2, and is accommodated. In the present Example 4, the frozen food 1 is accommodated in order to defrost it. Further, the processing tank 2 is provided with a pressure sensor 52 for detecting the pressure in the processing tank 2.

本実施例4の給蒸手段3も、前記実施例1と同様に、一次ボイラ(不図示)と二次ボイラ(リボイラ)12とを備え、一次ボイラからの蒸気を熱源として、二次ボイラ12にて軟水を加熱して蒸気化し、そのようにして生成された清浄蒸気を各処理槽2内へ供給する。前記実施例1と同様に、二次ボイラ12へは、一次ボイラからの蒸気が、一次蒸気ライン53を介して供給される。この一次蒸気ライン53の中途には、二次ボイラ給蒸弁13が開閉可能に設けられている。そして、一次蒸気ライン53を介して二次ボイラ12へ供給された蒸気は、二次ボイラ12で使用された後、第一スチームトラップ14および第一逆止弁15を介して排出される。   Similarly to the first embodiment, the steam supply means 3 of the fourth embodiment also includes a primary boiler (not shown) and a secondary boiler (reboiler) 12, and uses the steam from the primary boiler as a heat source and the secondary boiler 12. The soft water is vaporized by heating at, and the clean steam thus generated is supplied into each treatment tank 2. Similarly to the first embodiment, the steam from the primary boiler is supplied to the secondary boiler 12 via the primary steam line 53. In the middle of the primary steam line 53, the secondary boiler steam supply valve 13 is provided to be openable and closable. Then, the steam supplied to the secondary boiler 12 through the primary steam line 53 is used in the secondary boiler 12 and then discharged through the first steam trap 14 and the first check valve 15.

一方、軟水機16による軟水が貯留された給水タンク17からの軟水は、給水ポンプ18、二次ボイラ給水弁19および第二逆止弁20を介して二次ボイラ12へ供給される。そして、二次ボイラ12に供給された軟水は、一次ボイラからの蒸気にて加熱されて蒸気化され、各処理槽2内へ供給可能とされる。その際、二次ボイラ12からの清浄蒸気は、途中で分岐する給蒸ライン21を介して各処理槽2内へ供給される。各処理槽2への各給蒸ライン21の中途には、それぞれ給蒸操作弁23が設けられており、この給蒸操作弁23を開閉操作することで、各処理槽2内への蒸気供給の有無が切り替えられる。このように、本実施例4においても、給蒸手段3は、各処理槽2に共通的に設けられる。   On the other hand, the soft water from the water supply tank 17 in which the soft water from the water softener 16 is stored is supplied to the secondary boiler 12 via the water supply pump 18, the secondary boiler water supply valve 19, and the second check valve 20. The soft water supplied to the secondary boiler 12 is heated by steam from the primary boiler and vaporized, and can be supplied into each treatment tank 2. In that case, the clean steam from the secondary boiler 12 is supplied into each processing tank 2 via the steam supply line 21 branched on the way. A steam supply operation valve 23 is provided in the middle of each steam supply line 21 to each treatment tank 2, and steam supply to each treatment tank 2 is performed by opening and closing the steam supply operation valve 23. The presence or absence of is switched. Thus, also in the present Example 4, the steam supply means 3 is provided in common to each processing tank 2.

前記実施例1では、第一処理槽8と第二処理槽9とで減圧手段4を共用したが、本実施例4では、減圧手段4は、各処理槽2にそれぞれ個別に設置している。各減圧手段4について説明すると、各処理槽2からの減圧ライン24には、処理槽2の側から順に、蒸気エゼクタ54、熱交換器25、第三逆止弁26、および水封式真空ポンプ27が設けられる。すなわち、本実施例4では、前記実施例1における減圧操作弁28に代えて、蒸気エゼクタ54を設けた構成となる。   In the first embodiment, the first treatment tank 8 and the second treatment tank 9 share the decompression means 4, but in the present embodiment 4, the decompression means 4 are individually installed in each treatment tank 2. . The decompression means 4 will be described. The decompression line 24 from each treatment tank 2 has a steam ejector 54, a heat exchanger 25, a third check valve 26, and a water ring vacuum pump in order from the treatment tank 2 side. 27 is provided. That is, in the fourth embodiment, a steam ejector 54 is provided in place of the pressure reducing operation valve 28 in the first embodiment.

蒸気エゼクタ54は、基端側の吸入口が処理槽2に接続され、先端側の吐出口が熱交換器25への配管に接続される。そして、基端側から先端側へ向けて、ノズル(不図示)から蒸気を噴出することで、処理槽2内の気体を吸引排出する。蒸気エゼクタ54のノズルへは、本実施例4では、一次ボイラからの蒸気が供給される。具体的には、一次蒸気ライン53は、二次ボイラ給蒸弁13よりも上流側において分岐し、エゼクタ給蒸弁55を介して各蒸気エゼクタ54のノズルへ接続される。   The steam ejector 54 has a suction port on the proximal end side connected to the processing tank 2 and a discharge port on the distal end side connected to a pipe to the heat exchanger 25. And the gas in the processing tank 2 is suction-discharged by ejecting a vapor | steam from a nozzle (not shown) toward a front end side from a base end side. In the fourth embodiment, steam from the primary boiler is supplied to the nozzle of the steam ejector 54. Specifically, the primary steam line 53 branches upstream of the secondary boiler steam supply valve 13 and is connected to the nozzles of the steam ejectors 54 via the ejector steam supply valve 55.

ところで、本実施例4では、二次ボイラ12および前記各ノズルへ蒸気供給する一次蒸気ライン53には、それら個々への分岐部の直前に、元蒸気圧力スイッチ56を設けている。この元蒸気圧力スイッチ56は、一次蒸気ライン53内の圧力が設定圧力を下回ると、警報などを作動させることで、給蒸設備を複数の処理槽2で共用した場合の万一の給蒸能力不足に対処するものである。   By the way, in the present Example 4, the primary steam pressure switch 56 is provided in the primary steam line 53 which supplies the steam to the secondary boiler 12 and each said nozzle immediately before the branch part to each of them. The original steam pressure switch 56 activates an alarm or the like when the pressure in the primary steam line 53 is lower than the set pressure, so that the steam supply capacity when the steam supply equipment is shared by the plurality of treatment tanks 2 is used. It deals with shortages.

前記実施例1と同様に、各熱交換器25には、熱交給水弁30を介して冷却用水が供給され、排水口へ排出される。熱交換器25に冷却用水が供給されることで、減圧ライン24内の蒸気を冷却し凝縮させることができる。また、各真空ポンプ27には、封水給水弁29を介して水が供給され、真空ポンプ27からの排水は、セパレータ57にて気液分離され、気相分は排気ライン58を介して排気口(不図示)へ排気され、液相分は排水ライン59を介して排水口(不図示)へ排水される。   As in the first embodiment, each heat exchanger 25 is supplied with cooling water via a heat exchange water supply valve 30 and discharged to a drain outlet. By supplying the cooling water to the heat exchanger 25, the steam in the decompression line 24 can be cooled and condensed. Further, water is supplied to each vacuum pump 27 through a sealed water supply valve 29, the waste water from the vacuum pump 27 is separated into gas and liquid by a separator 57, and the gas phase is exhausted through an exhaust line 58. The liquid phase component is discharged to a drain port (not shown) through a drain line 59.

ところで、本実施例4では、各熱交換器25および各真空ポンプ27への給水ライン60には、それら個々への分岐部の直前に、給水圧力センサ61を設けている。この給水圧力センサ61は、給水ライン60内の圧力が設定圧力を下回ると、警報などを作動させることで、各減圧手段4への給水設備を共用した場合の万一の給水能力不足に対処するものである。   By the way, in the present Example 4, the water supply pressure sensor 61 is provided in the water supply line 60 to each heat exchanger 25 and each vacuum pump 27 just before the branch part to each. When the pressure in the water supply line 60 is lower than the set pressure, the water supply pressure sensor 61 activates an alarm or the like to cope with a shortage of water supply capacity when the water supply equipment for each decompression means 4 is shared. Is.

本実施例4では、復圧手段5は、各処理槽2にそれぞれ個別に設けている。具体的には、各処理槽2には、それぞれ復圧ライン32が接続され、除菌フィルター33を介して外気と連通可能とされる。そして、各復圧ライン32の中途には、復圧操作弁35が開閉可能に設けられる。但し、本実施例4の復圧手段5においても、前記実施例1と同様に、第一処理槽8と第二処理槽9とで除菌フィルター33を共用してもよい。   In the fourth embodiment, the decompression means 5 is individually provided in each processing tank 2. Specifically, a return pressure line 32 is connected to each treatment tank 2 so that it can communicate with the outside air via the sterilization filter 33. A return pressure operation valve 35 is provided in the middle of each return pressure line 32 so as to be openable and closable. However, also in the decompression means 5 of the fourth embodiment, the first treatment tank 8 and the second treatment tank 9 may share the sterilization filter 33 as in the first embodiment.

本実施例4の制御手段7は、前記給蒸手段3、減圧手段4および復圧手段5を制御する制御器49から構成される。この制御器49は、前記実施例1と同様に、複数の処理槽2に共通的に設けられる。すなわち、一つの制御器49にて、複数の処理槽2の前記各手段3〜5を制御可能とする。この際、前記実施例1と同様に、各処理槽2ごとに、その運転の有無や運転内容を個別に制御可能とする。   The control means 7 of the fourth embodiment includes a controller 49 that controls the steam supply means 3, the decompression means 4, and the decompression means 5. The controller 49 is provided in common for the plurality of treatment tanks 2 as in the first embodiment. That is, the respective means 3 to 5 of the plurality of treatment tanks 2 can be controlled by one controller 49. At this time, as in the first embodiment, the presence or absence of the operation and the operation content can be individually controlled for each processing tank 2.

制御手段7は、それが把握する時間や前記圧力センサ52からの検出信号などに基づいて前記各手段3〜5を制御する。具体的には、給蒸操作弁23、エゼクタ給蒸弁55、熱交給水弁30、封水給水弁29、水封式真空ポンプ27、復圧操作弁35、二次ボイラ給蒸弁13、二次ボイラ給水弁19の他、処理槽内圧力センサ52、元蒸気圧力スイッチ56、給水圧力センサ61などは、制御器49に接続されている。そして、この制御器49は、所定のプログラムに基づき、後述するように、処理槽2内の冷凍食材1の解凍を図る。   The control means 7 controls the means 3 to 5 based on the time grasped by the control means 7 and the detection signal from the pressure sensor 52. Specifically, the steam supply operation valve 23, the ejector supply valve 55, the heat exchange water supply valve 30, the sealed water supply valve 29, the water seal vacuum pump 27, the return pressure operation valve 35, the secondary boiler supply valve 13, In addition to the secondary boiler feed valve 19, the treatment tank pressure sensor 52, the original steam pressure switch 56, the feed water pressure sensor 61, and the like are connected to the controller 49. Then, the controller 49 attempts to thaw the frozen food 1 in the processing tank 2 based on a predetermined program, as will be described later.

次に、本実施例4のシステムを用いた真空解凍処理について説明する。図7は、本実施例4のシステムの各処理槽2(8,9)にて実行される真空解凍処理の一例を示すタイムチャートであり、処理槽2内の圧力変化の他、真空ポンプ27、エゼクタ給蒸弁55、熱交給水弁30、給蒸操作弁23の各作動状況を示している。この図に示すように、冷凍食材1が収容された各処理槽2では、待機工程の状態から、初期減圧工程、初期給蒸工程の後、設定された急速解凍時間だけ、急速解凍工程と空気排除工程との交互の組合せがなされる。その後、シメ減圧工程の後、設定されたシメ時間だけ、シメ工程と空気排除工程との交互の組合せがなされる。最後に、復圧工程にて大気圧へ戻され、待機工程へ戻される。以下、各工程について、具体的に説明する。   Next, a vacuum thawing process using the system of the fourth embodiment will be described. FIG. 7 is a time chart showing an example of the vacuum thawing process executed in each processing tank 2 (8, 9) of the system of the fourth embodiment. In addition to the pressure change in the processing tank 2, the vacuum pump 27 The operation states of the ejector steam supply valve 55, the heat exchange water supply valve 30, and the steam supply operation valve 23 are shown. As shown in this figure, in each processing tank 2 in which the frozen food 1 is accommodated, from the state of the standby process, after the initial decompression process and the initial steaming process, the rapid thawing process and the air for the set rapid thawing time. Alternating combinations with exclusion steps are made. Thereafter, after the squeeze decompression step, the squeezing step and the air exhausting step are alternately combined for the set shime time. Finally, the pressure is returned to atmospheric pressure in the return pressure process, and then returned to the standby process. Hereinafter, each step will be specifically described.

待機工程では、給蒸手段3、減圧手段4は、いずれも作動を停止している。すなわち、給蒸操作弁23、エゼクタ給蒸弁55、熱交給水弁30、封水給水弁29は、いずれも閉鎖しており、真空ポンプ27は停止状態にある。一方、復圧操作弁35は開いた状態とされている。この待機工程において、処理槽2の扉51は開閉可能とされ、処理槽2に対する食材1の出し入れが可能である。   In the standby process, the operation of both the steam supply means 3 and the decompression means 4 is stopped. That is, the steam supply operation valve 23, the ejector steam supply valve 55, the heat exchange water supply valve 30, and the sealed water supply valve 29 are all closed, and the vacuum pump 27 is in a stopped state. On the other hand, the return pressure operation valve 35 is open. In this standby step, the door 51 of the processing tank 2 can be opened and closed, and the food 1 can be taken in and out of the processing tank 2.

初期減圧工程は、給蒸操作弁23および復圧操作弁35を閉じた状態で、減圧手段4により、処理槽2内を所定の初期給蒸圧力まで減圧して、処理槽2内からの空気排除を図る工程である。図示例の初期減圧工程は、前段と後段とに分けられる。初期減圧工程前段では、所定のエゼクタ給蒸圧力になるまで、減圧手段4の内、真空ポンプ27のみを作動させて、処理槽2内からの空気排除が図られる。すなわち、封水給水弁29を開くと共に、真空ポンプ27を作動させて、処理槽2内の空気が真空引きされる。   In the initial decompression step, the inside of the processing tank 2 is decompressed to a predetermined initial steaming pressure by the decompression means 4 with the steam supply operation valve 23 and the return pressure operation valve 35 being closed, This is a process of eliminating. The initial decompression step in the illustrated example is divided into a front stage and a rear stage. In the first stage of the initial depressurization step, only the vacuum pump 27 in the depressurization means 4 is operated until the predetermined ejector steam supply pressure is reached, so that the air from the processing tank 2 is removed. That is, while opening the sealing water supply valve 29, the vacuum pump 27 is operated and the air in the processing tank 2 is evacuated.

引き続き行われる初期減圧工程後段では、真空ポンプ27に加えて、蒸気エゼクタ54および熱交換器25も作動させて、初期給蒸圧力までの更なる減圧が図られる。すなわち、エゼクタ給蒸弁55を開いて、蒸気エゼクタ54のノズルから蒸気を噴出させることで、蒸気エゼクタ54を作動させると共に、熱交給水弁30を開いて、熱交換器25に冷却用水を供給することで、減圧ライン24内の蒸気を凝縮液化が図られる。このようにして、初期減圧工程にて、処理槽2内が所定の初期給蒸圧力まで減圧されると、次工程の初期給蒸工程へ移行する。   In the subsequent stage of the initial pressure reduction process, the steam ejector 54 and the heat exchanger 25 are operated in addition to the vacuum pump 27 to further reduce the pressure up to the initial steam supply pressure. That is, by opening the ejector steam supply valve 55 and ejecting steam from the nozzle of the steam ejector 54, the steam ejector 54 is operated and the heat exchange water supply valve 30 is opened to supply cooling water to the heat exchanger 25. As a result, the vapor in the decompression line 24 is condensed and liquefied. Thus, when the inside of the processing tank 2 is depressurized to a predetermined initial steaming pressure in the initial decompression process, the process proceeds to the initial steaming process of the next process.

初期給蒸工程は、処理槽2内へ蒸気供給することで、処理槽2内を所定の解凍圧力まで昇圧する工程である。すなわち、給蒸操作弁23を開いて、処理槽2内が解凍圧力に達するまで、処理槽2内へ蒸気供給する。この際、本実施例4では、初期減圧工程後段のまま減圧手段4の作動を継続させた状態とすることで、処理槽2内からの空気排除が継続される。   The initial steaming step is a step of increasing the pressure in the processing tank 2 to a predetermined thawing pressure by supplying steam into the processing tank 2. That is, the steam supply operation valve 23 is opened, and steam is supplied into the processing tank 2 until the inside of the processing tank 2 reaches the thawing pressure. At this time, in Example 4, the operation of the decompression unit 4 is continued in the stage after the initial decompression step, so that the air is continuously removed from the processing tank 2.

初期給蒸工程後には、設定された急速解凍時間だけ、急速解凍工程が行われる。その際、所定周期で所定時間だけ空気排除工程が実行される。急速解凍工程では、減圧手段4の作動を停止した状態で、給蒸手段3により処理槽2内へ蒸気供給する。また、空気排除工程では、給蒸手段3による処理槽2内への蒸気供給を継続した状態で、減圧手段4を作動する。本実施例4では、蒸気エゼクタ54、熱交換器25、および真空ポンプ27を作動させて、処理槽2内からの空気排除が図られる。   After the initial steaming process, the rapid thawing process is performed for the set rapid thawing time. In that case, an air exclusion process is performed only for a predetermined time with a predetermined period. In the rapid thawing step, steam is supplied into the treatment tank 2 by the steam supply means 3 with the operation of the decompression means 4 stopped. Further, in the air exclusion process, the decompression means 4 is operated in a state where the steam supply into the treatment tank 2 by the steam supply means 3 is continued. In the fourth embodiment, the steam ejector 54, the heat exchanger 25, and the vacuum pump 27 are actuated to eliminate air from the processing tank 2.

このようにして設定された急速解凍時間が経過すると、シメ減圧工程へ移行する。このシメ減圧工程では、処理槽2内への給蒸を停止した状態で、減圧手段4を作動させて、処理槽2内を所定のシメ圧力まで減圧する。すなわち、給蒸操作弁23を閉じた状態で、エゼクタ給蒸弁55、熱交給水弁30、封水給水弁29を開いて、蒸気エゼクタ54、熱交換器25、および真空ポンプ27を作動させて、シメ圧力まで処理槽2内を減圧する。   When the quick thawing time set in this way elapses, the process proceeds to the squeeze decompression step. In this squeeze decompression step, the decompression means 4 is operated in a state where the steam supply to the treatment tank 2 is stopped, and the inside of the treatment tank 2 is decompressed to a predetermined squeeze pressure. That is, with the steam supply operation valve 23 closed, the ejector steam supply valve 55, the heat exchange water supply valve 30, and the sealed water supply valve 29 are opened, and the steam ejector 54, the heat exchanger 25, and the vacuum pump 27 are operated. Then, the inside of the treatment tank 2 is depressurized to the shim pressure.

シメ減圧工程後には、設定されたシメ時間だけ、シメ工程が行われる。その際、所定周期で所定時間だけ空気排除工程が実行される。シメ工程およびその工程中に行われる空気排除工程は、処理槽2内の圧力が異なるだけで、上述した急速解凍工程とその工程中に行われる空気排除工程と同等の工程である。シメ工程により、食材1の表面温度を、前記急速解凍工程よりも下げることができ、また、解凍後の食材1の中心部温度と表面温度との温度差を小さくすることができる。これにより、解凍時間の短縮を図りつつ、温度ムラを抑えた解凍が可能となる。   After the squeeze decompression step, the squeeze step is performed for the set shave time. In that case, an air exclusion process is performed only for a predetermined time with a predetermined period. The squeeze process and the air evacuation process performed during the process are equivalent to the rapid thawing process and the air evacuation process performed during the process, except that the pressure in the treatment tank 2 is different. By the squeezing process, the surface temperature of the food 1 can be lowered as compared with the rapid thawing process, and the temperature difference between the center temperature of the food 1 after thawing and the surface temperature can be reduced. This makes it possible to perform thawing while suppressing temperature unevenness while shortening the thawing time.

このようにして設定されたシメ時間が経過すると、復圧工程へ移行する。この復圧工程では、給蒸手段3および減圧手段4の作動を停止した状態で、復圧手段5により処理槽2内が大気圧まで戻される。具体的には、給蒸操作弁23を閉じて処理槽2内への蒸気供給を停止し、且つ、エゼクタ給蒸弁55、熱交給水弁30、封水給水弁29を閉じて、蒸気エゼクタ54、熱交換器25、真空ポンプ27の作動を停止した状態で、復圧操作弁35を開いて処理槽2内を大気圧まで復圧する。そして、その復圧完了後には、最初に述べた待機工程へ移行する。   When the squeezing time set in this way elapses, the process proceeds to the decompression process. In this return pressure step, the inside of the processing tank 2 is returned to atmospheric pressure by the return pressure means 5 with the operations of the steam supply means 3 and the pressure reduction means 4 stopped. Specifically, the steam supply operation valve 23 is closed to stop the supply of steam into the treatment tank 2, and the ejector supply valve 55, the heat exchange water supply valve 30, and the sealed water supply valve 29 are closed to supply the steam ejector. 54, with the operation of the heat exchanger 25 and the vacuum pump 27 stopped, the return pressure operation valve 35 is opened to return the pressure in the processing tank 2 to atmospheric pressure. Then, after completion of the return pressure, the process proceeds to the standby process described first.

ところで、本実施例4の初期減圧工程は、前記実施例2における第一空気排除工程に相当する。また、本実施例4の急速解凍工程およびシメ工程は、前記実施例2における解凍工程に相当する。すなわち、本実施例4では、二段階に解凍工程を行っているものといえる。さらに、本実施例4の急速解凍工程およびシメ工程における各空気排除工程は、前記実施例2における第二空気排除工程に相当する。   By the way, the initial decompression step of the fourth embodiment corresponds to the first air removal step of the second embodiment. Further, the rapid thawing process and the squeezing process of the fourth embodiment correspond to the thawing process in the second embodiment. That is, in Example 4, it can be said that the thawing process is performed in two stages. Furthermore, each air exclusion process in the rapid thawing process and the squeezing process of the fourth embodiment corresponds to the second air exclusion process in the second embodiment.

図8は、本実施例4の複数処理槽制御システムを用いた複数処理槽制御方法の一例を示すフローチャートである。図8では、第一処理槽8における処理フローを示しているが、第二処理槽9における処理フローもこれと同様である。本実施例4の複数処理槽制御方法は、複数の処理槽2(8,9)で給蒸および給水の各設備を共用することに伴い、その給蒸および給水の能力を超えてその使用が重なることがないように、所望により各処理槽2の処理をずらして実行する真空解凍方法である。   FIG. 8 is a flowchart illustrating an example of a multi-treatment tank control method using the multi-treatment tank control system according to the fourth embodiment. Although FIG. 8 shows the processing flow in the first processing tank 8, the processing flow in the second processing tank 9 is the same as this. The multiple treatment tank control method of the fourth embodiment is used in a plurality of treatment tanks 2 (8, 9) in common with each facility for supplying steam and supplying water, exceeding its ability to supply steam and supplying water. This is a vacuum thawing method in which processing of each processing tank 2 is shifted and executed as desired so as not to overlap.

具体的には、複数の処理槽2で同時に実行すると、給蒸または給水の能力を超える工程を予め優先工程として定めておき、その優先工程に属する工程はいずれか一の処理槽2でのみ実行可能とする。そして、その間、他の処理槽2では優先工程以外の工程を実行するか、前記一の処理槽2における実行中の優先工程の完了まで待機する待機工程とする。   Specifically, when executed in a plurality of treatment tanks 2 at the same time, a process exceeding the capability of steaming or water supply is determined in advance as a priority process, and the processes belonging to the priority process are executed only in any one of the treatment tanks 2. Make it possible. In the meantime, in the other processing tank 2, a process other than the priority process is executed, or a standby process waiting for completion of the priority process being executed in the one processing tank 2 is set.

本実施例4では、給蒸および給水について、複数の処理槽2で設備を共用しているので、初期減圧工程後段、初期給蒸工程、空気排除工程(急速解凍工程中とシメ工程中の双方)、シメ減圧工程を、優先工程としている。従って、この優先工程に属する工程が、複数の処理槽2で重なろうとする場合には、いずれか一の処理槽2の処理を実行または継続し、他の処理槽2の処理はその間待機させる。   In this Example 4, since the equipment is shared by the plurality of treatment tanks 2 for steaming and water supply, the latter stage of the initial decompression process, the initial steaming process, and the air exhausting process (both during the rapid thawing process and the shiming process) ), The squeeze decompression step is the priority step. Therefore, when a process belonging to this priority process is to be overlapped in a plurality of processing tanks 2, the process of any one of the processing tanks 2 is executed or continued, and the processes of the other processing tanks 2 are kept waiting. .

ところで、万一の故障などで処理槽内圧力を制御しきれない場合に、運転を中止せずに解凍圧力(またはシメ圧力)を維持するために、前記各工程とは別に、強制空気排除工程を用意している。この強制空気排除工程は、急速解凍工程中とシメ工程中の各空気排除工程と同様の工程であり、優先工程に属している。この強制空気排除工程を行うタイミングは、所定時間、処理槽2内へ蒸気供給されなかった場合と、解凍工程中に処理槽2内が解凍圧力よりも所定以上高まった場合になされる。   By the way, in order to maintain the thawing pressure (or squeeze pressure) without stopping the operation when the pressure in the treatment tank cannot be controlled due to a failure, etc., the forced air removal step is separate from the above steps. Is prepared. This forced air exclusion process is the same process as each air exclusion process during the quick thawing process and the shim process, and belongs to the priority process. The timing for performing this forced air removal step is performed when the steam is not supplied into the processing tank 2 for a predetermined time and when the inside of the processing tank 2 rises by a predetermined amount or more during the thawing step.

本実施例4の複数処理槽制御方法について、図8に基づき更に詳細に説明する。いま、たとえば第一処理槽8の運転が開始され(ST41)、図7における各工程が順次に実行される場合を考える。この場合、制御器49は、次工程(最初の工程を含む)が優先工程か否か基づき(ST42)、次工程が優先工程でない場合には、直ちにその次工程を実行する(ST45)。一方、次工程が優先工程である場合には、まず他の処理槽(ここでは第二処理槽9)で優先工程を実行中か否かに基づき(ST43)、第二処理槽9で優先工程を実行中でない場合には、次工程を実行する(ST45)。その一方、第二処理槽9で優先工程を実行中の場合には、その第二処理槽9における実行中工程の完了まで待機した後(ST44)、次工程を実行する(ST45)。そして、その実行中工程の処理が完了すると(ST46)、次工程がある限り、前記各処理(ST42〜ST46)が繰り返し行われる(ST47)。このようにして、優先工程に属する工程は、いずれかの処理槽2でのみ実行されることになる。これにより、給蒸設備や給水設備の能力を必要最小限に抑えつつ、これら設備を複数の処理槽2(7,8)で共用することができる。   The multiple processing tank control method of the fourth embodiment will be described in more detail based on FIG. Consider a case where, for example, the operation of the first treatment tank 8 is started (ST41) and the respective steps in FIG. 7 are sequentially performed. In this case, based on whether or not the next process (including the first process) is a priority process (ST42), the controller 49 immediately executes the next process if the next process is not a priority process (ST45). On the other hand, when the next process is a priority process, first, based on whether the priority process is being executed in another processing tank (here, the second processing tank 9) (ST43), the priority process is performed in the second processing tank 9. If not, the next step is executed (ST45). On the other hand, when the priority process is being executed in the second treatment tank 9, after waiting for completion of the process in execution in the second treatment tank 9 (ST44), the next process is executed (ST45). And when the process of the process in execution is completed (ST46), as long as there exists a next process, each said process (ST42-ST46) is performed repeatedly (ST47). In this way, the process belonging to the priority process is executed only in one of the treatment tanks 2. Thereby, these facilities can be shared by the plurality of treatment tanks 2 (7, 8) while minimizing the capacity of the steam supply facility and the water supply facility.

ところで、待機工程(ST44)においては、真空ポンプ27および蒸気エゼクタ54は、作動を停止させ、熱交換器25への給水も停止状態としている。そして、その待機状態が解除されるまで、処理槽2内の真空状態は維持される。従って、待機工程終了による次工程への移行時には、処理槽2内が多少復圧している可能性がある。そこで、各待機工程の終了時には、適宜再減圧がなされる。具体的には、初期減圧工程後段への移行時に待機した場合には、エゼクタ給蒸圧力まで再減圧した後、初期減圧工程後段へ進める。また、初期給蒸工程への移行時に待機した場合には、初期給蒸圧力まで再減圧した後、初期給蒸工程へ進める。一方、その他場合には、待機工程の終了後、そのまま次工程へ進めてもよい。   By the way, in the standby step (ST44), the vacuum pump 27 and the steam ejector 54 stop operating, and the water supply to the heat exchanger 25 is also stopped. And the vacuum state in the processing tank 2 is maintained until the standby state is cancelled | released. Therefore, there is a possibility that the inside of the processing tank 2 is somewhat decompressed during the transition to the next process due to the end of the standby process. Therefore, the decompression is performed again as appropriate at the end of each standby process. Specifically, when waiting at the time of shifting to the latter stage of the initial pressure reduction process, the pressure is reduced again to the ejector steaming pressure, and then the process proceeds to the latter stage of the initial pressure reduction process. Moreover, when it waits at the time of transfer to an initial steaming process, after reducing pressure again to the initial steaming pressure, it progresses to the initial steaming process. On the other hand, in other cases, after the standby process, the process may proceed as it is.

この実施例4の解凍制御には、被処理物1を真空パックした食材とした場合のつぎの解凍制御を含んでいる。すなわち、先ず被処理物1の耐圧(パック内真空度)を予め実験などにより確認しておく。その上で、パック内真空度まで(以下とならないように)処理槽2内を減圧し、その後給蒸する。この給蒸は、被処理物1の処理量およびパック内真空度に応じて、給蒸操作弁23の開度を決めたプログラムにより実行する。こうした制御により、真空パックした被処理物1の解凍をパックの破損を生ずることなく行うことができる。   The thawing control of the fourth embodiment includes the following thawing control when the object to be processed 1 is a vacuum-packed food. That is, first, the pressure resistance (vacuum degree in the pack) of the workpiece 1 is confirmed in advance by experiments or the like. Then, the inside of the treatment tank 2 is depressurized to a vacuum level in the pack (so as not to be below), and then steamed. This steaming is executed by a program that determines the opening degree of the steaming operation valve 23 according to the processing amount of the workpiece 1 and the degree of vacuum in the pack. By such control, the vacuum-packed workpiece 1 can be thawed without causing damage to the pack.

以上の如く、本発明の複数処理槽制御システムおよび複数処理槽制御方法は、前記各実施例の構成に限らず適宜変更可能である。たとえば、図1では、第一処理槽8と第二処理槽9の二つの処理槽だけ設置しているが、三つ以上の処理槽2を備えていてもよく、その場合も減圧手段4の使用が重なる場合には、優先順位の高い処理槽2の処理から順次に実行するよう制御すればよい。また、前記実施例1では、減圧手段4として、熱交換器25と真空ポンプ27とを用いたが、これらに代えてまたはこれらに加えて、蒸気エゼクタや水エゼクタを用いてもよい。さらに、図2における蒸煮冷却工程のフローチャートや優先順位は一例である。たとえば、前記実施例1では、蒸煮工程は第一蒸煮工程(ST4)と第二蒸煮工程(ST5)との二段階としたが、一段階または三段階以上に圧力または温度を調整して実行してもよい。   As described above, the multiple treatment tank control system and the multiple treatment tank control method of the present invention are not limited to the configuration of each of the embodiments described above, and can be changed as appropriate. For example, in FIG. 1, only two treatment tanks, a first treatment tank 8 and a second treatment tank 9, are installed, but three or more treatment tanks 2 may be provided, and in that case, the decompression means 4 is also provided. When the use is overlapped, it may be controlled to execute sequentially from the processing of the processing tank 2 having a high priority. In the first embodiment, the heat exchanger 25 and the vacuum pump 27 are used as the decompression unit 4, but a steam ejector or a water ejector may be used instead of or in addition to these. Furthermore, the flowchart and priority of the steaming cooling process in FIG. 2 are examples. For example, in the first embodiment, the cooking process has two stages of the first cooking process (ST4) and the second cooking process (ST5), but the pressure or temperature is adjusted to one stage or three or more stages. May be.

また、前記実施例1では処理槽一つずつに給蒸操作弁23や減圧操作弁28などを個別に設置したが、これら各弁を複数の処理槽2ごとに共通的に設けて、グループ分けした制御を可能としてもよい。さらに、前記実施例1〜3では、蒸煮冷却機または蒸煮機、真空解凍機、蒸気滅菌機に適用した例を示したが、複数の処理槽で減圧手段を共用する構成であれば、減圧手段が必要なその他の各種装置にも本発明を適用可能である。   Further, in the first embodiment, the steam supply operation valve 23 and the pressure reducing operation valve 28 are individually installed for each processing tank, but these valves are commonly provided for each of the plurality of processing tanks 2 and grouped. It may be possible to perform such control. Further, in Examples 1 to 3, an example of application to a steaming cooler or steamer, a vacuum thawing machine, and a steam sterilizer has been described. The present invention can also be applied to various other devices that require the above.

さらに、前記実施例4においては、複数の処理槽2で給蒸手段3を共用する例について説明したが、これに代えてまたはこれに加えて、減圧手段4などの他の構成を複数の処理槽2で共用してもよい。また、前記実施例4においては、複数の処理槽2で、一次ボイラと二次ボイラ12とを共用するように構成しているが、二次ボイラ12は各処理槽2毎に設け、一次ボイラのみを共用するように構成することができる。   Furthermore, in the said Example 4, although the example which shares the steam supply means 3 with the some process tank 2 was demonstrated, it replaced with this, or in addition to this, other structures, such as the pressure reduction means 4, are used for several process. The tank 2 may be shared. Moreover, in the said Example 4, although it comprises so that the primary boiler and the secondary boiler 12 may be shared by the some process tank 2, the secondary boiler 12 is provided for every process tank 2, and a primary boiler is provided. Can be configured to share only.

さらに、前記実施例4においては、二つの処理槽2を制御するように構成しているが、前記のように三つ以上の処理槽2を制御するように構成することができる。具体的には、偶数の(たとえば、四つ)の処理槽2を制御する場合は、二つずつ処理槽2にグループ化して、各グループを前記実施例4による制御を行うように構成することができる。また、奇数の(たとえば、五つ)の処理槽を制御する場合は、偶数(たとえば、二つ)の処理槽2のグループと、奇数(たとえば、三つ)の処理槽2のグループとに分けて、各グループ毎に前記実施例4の制御を行うように構成することができる。   Furthermore, in the said Example 4, although comprised so that the two process tanks 2 may be controlled, it can be comprised so that three or more process tanks 2 may be controlled as mentioned above. Specifically, when an even number (for example, four) of processing tanks 2 are controlled, two processing tanks 2 are grouped into two processing tanks 2 and each group is configured to perform control according to the fourth embodiment. Can do. Moreover, when controlling odd (for example, five) processing tanks, it is divided into a group of even (for example, two) processing tanks 2 and a group of odd (for example, three) processing tanks 2. Thus, the control according to the fourth embodiment can be performed for each group.

また、前記実施例1の図1の構成において、実施例4と同様に優先工程に基づく制御をしてもよいし、逆に、前記実施例4の図6の構成において、実施例1と同様に優先順位に基づく制御をしてもよい。さらに、実施例4の優先工程に基づく制御は、真空解凍機に限らず、蒸煮冷却機などにも同様に適用可能である。   In the configuration of FIG. 1 of the first embodiment, control based on the priority process may be performed similarly to the fourth embodiment. Conversely, in the configuration of FIG. 6 of the fourth embodiment, the same as that of the first embodiment. Control based on the priority order may be performed. Furthermore, the control based on the priority process of the fourth embodiment is applicable not only to the vacuum thawing machine but also to a steaming cooler or the like.

また、前記実施例4では、解凍運転の各工程を細分化し、それぞれの細分化した工程の各処理槽2における進行状況を、共通の制御器49に一括して取り込み、各手段3〜5に運転制御をかけていた。しかしながら、制御器49は、各処理槽2ごとに個別に設けてもよく、その場合でも各処理槽2の制御器49同士を互いに接続して、他の処理槽2の状況を監視することで、同様の制御が可能である。しかも、前記実施例4では、二つの処理槽2だけであったが、三つ以上の処理槽2でも同様に制御できる。その際も、蒸気や水を多く使用する優先工程に、何台の処理槽2が入っているかによって、適宜待機工程を作ることで制御できる。   Moreover, in the said Example 4, each process of the thawing | decompression operation is subdivided, The progress condition in each processing tank 2 of each subdivided process is collectively taken in into the common controller 49, and each means 3-5 is taken in. Operation control was applied. However, the controller 49 may be provided individually for each processing tank 2, and even in that case, the controllers 49 of the processing tanks 2 are connected to each other and the status of the other processing tanks 2 is monitored. The same control is possible. Moreover, in the fourth embodiment, only the two treatment tanks 2 are provided, but the control can be similarly performed with three or more treatment tanks 2. Even in that case, it can be controlled by appropriately creating a standby process depending on how many processing tanks 2 are included in the priority process using a lot of steam and water.

さらに、図7において、所定のシメ時間のシメ工程後には、適宜、処理槽2内をさらに減圧状態に保持して、解凍後の食材1を低温保持する終了工程を行ってもよい。この終了工程では、給蒸手段3による処理槽2内への給蒸を停止した状態で、減圧手段4を作動させればよい。具体的には、蒸気エゼクタ54、熱交換器25、および真空ポンプ27を適宜作動させて、処理槽2内を所望圧力に保持する。そして、食材1の取り出し時に、復圧工程にて処理槽2内を大気圧まで復圧すればよい。   Furthermore, in FIG. 7, after the squeezing process for a predetermined squeezing time, an end process may be performed in which the inside of the processing tank 2 is further kept in a reduced pressure state and the thawing food 1 is kept at low temperature. In this termination step, the decompression means 4 may be operated in a state where the steam supply to the treatment tank 2 by the steam supply means 3 is stopped. Specifically, the steam ejector 54, the heat exchanger 25, and the vacuum pump 27 are appropriately operated to maintain the inside of the processing tank 2 at a desired pressure. And at the time of taking out the foodstuff 1, what is necessary is just to decompress the inside of the processing tank 2 to atmospheric pressure in a decompression process.

本発明の複数処理槽制御システムの実施例1を示す概略構成図である。It is a schematic block diagram which shows Example 1 of the multiple processing tank control system of this invention. 図1の複数処理槽制御システムの各処理槽にて実行される蒸煮冷却処理の一例を示すフローチャートである。It is a flowchart which shows an example of the steaming cooling process performed in each processing tank of the multiple processing tank control system of FIG. 実施例1の複数処理槽制御方法を示すフローチャートである。2 is a flowchart illustrating a multiple processing tank control method according to the first embodiment. 図1の複数処理槽制御システムを真空解凍機に適用した場合の処理フローの一例を示すフローチャートである。It is a flowchart which shows an example of the processing flow at the time of applying the multiple processing tank control system of FIG. 1 to a vacuum defroster. 図1の複数処理槽制御システムを蒸気滅菌機に適用した場合の処理フローの一例を示すフローチャートである。It is a flowchart which shows an example of the processing flow at the time of applying the multiple processing tank control system of FIG. 1 to a steam sterilizer. 本発明の複数処理槽制御システムの実施例4を示す概略構成図であり、真空解凍機に適用した例を示している。It is a schematic block diagram which shows Example 4 of the multiple processing tank control system of this invention, and has shown the example applied to the vacuum thawing machine. 実施例4の複数処理槽制御システムの各処理槽にて実行される真空解凍処理の一例を示すタイムチャートである。It is a time chart which shows an example of the vacuum thawing process performed in each processing tank of the multiple processing tank control system of Example 4. 実施例4の複数処理槽制御方法を示すフローチャートである。10 is a flowchart illustrating a multiple processing tank control method according to a fourth embodiment.

符号の説明Explanation of symbols

1 被処理物(食材など)
2 処理槽
3 給蒸手段
4 減圧手段
5 復圧手段
6 排出手段
7 制御手段
8 第一処理槽
9 第二処理槽
12 二次ボイラ(リボイラ)
21 給蒸ライン
23 給蒸操作弁
24 減圧ライン
27 真空ポンプ
28 減圧操作弁
32 復圧ライン
35 復圧操作弁
39 上部排蒸ライン(排出ライン)
40 上部排蒸弁(排出弁)
42 下部排蒸ライン(排出ライン)
43 下部排蒸弁(排出弁)
45 トラップライン(排出ライン)
46 トラップ弁(排出弁)
54 蒸気エゼクタ
1 Object to be processed (food ingredients, etc.)
DESCRIPTION OF SYMBOLS 2 Treatment tank 3 Steaming means 4 Pressure reducing means 5 Pressure-reducing means 6 Discharge means 7 Control means 8 First treatment tank 9 Second treatment tank 12 Secondary boiler (reboiler)
21 Steam supply line 23 Steam supply operation valve 24 Pressure reduction line 27 Vacuum pump 28 Pressure reduction operation valve 32 Pressure recovery line 35 Pressure recovery operation valve 39 Upper steaming line (discharge line)
40 Upper steaming valve (discharge valve)
42 Lower steam line (discharge line)
43 Lower steam valve (discharge valve)
45 Trap line (discharge line)
46 Trap valve (discharge valve)
54 Steam ejector

Claims (12)

複数の処理槽と、この複数の処理槽に共通して用いられる共用設備とを備え、
前記共用設備の使用が重なることにより前記共用設備の能力を超えないように、前記各処理槽の処理をずらして実行する
ことを特徴とする複数処理槽制御システム。
A plurality of treatment tanks and a common facility used in common for the plurality of treatment tanks,
The multiple processing tank control system, wherein the processing of each processing tank is shifted and executed so as not to exceed the capacity of the shared equipment due to overlapping use of the shared equipment.
前記各処理槽内の気体を外部へ吸引排出して前記各処理槽内を減圧する減圧手段と、減圧された前記各処理槽内へ外気を導入して前記各処理槽内を復圧する復圧手段と、前記各処理槽内、および/または前記減圧手段を構成する蒸気エゼクタのノズルへ蒸気供給する給蒸手段と、一または複数の前記処理槽ごとに異なる工程を実行可能に前記各手段を制御する制御手段とを備え、
前記給蒸手段、前記減圧手段および前記復圧手段の内、いずれか一以上の手段は、その一部または全部が前記共用設備とされており、
前記制御手段は、前記共用設備を用いる工程が重なることにより前記共用設備の能力を超える場合には、その各処理槽の処理をずらして実行する
ことを特徴とする請求項1に記載の複数処理槽制御システム。
Depressurizing means for sucking and discharging the gas in each processing tank to the outside and reducing the pressure in each processing tank; and a re-pressure for returning the pressure in each processing tank by introducing outside air into each of the decompressed processing tanks Means, steam supplying means for supplying steam to the nozzles of the steam ejector constituting the processing tank and / or the decompression means, and each means capable of executing different processes for each of the one or more processing tanks. Control means for controlling,
Among the steaming means, the pressure reducing means, and the pressure-reducing means, any one or more of the means are part or all of the shared equipment,
2. The multiple processing according to claim 1, wherein when the process using the shared equipment overlaps and the capacity of the shared equipment is exceeded, the control unit shifts and executes the processing of each processing tank. Tank control system.
前記給蒸手段は、複数の前記処理槽に共通して設けられたボイラからの蒸気を、前記各処理槽への各給蒸ラインを介して前記各処理槽へ供給可能であり、
前記減圧手段は、複数の前記処理槽に共通または個別に設けられ、前記各処理槽からの各減圧ラインを介して、前記各処理槽内の空気および/または蒸気を排出する手段であり、
前記制御手段は、前記各処理槽に対応して前記各給蒸ラインの中途に設けられる各給蒸操作弁と、前記各処理槽に対応して前記各処理槽内への外気導入用の各復圧ラインの中途に設けられる各復圧操作弁の開閉、および前記各処理槽ごとに減圧可能に前記減圧手段の作動または前記各減圧ラインの中途に設けられる各減圧操作弁の開閉を制御すると共に、複数の前記処理槽で前記共用設備を用いる工程が重なることにより前記共用設備の能力を超える場合には、いずれかの処理槽の処理を継続または実行し、その間、他の処理槽の処理を待機させる
ことを特徴とする請求項2に記載の複数処理槽制御システム。
The steaming means can supply steam from a boiler provided in common to the plurality of processing tanks to the processing tanks via steaming lines to the processing tanks,
The decompression means is a means that is provided in common or individually in the plurality of treatment tanks, and that discharges air and / or steam in the treatment tanks through the decompression lines from the treatment tanks,
The control means includes each steaming operation valve provided in the middle of each steaming line corresponding to each processing tank, and each for introducing outside air into each processing tank corresponding to each processing tank. Controls the opening / closing of each decompression operation valve provided in the middle of the decompression line and the operation of the decompression means or the opening / closing of each decompression operation valve provided in the middle of each decompression line so that the pressure can be reduced for each processing tank. In addition, when the capacity of the shared equipment is exceeded by overlapping the steps of using the shared equipment in a plurality of the processing tanks, the processing of any of the processing tanks is continued or executed, while the processing of other processing tanks is performed. The multi-treatment tank control system according to claim 2, wherein
複数の処理槽と、この複数の処理槽に共通して用いられる共用設備とを備え、
一または複数の前記処理槽ごとに異なる工程を実行可能であると共に、前記共用設備を用いる工程が重なる場合には、予め定められた工程種別の優先順位に基づき、その優先順位の高い工程を優先して実行する
ことを特徴とする複数処理槽制御システム。
A plurality of treatment tanks and a common facility used in common for the plurality of treatment tanks,
When one or a plurality of the treatment tanks can execute different processes and the processes using the shared equipment are overlapped, priority is given to a process having a higher priority based on a predetermined priority of the process type. And a multi-treatment tank control system.
前記共用設備は、減圧手段である
ことを特徴とする請求項4に記載の複数処理槽制御システム。
The multi-treatment tank control system according to claim 4, wherein the shared facility is a decompression unit.
複数の処理槽と、
前記処理槽内へ蒸気供給する給蒸手段と、
複数の前記処理槽に共通して設けられ、前記処理槽内を減圧する減圧手段と、
減圧された前記処理槽内を復圧する復圧手段と、
前記処理槽ごとに異なる工程を実行可能に、前記給蒸手段、前記減圧手段および前記復圧手段を制御すると共に、前記減圧手段を用いる工程が重なる場合には、予め定められた工程種別の優先順位に基づき、その優先順位の高い工程を行う処理槽の処理を優先して実行する制御手段と
を備えることを特徴とする複数処理槽制御システム。
A plurality of treatment tanks;
Steaming means for supplying steam into the treatment tank;
A pressure reducing means that is provided in common to the plurality of processing tanks and depressurizes the inside of the processing tank;
Pressure return means for returning the pressure in the reduced processing tank;
When the process using the depressurization unit overlaps with the steam supply unit, the depressurization unit, and the decompression unit so that different processes can be performed for each treatment tank, priority is given to a predetermined process type. A multi-treatment tank control system comprising: control means for preferentially executing the treatment of the treatment tank performing a process having a high priority based on the order.
前記給蒸手段は、複数の前記処理槽に共通して設けられたボイラからの蒸気を、前記各処理槽への各給蒸ラインを介して前記各処理槽へ供給する手段であり、
前記減圧手段は、複数の前記処理槽に共通して設けられ、前記各処理槽からの各減圧ラインを介して、前記各処理槽内の空気および/または蒸気を排出する手段であり、
前記制御手段は、前記各処理槽に対応して前記各給蒸ラインの中途に設けられる各給蒸操作弁と、前記各処理槽に対応して前記各減圧ラインの中途に設けられる各減圧操作弁と、前記各処理槽に対応して前記各処理槽内への外気導入用の各復圧ラインの中途に設けられる各復圧操作弁と、前記各処理槽に対応して前記各処理槽内からの蒸気やその凝縮水の各排出ラインの中途に設けられる各排出弁の開閉、および前記減圧手段の作動を制御する
ことを特徴とする請求項6に記載の複数処理槽制御システム。
The steaming means is means for supplying steam from a boiler provided in common to the plurality of processing tanks to the processing tanks through steaming lines to the processing tanks,
The decompression means is a means that is provided in common to the plurality of treatment tanks, and discharges air and / or steam in each treatment tank via each decompression line from each treatment tank,
The control means includes each steam supply operation valve provided in the middle of each steam supply line corresponding to each treatment tank, and each pressure reducing operation provided in the middle of each pressure reduction line corresponding to each process tank. A valve, each return pressure operation valve provided in the middle of each return pressure line for introducing outside air into each processing tank corresponding to each processing tank, and each processing tank corresponding to each processing tank The multi-treatment tank control system according to claim 6, wherein opening and closing of each discharge valve provided in the middle of each discharge line of steam and condensed water from the inside and operation of the decompression means are controlled.
前記減圧手段による前記処理槽内の減圧下で、前記給蒸手段により前記処理槽内へ蒸気供給して、前記処理槽内の食材を加熱調理する減圧蒸煮工程の優先順位を最も高くした蒸煮機もしくは蒸煮冷却機、
運転開始直後の前記減圧手段の作動による前記処理槽内からの空気排除工程の優先順位を最も高くした真空解凍機、
前記給蒸手段により前記処理槽内へ蒸気供給して、前記処理槽内の物品を加熱する滅菌工程後に、前記減圧手段を作動させて前記処理槽内を減圧して前記物品を乾かす乾燥工程の優先順位を最も高くした蒸気滅菌機、
のいずれかであることを特徴とする請求項6または請求項7に記載の複数処理槽制御システム。
A steaming machine having the highest priority in a vacuum cooking step in which steam is supplied into the processing tank by the steaming means and the ingredients in the processing tank are cooked under reduced pressure in the processing tank by the decompression means. Or steaming cooler,
A vacuum thawing machine having the highest priority of the air removal step from the inside of the treatment tank by the operation of the pressure reducing means immediately after the start of operation,
After a sterilization step in which steam is supplied into the treatment tank by the steaming means and the article in the treatment tank is heated, the decompression means is operated to decompress the inside of the treatment tank and dry the article. Steam sterilizer with the highest priority,
The multi-treatment tank control system according to claim 6 or 7, wherein the multi-treatment tank control system is any one of the following.
共用設備を用いた複数の処理槽の制御方法であって、
前記共用設備の使用が重なることにより前記共用設備の能力を超えないように、前記各処理槽の処理をずらして実行する
ことを特徴とする複数処理槽制御方法。
A method for controlling a plurality of treatment tanks using a shared facility,
The multi-treatment tank control method, wherein the treatment tanks are shifted and executed so as not to exceed the capacity of the common equipment due to overlapping use of the common equipment.
複数の前記処理槽で同時に実行すると、前記共用設備の能力を超える一または複数種の工程を、優先工程として予め定めておき、
各処理槽における次工程への工程切替時に、次工程が優先工程に属し、且つ他の処理槽で優先工程に属する工程を実行中の場合には、この実行中工程の完了まで待機するステップ、
その後、前記次工程を実行すると共に、前記他の処理槽の後続工程が優先工程に属する場合には、前記次工程の完了まで前記他の処理槽の処理を待機させるステップ
を含むことを特徴とする請求項9に記載の複数処理槽制御方法。
When simultaneously executed in a plurality of the treatment tanks, one or more kinds of processes exceeding the capacity of the shared equipment are predetermined as priority processes,
When switching to the next process in each treatment tank, if the next process belongs to the priority process and the process belonging to the priority process is being executed in another treatment tank, a step of waiting until the completion of the process being executed,
Thereafter, executing the next process and, when a subsequent process of the other processing tank belongs to a priority process, waiting for the processing of the other processing tank until the completion of the next process. The multi-treatment tank control method according to claim 9.
共通の減圧手段を用いた複数の処理槽の制御方法であって、
複数の処理槽で前記減圧手段の使用が重なる場合には、予め定められた工程種別の優先順位に基づき、その優先順位の高い工程を行う処理槽の処理を優先して実行する
ことを特徴とする複数処理槽制御方法。
A method for controlling a plurality of treatment tanks using a common decompression means,
When the use of the pressure reducing means overlaps in a plurality of processing tanks, the processing tanks that perform processes with higher priority are preferentially executed based on the priority order of the predetermined process types. A multi-treatment tank control method.
各処理槽における次工程への工程切替時に、次工程が減圧手段を必要とし、且つ他の処理槽で減圧手段を用いる工程を実行中の場合には、この実行中工程の完了まで待機するステップ、
前記他の処理槽の後続工程が減圧手段を必要とする場合には、前記次工程の工程種別と前記他の処理槽の後続工程の工程種別とを対比し、前記次工程の工程種別が前記他の処理槽の後続工程の工程種別よりも優先順位が低い場合には、前記他の処理槽の後続工程の完了まで待機し、前記次工程の工程種別が前記他の処理槽の後続工程の工程種別よりも優先順位が高い場合には、前記他の処理槽の処理を待機させつつ前記次工程を実行し、前記次工程の工程種別が前記他の処理槽の後続工程の工程種別と優先順位が同じ場合には、待機時間の長い方の処理槽の処理を実行するステップ
を含むことを特徴とする請求項11に記載の複数処理槽制御方法。
At the time of switching to the next process in each treatment tank, if the next process requires a decompression means and a process using the decompression means is being performed in another treatment tank, a step of waiting until the completion of the ongoing process ,
When the subsequent process of the other processing tank requires a decompression means, the process type of the next process is compared with the process type of the subsequent process of the other processing tank, and the process type of the next process is When the priority order is lower than the process type of the subsequent process of the other processing tank, the process waits until the subsequent process of the other process tank is completed, and the process type of the next process is the subsequent process of the other process tank. When the priority order is higher than the process type, the next process is executed while waiting for the process of the other process tank, and the process type of the next process has priority over the process type of the subsequent process of the other process tank. The multi-treatment tank control method according to claim 11, further comprising the step of executing the treatment of the treatment tank having a longer standby time when the order is the same.
JP2006143578A 2005-09-14 2006-05-24 System and method for multiple processing tub control Pending JP2007105452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143578A JP2007105452A (en) 2005-09-14 2006-05-24 System and method for multiple processing tub control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005267311 2005-09-14
JP2006143578A JP2007105452A (en) 2005-09-14 2006-05-24 System and method for multiple processing tub control

Publications (1)

Publication Number Publication Date
JP2007105452A true JP2007105452A (en) 2007-04-26

Family

ID=38031759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143578A Pending JP2007105452A (en) 2005-09-14 2006-05-24 System and method for multiple processing tub control

Country Status (1)

Country Link
JP (1) JP2007105452A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070733A1 (en) * 2008-12-16 2010-06-24 株式会社島津製作所 Vacuuming method for liquid crystal array test device system, liquid crystal array test device system and liquid crystal array test device
CN112238119A (en) * 2019-07-18 2021-01-19 高化学株式会社 Subcritical treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070733A1 (en) * 2008-12-16 2010-06-24 株式会社島津製作所 Vacuuming method for liquid crystal array test device system, liquid crystal array test device system and liquid crystal array test device
CN102165325A (en) * 2008-12-16 2011-08-24 株式会社岛津制作所 Vacuuming method for liquid crystal array test device system, liquid crystal array test device system and liquid crystal array test device
CN112238119A (en) * 2019-07-18 2021-01-19 高化学株式会社 Subcritical treatment system

Similar Documents

Publication Publication Date Title
JP2007222314A (en) Cooking apparatus and cooking method
JP2007229379A (en) Steam heating apparatus
JP4581846B2 (en) Steaming device
JP4055684B2 (en) Vacuum steam cooker
JP7148975B2 (en) Steam cleaning/decompression drying equipment
JP5370859B2 (en) Food machinery
JP2011131175A (en) Cleaning device
JP4867647B2 (en) Saturated steam heater
JP2007105452A (en) System and method for multiple processing tub control
JP4581849B2 (en) Steaming device
JP5515731B2 (en) Cleaning method
JP4736126B2 (en) Steam cooking equipment
JP2007268018A (en) Steam-heating apparatus
JP2011183324A (en) Washing apparatus
JP5370670B2 (en) Operation method of cooking device
JP2008020118A (en) Inside-cleanable vacuum device
JP4640701B2 (en) Vacuum cooling device
JP2006181001A (en) Steaming/refrigerating system and steaming system
JP2007268017A (en) Steam-heating apparatus
JP6394299B2 (en) Vacuum cooling device
JP7037206B2 (en) Steam cleaning vacuum drying device
JP2005046088A (en) Vacuum steam thawing machine
JP2005278577A (en) Thawing apparatus
JP2006180889A (en) System and machine for steaming and refrigerating
JP2005295961A (en) Food machine