JP2007103577A - Electromagnetic wave detector and radiation imaging system - Google Patents

Electromagnetic wave detector and radiation imaging system Download PDF

Info

Publication number
JP2007103577A
JP2007103577A JP2005290063A JP2005290063A JP2007103577A JP 2007103577 A JP2007103577 A JP 2007103577A JP 2005290063 A JP2005290063 A JP 2005290063A JP 2005290063 A JP2005290063 A JP 2005290063A JP 2007103577 A JP2007103577 A JP 2007103577A
Authority
JP
Japan
Prior art keywords
signal
wiring
electromagnetic wave
lead
wave detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005290063A
Other languages
Japanese (ja)
Inventor
Takamasa Ishii
孝昌 石井
Chiori Mochizuki
千織 望月
Minoru Watanabe
実 渡辺
Keiichi Nomura
慶一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005290063A priority Critical patent/JP2007103577A/en
Publication of JP2007103577A publication Critical patent/JP2007103577A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic detector without generating any large difference in output level between the output of both the ends and the output of the inside in a group of signal leading wires arranged outside the pixel region of a signal line. <P>SOLUTION: In the electromagnetic wave detector having a signal line for reading an electric signal converted by a transducer, the transducer for converting electromagnetic waves to electric signals and a pixel made of switch elements connected to the transducer are arranged two-dimensionally on an insulating substrate. In the electromagnetic wave detector, a signal leading wire 16 arranged outside the pixel region of the signal line forms a plurality of wiring groups at the edge of an insulating substrate, a constant-potential wire that becomes fixed potential at least when reading a signal is arranged outside the signal leading wire at both the ends of each group of wires, and the interval between the constant potential wire and the signal leading wire at both the edges of each group of wires is made nearly equal to the interval between all signal leading wires. The constant potential wire is a bias leading wire 17. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、可視光、赤外線等の光、X線、α線、β線、γ線等の放射線を含む電磁波を電気信号に変換する電磁波検出装置、及び該電磁波検出装置を用いた放射線撮像システムに関する。特に、放射線を検出する放射線検出装置に好適に用いられ、医療用画像診断装置、非破壊検査装置、放射線を用いた分析装置等に応用される。   The present invention relates to an electromagnetic wave detection device that converts an electromagnetic wave including radiation such as visible light and infrared light, X-ray, α-ray, β-ray, γ-ray and the like into an electrical signal, and a radiation imaging system using the electromagnetic wave detection device. About. In particular, it is suitably used for a radiation detection device for detecting radiation, and is applied to a medical diagnostic imaging device, a nondestructive inspection device, an analysis device using radiation and the like.

従来の放射線検出装置は、入射する放射線を光電変換可能な波長領域の光に変換する波長変換体と光電変換装置、又は入射する放射線を半導体変換素子が直接電気信号に変換する装置を組み合わせた装置である。光電変換装置は、1画素に半導体変換素子である光電変換素子とスイッチ素子としてのTFT(薄膜トランジスタ)を有し、各画素を2次元状に配列したものである。   A conventional radiation detection apparatus is a combination of a wavelength converter that converts incident radiation into light in a wavelength region that can be photoelectrically converted and a photoelectric conversion apparatus, or an apparatus in which a semiconductor conversion element directly converts incident radiation into an electrical signal. It is. The photoelectric conversion device has a photoelectric conversion element as a semiconductor conversion element and a TFT (thin film transistor) as a switch element in one pixel, and each pixel is two-dimensionally arranged.

従来の光電変換装置は、絶縁基板上に光を電気信号に変換する光電変換素子と、前記光電変換素子に接続されたスイッチ素子から成る画素が2次元状に配列されている。更に、絶縁基板上に光電変換素子にバイアスを印加するバイアス線と、スイッチ素子に駆動信号を供給するゲート線と、光電変換素子にて変換された電気信号を読み出す信号線を有する。   In a conventional photoelectric conversion device, a pixel including a photoelectric conversion element that converts light into an electrical signal and a switch element connected to the photoelectric conversion element is two-dimensionally arranged on an insulating substrate. Furthermore, a bias line for applying a bias to the photoelectric conversion element on the insulating substrate, a gate line for supplying a drive signal to the switch element, and a signal line for reading an electrical signal converted by the photoelectric conversion element are provided.

下記特許文献1,2に示されているように、絶縁基板上の画素領域と絶縁基板外の信号読み出し回路は、TCP(テープキャリアパッケージ)を介して接続される。信号線は、画素領域外の引き出し配線によりTCPに接続される。一方、光電変換装置ではないが、絶縁基板上の画素領域と絶縁基板外の回路をTCPを介して接続する際、引き出し配線を用いる点では類似の技術分野として液晶表示装置がある。   As shown in Patent Documents 1 and 2 below, a pixel region on an insulating substrate and a signal readout circuit outside the insulating substrate are connected via a TCP (tape carrier package). The signal line is connected to the TCP by a lead wiring outside the pixel region. On the other hand, although it is not a photoelectric conversion device, there is a liquid crystal display device as a similar technical field in that a lead-out wiring is used when a pixel region on an insulating substrate and a circuit outside the insulating substrate are connected via TCP.

下記特許文献3の液晶表示装置(液晶ディスプレイ)において、引き出し配線の構成について提案がなされている。   In the liquid crystal display device (liquid crystal display) disclosed in Patent Document 3 below, a proposal has been made for the configuration of the lead-out wiring.

図6は、従来の液晶表示装置の平面図であり、図7は、従来の液晶表示素子を構成する電極基板の平面図である。   FIG. 6 is a plan view of a conventional liquid crystal display device, and FIG. 7 is a plan view of an electrode substrate constituting a conventional liquid crystal display element.

図6において、液晶駆動用PCB(プリント回路基板)102と、駆動用半導体ICチップ103を搭載したTCP104と、液晶表示素子101との接続状態を示している。   FIG. 6 shows a connection state between the liquid crystal display device 101 and the liquid crystal drive PCB (printed circuit board) 102, the TCP 104 on which the drive semiconductor IC chip 103 is mounted.

図7において、電極基板に実装される1個のTCPに対応する端子群の中心線から右側の引き出し配線の一部を示している。なお、駆動素子である1個のTCPの電極数は、通常、80〜160本程度あるが、ここでは8本に省略した。   In FIG. 7, a part of the lead wiring on the right side from the center line of the terminal group corresponding to one TCP mounted on the electrode substrate is shown. The number of electrodes of one TCP, which is a driving element, is usually about 80 to 160, but is omitted here.

111は、透明絶縁基板上の一方の面に電極を形成した電極基板であり、液晶表示素子を構成する。2〜2は画素を構成する表示用電極で、透明導電膜からなり、電極基板111の面上に平行に形成されている。また、3〜3はTCPの電極と接続される端子(接続用電極)、1〜1は表示用電極2と端子3とを接続する引き出し配線の一部である斜め直線配線である。112はTCPをこの電極基板111上に実装する際のTCPの位置合せ用マーク、113は電極基板111に実装される1個のTCPに対応する端子群の中心線、114はシール材が設けられる部分である。 111 is an electrode substrate in which an electrode is formed on one surface on a transparent insulating substrate, and constitutes a liquid crystal display element. The 2 1 to 2 8 display electrodes constituting the pixel, a transparent conductive film, are formed in parallel on a surface of the electrode substrate 111. Reference numerals 3 1 to 3 8 are terminals (connection electrodes) connected to the TCP electrodes, and 1 1 to 18 are diagonal straight lines that are a part of the lead lines connecting the display electrodes 2 and the terminals 3. is there. 112 is a TCP alignment mark when TCP is mounted on the electrode substrate 111, 113 is a center line of a terminal group corresponding to one TCP mounted on the electrode substrate 111, and 114 is provided with a sealing material. Part.

電極基板111上にそれぞれ平行に配線された複数本の表示用電極2のピッチよりも、電極基板111の端部に引き出され、TCPに接続される端子3のピッチの方が狭くなる。したがって、両者を接続する引き出し配線1が必要となる。引き出し配線は、表示用電極2からそのまま延長した部分と、端子3からそのまま延長した部分と、この2つの延長した部分をそれぞれ接続する平行な斜め直線配線1とから成る。また、斜め直線配線1は、表示用電極2及び端子3に対する角度θが等しい。この特許文献3では、引き出し配線の配線抵抗がそれぞれ等しくなるように、2つの延長した部分の長さと、斜め直線配線1の幅を調整している。また、斜め直線配線1どうしの間隔をほぼ等しくしている。
特開2001−274420号公報 特開2004−96000号公報 特開平8−76136号公報
Than the pitch of display electrodes 2 n of the plurality of in parallel to the wiring respectively on the electrode substrate 111, drawn to the edge of the electrode substrate 111, the direction of the pitch of the terminals 3 n is connected to the TCP becomes narrower. Therefore, the lead-out wiring 1 that connects them is required. The lead-out wiring is composed of a portion extended as it is from the display electrode 2 n, a portion extended as it is from the terminal 3 n , and a parallel diagonal straight line 1 n connecting the two extended portions. Further, the oblique straight wiring 1 n has the same angle θ with respect to the display electrode 2 n and the terminal 3 n . In Patent Document 3, the lengths of the two extended portions and the width of the oblique straight wiring 1 n are adjusted so that the wiring resistances of the lead wirings are equal to each other. Moreover, it is substantially equal interval between the slanted straight lines 1 n.
JP 2001-274420 A JP 2004-96000 A JP-A-8-76136

近年、TFTを用いた液晶パネルの製造技術の進展により、パネルの大型化と共に表示部の大画面化が進んでいる。このため、特許文献3のように、TCPに接続される電極と表示電極とを接続する、引き出し配線のパネル内における面積使用効率を向上させる提案がなされている。引き出し配線の長さが長くなると、引き出し配線の面積が大きくなるため、面積使用効率が低くなる。また、引き出し配線の配線抵抗も大きくなる。このため、特許文献3では、短くて低抵抗の引き出し配線を実現するために、引き出し配線の長さと幅を調整している。また、引き出し配線の斜め直線配線間の間隔が不均一な場合、本来均一な黒となるべき、シール材より内側で液晶が存在する部分(額縁部)で不均一な濃淡ムラが発生する。これを防止するために斜め直線配線間の間隔をほぼ等しくしている。そしてこの引き出し配線は、TCP単位で一つの配線群を形成し、TCP単位毎に繰り返し配置されている。   2. Description of the Related Art In recent years, with the development of liquid crystal panel manufacturing technology using TFTs, the screen size of a display unit has been increased with the increase in size of the panel. For this reason, as in Patent Document 3, a proposal has been made to improve the area use efficiency in the panel of the lead-out wiring that connects the electrode connected to the TCP and the display electrode. When the length of the lead-out wiring is increased, the area of the lead-out wiring is increased, so that the area use efficiency is lowered. In addition, the wiring resistance of the lead wiring is increased. For this reason, in Patent Document 3, the length and width of the lead-out wiring are adjusted in order to realize a short and low-resistance lead-out wiring. In addition, when the spacing between the diagonal straight lines of the lead-out wiring is non-uniform, non-uniform shading unevenness occurs in a portion (frame portion) where the liquid crystal exists inside the sealing material, which should be essentially black. In order to prevent this, the interval between the diagonal straight lines is made substantially equal. The lead-out wiring forms one wiring group for each TCP unit and is repeatedly arranged for each TCP unit.

一方、液晶パネルの製造技術は、光電変換素子とTFTを有するエリアセンサに応用され、例えばX線撮像装置のような放射線撮像装置等の各分野で利用されている。しかしながらX線撮像装置は、液晶ディスプレイとは異なり、微小信号をディジタル変換して画像出力するという特徴を持っている。このため、特許文献3の技術を応用し、信号読み出し用の引き出し配線において、斜め直線配線間の間隔をほぼ等しくしても、各TCP両端部の引き出し配線と、その内側の引き出し配線では、配線の寄生容量が異なる。つまり、TCP両端より内側の引き出し配線にはその他の引き出し配線が両端に隣接するのに対して、TCP両端部の引き出し配線においては、TCPの内側にしか隣接する引き出し配線が存在しないためである。これにより、TCP両端部の出力と、その内側の出力に大きな出力段差が生じるといった課題がある。   On the other hand, a liquid crystal panel manufacturing technique is applied to an area sensor having a photoelectric conversion element and a TFT, and is used in various fields such as a radiation imaging apparatus such as an X-ray imaging apparatus. However, unlike a liquid crystal display, an X-ray imaging apparatus has a feature that a minute signal is digitally converted and an image is output. For this reason, even if the technology of Patent Document 3 is applied and the distance between the diagonal straight lines is substantially equal in the signal readout lead lines, the lead lines at both ends of each TCP and the lead lines inside the TCPs The parasitic capacitance is different. In other words, the other lead wires are adjacent to both ends of the lead wires inside both ends of the TCP, whereas the lead wires adjacent to the inside of the TCP exist only in the lead wires at both ends of the TCP. As a result, there is a problem that a large output step is generated between the output at both ends of the TCP and the output inside thereof.

本発明では、信号線の画素領域外に配置された各信号引き出し配線群において、両端部の出力とその内側の出力に大きな出力段差が生じない電磁波検出装置を提供することを目的としている。   An object of the present invention is to provide an electromagnetic wave detection device in which a large output step does not occur between the output at both ends and the output inside thereof in each signal lead-out wiring group arranged outside the pixel region of the signal line.

上記課題を解決するため、本発明の電磁波検出装置は、絶縁基板上に、電磁波を電気信号に変換する変換素子と、前記変換素子に接続されたスイッチ素子から成る画素が2次元状に配列され、前記変換素子にて変換された電気信号を読み出す信号線を有する電磁波検出装置において、
前記信号線の画素領域外に配置された信号引き出し配線は、絶縁基板端部で複数の配線群を形成し、前記各配線群の両端部の信号引き出し配線の外側に、少なくとも信号読み出し時に定電位となる定電位配線が配設される。そして、前記定電位配線と前記各配線群の両端部の信号引き出し配線との間隔が、前記全ての信号引き出し配線間の間隔と略等しくされていることを特徴とする。
In order to solve the above-described problems, an electromagnetic wave detection device according to the present invention is a two-dimensional array of pixels each including a conversion element that converts an electromagnetic wave into an electrical signal and a switch element connected to the conversion element on an insulating substrate. In the electromagnetic wave detection device having a signal line for reading the electric signal converted by the conversion element,
The signal lead-out lines arranged outside the pixel area of the signal lines form a plurality of wiring groups at the end of the insulating substrate, and at a constant potential at least at the time of signal reading outside the signal lead-out lines at both ends of each of the wiring groups. A constant potential wiring is provided. The distance between the constant potential wiring and the signal lead-out lines at both ends of each wiring group is substantially equal to the distance between all the signal lead-out lines.

なお、本明細書において、電磁波を電気信号に変換する変換素子とは、可視光、赤外光等の光から、X線、α線、β線、γ線等の放射線までの波長領域の電磁波を受け、この電磁波を電気信号に変換する素子を示す。また、本発明における変換素子は、可視光、赤外光等の光を電気信号に変換する光電変換素子、アモルファスセレン等を半導体層として有するX線等の放射線を電気信号に変換する素子を含むものである。   Note that in this specification, a conversion element that converts electromagnetic waves into electrical signals refers to electromagnetic waves in a wavelength region from light such as visible light and infrared light to radiation such as X-rays, α-rays, β-rays, and γ-rays. The element which receives this and converts this electromagnetic wave into an electric signal is shown. The conversion element in the present invention includes a photoelectric conversion element that converts light such as visible light and infrared light into an electric signal, and an element that converts radiation such as X-rays having amorphous selenium or the like as a semiconductor layer into an electric signal. It is a waste.

本発明において、信号線の画素領域外に配置された各信号引き出し配線群において、各配線群の両端部の信号引き出し配線の外側に定電位配線が配設され、定電位配線と信号引き出し配線の各配線間の間隔が等しくされている。このことにより、信号引き出し配線のカップリング容量を同じにして両端部の出力とその内側の出力に大きな出力段差が生じないようにすることができる。   In the present invention, in each signal lead-out wiring group arranged outside the pixel area of the signal line, constant potential wiring is disposed outside the signal lead-out wiring at both ends of each wiring group, and the constant potential wiring and the signal lead-out wiring are connected to each other. The interval between each wiring is made equal. As a result, the coupling capacity of the signal lead-out wiring can be made the same so that a large output step does not occur between the outputs at both ends and the outputs inside thereof.

以下、本発明の実施の形態を、実施例とともに図面を参照しつつ詳細に説明する。以下の実施形態は放射線検出装置を構成した場合について説明するが、本発明の電磁波検出装置は、放射線を電気信号に変換する放射線検出装置に限定されず、可視光、赤外光等の光を電気信号に変換する光電変換装置としても適用することができる。なお、放射線撮像装置とは、放射線検出装置として捉えられるセンサ基板と周辺回路を含む装置である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings together with examples. The following embodiments will be described with respect to a case where a radiation detection device is configured. However, the electromagnetic wave detection device of the present invention is not limited to a radiation detection device that converts radiation into an electrical signal, and emits light such as visible light and infrared light. The present invention can also be applied as a photoelectric conversion device that converts electric signals. Note that the radiation imaging apparatus is an apparatus including a sensor substrate and a peripheral circuit that can be regarded as a radiation detection apparatus.

[実施形態1]
以下、本発明の第1の実施形態である放射線撮像装置について、図面を用いて説明する。
[Embodiment 1]
Hereinafter, a radiation imaging apparatus according to a first embodiment of the present invention will be described with reference to the drawings.

図1は本発明の放射線撮像装置の概略図、図2は等価回路図、図3は図1中の絶縁基板端部におけるA部分の拡大平面図である。   FIG. 1 is a schematic diagram of a radiation imaging apparatus of the present invention, FIG. 2 is an equivalent circuit diagram, and FIG. 3 is an enlarged plan view of a portion A at an end portion of an insulating substrate in FIG.

図1において、光電変換装置である光電変換基板11は、放射線を可視光に変換するための波長変換体(シンチレータ)の代表的なものである蛍光体15を組み合わせて放射線検出装置を構成する。放射線撮像装置は、この放射線検出装置、TCP(テープキャリアパッケージ)14、プリント回路基板(PCB)であるゲート駆動装置12、及び読み出し装置13から構成される。   In FIG. 1, a photoelectric conversion substrate 11 which is a photoelectric conversion device constitutes a radiation detection device by combining a phosphor 15 which is a typical wavelength converter (scintillator) for converting radiation into visible light. The radiation imaging apparatus includes the radiation detection apparatus, a TCP (tape carrier package) 14, a gate drive device 12 that is a printed circuit board (PCB), and a readout device 13.

光電変換基板11は、絶縁基板上に、光を電気信号に変換する変換素子である光電変換素子と、光電変換素子に接続されたスイッチ素子であるTFTから成る画素が2次元状(マトリクス状)に配列されている。光電変換素子は、例えば、水素化アモルファスシリコンを用いた半導体変換素子である。更に、光電変換基板11は、絶縁基板上に、光電変換素子にバイアスを印加するバイアス線と、スイッチ素子に駆動信号を供給するゲート線と、光電変換素子にて変換された電気信号を読み出す信号線を有する。光電変換基板11は、所定の切断部で切断され、TCP14を介して、信号線及びバイアス線は読み出し装置13に、ゲート線はゲート駆動装置12にそれぞれ接続される。蛍光体15は接着層を介して光電変換基板11に接続される。   The photoelectric conversion substrate 11 has a two-dimensional (matrix shape) pixel composed of a photoelectric conversion element that is a conversion element that converts light into an electrical signal and a TFT that is a switch element connected to the photoelectric conversion element on an insulating substrate. Is arranged. The photoelectric conversion element is, for example, a semiconductor conversion element using hydrogenated amorphous silicon. Further, the photoelectric conversion substrate 11 has a bias line for applying a bias to the photoelectric conversion element, a gate line for supplying a drive signal to the switch element, and a signal for reading an electric signal converted by the photoelectric conversion element on the insulating substrate. With lines. The photoelectric conversion substrate 11 is cut at a predetermined cutting portion, and the signal line and the bias line are connected to the reading device 13 and the gate line is connected to the gate driving device 12 via the TCP 14. The phosphor 15 is connected to the photoelectric conversion substrate 11 through an adhesive layer.

図2において、P11〜P33は光電変換素子、T11〜T33はTFTである。各光電変換素子は共通のバイアス線Vs1〜Vs3に接続されており、読み出し装置13から一定バイアスが印加される。各TFTのゲート電極は、共通のゲート線Vg1〜Vg3に接続されており、ゲート駆動装置12からTFTのゲートのON、OFFを制御する。また、各TFTのソースもしくはドレイン電極は、共通の信号線Sig1〜Sig3に接続されており、Sig1〜Sig3は、読み出し装置13に接続されている。1つの光電変換素子、TFTが、1画素を構成している。なお、図2には画素エリアに3×3画素を示しているが、実際には例えば2000×2000画素が絶縁基板に配置され、光電変換基板を構成している。   In FIG. 2, P11 to P33 are photoelectric conversion elements, and T11 to T33 are TFTs. Each photoelectric conversion element is connected to common bias lines Vs <b> 1 to Vs <b> 3, and a constant bias is applied from the reading device 13. The gate electrodes of the TFTs are connected to the common gate lines Vg1 to Vg3, and the gate driving device 12 controls ON / OFF of the TFT gates. The source or drain electrode of each TFT is connected to common signal lines Sig 1 to Sig 3, and Sig 1 to Sig 3 are connected to the readout device 13. One photoelectric conversion element and TFT constitute one pixel. Although FIG. 2 shows 3 × 3 pixels in the pixel area, in practice, for example, 2000 × 2000 pixels are arranged on an insulating substrate to constitute a photoelectric conversion substrate.

被検体に向けて曝射されたX線は、被検体により減衰を受けて透過し、図1に示す蛍光体15で可視光に変換され、この可視光が光電変換素子に入射し、電荷(電気信号)に変換される。この電荷は、ゲート駆動装置12により印加されるゲート駆動パルスによりTFTを介して信号線に転送され、読み出し装置13により外部に読み出される。この期間、バイアス線の電位は一定電位に固定されている。その後、バイアス線の電位を切替えることにより、もしくはTFTを介して光電変換素子の残留電荷をリセットする。   The X-rays exposed toward the subject are attenuated and transmitted by the subject, converted into visible light by the phosphor 15 shown in FIG. 1, and this visible light is incident on the photoelectric conversion element, and charges ( Electrical signal). This electric charge is transferred to the signal line through the TFT by the gate drive pulse applied by the gate drive device 12 and read out to the outside by the readout device 13. During this period, the potential of the bias line is fixed at a constant potential. Thereafter, the residual charge of the photoelectric conversion element is reset by switching the potential of the bias line or via the TFT.

光電変換基板11の端部には、各配線(Vs、Vg、Sig)とTCPを接続するための引き出し配線が配置されている。図3において、読み出し装置13側に信号線Sig及びバイアス線Vsの引き出し配線が配置され、基板に実装される1個のTCPに対応する配線群の中心線から右側の引き出し配線の一部が示されている。16は、画素領域内の信号線に接続される信号引き出し配線を示している。図示するように信号引き出し配線16は、画素領域外に配置されている。そして、信号引き出し配線16は、信号線と接続された画素と同ピッチの信号電極16aと、光電変換基板11の端部に画素ピッチより小さいピッチで配設されたTCP14を接続するための接続用電極16bと、2つの電極を接続する直線電極16cから構成される。ここで、各信号電極16aの間隔をL1、各接続用電極16bの間隔をL2、各直線電極16cの間隔をL3とする。   At the end of the photoelectric conversion substrate 11, lead-out wirings for connecting the respective wirings (Vs, Vg, Sig) and TCP are arranged. In FIG. 3, lead lines for the signal line Sig and the bias line Vs are arranged on the readout device 13 side, and a part of the lead line on the right side from the center line of the wiring group corresponding to one TCP mounted on the substrate is shown. Has been. Reference numeral 16 denotes a signal lead-out wiring connected to the signal line in the pixel region. As shown in the figure, the signal lead-out wiring 16 is disposed outside the pixel region. The signal lead-out wiring 16 is used for connection to connect the signal electrodes 16a having the same pitch as the pixels connected to the signal lines and the TCPs 14 disposed at the end of the photoelectric conversion substrate 11 at a pitch smaller than the pixel pitch. It consists of an electrode 16b and a straight electrode 16c connecting the two electrodes. Here, the interval between the signal electrodes 16a is L1, the interval between the connection electrodes 16b is L2, and the interval between the straight electrodes 16c is L3.

また、TCP14の最端部に配置された信号引き出し配線16の外側には、バイアス線Vsの引き出し配線である、バイアス引き出し配線17が配置されている。バイアス引き出し配線17は、信号引き出し配線16と同様の構成で、バイアス線Vsと接続されたバイアス電極17aと、TCPを接続するための接続用電極18bと、2つの電極を接続する直線電極17cからなる。バイアス引き出し配線17と両端部の信号引き出し配線との間隔が、全ての信号引き出し配線間の間隔と略等しくされている。すなわち、L1、L2、L3の各々は略一定とする。   In addition, a bias lead-out line 17 that is a lead-out line for the bias line Vs is disposed outside the signal lead-out line 16 disposed at the end of the TCP 14. The bias lead-out wiring 17 has the same configuration as the signal lead-out wiring 16, and includes a bias electrode 17a connected to the bias line Vs, a connection electrode 18b for connecting the TCP, and a straight electrode 17c connecting the two electrodes. Become. The distance between the bias lead-out line 17 and the signal lead-out lines at both ends is substantially equal to the distance between all the signal lead-out lines. That is, each of L1, L2, and L3 is substantially constant.

これらのL1、L2、L3の各々の間隔は、一定であることが理想である。しかしながら、光電変換基板は大面積であるため、製造工程において基板内に様々な製造上の分布が発生してしまう。例えば、配線のパターニングに用いるフォトレジストの塗布時の膜厚分布、例えば配線となる金属層の成膜時の膜厚分布などである。これにより、配線幅に違いが生じ、すなわち、配線間の間隔に違いが生じる。   Ideally, the intervals of these L1, L2, and L3 are constant. However, since the photoelectric conversion substrate has a large area, various manufacturing distributions are generated in the substrate in the manufacturing process. For example, it is a film thickness distribution at the time of applying a photoresist used for wiring patterning, for example, a film thickness distribution at the time of forming a metal layer to be a wiring. Thereby, a difference occurs in the wiring width, that is, a difference occurs in the interval between the wirings.

具体的には、一般的な製造装置のばらつきの仕様が、平均値に対して±10%であるため、配線幅には基板内において最大20%の違いが生じる。そのため、信号引き出し配線と定電位配線の間隔を、各信号引き出し配線間の間隔と完全に等しくできない場合が生ずる。その場合には、信号引き出し配線と定電位配線の間隔をL、信号引き出し配線幅d、各信号引き出し配線間の間隔をS、とすると、以下の関係を満たすように定電位配線を配置することが望ましい。   Specifically, since the specification of variation of a general manufacturing apparatus is ± 10% with respect to the average value, a difference of 20% at maximum in the wiring width occurs in the substrate. For this reason, the interval between the signal extraction wiring and the constant potential wiring may not be completely equal to the interval between the signal extraction wirings. In this case, if the interval between the signal lead-out wiring and the constant potential wiring is L, the signal lead-out wiring width d, and the distance between each signal lead-out wiring is S, the constant potential wiring is arranged so as to satisfy the following relationship. Is desirable.

S−0.1d≦L≦S+0.1d
以上のような各配線の配置により、TCP14の最端部に配置された信号引き出し配線16においても、その内側に配置された隣接する他の信号引き出し配線16とほぼ等しいカップリング容量を形成する。特に、引き出し配線16の中でも直線電極16cは他の電極よりはるかに配線長が長くなる場合があるため、間隔L3を等しくすることは重要である。また、信号引き出し配線16の外側のバイアス引き出し配線17は、信号読み出し時は定電位であるため、信号引き出し配線16は、周辺からのノイズの影響も受けにくく、TCP単位でシールドされることになる。つまり、本実施形態の光電変換基板の構成は、各TCP両端部の出力と、その内側の出力に大きな出力段差が生じない効果をもつ。また、信号引き出し配線間の各電極間の間隔L1、L2、L3が全て等しく(L1=L2=L3)、更に信号引出きし配線17とバイアス引き出し配線21の間隔も、これら全てと等しければなお良い。
S-0.1d ≦ L ≦ S + 0.1d
Due to the arrangement of the wirings as described above, the coupling capacitance almost the same as that of the other adjacent signal extraction wirings 16 arranged inside the signal extraction wiring 16 arranged at the outermost end of the TCP 14 is formed. In particular, in the lead-out wiring 16, the straight electrode 16c may be much longer in wiring length than the other electrodes, so it is important to make the distance L3 equal. Further, since the bias lead-out wiring 17 outside the signal lead-out wiring 16 has a constant potential at the time of signal reading, the signal lead-out wiring 16 is hardly affected by noise from the periphery and is shielded in units of TCP. . That is, the configuration of the photoelectric conversion substrate of the present embodiment has an effect that a large output step does not occur between the outputs at both ends of each TCP and the outputs inside thereof. Further, the distances L1, L2 and L3 between the electrodes between the signal lead-out lines are all equal (L1 = L2 = L3), and the distance between the signal lead-out line 17 and the bias lead-out line 21 is also equal to all of these. good.

本実施形態では、変換素子を光電変換素子とし、蛍光体と組み合わせた間接型の放射線検出装置を示したが、変換素子にアモルファスセレン等を用いて、放射線を直接電気信号に変換する直接型の放射線検出装置においても同様の効果が得られる。また、間接型の放射線撮像装置の光電変換素子は、MIS型、PIN型のどちらであっても構わない。また、画素の構造に関しては、変換素子とスイッチ素子が同一層で構成されている平面型でも、スイッチ素子が形成されている層上に変換素子が形成されている積層型でも構わない。   In this embodiment, an indirect radiation detection device in which a conversion element is a photoelectric conversion element and combined with a phosphor is shown. However, a direct type that converts radiation directly into an electrical signal using amorphous selenium or the like as the conversion element is shown. Similar effects can be obtained in the radiation detection apparatus. Further, the photoelectric conversion element of the indirect radiation imaging apparatus may be either a MIS type or a PIN type. The pixel structure may be a planar type in which the conversion element and the switch element are configured in the same layer, or a stacked type in which the conversion element is formed on the layer in which the switch element is formed.

[実施形態2]
以下、本発明の第2の実施形態である放射線撮像装置について、図面を用いて説明する。
[Embodiment 2]
Hereinafter, a radiation imaging apparatus according to a second embodiment of the present invention will be described with reference to the drawings.

図4は、放射線撮像装置の絶縁基板端部における拡大平面図である。   FIG. 4 is an enlarged plan view of the end portion of the insulating substrate of the radiation imaging apparatus.

本実施形態における放射線撮像装置は、その構成、接続形態、等価回路、駆動方法等は、実施形態1と同様であり、図1、図2の説明で既に述べたとおりである。   The radiation imaging apparatus according to the present embodiment has the same configuration, connection form, equivalent circuit, driving method, and the like as in the first embodiment, and has already been described with reference to FIGS.

光電変換基板11の端部には、各配線(Vs、Vg、Sig)とTCPを接続するための引き出し配線が配置されている。図4において、読み出し装置13側に信号線Sig及びバイアス線Vsの引き出し配線が配置され、基板に実装される1個のTCPに対応する配線群の中心線から右側の引き出し配線の一部が示されている。16は、画素領域内の信号線に接続される信号引き出し配線を示している。図示するように信号引き出し配線16は、画素領域外に配置されている。そして、信号引き出し配線16は、信号線と接続された画素と同ピッチの信号電極16aと、光電変換基板11の端部に画素ピッチより小さいピッチで配設されたTCP14を接続するための接続用電極16bと、2つの電極を接続する直線電極16cから構成される。ここで、各信号電極16aの間隔をL1、各接続用電極16bの間隔をL2、各直線電極16cの間隔をL3、とする。   At the end of the photoelectric conversion substrate 11, lead-out wirings for connecting the respective wirings (Vs, Vg, Sig) and TCP are arranged. In FIG. 4, lead lines for the signal line Sig and the bias line Vs are arranged on the readout device 13 side, and a part of the lead line on the right side from the center line of the wiring group corresponding to one TCP mounted on the substrate is shown. Has been. Reference numeral 16 denotes a signal lead-out wiring connected to the signal line in the pixel region. As shown in the figure, the signal lead-out wiring 16 is disposed outside the pixel region. The signal lead-out wiring 16 is used for connection to connect the signal electrodes 16a having the same pitch as the pixels connected to the signal lines and the TCPs 14 disposed at the end of the photoelectric conversion substrate 11 at a pitch smaller than the pixel pitch. It consists of an electrode 16b and a straight electrode 16c connecting the two electrodes. Here, the interval between the signal electrodes 16a is L1, the interval between the connection electrodes 16b is L2, and the interval between the straight electrodes 16c is L3.

また、TCP14の最端部に配置された信号引き出し配線16の外側には、基準電位配線18と、バイアス線Vsの引き出し配線である、バイアス引き出し配線17が配置されている。基準電位配線18は、TCP14を接続するための接続用電極18bと、直線電極18cからなり、画素付近まで配置されている。バイアス引き出し配線17は、信号引き出し配線16と同様の構成で、バイアス線と接続されたバイアス電極17aと、TCP14を接続するための接続用電極17bと、2つの電極を接続する直線電極17cからなる。基準電位配線18と両端部の信号引き出し配線との間隔が、全ての信号引き出し配線間の間隔と等しくされている。すなわち、L2、L3の各々は一定である。また、L1も一定である。   A reference potential wiring 18 and a bias lead wiring 17 that is a lead wiring for the bias line Vs are disposed outside the signal lead wiring 16 disposed at the end of the TCP 14. The reference potential wiring 18 includes a connection electrode 18b for connecting the TCP 14 and a straight electrode 18c, and is arranged up to the vicinity of the pixel. The bias lead-out line 17 has the same configuration as the signal lead-out line 16 and includes a bias electrode 17a connected to the bias line, a connection electrode 17b for connecting the TCP 14, and a straight electrode 17c connecting the two electrodes. . The interval between the reference potential line 18 and the signal lead lines at both ends is made equal to the distance between all the signal lead lines. That is, each of L2 and L3 is constant. L1 is also constant.

以上のような各配線の配置により、TCP14の最端部に配置された信号引き出し配線16においても、その内側に配置された隣接する他の信号引き出し配線とほぼ等しいカップリング容量を形成する。特に、引き出し配線の中でも直線電極16cは、他の電極よりはるかに配線長が長くなる場合があるため、間隔L3を等しくすることは重要である。また、信号引き出し配線16の外側の基準電位配線18は、常に基準電位であるため、信号引き出し配線16は周辺からのノイズの影響も受けにくく、TCP単位でシールドされることになる。つまり、本実施形態の光電変換基板の構成は、各TCP両端部の出力と、その内側の出力に大きな出力段差が生じない効果をもつ。また、信号引き出し配線間の各電極間の間隔L1、L2、L3が全て等しく(L1=L2=L3)、更に信号引出きし配線16と基準電位配線18の間隔が、これら全てと等しければなお良い。   With the arrangement of the wirings as described above, the coupling capacitance is formed in the signal lead-out wiring 16 arranged at the endmost part of the TCP 14 substantially equal to other adjacent signal lead-out wirings arranged inside the TCP 14. In particular, among the lead wires, the straight electrode 16c may have a much longer wire length than other electrodes, so it is important to make the distance L3 equal. Further, since the reference potential wiring 18 outside the signal lead-out wiring 16 is always at the reference potential, the signal lead-out wiring 16 is not easily affected by noise from the periphery, and is shielded in TCP units. That is, the configuration of the photoelectric conversion substrate of the present embodiment has an effect that a large output step does not occur between the outputs at both ends of each TCP and the outputs inside thereof. Further, the distances L1, L2, and L3 between the electrodes between the signal lead-out lines are all equal (L1 = L2 = L3), and the distance between the signal lead-out line 16 and the reference potential line 18 is equal to all of these. good.

以上、本発明の第1〜第2の実施形態について説明したが、以下、本発明による放射線撮像システムへの応用例について説明する。   While the first and second embodiments of the present invention have been described above, application examples to the radiation imaging system according to the present invention will be described below.

図5は、本発明の電磁波検出装置を用いた放射線撮像装置の放射線撮像システムへの応用例を示した図である。   FIG. 5 is a diagram showing an application example of a radiation imaging apparatus using the electromagnetic wave detection apparatus of the present invention to a radiation imaging system.

X線チューブ6050で発生したX線6060は患者あるいは被験者6061の胸部6062を透過し、シンチレータ(蛍光体層)を上部に実装した放射線撮像装置6040に入射する。この入射したX線には患者6061の体内部の情報が含まれている。X線の入射に対応してシンチレータは発光し、これを光電変換して、電気的情報を得る。この情報はディジタルに変換され信号処理手段となるイメージプロセッサ6070により画像処理されコントロールルームに有る表示手段となるディスプレイ6080で観察できる。   X-rays 6060 generated by the X-ray tube 6050 pass through the chest 6062 of the patient or subject 6061 and enter a radiation imaging apparatus 6040 having a scintillator (phosphor layer) mounted thereon. This incident X-ray includes information inside the body of the patient 6061. The scintillator emits light in response to the incidence of X-rays, and this is photoelectrically converted to obtain electrical information. This information is digitally converted and image-processed by an image processor 6070 serving as signal processing means, and can be observed on a display 6080 serving as display means in a control room.

また、この情報は、電話回線6090等の伝送処理手段により遠隔地へ転送でき、別の場所のドクタールームなど表示手段となるディスプレイ6081に表示又は光ディスク等の記録手段に保存することができ。これにより、遠隔地の医師が診断することも可能である。また、記録手段となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。   Further, this information can be transferred to a remote place by transmission processing means such as a telephone line 6090, and can be displayed on a display 6081 serving as display means such as a doctor room in another place or stored in recording means such as an optical disk. As a result, it is possible for a remote doctor to make a diagnosis. Moreover, it can also record on the film 6110 used as a recording medium by the film processor 6100 used as a recording means.

本発明は、医療用や非破壊検査用のX線等の放射線の検出装置に適用できる。また、可視光等の光を電気信号に変換する光電変換装置、特に大面積な光電変換領域を有する装置に適用できる。   The present invention can be applied to an apparatus for detecting radiation such as X-rays for medical use and nondestructive inspection. Further, the present invention can be applied to a photoelectric conversion device that converts light such as visible light into an electric signal, particularly a device having a large-area photoelectric conversion region.

本発明の第1の実施形態である放射線撮像装置を説明する概略図Schematic explaining the radiation imaging apparatus which is the 1st Embodiment of this invention 本発明の第1の実施形態である放射線撮像装置の等価回路図1 is an equivalent circuit diagram of a radiation imaging apparatus according to a first embodiment of the present invention. 図1中の絶縁基板端部におけるA部分の拡大平面図FIG. 1 is an enlarged plan view of a portion A at an end portion of an insulating substrate 本発明の第2の実施形態である放射線撮像装置の絶縁基板端部における拡大平面図The enlarged plan view in the insulated substrate edge part of the radiation imaging device which is the 2nd Embodiment of this invention 本発明の放射線撮像装置の放射線撮像システムへの応用例を説明する概略図Schematic explaining an application example of the radiation imaging apparatus of the present invention to a radiation imaging system 従来の液晶表示装置の平面図Plan view of a conventional liquid crystal display device 従来の液晶表示装置の電極基板端部の平面図Plan view of the edge part of the electrode substrate of the conventional liquid crystal display device

符号の説明Explanation of symbols

11…光電変換基板
12…ゲート駆動装置
13…読み出し装置
14…TCP
15…蛍光体
16…信号引き出し配線
17…バイアス引き出し配線
18…基準電位配線
Vg…ゲート線
Sig…信号線
Vs…バイアス線
P11〜P33…光電変換素子
T11〜T33…TFT
L1…各信号電極の間隔
L2…各接続用電極の間隔
L3…各直線電極の間隔
DESCRIPTION OF SYMBOLS 11 ... Photoelectric conversion board 12 ... Gate drive device 13 ... Read-out device 14 ... TCP
DESCRIPTION OF SYMBOLS 15 ... Phosphor 16 ... Signal extraction wiring 17 ... Bias extraction wiring 18 ... Reference potential wiring Vg ... Gate line Sig ... Signal line Vs ... Bias line P11-P33 ... Photoelectric conversion element T11-T33 ... TFT
L1... Spacing between each signal electrode L2... Spacing between each connection electrode L3... Spacing between each straight electrode

Claims (9)

絶縁基板上に、電磁波を電気信号に変換する変換素子と、前記変換素子に接続されたスイッチ素子から成る画素が2次元状に配列され、前記変換素子にて変換された電気信号を読み出す信号線を有する電磁波検出装置において、
前記信号線の画素領域外に配置された信号引き出し配線は、絶縁基板端部で複数の配線群を形成し、前記各配線群の両端部の信号引き出し配線の外側に、少なくとも信号読み出し時に定電位となる定電位配線が配設され、前記定電位配線と前記各配線群の両端部の信号引き出し配線との間隔が、前記全ての信号引き出し配線間の間隔と略等しくされていることを特徴とする電磁波検出装置。
A signal line for reading out an electrical signal converted by the conversion element, in which pixels including a conversion element for converting electromagnetic waves into an electric signal and a switch element connected to the conversion element are arranged in a two-dimensional manner on an insulating substrate. In the electromagnetic wave detection device having
The signal lead-out lines arranged outside the pixel area of the signal lines form a plurality of wiring groups at the end of the insulating substrate, and at a constant potential at least at the time of signal reading outside the signal lead-out lines at both ends of each of the wiring groups. The constant potential wiring is arranged, and the interval between the constant potential wiring and the signal lead-out wires at both ends of each wiring group is substantially equal to the interval between all the signal lead-out wires. Electromagnetic wave detection device.
前記信号引き出し配線の各配線群は、前記絶縁基板上の画素領域と前記絶縁基板外の回路を接続する複数のテープキャリアパッケージの各々に対応して設けられていることを特徴とする請求項1に記載の電磁波検出装置。   2. Each wiring group of the signal lead-out wiring is provided corresponding to each of a plurality of tape carrier packages that connect a pixel region on the insulating substrate and a circuit outside the insulating substrate. The electromagnetic wave detection apparatus of description. 前記信号引き出し配線は、前記信号線と接続された前記画素と同ピッチの信号電極と、前記絶縁基板の端部に画素ピッチより小さいピッチで配設された接続用電極と、前記2つの電極を接続する直線電極から成ることを特徴とする請求項1又は2のいずれかに記載の電磁波検出装置。   The signal lead-out wiring includes a signal electrode having the same pitch as the pixel connected to the signal line, a connection electrode disposed at an end of the insulating substrate at a pitch smaller than the pixel pitch, and the two electrodes. The electromagnetic wave detection device according to claim 1, comprising a linear electrode to be connected. 前記信号引き出し配線と前記定電位配線の間隔をL、信号引き出し配線幅をd、各信号引き出し配線間の間隔をS、とすると、前記定電位配線は、以下の関係を満たすように配置されることを特徴とする請求項1〜3のいずれかに記載の電磁波検出装置。
S−0.1d≦L≦S+0.1d
When the interval between the signal lead-out wiring and the constant potential wiring is L, the signal lead-out wiring width is d, and the distance between each signal lead-out wiring is S, the constant potential wiring is arranged to satisfy the following relationship. The electromagnetic wave detection device according to any one of claims 1 to 3.
S-0.1d ≦ L ≦ S + 0.1d
前記絶縁基板上に、前記変換素子にバイアスを印加するバイアス線を有し、前記定電位配線は、該バイアス線の画素領域外に配置されたバイアス引き出し配線であることを特徴とする請求項1〜4のいずれかに記載の電磁波検出装置。   2. The bias line for applying a bias to the conversion element is provided on the insulating substrate, and the constant potential wiring is a bias lead wiring arranged outside a pixel region of the bias line. The electromagnetic wave detection apparatus in any one of -4. 前記絶縁基板上に、前記変換素子にバイアスを印加するバイアス線を有し、前記定電位配線は、前記各配線群の両端部の信号引き出し配線と前記バイアス線の画素領域外に配置されたバイアス引き出し配線の間に配置された基準電位線であることを特徴とする請求項1〜4のいずれかに記載の電磁波検出装置。   A bias line for applying a bias to the conversion element is provided on the insulating substrate, and the constant-potential wiring is disposed outside the pixel region of the signal lead-out wiring and the bias line at both ends of each wiring group. The electromagnetic wave detection device according to claim 1, wherein the electromagnetic wave detection device is a reference potential line arranged between the lead wires. 請求項1〜6のいずれかに記載の電磁波検出装置において、入射する電磁波は放射線であって、前記変換素子上に、該放射線を前記変換素子が感知可能な波長帯域の電磁波に変換する波長変換体を更に有することを特徴とする電磁波検出装置。   7. The electromagnetic wave detection device according to claim 1, wherein the incident electromagnetic wave is radiation, and wavelength conversion is performed on the conversion element to convert the radiation into an electromagnetic wave having a wavelength band that can be sensed by the conversion element. An electromagnetic wave detection apparatus further comprising a body. 請求項1〜6のいずれかに記載の電磁波検出装置において、入射する電磁波は放射線であって、前記変換素子は該放射線を電気信号に変換する素子であることを特徴とする電磁波検出装置。   The electromagnetic wave detection device according to claim 1, wherein the incident electromagnetic wave is radiation, and the conversion element is an element that converts the radiation into an electric signal. 請求項7又は8に記載の電磁波検出装置と、
前記電磁波検出装置からの信号を処理する信号処理手段と、
前記信号処理手段からの信号を記録するための記録手段と、
前記信号処理手段からの信号を表示するための表示手段と、
前記信号処理手段からの信号を伝送するための伝送処理手段と、
前記放射線を発生させるための放射線源とを具備することを特徴とする放射線撮像システム。
The electromagnetic wave detection device according to claim 7 or 8,
Signal processing means for processing a signal from the electromagnetic wave detection device;
Recording means for recording a signal from the signal processing means;
Display means for displaying a signal from the signal processing means;
Transmission processing means for transmitting a signal from the signal processing means;
A radiation imaging system comprising: a radiation source for generating the radiation.
JP2005290063A 2005-10-03 2005-10-03 Electromagnetic wave detector and radiation imaging system Withdrawn JP2007103577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290063A JP2007103577A (en) 2005-10-03 2005-10-03 Electromagnetic wave detector and radiation imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290063A JP2007103577A (en) 2005-10-03 2005-10-03 Electromagnetic wave detector and radiation imaging system

Publications (1)

Publication Number Publication Date
JP2007103577A true JP2007103577A (en) 2007-04-19

Family

ID=38030240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290063A Withdrawn JP2007103577A (en) 2005-10-03 2005-10-03 Electromagnetic wave detector and radiation imaging system

Country Status (1)

Country Link
JP (1) JP2007103577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695352A (en) * 2017-04-10 2018-10-23 普里露尼库斯日本股份有限公司 Solid-state imaging apparatus, the manufacturing method of solid-state imaging apparatus and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695352A (en) * 2017-04-10 2018-10-23 普里露尼库斯日本股份有限公司 Solid-state imaging apparatus, the manufacturing method of solid-state imaging apparatus and electronic equipment
CN108695352B (en) * 2017-04-10 2023-05-16 普里露尼库斯新加坡私人有限公司 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4845352B2 (en) Radiation imaging apparatus, manufacturing method thereof, and radiation imaging system
JP5043374B2 (en) Conversion device, radiation detection device, and radiation detection system
JP3957803B2 (en) Photoelectric conversion device
JP5142943B2 (en) Radiation detection device manufacturing method, radiation detection device and radiation imaging system
US7932946B2 (en) Imaging apparatus and radiation imaging system
JP5196739B2 (en) Radiation imaging apparatus and radiation imaging system
JP4908947B2 (en) Conversion device, radiation detection device, and radiation detection system
US6671347B2 (en) Radiation imaging apparatus and radiation imaging system using the same
US8368027B2 (en) Radiation detection apparatus and radiographic imaging system
JP4018725B2 (en) Photoelectric conversion device
KR101441630B1 (en) X-ray detector and making method of x-ray detector
JP2007049123A (en) Conversion apparatus, radiation detector, and radiation detecting system
EP1246250B1 (en) Photodetecting device, radiation detecting device, and radiation imaging system
JP2007201246A (en) Photoelectric conversion device and radiation imaging apparatus
JP2012112726A (en) Radiation detection device and radiation detection system
JP5700973B2 (en) Detection apparatus and radiation detection system
US6956216B2 (en) Semiconductor device, radiation detection device, and radiation detection system
JP4067055B2 (en) Imaging apparatus and manufacturing method thereof, radiation imaging apparatus, and radiation imaging system
US6753915B1 (en) Photoelectric Conversion Apparatus and Image Pickup Apparatus having an Optimally Positioned Driving Wire
JP2007184407A (en) Electromagnetic wave detection device and radiation imaging system
JP2007103577A (en) Electromagnetic wave detector and radiation imaging system
JP3467027B2 (en) Semiconductor device, radiation detection device, and radiation imaging system
JP2004303925A (en) Substrate for imaging
JP2006186031A (en) Photoelectric conversion device and radiation imager
JP4875349B2 (en) Radiation detection apparatus, radiation imaging system, and detection apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106