JP2007103323A - Lighting device, light control member lighting device has, and image display device using same - Google Patents

Lighting device, light control member lighting device has, and image display device using same Download PDF

Info

Publication number
JP2007103323A
JP2007103323A JP2005295751A JP2005295751A JP2007103323A JP 2007103323 A JP2007103323 A JP 2007103323A JP 2005295751 A JP2005295751 A JP 2005295751A JP 2005295751 A JP2005295751 A JP 2005295751A JP 2007103323 A JP2007103323 A JP 2007103323A
Authority
JP
Japan
Prior art keywords
light
control member
incident
light source
incident surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005295751A
Other languages
Japanese (ja)
Other versions
JP4563294B2 (en
Inventor
Yoshiki Kobi
良樹 向尾
Ikuo Onishi
伊久雄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005295751A priority Critical patent/JP4563294B2/en
Publication of JP2007103323A publication Critical patent/JP2007103323A/en
Application granted granted Critical
Publication of JP4563294B2 publication Critical patent/JP4563294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device and an image display device which do not need the adjustment of light source positions, eliminate the lamp image, and excels in uniformizing the luminance in the light outgoing surface. <P>SOLUTION: A light beam direction transformation part transforms light of 80% to 10% out of incident light entering an incident surface from the normal direction. Light of ≥80% out of incident light entering the incident surface from light sources passes through the light beam direction transformation part, and reaches an outgoing light control part. When among the plurality of light sources, D refers to a distance between a prescribed light source and another light source in the nearest vicinity thereof, and H refers to a distance between a prescribed light source and a light control member, a total light beam transmittance of light entering the incident surface of the light control member, which light from the light sources enters, at an angle of α=Tan<SP>-1</SP>((D/2)/H) against the normal direction of the incident surface is ≥50%, and the total light beam transmittance is 1.05 to 3 times a total light beam transmittance of light entering from the normal direction of the incident surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の光源を有する照明装置及びこれを用いた画像表示装置に関するものであり、特に、大型で高輝度と輝度均一性が要求される照明看板装置、液晶ディスプレイ装置等に好適に用いられる直下方式の照明装置これが備える光制御部材及びこれを用いた画像表示装置に関するものである。   The present invention relates to an illuminating device having a plurality of light sources and an image display device using the illuminating device, and is particularly suitable for a large-sized lighting signage device, a liquid crystal display device, and the like that require high luminance and luminance uniformity. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct-type illumination device, a light control member provided in the illumination device, and an image display device using the same.

画像表示装置用の照明装置を例にすると、導光板の側端に配した光源の光を導光板で正面方向に誘導し、拡散シートで均一化するエッジライト方式と、照明面の裏側に光源を配し、光を拡散板で均一化する直下方式が挙げられる。
直下方式は、光源を装置の背面に備えることから厚さが厚くなる傾向があり、このため、携帯電話やモバイルパソコンなどの薄さを要求される分野では、光源を側端に備えることで有利となるエッジライト方式が主流であった。
Taking an illumination device for an image display device as an example, an edge light system in which light from a light source disposed on the side edge of the light guide plate is guided in the front direction by the light guide plate and made uniform by a diffusion sheet, and a light source on the back side of the illumination surface And a direct system in which light is made uniform with a diffuser.
The direct type has a tendency to increase the thickness because the light source is provided on the back surface of the apparatus. For this reason, it is advantageous to provide the light source at the side edge in a field where thinness is required such as a mobile phone or a mobile personal computer. The edge-light method is the mainstream.

一方で、近年、テレビやパソコンモニターなどの市場を中心にディスプレイの大型化および高輝度化の要求が高まってきた。特にディスプレイの大型化に伴い、上記エッジライト方式では、光源を配置できる周辺部の長さの表示面積に対する割合が減少して、光量が不足するため、充分な輝度を得ることができない。
そこで、面光源上に複数の輝度向上のためのフィルムを配置して、光の利用効率を向上させる方法が提案されている(例えば、特許文献1参照)。
On the other hand, in recent years, there has been an increasing demand for larger displays and higher brightness mainly in the market of televisions and personal computer monitors. In particular, with the increase in the size of the display, the edge light method reduces the ratio of the length of the peripheral portion where the light source can be arranged to the display area, and the amount of light is insufficient, so that sufficient luminance cannot be obtained.
Therefore, a method has been proposed in which a plurality of films for improving luminance are arranged on a surface light source to improve the light use efficiency (see, for example, Patent Document 1).

しかしながら、輝度向上フィルムは、コストアップに繋がること、また使用するフィルムの数が多くなることから、生産性や薄型化の観点から必ずしも有利とはいえない。また、エッジライト方式ではディスプレイの大型化に伴い導光板の重量が増加するといった問題もある。このように、エッジライト方式では、近年のディスプレイの大型化、高輝度化のといった市場の要求に応えることは困難となってきた。   However, the brightness enhancement film is not necessarily advantageous from the viewpoint of productivity and thinning because it leads to an increase in cost and the number of films to be used increases. Further, the edge light system has a problem that the weight of the light guide plate increases as the display becomes larger. As described above, in the edge light system, it has been difficult to meet market demands such as an increase in display size and brightness in recent years.

そこで、複数光源による直下方式が注目されている。この方式は、光源から放射される光の利用効率、即ち光源から放射される光束のうち発光面から放射される光束の割合が高く、かつ、光源の数を自由に増加させることができる。
すなわち、光量を自由に増加させることができるため、要求される高輝度が容易に得られ、また、大型化による輝度低下や輝度均一性の低下がない。さらに、光を正面に向ける導光板が不要となるため、軽量化を図ることができる。
また、他の照明装置として、例えば照明看板などでは、構成が単純であり、輝度向上のためのフィルムなどを用いることなく、容易に高輝度が得られることから、複数光源による直下方式が主流である。
Therefore, a direct method using a plurality of light sources is attracting attention. In this method, the utilization efficiency of light emitted from the light source, that is, the ratio of the light flux emitted from the light emitting surface to the light flux emitted from the light source is high, and the number of light sources can be increased freely.
That is, since the amount of light can be increased freely, the required high brightness can be easily obtained, and there is no reduction in brightness or brightness uniformity due to an increase in size. Furthermore, since a light guide plate that directs light to the front is not necessary, the weight can be reduced.
Also, as other lighting devices, for example, lighting signboards, etc., have a simple configuration, and high brightness can be easily obtained without using a film for improving brightness. is there.

しかしながら、直下方式では、ランプイメージの解消、薄型化、省エネルギーといった独特の課題を解決しなければならない。特に、前記ランプイメージは、エッジライト方式よりもはるかに顕著な輝度ムラとして現れる。このため、従来、エッジライト方式で用いられてきた手段、即ち、フィルム表面に拡散材を塗布した拡散フィルムなどの手段では、ランプイメージの解消が困難である。   However, the direct system has to solve unique problems such as elimination of lamp image, thinning, and energy saving. In particular, the lamp image appears as brightness unevenness much more remarkable than the edge light method. For this reason, it is difficult to eliminate the lamp image by means conventionally used in the edge light system, that is, means such as a diffusion film in which a diffusion material is applied to the film surface.

そこで、拡散材を含有した拡散板が広く用いられている。この方式では、たとえば、図17に示すように、背面側に反射板2を配置した光源1の前面側に拡散板20を設置している。そして、良好な拡散性と光利用効率を得るために、メタクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、塩化ビニル系樹脂等の基材樹脂に、無機微粒子や架橋有機微粒子を光拡散材として配合して、光拡散板を作製する方法(例えば、特許文献2参照)が検討されている。   Therefore, a diffusion plate containing a diffusion material is widely used. In this method, for example, as shown in FIG. 17, a diffusion plate 20 is installed on the front side of the light source 1 in which the reflection plate 2 is arranged on the back side. In order to obtain good diffusibility and light utilization efficiency, inorganic fine particles and cross-linked organic fine particles are blended as a light diffusing material in base resin such as methacrylic resin, polycarbonate resin, styrene resin, and vinyl chloride resin. Thus, a method for producing a light diffusing plate (for example, see Patent Document 2) has been studied.

しかし、これら拡散材を用いる方法では拡散材への光の吸収や、不要な方向への光の拡散のため光の利用効率が低下し省エネルギーの観点から好ましくない。また、光源を近接して多数配置することでランプイメージは軽減できるが、消費電力が増加する問題がある。   However, the method using these diffusing materials is not preferable from the viewpoint of energy saving because the light use efficiency decreases due to the absorption of light into the diffusing material and the diffusion of light in unnecessary directions. Moreover, although a lamp image can be reduced by arranging many light sources close to each other, there is a problem that power consumption increases.

一方、反射板に独特の形状をもたせて、ランプイメージを消去する方法も提案されている(例えば、特許文献3参照)。しかし、反射板形状と光源との位置合わせが必要であること、反射板の形状のため、薄型化が阻害される場合があること、などから好ましくない。   On the other hand, a method of erasing the lamp image by giving the reflector a unique shape has been proposed (see, for example, Patent Document 3). However, it is not preferable because it is necessary to align the shape of the reflector and the light source, and the thickness of the reflector may be hindered due to the shape of the reflector.

また、光源に対向して反射性部材を設置する方法(例えば、特許文献4参照)、光源ごとに、例えばフレネルレンズのような光線方向変換素子を配す方法など(例えば、特許文献5参照)も提案されているが、特許文献3に記載の方法と同様に、前記部材と光源との正確な位置合わせが必要であることから、生産性が劣るといった課題が生じる。   Also, a method of installing a reflective member facing the light source (for example, see Patent Document 4), a method of arranging a light beam direction conversion element such as a Fresnel lens for each light source, etc. (for example, see Patent Document 5) However, as in the method described in Patent Document 3, since accurate alignment between the member and the light source is necessary, there arises a problem that productivity is inferior.

大型照明装置においては、携帯電話やモバイルパソコンなどに比べて、薄型化についての要求は厳しくないため、光源と拡散板との距離を短くすることや、光学フィルムの枚数削減などで対応できる。   In large illuminating devices, the demand for thinning is not strict as compared with mobile phones, mobile personal computers, and the like, so it can be dealt with by shortening the distance between the light source and the diffusion plate or reducing the number of optical films.

また、省エネルギーを実現するには、光利用効率を高めることが必要である。直下方式は、前述のように光源本数を増やすことができ、高輝度を得ることが容易であるが、省エネルギーの視点からは、ランプイメージ解消のために大量の拡散材を用いるなどの、光利用効率を大きく下げる手段によることは避けなければならない。
特開平2−17号公報 特開昭54−155244号公報 特許2852424号公報 特開2000−338895号公報 特開2002−352611号公報
In order to realize energy saving, it is necessary to increase the efficiency of light utilization. The direct method can increase the number of light sources as described above, and it is easy to obtain high brightness, but from the viewpoint of energy saving, use of light such as using a large amount of diffusing material to eliminate the lamp image. You must avoid measures that greatly reduce efficiency.
Japanese Patent Laid-Open No. 2-17 JP 54-155244 A Japanese Patent No. 2852424 JP 2000-338895 A JP 2002-352611 A

そこで、本発明は、出射面における輝度が高く、かつ、光利用効率が高く、大型化に伴う部材の光学設計変更や輝度低下や輝度均一性低下がないことから大型化への対応が容易で、光源と他の部材の厳密な位置合わせをすることなくランプイメージが解消され、光源と他の部材を近づけたりフィルム構成を単純化したりするという薄型化にも対応できる、複数光源直下方式の照明装置これが備える光制御部材およびこれを用いた画像表示装置を提供することを目的とする。   Therefore, the present invention has high brightness on the exit surface, high light utilization efficiency, and there is no change in the optical design of the member, brightness reduction, and brightness uniformity reduction associated with the increase in size, making it easy to cope with the increase in size. The lamp image is eliminated without strict alignment between the light source and other members, and the lighting system directly below the multiple light sources can be used to reduce the thickness of the light source and other members close to each other or simplify the film configuration. An object of the present invention is to provide a light control member included in the device and an image display device using the light control member.

本発明者らは上記課題に鑑みて、以下の検討をなし本発明に至った。
複数光源直下方式の照明装置では、出射する光のエネルギーは、各光源に対向する位置では大きく、隣接する光源同士の間に対向する位置では小さい。そこで、光源に対向する位置から出光する光を、光制御部材での適度な反射によって弱めると共に、反射光を反射板で拡散光として、再び光制御部材に戻して出射させる。
In view of the above-mentioned problems, the present inventors have made the following studies and have reached the present invention.
In the illumination device of the type directly below the plurality of light sources, the energy of the emitted light is large at a position facing each light source and small at a position facing between adjacent light sources. Therefore, the light emitted from the position facing the light source is weakened by appropriate reflection at the light control member, and the reflected light is returned to the light control member again as diffused light by the reflector.

これにより、光の利用効率を大きく低下させることなく、光源に対向する位置とそれ以外の位置から出射する光のエネルギーとが等しくなり、ランプイメージが解消されること、ならびに、この目的を達成するために、光制御部材の、光源に対向する位置と隣接する2つの光源の中間点に対向する位置の全光線透過率の比を適当な範囲に制御する、という手段を見出すに至った。   As a result, the energy of the light emitted from the position opposite to the light source and the position other than the light source becomes equal without greatly reducing the light use efficiency, and the lamp image is eliminated, and this object is achieved. For this reason, the inventors have found a means for controlling the ratio of the total light transmittance of the light control member at a position facing the light source and a position facing the midpoint between the two adjacent light sources to an appropriate range.

本発明者らは更に詳細に検討し、最適な全光線透過率の比の範囲を見出した。また、この方法によって、光利用効率を下げる拡散材の使用を回避もしくは大幅に減少することができ、高い光利用効率が達成されることを見出した。
また、光源と光制御部材の位置あわせを不要とするためには、光制御部材における入射面上の任意の点で、全光線透過率について同じ性質をもつ必要がある。すなわち、入射面上の任意の点で均一な光学的性質を持つことが必要であると結論した。ここで「点」とは少なくとも視覚に影響を及ぼさない微小な領域を示す。
The inventors of the present invention studied in more detail and found an optimum range of the total light transmittance ratio. It has also been found that this method can avoid or greatly reduce the use of a diffusing material that lowers the light utilization efficiency, and achieves a high light utilization efficiency.
Further, in order to eliminate the need for alignment of the light source and the light control member, it is necessary to have the same property with respect to the total light transmittance at an arbitrary point on the incident surface of the light control member. That is, it was concluded that it is necessary to have a uniform optical property at an arbitrary point on the incident surface. Here, “point” indicates at least a minute region that does not affect the visual perception.

一方、光源からの入射光のうち、望ましい割合の光の光線方向を変更することで、輝度の均一性を更に高めることを見出し、鋭意検討し、前記光線方向を変換する割合について好適な範囲を見出すとともに、光線方向の変換と全光線透過率の比の制御の二つの機能を1つの部材で達成するための好適な構成をも見出した。   On the other hand, by changing the light beam direction of the desired proportion of the incident light from the light source, it has been found that the uniformity of luminance is further improved, and intensively studied, and a suitable range for the ratio of changing the light beam direction. As well as finding out, the present inventors have also found a suitable configuration for achieving the two functions of changing the light direction and controlling the ratio of the total light transmittance with a single member.

上記の検討結果に基づいて成された請求項1記載の発明は、反射板と、複数の光源と、板状の光制御部材を備える照明装置であって、
前記光源は1つの仮想平面内に規則的に配置されており、
前記反射板、前記光源が配置されている仮想平面、前記光制御部材が、それぞれの主面を平行にして、かつ、この順に配置されており、
前記光制御部材は、
前記光源からの光の方向を変換するための光線方向変換部と、
前記光線方向変換部を通過した光の出射エネルギーを制御するための出光制御部とを備え、
前記複数の光源の内、所定の光源とその最近傍にある他の光源との間の距離をD、前記所定の光源と前記光制御部材との距離をHとしたとき、前記光源からの光が入射する前記光制御部材の入射面に、当該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、当該全光線透過率が前記入射面上の法線方向から光が入射した光の全光線透過率の1.05乃至3倍であり、
前記光線方向変換部は入射面に法線方向から入射した光の80%乃至10%の光の方向を変換するとともに、
前記光源から前記入射面に入射した光の80%以上が前記光線方向変換部を通過して、前記出光制御部に到達することを特徴とする照明装置である。
The invention according to claim 1 made on the basis of the above examination results is an illuminating device including a reflecting plate, a plurality of light sources, and a plate-like light control member,
The light sources are regularly arranged in one virtual plane,
The reflector, a virtual plane on which the light source is arranged, and the light control member are arranged in this order with their main surfaces parallel to each other,
The light control member is
A light beam direction conversion unit for converting the direction of light from the light source;
A light output control unit for controlling the emission energy of the light that has passed through the light beam direction conversion unit,
Of the plurality of light sources, when the distance between the predetermined light source and another light source nearest to the predetermined light source is D and the distance between the predetermined light source and the light control member is H, the light from the light source Is incident on the light incident surface of the light control member at an angle of α = Tan-1 {(D / 2) / H} with respect to the normal direction of the light incident surface. And the total light transmittance is 1.05 to 3 times the total light transmittance of light incident from the normal direction on the incident surface,
The light beam direction conversion unit converts the direction of 80% to 10% of the light incident on the incident surface from the normal direction, and
80% or more of the light incident on the incident surface from the light source passes through the light beam direction conversion unit and reaches the light output control unit.

請求項2記載の発明は、前記光制御部材が基材部を有し、前記光線方向変換部が前記基材部中に分散する光線方向変換材であり、該光制御部材を構成する基材部100質量部に対して粒子径1〜50μmの光線方向変換材を0.01〜1質量部含有し、かつ、前記基材部と前記光線方向変換材の屈折率の差が0.005乃至0.08であることを特徴とする請求項1に記載の照明装置である。   The invention according to claim 2 is a base material constituting the light control member, wherein the light control member has a base part, and the light direction change part is dispersed in the base part. 0.01 to 1 part by mass of a light direction changing material having a particle diameter of 1 to 50 μm with respect to 100 parts by weight of the part, and a difference in refractive index between the base material part and the light direction changing material is 0.005 to The illumination device according to claim 1, wherein the illumination device is 0.08.

請求項3記載の発明は、前記光線方向変換部が前記入射面上の凹凸構造であることを特徴とする請求項1に記載の照明装置である。   A third aspect of the present invention is the illumination device according to the first aspect, wherein the light beam direction changing portion is an uneven structure on the incident surface.

請求項4記載の発明は、請求項1〜3に記載の照明装置が備える光制御部材である。   Invention of Claim 4 is a light control member with which the illuminating device of Claims 1-3 is provided.

また、請求項5記載の発明は、請求項1〜3に記載の照明装置上に透過型表示素子を設けたことを特徴とする画像表示装置である。   The invention described in claim 5 is an image display device characterized in that a transmissive display element is provided on the illumination device described in claims 1-3.

請求項1の発明は、反射板と、複数の光源と、板状の光制御部材を備える照明装置であって、前記光源は1つの仮想平面内に規則的に配置されており、
前記反射板、前記光源が配置されている仮想平面、前記光制御部材が、それぞれの主面を平行にして、かつ、この順に配置されているので、光源と反射板からの光は効率よく光制御部材に向かう。また光源が1つの仮想平面内にあることは装置の薄型化、光源の出光強度の均一化、などの上で有利である。光源が規則的に配置されているので、光制御部材に入射する光の強度が規則的となり、本発明の光制御部材で好適に制御できる。
Invention of Claim 1 is an illuminating device provided with a reflecting plate, a some light source, and a plate-shaped light control member, Comprising: The said light source is regularly arrange | positioned in one virtual plane,
Since the reflector, the virtual plane on which the light source is arranged, and the light control member are arranged in this order with their main surfaces parallel, the light from the light source and the reflector is efficiently emitted. Head to the control member. In addition, the fact that the light source is in one virtual plane is advantageous in terms of reducing the thickness of the apparatus and making the light intensity of the light source uniform. Since the light sources are regularly arranged, the intensity of light incident on the light control member becomes regular and can be suitably controlled by the light control member of the present invention.

上記光制御部材の入射面の法線方向に対して所定の角度α=Tan-1{(D/2)/H}で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記法線方向から入射した光の場合の全光線透過率の1.05倍〜3倍、即ち、上記光源に対向する真上位置に入射する光の全光線透過率よりも適度に高くなる。すなわち隣接する2つの光源の中間点に対向する部分で光制御部材に入射する光の全光線透過率を、光源に対向する位置に入射する光の全光線透過率よりも適度に高くすることで、光制御部材から出射する光エネルギーの出射面内分布を均一化することができることから、ランプイメージが解消され、輝度が高く、かつ、出射面内の輝度が均一な照明装置を得ることができる。また、光制御部材は、入射面側から該入射面に入射した光を一部は反射し、一部は透過する。この機能によって出光強度を一定にできる。従って、前記光制御部材から出射する光エネルギーの出射面内分布が均一化される。また、入射面上の任意の点で好ましい光学的性質がことから、光源と光制御部材との位置合わせが不要で、ディスプレイサイズや光源の本数や配置の変更にも柔軟に対応でき、生産性よく照明装置を製造することができる。更に、光利用効率を下げる拡散材の使用を回避もしくは大幅に減少することができ、高い光利用効率が達成される。 The total light transmittance of light incident at a predetermined angle α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface of the light control member is 50% or more, and The total light transmittance is 1.05 to 3 times the total light transmittance in the case of light incident from the normal direction, that is, from the total light transmittance of light incident directly above the position facing the light source. Will be reasonably high. That is, by making the total light transmittance of light incident on the light control member at a portion facing the intermediate point between two adjacent light sources appropriately higher than the total light transmittance of light incident on the position facing the light source. Since the distribution of the light energy emitted from the light control member can be made uniform in the emission surface, the lamp image is eliminated, and the illumination device having a high luminance and a uniform luminance in the emission surface can be obtained. . Further, the light control member partially reflects the light incident on the incident surface from the incident surface side and partially transmits the light. With this function, the intensity of light emission can be made constant. Therefore, the in-plane distribution of light energy emitted from the light control member is made uniform. In addition, because it has favorable optical properties at any point on the entrance surface, it is not necessary to align the light source and the light control member, and it can flexibly respond to changes in the display size, number of light sources and arrangement, and productivity. A lighting device can be manufactured well. Furthermore, the use of a diffusing material that lowers the light utilization efficiency can be avoided or greatly reduced, and a high light utilization efficiency is achieved.

また光線方向変換部によって入射面に法線方向から入射した光の80%乃至10%の光の方向を変換することで、好適な割合の光線方向を変化させることができるので、輝度の均一性を更に高めることができる。
前記光源から前記入射面に入射した光の80%以上が前記光線方向変換部を通過して、前記出光制御部に到達することで、光の有効利用率が高く、多くの光の出光を制御できるので、輝度が高く、かつ、好ましい出光制御が可能である。
In addition, by changing the direction of light that is 80% to 10% of the light incident on the incident surface from the normal direction by the light direction conversion unit, it is possible to change the light direction of a suitable ratio, so that the luminance uniformity Can be further increased.
80% or more of the light incident on the incident surface from the light source passes through the light beam direction conversion unit and reaches the light output control unit, so that the effective utilization rate of light is high and the light output of a large amount of light is controlled. Therefore, the luminance is high and preferable light emission control is possible.

請求項2の発明は、光制御部材の基材部中に光線方向変換部として光線方向変換材を用いることで、出射光の均一性を高めることが出来る。特に光線方向変換材を0.01から1質量部用いて、また光線方向変換材の基材部との屈折率差が0.005乃至0.08であるので、光線方向変換材による光のロスは最小限に抑えつつ、効果的な出射光の均一性向上が実現できる。   The invention of claim 2 can improve the uniformity of the emitted light by using a light beam direction changing material as a light beam direction changing portion in the base material portion of the light control member. In particular, the light direction changing material is used in an amount of 0.01 to 1 part by mass, and the difference in refractive index between the light direction changing material and the base material portion is 0.005 to 0.08. Can effectively improve the uniformity of the emitted light.

請求項3の発明は、光制御部材の光線方向変換部が入射面の凹凸構造であることで、光制御部材を射出成形などの一般的な成形方法で容易に作成できる。   According to the third aspect of the present invention, since the light beam direction changing portion of the light control member has a concavo-convex structure on the incident surface, the light control member can be easily formed by a general molding method such as injection molding.

請求項4記載の発明は、請求項1〜3に記載の照明装置に用いることができる光制御部材であって、該照明装置で好適に用いられるだけでなく、反射板と光制御部材を平行に配置し、その間に光制御部材に向けて光を発するように単一の光源を配置した照明装置や、複数の光制御部材の間に単一、もしくは複数の光源を配置するような照明装置に用いることが出来、これらの照明装置は照明看板などの表示用途にも好適に用いることが出来る。   The invention according to claim 4 is a light control member that can be used in the illumination device according to claims 1 to 3, and is not only suitably used in the illumination device, but also the reflector and the light control member in parallel. Illuminating device in which a single light source is disposed so as to emit light toward the light control member therebetween, or a single or multiple light sources are disposed between a plurality of light control members These lighting devices can also be suitably used for display applications such as lighting signs.

請求項5に記載の発明は、光制御部材により集光及び拡散された光線が透過型表示素子を透過するので、簡単な構成でありながら、光源位置の調整が不要であり、ランプイメージを解消でき、かつ、優れた出射面内均一な明るさを有する画像表示装置を容易に得ることができる。   According to the fifth aspect of the present invention, since the light condensed and diffused by the light control member is transmitted through the transmissive display element, the light source position is not required to be adjusted while the configuration is simple, and the lamp image is eliminated. It is possible to easily obtain an image display device having excellent brightness on the exit surface.

本発明は、反射板と、複数の光源と、板状の光制御部材を備える照明装置であって、前記光源は1つの仮想平面内に規則的に配置されており、前記反射板、前記光源が配置されている仮想平面、前記光制御部材が、それぞれの主面を平行にして、かつ、この順に配置されており、前記光制御部材は、前記光源からの光の方向を変換するための光線方向変換部と、前記光線方向変換部を通過した光の出射エネルギーを制御するための出光制御部とを備え、前記複数の光源の内、所定の光源とその最近傍にある他の光源との間の距離をD、前記所定の光源と前記光制御部材との距離をHとしたとき、前記光源からの光が入射する前記光制御部材の入射面に、当該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、当該全光線透過率が前記入射面上の法線方向から光が入射した光の全光線透過率の1.05乃至3倍であり、前記光線方向変換部は入射面に法線方向から入射した光の80%乃至10%の光の方向を変換するとともに、前記光源から前記入射面に入射した光の80%以上が前記光線方向変換部を通過して、前記出光制御部に到達することにより、構成がシンプルで生産性が向上し、光源位置の調整が不要となり、ランプイメージを解消すると共に、出射面内における輝度均一化に優れた照明装置、これが備える光制御部材、及び画像表示装置を安価に得るという目的を実現した。   The present invention is a lighting device including a reflector, a plurality of light sources, and a plate-like light control member, wherein the light sources are regularly arranged in one virtual plane, and the reflector, the light source A virtual plane in which the light control members are arranged in this order with their main surfaces parallel to each other, and the light control member is for converting the direction of light from the light source. A light beam direction conversion unit, and a light output control unit for controlling the emission energy of the light that has passed through the light beam direction conversion unit, and among the plurality of light sources, a predetermined light source and another light source closest thereto Is D, and the distance between the predetermined light source and the light control member is H, the incident surface of the light control member on which light from the light source is incident is in the normal direction of the incident surface. In contrast, the total light transmission of light incident at an angle of α = Tan-1 {(D / 2) / H}. And the total light transmittance is 1.05 to 3 times the total light transmittance of light incident from the normal direction on the incident surface, and the light direction conversion The unit converts the direction of 80% to 10% of the light incident on the incident surface from the normal direction, and more than 80% of the light incident on the incident surface from the light source passes through the light direction converting unit. By reaching the light emission control unit, the structure is simple, the productivity is improved, the adjustment of the light source position is unnecessary, the lamp image is eliminated, and the illumination device that is excellent in uniforming the luminance in the exit surface, The objective of obtaining the light control member and the image display device included therein at low cost was realized.

また、上記光制御部材の入射面の法線方向に対し角度αで入射した光の10〜50%は、出射面の法線方向と成す角度が−15°〜+15°の範囲で出射することで正面輝度が高い照明装置となり、多くの用途で望ましい。このことは出光制御部によって制御できる。   Further, 10 to 50% of the light incident at an angle α with respect to the normal direction of the incident surface of the light control member is emitted within an angle range of −15 ° to + 15 ° with the normal direction of the output surface. Thus, the lighting device has a high front luminance, which is desirable for many applications. This can be controlled by the light emission control unit.

以下、本発明の一実施の形態を図1乃至図19に従って説明する。図1に示すように、光入射側から光出射側に向かって反射板2、複数の光源1、および光制御部材4がこの順序で配置され、該光制御部材4は規則的な複数の凸部9を有する。このように、反射板2と光制御部材4の間に複数の光源1を配置して成る照明装置にあっては、図2に示す様に、前記光制御部材4の入射面に相当する仮想面3へ入射した光は、各光源1の直上部分と、隣り合う光源1同士の間の部分とでは光入射エネルギーが異なる。
即ち、各光源1位置に対向する真上領域では、光源1に近いため入射エネルギーが大きい一方、複数の光源1同士の間の位置に対向する非真上領域(各光源1の斜上部分)では、光源1から離れているため入射エネルギーは小さい。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the reflector 2, the plurality of light sources 1, and the light control member 4 are arranged in this order from the light incident side to the light emission side, and the light control member 4 has a plurality of regular protrusions. Part 9. As described above, in the illumination device in which the plurality of light sources 1 are arranged between the reflector 2 and the light control member 4, as shown in FIG. 2, a virtual corresponding to the incident surface of the light control member 4. The light incident on the surface 3 has different light incident energies between a portion immediately above each light source 1 and a portion between adjacent light sources 1.
That is, in the region directly above the position of each light source 1, the incident energy is large because it is close to the light source 1, while the non-directly above region facing the position between the plurality of light sources 1 (the obliquely upper portion of each light source 1). Then, since it is away from the light source 1, the incident energy is small.

また、図3に示す様に、前記仮想面3に対する入射エネルギーの角度分布図、即ち、入射角度に対する輝度の分布図では、仮想面3に対し垂直方向に入射した光線の輝度が最大値を示す。一方、図4に示す様に、仮想面3に対する出射エネルギーの角度分布図、即ち、出射角度に対する輝度の分布図では、仮想面3に対し斜め方向に入射した光線の輝度、特に、前記隣り合う光源同士の間の中央位置近傍における光線の輝度が最大値を示す。   Further, as shown in FIG. 3, in the angular distribution diagram of the incident energy with respect to the virtual surface 3, that is, the luminance distribution diagram with respect to the incident angle, the luminance of the light ray incident on the virtual surface 3 in the vertical direction shows the maximum value. . On the other hand, as shown in FIG. 4, in the angle distribution diagram of the emission energy with respect to the virtual surface 3, that is, the distribution diagram of the luminance with respect to the emission angle, the luminance of the light ray incident on the virtual surface 3 in an oblique direction, The luminance of the light beam in the vicinity of the central position between the light sources shows the maximum value.

本発明に係る照明装置においては、図5に示すように、任意の光源Xと、該光源Xに対し最近傍に位置する別の光源Yとの距離をD、該光源Xと光制御部材4との距離をHとした場合、該光制御部材4の入射面上における任意の点について、該入射面に入光した光が該光制御部材4の出射面から出光する割合であるところの全光線透過率に関しては、50%以上乃至100%の範囲であって、かつ、次のような関係を有する。   In the illuminating device according to the present invention, as shown in FIG. 5, the distance between an arbitrary light source X and another light source Y located closest to the light source X is D, and the light source X and the light control member 4. When the distance between the light control member 4 and the light control member 4 is H, the light incident on the light incident surface of the light control member 4 is emitted from the light emission surface of the light control member 4 at any point. The light transmittance is in the range of 50% to 100% and has the following relationship.

すなわち、該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で光が入射した場合の該光の全光線透過率R1は、該入射面に対して垂直方向に光が入射した場合の該光の全光線透過率R2の1.05倍〜3.00倍であることを特徴としている。また、該全光線透過率の割合R1/R2は1.05〜2.00倍であることが、光利用効率の観点からより好ましい。 That is, when light is incident at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is relative to the incident surface. The total light transmittance R2 of the light when the light is incident in the vertical direction is 1.05 to 3.00 times. The ratio R1 / R2 of the total light transmittance is more preferably 1.05 to 2.00 times from the viewpoint of light utilization efficiency.

ここで、前述の全光線透過率の測定に際し、測定対象物への平行光の光束の幅は、光制御部材の表面に凹凸形状を形成している場合において、例えば、凹凸形状の一斜面のみといった微小領域に入射する程度のものではなく、該凹凸形状の特徴を全光線透過率に反映するために、少なくとも凹凸形状部のピッチ以上の広い領域に入射する程度のものである必要がある。   Here, when measuring the total light transmittance described above, the width of the light beam of the parallel light to the measurement object is, for example, an uneven shape on the surface of the light control member. In order to reflect the feature of the uneven shape on the total light transmittance, it is necessary that the light is incident on a wide region at least larger than the pitch of the uneven portion.

図6に、平坦な入射面を有する測定対象物7へ入射角βで入射した平行光8における全光線透過率の測定方法を示す。同図に示すように、積分球5の開口部6の下側にこれを閉鎖するように測定対象物7を設置し、レーザー光もしくはレンズでコリメートした平行光8を、測定対象物7の法線方向に対しβの角度で入射させる。   FIG. 6 shows a method for measuring the total light transmittance of the parallel light 8 incident on the measuring object 7 having a flat incident surface at an incident angle β. As shown in the figure, a measuring object 7 is placed under the opening 6 of the integrating sphere 5 so as to be closed, and parallel light 8 collimated with a laser beam or a lens is used as a method of the measuring object 7. Incident at an angle of β with respect to the line direction.

而して、測定対象物7を透過した光は積分球5内で乱反射され、図示していないフォトマルチプライヤーに代表される検出器でその反射エネルギーを測定する。ここで、測定対象物7を図示のように設置して、角度βで平行光8を入射した場合の検出器の出力をV(β)、測定対象物7が設置されていない場合の検出器の出力をV0とすると、角度βにおける全光線透過率はV(β)/V0で得られる。   Thus, the light transmitted through the measuring object 7 is diffusely reflected in the integrating sphere 5, and the reflected energy is measured by a detector represented by a photomultiplier (not shown). Here, the measurement object 7 is installed as shown, and the output of the detector when the parallel light 8 is incident at an angle β is V (β), and the detector when the measurement object 7 is not installed is the detector. Is V0, the total light transmittance at an angle β is obtained as V (β) / V0.

図5に示す様に、前記角度αは、光源Xまたは光源Yから発した光が、該光源Xと光源Yとの中間点の直上位置の光制御部材4に入射した場合の光線の入射角度に相当する。全光線透過率については、光制御部材4に対し垂直方向から入射した時の光の全光線透過率R2よりも、光制御部材4に対し斜め方向から入射角α(≠0)で入射した時の光の全光線透過率R1の方が高い。このため、各光源X,Yの真上の部分と、光源Xと光源Yの間の部分において、光制御部材4の出射光エネルギーを全体として均一化することができる。
さらに、前記光制御部材4の全光線透過率は入射角度のみに依存し、光制御部材4に対する入射位置には依存しないため、複数の各光源と光制御部材4との位置調整が不要である。つまり、照明装置の組立時に、光制御部材4の面内方向における位置を厳密に設定する必要はない。従って、本発明の光制御部材4を大面積で作製した後、必要寸法に応じて任意の位置から切出したものを使用することができるため、照明装置の生産性を著しく向上させることができる。
As shown in FIG. 5, the angle α is an incident angle of a light beam when light emitted from the light source X or the light source Y is incident on the light control member 4 located immediately above the intermediate point between the light source X and the light source Y. It corresponds to. With respect to the total light transmittance, when the light is incident on the light control member 4 from an oblique direction at an incident angle α (≠ 0), rather than the total light transmittance R2 of light when the light is incident on the light control member 4 from the vertical direction. The total light transmittance R1 of the light is higher. For this reason, the emitted light energy of the light control member 4 can be made uniform as a whole in the portion directly above the light sources X and Y and the portion between the light sources X and Y.
Furthermore, since the total light transmittance of the light control member 4 depends only on the incident angle and does not depend on the incident position with respect to the light control member 4, it is not necessary to adjust the positions of the light sources and the light control member 4. . That is, it is not necessary to strictly set the position of the light control member 4 in the in-plane direction when the lighting device is assembled. Therefore, after manufacturing the light control member 4 of the present invention with a large area, it is possible to use one cut out from an arbitrary position according to the required dimensions, so that the productivity of the lighting device can be significantly improved.

また本光制御部材は規則的に配置された複数の光源からの光の出光方向を制御することに好適であり、前記規則的な配置とは、本発明の趣旨から、所定の光源からDとHで規定される角度αで入射する光の強さと、他の任意の光源から同じ角度αで入射する光の強さが等しいことが望ましく、これを容易に実現するために各光源の出光強度が等しく、かつ、任意の光源とその最近傍にある他の光源との距離Dが一定であり、かつ、また任意の光源と光制御部材との距離Hが一定であることが最も望ましい。   Further, the light control member is suitable for controlling the light output direction of light from a plurality of light sources arranged regularly, and the regular arrangement is defined as D from a predetermined light source for the purpose of the present invention. It is desirable that the intensity of light incident at an angle α defined by H is equal to the intensity of light incident at the same angle α from any other light source, and the light output intensity of each light source is easy to achieve this. It is most desirable that the distance D between any light source and another light source nearest to it is constant, and the distance H between any light source and the light control member is constant.

以下、光制御部材4に対して光が垂直方向および斜め方向から入射した時における全光線透過率の調整の具体的手段の例について説明する。先ず、該具体的手段の例としては、図1に示したように、光制御部材4の出射面に出光制御部として、複数の凸部9を設けた態様が挙げられる。凸部9がストライプ状に形成された好適な断面形状を、図7に示す。
該凸部9の断面形状は、光制御部材4の出射面に直交し、凸部9の頂部を含む少なくとも所定の一方向に沿って断面した場合の輪郭線から成る。該輪郭線は、延長線が交差する角度θが鋭角である2つの略直線(部)10と、該2つの略直線(部)10の各一端同士を結ぶ曲線(部)11とから構成され、かつ、輪郭線の頂部が凸状の曲線11である。
ここで、前記所定の一方向とは、光源Xから光源Yへの方向に平行な方向を意味する。また、輪郭線の頂部を構成する曲線の曲率半径は、無限大、すなわち直線であってもよい。
Hereinafter, an example of specific means for adjusting the total light transmittance when light enters the light control member 4 from the vertical direction and the oblique direction will be described. First, as an example of the specific means, as shown in FIG. 1, a mode in which a plurality of convex portions 9 are provided on the emission surface of the light control member 4 as a light output control portion can be mentioned. FIG. 7 shows a preferred cross-sectional shape in which the convex portions 9 are formed in a stripe shape.
The cross-sectional shape of the convex portion 9 is composed of a contour line that is perpendicular to the emission surface of the light control member 4 and is cross-sectioned along at least one predetermined direction including the top of the convex portion 9. The contour line is composed of two substantially straight lines (parts) 10 having an acute angle θ at which the extension lines intersect, and a curve (part) 11 connecting each end of the two substantially straight lines (parts) 10. And the top of the contour line is a convex curve 11.
Here, the predetermined one direction means a direction parallel to the direction from the light source X to the light source Y. Further, the radius of curvature of the curve constituting the top of the contour line may be infinite, that is, a straight line.

図18、図19に出射面に断面が略楕円形状の凸部2を形成した場合の光線の挙動を示した。凸部を略楕円形状で構成することで、凸部裾部の傾きの絶対値を0≦|Sin−1(n・sin(θ−Sin−1((1/n)・sinα)))―θ|≦(π/12)を満たすθ以下であるようにとっている。
図18では、法線に対して角度αで入射する斜め入射光12は凸部裾部11において屈折作用により光拡散板1から略正面方向に出射させることができる。
これは次の理由による。
凸部裾部の傾きをγ、光拡散板1への入射角度をφ1、光拡散板1の屈折率をnとすると図10に示す様に、光拡散板凸部2の一方の裾部から透過する光の光拡散板法線方向に対する角度φ5は下記の通り求めることが出来る。
φ2=Sin−1{(sinφ1)/n}
φ3=γ−φ2
φ4=Sin−1(n×sinφ3
φ5=φ4−γ
すなわち、φ5=Sin−1(n・sin(γ−Sin−1((1/n)・sinφ1)))―γ
FIGS. 18 and 19 show the behavior of light rays when the convex portion 2 having a substantially elliptical cross section is formed on the exit surface. By constructing the convex part in a substantially elliptical shape, the absolute value of the slope of the convex part skirt is 0 ≦ | Sin −1 (n · sin (θ−Sin −1 ((1 / n) · sin α))) − It is set to be equal to or smaller than θ satisfying θ | ≦ (π / 12).
In FIG. 18, the oblique incident light 12 incident at an angle α with respect to the normal can be emitted from the light diffusing plate 1 in a substantially front direction by refraction at the skirt 11 of the convex portion.
This is due to the following reason.
Assuming that the slope of the convex skirt is γ, the incident angle to the light diffusing plate 1 is φ1, and the refractive index of the light diffusing plate 1 is n, as shown in FIG. The angle φ5 of the transmitted light with respect to the normal direction of the light diffusing plate can be obtained as follows.
φ 2 = Sin −1 {(sin φ 1 ) / n}
φ 3 = γ−φ 2
φ 4 = Sin −1 (n × sin φ 3 )
φ 5 = φ 4 −γ
That is, φ 5 = Sin −1 (n · sin (γ−Sin −1 ((1 / n) · sin φ 1 ))) − γ

本発明の主旨から光線の出射方向は正面方向であることが好ましい。従って、φ1=αの場合、−15°≦φ5≦15°であることが望ましい。また−10°≦φ5≦10°であることがより望ましい。さらには−5°≦φ5≦5°となるようにγを選択することが好適である。
例えば、光源間距離Dを33mm、光源中心から光制御部材4までの最短距離Hを15mm、光制御部材4の屈折率nを1.54とすると、52°≦γ≦69°(42°≦θ≦76°)であることが望ましい。また、57°≦γ≦68°(44°≦θ≦66°)であることがより望ましい。さらには、62°≦γ≦67°(46°≦θ≦56°)となるように、γを選択することが好適である。
From the gist of the present invention, it is preferable that the light emission direction is the front direction. Therefore, when φ 1 = α, it is desirable that −15 ° ≦ φ 5 ≦ 15 °. Further, it is more desirable that −10 ° ≦ φ 5 ≦ 10 °. Furthermore, it is preferable to select γ so that −5 ° ≦ φ 5 ≦ 5 °.
For example, if the distance D between the light sources is 33 mm, the shortest distance H from the light source center to the light control member 4 is 15 mm, and the refractive index n of the light control member 4 is 1.54, 52 ° ≦ γ ≦ 69 ° (42 ° ≦ It is desirable that θ ≦ 76 °. Further, it is more preferable that 57 ° ≦ γ ≦ 68 ° (44 ° ≦ θ ≦ 66 °). Furthermore, it is preferable to select γ so that 62 ° ≦ γ ≦ 67 ° (46 ° ≦ θ ≦ 56 °).

凸部頂部10は出射面に対する傾きの絶対値θ2がSin−1(1/n)未満である領域Xを持っている。このように領域Xの傾きθ2は複数の値を取る事ができる。曲線部であることで連続的にθ2が変化することで、分散方向を連続的に変化させることができ、より高い輝度均一性が得られる。また望ましくは凸部頂部の任意の点の傾きは凸部裾部11の出射面に対する傾きの絶対値以下である。これは成形の容易性、光の方向制御の容易性から望ましい。 The convex top 10 has a region X in which the absolute value θ2 of the inclination with respect to the exit surface is less than Sin −1 (1 / n). As described above, the slope θ2 of the region X can take a plurality of values. Since θ2 continuously changes due to the curved portion, the dispersion direction can be continuously changed, and higher luminance uniformity can be obtained. Desirably, the slope of an arbitrary point on the top of the convex portion is equal to or smaller than the absolute value of the slope of the convex skirt 11 with respect to the exit surface. This is desirable from the viewpoint of easy molding and easy control of light direction.

また図19に示す様に光拡散板1に垂直に入射した光14は一部が方向を分散しつつ出射すると同時に、凸部表面に入射した光の一部は反射光16として入射側に戻ることで、全光線透過率を抑えることが可能となる。これによって輝度均一性が高く、高輝度な照明装置を得ることができる。   Further, as shown in FIG. 19, a part of the light 14 incident perpendicularly to the light diffusing plate 1 is emitted while its direction is dispersed, and at the same time, a part of the light incident on the convex surface returns to the incident side as reflected light 16. As a result, the total light transmittance can be suppressed. Accordingly, it is possible to obtain a lighting device with high luminance uniformity and high luminance.

凸部9の形状としては、2つの断面略直線10と断面曲線11を有する立体形状に形成することもできる。この理由について以下に説明する。図8に示す様に、前記凸部9の立体形状を、鋭角θをなす2つの略斜面部(断面略直線10に相当)と曲面部(断面曲線11に相当)とによって構成することにより、光制御部材4の入射面4aに斜めに入射した斜め入射光12は、断面略直線10の部分において屈折作用により、光制御部材4の出射面側から略垂直方向(入射面4aの略垂直方向と同方向)に出射させることができる。   As the shape of the convex portion 9, it can be formed into a three-dimensional shape having two substantially straight lines 10 and a section curve 11. The reason for this will be described below. As shown in FIG. 8, the three-dimensional shape of the convex portion 9 is constituted by two substantially slope portions (corresponding to a substantially straight line 10) and a curved surface portion (corresponding to a sectional curve 11) forming an acute angle θ, The obliquely incident light 12 that is obliquely incident on the incident surface 4a of the light control member 4 is refracted by a refraction action at a substantially straight line 10 in the cross section from the light emission surface side of the light control member 4 (substantially perpendicular to the incident surface 4a In the same direction).

また、図9に示す様に、光制御部材4に垂直に入射した光13は、前記凸部9の曲面部において出射方向を分散すると同時に、凸部9の表面に当たった光の一部は、全反射を起こし出射しないため、該光の全光線透過率を抑えることが可能となる。光制御部材4に垂直に入射した垂直光13の全光線透過率が小さくなることによって、輝度均一性が高く、かつ、高輝度な照明装置を容易に得ることができる。   Further, as shown in FIG. 9, the light 13 incident perpendicularly to the light control member 4 disperses the emission direction in the curved surface portion of the convex portion 9 and at the same time, a part of the light hitting the surface of the convex portion 9 is Since total reflection occurs and the light does not exit, the total light transmittance of the light can be suppressed. By reducing the total light transmittance of the vertical light 13 perpendicularly incident on the light control member 4, it is possible to easily obtain a lighting device with high luminance uniformity and high luminance.

前記光制御部材4の凸部9の投影面積Pに対する曲線部11の投影面積Aの割合A/Pについては、40〜80%であることが望ましい。例えば、図7中の面積割合A1/P1が前記面積割合A/Pに相当する。面積割合A/Pが40%未満であると、光の分散効果が小さくなり、輝度均一性が低下する。また、面積割合A/Pが80%を越えると、略直線部10の面積が減少することにより、斜め入射光12のうち正面方向へ出射する光の割合が減少するため、上記と同様に、出射面内の輝度均一性が低下する。   The ratio A / P of the projected area A of the curved portion 11 to the projected area P of the convex portion 9 of the light control member 4 is preferably 40 to 80%. For example, the area ratio A1 / P1 in FIG. 7 corresponds to the area ratio A / P. When the area ratio A / P is less than 40%, the light dispersion effect is reduced, and the luminance uniformity is lowered. Further, when the area ratio A / P exceeds 80%, the area of the substantially linear portion 10 decreases, and therefore the ratio of the light emitted in the front direction out of the oblique incident light 12 decreases. The luminance uniformity in the exit surface is reduced.

図11に、本発明で実施可能な凸部9の別の形状を示す。この場合、凸部9の谷部分に断面曲線(部)14を設けている。この断面曲線部14により光の出射方向が多方向に分散され、輝度均一性の高い照明装置を得ることができる。   FIG. 11 shows another shape of the convex portion 9 that can be implemented in the present invention. In this case, a cross-sectional curve (part) 14 is provided in the valley portion of the convex part 9. The cross-sectional curve portion 14 disperses the light emission direction in multiple directions, and an illumination device with high luminance uniformity can be obtained.

また、光源が線状光源である場合には、出射面側の複数の凸部9を平行に配列したストライプ状レンズに形成し、そのレンズの長手方向を線状光源の長手方向と平行にすることができる。これにより、光制御部材4の出射面における出射光の角度分布調整が一層容易となる。   When the light source is a linear light source, a plurality of convex portions 9 on the emission surface side are formed in a stripe lens arranged in parallel, and the longitudinal direction of the lens is made parallel to the longitudinal direction of the linear light source. be able to. Thereby, the angle distribution adjustment of the outgoing light on the outgoing surface of the light control member 4 is further facilitated.

また出光制御部を出射面側に凸部として形成する場合、その高さまたは深さは、1μm以上かつ500μm以下が望ましい。500μmを越えると、凹凸が観察されるため品位の低下を招く。また、1μm未満であると、光の回折現象により着色が発生して品位の低下を生じる。さらに、特に液晶パネルを利用する際には、液晶の画素の配列方向と平行な方向の凹凸の平均幅が、液晶の画素ピッチの1/1.5以下であることが望ましい。平均幅が画素ピッチの1/1.5を越えると、液晶パネルの表面によりモアレ現象が発生し、液晶パネルの画質を大きく低下させる。
上記凸部は、押出し成形、射出成形、紫外線硬化型樹脂を用いた2P成形等の何れも用いることができる。成形方法は、凸部の大きさ、形状、量産性を考慮して適宜用いればよく、特に限定されない。
Moreover, when forming the light emission control part as a convex part on the exit surface side, the height or depth is preferably 1 μm or more and 500 μm or less. If the thickness exceeds 500 μm, unevenness is observed, leading to deterioration in quality. On the other hand, when the thickness is less than 1 μm, coloring occurs due to the diffraction phenomenon of light, and the quality deteriorates. Further, particularly when using a liquid crystal panel, it is desirable that the average width of the irregularities in the direction parallel to the arrangement direction of the liquid crystal pixels is 1 / 1.5 or less of the pixel pitch of the liquid crystal. When the average width exceeds 1 / 1.5 of the pixel pitch, a moire phenomenon occurs on the surface of the liquid crystal panel, and the image quality of the liquid crystal panel is greatly deteriorated.
Any of extrusion molding, injection molding, 2P molding using an ultraviolet curable resin, or the like can be used for the convex portion. The molding method may be appropriately used in consideration of the size, shape, and mass productivity of the convex portion, and is not particularly limited.

さらに、光制御部材4内部で様々な方向に光を伝搬させて分散効果を高めるための手段として、光線方向制御部を設ける。   Further, a light beam direction control unit is provided as means for increasing the dispersion effect by propagating light in various directions inside the light control member 4.

本発明の光制御部材で用いられる光線方向変換材は、該光制御部材を構成する基材部100質量部に対し、光線方向変換材を0.01〜1質量部、好ましくは0.05〜0.7質量部、さらに好ましくは0.1〜0.5質量部含有することである。その含有量が、基材部100質量部に対して0.01質量部未満であると、光拡散性が十分でなく(輝度ムラの解消効果が十分でない点を記載したく)、また、1質量部を超えると、十分な全光線透過率が得ることが出来なくなり、該光制御部材を照明装置等の用途に用いた際、十分な明るさを得る事が出来ず好ましくない。   The light direction changing material used in the light control member of the present invention is 0.01 to 1 part by weight, preferably 0.05 to 100 parts by weight of the light direction changing material with respect to 100 parts by weight of the base material part constituting the light control member. It is 0.7 mass part, More preferably, it is 0.1-0.5 mass part. When the content is less than 0.01 parts by mass with respect to 100 parts by mass of the base material part, the light diffusibility is not sufficient (describing that the effect of eliminating luminance unevenness is not sufficient), and 1 If it exceeds the mass part, sufficient light transmittance cannot be obtained, and when the light control member is used for a lighting device or the like, sufficient brightness cannot be obtained, which is not preferable.

また、光線方向変換材の粒子径は、その平均粒子径が1〜50μmの範囲であり、好ましくは、2〜30μmの範囲である。光線方向変換材の平均粒子径が1μmより小さい場合には、これを基材部に分散させて得られる光制御部材は、短波長の光を選択的に散乱するため、透過光が黄色を帯びやすく好ましくない。一方、光線方向変換材の平均粒子径が50μmを超えると、基材部に分散させて得られる光制御部材は、光拡散性(輝度ムラの解消効果が十分でない点を記載したく)が低下したり、光が樹脂を透過したときに光線方向変換材が異物として目視されやすくなったりする場合があり好ましくない。光線方向変換材の形状としては、楕円球状ないし球状にわたる形態であることが好ましく、球状であることがより好ましい。   Further, the particle diameter of the light beam redirecting material has an average particle diameter in the range of 1 to 50 μm, and preferably in the range of 2 to 30 μm. When the average particle diameter of the light beam redirecting material is smaller than 1 μm, the light control member obtained by dispersing it in the base material portion selectively scatters light having a short wavelength, so that the transmitted light is yellowish. It is easy and not preferable. On the other hand, when the average particle diameter of the light beam redirecting material exceeds 50 μm, the light control member obtained by dispersing in the base material portion has reduced light diffusivity (I want to describe that the effect of eliminating luminance unevenness is insufficient). Or the light beam redirecting material may be easily seen as a foreign object when light passes through the resin. The shape of the light beam redirecting material is preferably an oval or spherical shape, more preferably a spherical shape.

なお、本明細書でいう平均粒子径とは、後述するように電子顕微鏡観察により得られた写真を用いた実測によって得られる平均粒子径を意味する。   In addition, the average particle diameter as used in this specification means the average particle diameter obtained by actual measurement using the photograph obtained by electron microscope observation so that it may mention later.

光線方向変換材としては、通常、基材の透明性樹脂と屈折率の異なる無機系および/または有機系の透明微粒子が用いられる。光線方向変換材の屈折率と基材の屈折率との差については、その絶対値が、0.005乃至0.08であり、0.01乃至0.07でありことが好ましく、0.02乃至0.06でありことがより好ましい。その屈折率差が、0.005未満であると、光拡散性が十分でなく(輝度ムラの解消効果が十分でない点を記載したく)、また、0.08を超えると、十分な全光線透過率が得ることが出来なくなり、該光制御部材を照明装置等の用途に用いた際、十分な明るさを得る事が出来ず好ましくない。なお、本発明においては、上記のように光線方向変換材と基材との屈折率差により、いわゆる内部拡散性を付与することができるが、光線方向変換材を基材表面に浮き出させて表面凹凸を形成させることにより、いわゆる外部拡散性を付与することもできる。   As the light direction changing material, usually, inorganic and / or organic transparent fine particles having a refractive index different from that of the transparent resin of the base material are used. The difference between the refractive index of the light beam redirecting material and the refractive index of the substrate is 0.005 to 0.08, preferably 0.01 to 0.07, preferably 0.02. More preferably, it is 0.06. If the difference in refractive index is less than 0.005, the light diffusibility is not sufficient (describing that the effect of eliminating the luminance unevenness is not sufficient). The transmittance cannot be obtained, and when the light control member is used for an illumination device or the like, sufficient brightness cannot be obtained, which is not preferable. In the present invention, as described above, so-called internal diffusibility can be imparted by the difference in refractive index between the light beam redirecting material and the base material. By forming irregularities, so-called external diffusibility can be imparted.

また、本発明で使用される光線方向変換材材は、基材樹脂の屈折率よりも低い屈折率を有するものであることが好ましい。光線方向変換材の屈折率が基材の屈折率よりも大きい場合には、光拡散性は高くなるものの、基材樹脂と光線方向変換材とのアッベ数の差が大きくなり、拡散光が見る角度によって色の差が生じやすくなり好ましくない。このため、基材と光線方向変換材との屈折率の差は、通常小さ過ぎたり、大きすぎたりしないものが好ましい。   Moreover, it is preferable that the light redirecting material used in the present invention has a refractive index lower than that of the base resin. When the refractive index of the light beam redirecting material is larger than the refractive index of the base material, the light diffusibility increases, but the difference in the Abbe number between the base resin and the light beam direction changing material becomes large, and the diffused light is seen. A color difference tends to occur depending on the angle, which is not preferable. For this reason, it is preferable that the difference in refractive index between the base material and the light direction changing material is not usually too small or too large.

無機系の光線方向変換材としては、例えば、炭酸カルシウム、硫酸バリウム、酸化チタン、水酸化アルミニウム、シリカ、ガラス、タルク、マイカ、ホワイトカーボン、酸化マグネシウム、酸化亜鉛等が挙げられ、これらは脂肪酸等で表面処理が施されたものであっても良い。また、有機系の光線方向変換材としては、例えば、スチレン系重合体粒子、アクリル系重合体粒子、シロキサン系重合体粒子、フッ素系重合体粒子等が挙げられ、空気中での3質量%減少温度が250℃以上である高耐熱光拡散剤や、アセトンに溶解させたときのゲル分率が10%以上の架橋重合体粒子が好適に用いられる。これらの光線方向変換材の内、シリカ、ガラス、アクリル系重合体粒子、シロキサン系重合体粒子を用いることが好ましく、アクリル系重合体粒子、シロキサン系重合体粒子を用いることがより好ましい。また、これらの光線方向変換材は、必要に応じてその2種類以上を用いることができる。   Examples of inorganic light redirecting materials include calcium carbonate, barium sulfate, titanium oxide, aluminum hydroxide, silica, glass, talc, mica, white carbon, magnesium oxide, zinc oxide, and the like. The surface treatment may be performed. Examples of the organic light redirecting material include styrene polymer particles, acrylic polymer particles, siloxane polymer particles, and fluorine polymer particles, and are reduced by 3% by mass in the air. A high heat-resistant light diffusing agent having a temperature of 250 ° C. or higher and a crosslinked polymer particle having a gel fraction of 10% or higher when dissolved in acetone are suitably used. Of these light redirecting materials, silica, glass, acrylic polymer particles, and siloxane polymer particles are preferably used, and acrylic polymer particles and siloxane polymer particles are more preferably used. Moreover, these light direction change materials can use the 2 or more types as needed.

本発明の光制御部材で用いられる基材と光線方向変換材とを混合する方法としては、特に限定されず、例えば、基材ペレットに予め光線方向変換材を混合してこれを押出成形または射出成形してペレットなどの形態で光制御部材とする方法;基材を押出成形または射出成形する際に光線方向変換材を添加し成形してペレットなどの形態で光制御部材とする方法;一度基材と光線方向変換材とをマスターバッチ化した後に再度所望の配合量とするべく基材とマスターバッチ品とを押出成形または射出成形してペレットなどの形態で光制御部材とする方法を採用することができる。   The method of mixing the base material used in the light control member of the present invention and the light beam direction changing material is not particularly limited. For example, the light beam direction changing material is mixed in advance with the base material pellet, and this is extruded or injected. A method of forming a light control member in the form of pellets or the like; a method of adding a light beam redirecting material and forming a light control member in the form of pellets when extruding or injection molding the substrate; A method of forming a light control member in the form of pellets by extruding or injection-molding the base material and the master batch product to obtain a desired blending amount again after making the material and the light redirecting material into a master batch be able to.

また前記光線方向変換部は前記入射面上の凹凸構造であってもよい。このとき該凹凸構造のある入射面の好適な表面状態は、全光線透過率、ヘイズ、算術表面粗さを目安にすることが出来る。凹凸の程度は算術平均粗さRaが3μm以下であることが望ましい。これより大きくなると、拡散効果が大きくなりすぎるために、正面輝度が低下する。   Further, the light beam direction conversion section may have a concavo-convex structure on the incident surface. At this time, the suitable surface state of the incident surface having the concavo-convex structure can be based on the total light transmittance, haze, and arithmetic surface roughness. As for the degree of unevenness, the arithmetic average roughness Ra is desirably 3 μm or less. If it becomes larger than this, the diffusion effect becomes too large, and the front luminance is lowered.

前記光源から前記入射面に入射した光が前記光線方向変換部を通過して前記出光制御部に到達する割合についても、前記光線変換能測定用部材の全光線透過率を測定して、この値とでき、出光制御部の光線方向制御を予測できる場合、光制御部材の全光線透過率を直接測定して、計算することもできる。   The ratio of the light incident on the incident surface from the light source passing through the light beam direction conversion unit and reaching the light output control unit is also measured by measuring the total light transmittance of the light conversion ability measuring member. If the light direction control of the light output control unit can be predicted, the total light transmittance of the light control member can be directly measured and calculated.

なお、本発明の照明装置上に透過型の表示素子を設けることで、表示面における輝度均一性に優れる画像表示装置を容易に得ることが出来る。   Note that by providing a transmissive display element on the lighting device of the present invention, an image display device excellent in luminance uniformity on the display surface can be easily obtained.

本発明の光源としては線状光源に限定されず、複数の点光源を用いることができる。図19に、反射板2と光制御部材4の間に点光源21を設置した場合の構成例を示す。点光源21を用いても、線状光源を用いたときと同様な作用効果が期待できる。   The light source of the present invention is not limited to a linear light source, and a plurality of point light sources can be used. In FIG. 19, the structural example at the time of installing the point light source 21 between the reflecting plate 2 and the light control member 4 is shown. Even when the point light source 21 is used, the same effect as when the linear light source is used can be expected.

図14に、本発明で用いることの出来る別の構成例を示す。本構成では、光制御部材4の出射面に光拡散フィルムシート(拡散板)22を重ね合わせている。この場合、光拡散フィルムシート22により、出射光の輝度角度分布を出射面内でより均一化することができるため、一層高品位な照明装置を得ることができる。
図15に、本発明で用いることのできる別の構成例を示す。本構成では、光拡散フィルムシート22の上に偏光分離フィルム23を重ね合わせている。偏光分離フィルム23が直交する直線偏光を分離する場合には、発光面上に液晶パネルを載せ、偏光分離フィルム23の透過偏光軸と液晶パネル入射面の偏光分離フィルム23の透過軸を一致させることで、より高輝度な液晶表示装置を得ることができる。
また、偏光分離フィルム23が右回りおよび左回りの円偏光を分離する場合には、偏光分離フィルム23の出射面に1/4波長板を重ね合わせ、1/4波長板透過後に直線偏光に変換し、その直線偏光方向が、液晶パネル入射面の偏光分離フィルム23の透過軸と一致する方向になればよい。
FIG. 14 shows another configuration example that can be used in the present invention. In this configuration, a light diffusion film sheet (diffusion plate) 22 is superimposed on the light exit surface of the light control member 4. In this case, the light diffusion film sheet 22 makes it possible to make the luminance angle distribution of the emitted light more uniform within the emission surface, so that a higher quality illumination device can be obtained.
FIG. 15 shows another configuration example that can be used in the present invention. In this configuration, the polarization separation film 23 is superimposed on the light diffusion film sheet 22. When the polarized light separating film 23 separates orthogonal linearly polarized light, a liquid crystal panel is placed on the light emitting surface, and the transmission polarization axis of the polarized light separating film 23 and the transmission axis of the polarized light separating film 23 on the liquid crystal panel incident surface are matched. Thus, a liquid crystal display device with higher brightness can be obtained.
When the polarization separation film 23 separates clockwise and counterclockwise circularly polarized light, a quarter wavelength plate is superimposed on the exit surface of the polarization separation film 23 and converted to linearly polarized light after passing through the quarter wavelength plate. And the linear polarization direction should just become a direction which corresponds with the transmission axis of the polarization separation film 23 of a liquid crystal panel entrance plane.

次に、液晶表示装置(画像表示装置)の概略構成例に関しては、光制御部材4の上に液晶パネルを載置することにより、該パネル表示面内において輝度が均一な液晶表示装置を得ることができる。本発明の照明装置上に透過型表示素子を用いることで、構成が簡単な画像表示装置を容易に得ることができる。透過型表示素子の代表例としては、液晶パネルが挙げられる。   Next, regarding a schematic configuration example of a liquid crystal display device (image display device), a liquid crystal panel is mounted on the light control member 4 to obtain a liquid crystal display device having uniform brightness within the panel display surface. Can do. By using a transmissive display element on the lighting device of the present invention, an image display device having a simple configuration can be easily obtained. A typical example of the transmissive display element is a liquid crystal panel.

ここで、画像表示装置とは、照明装置と表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器のことを言う。図16に、照明装置と表示素子を組み合わせて成る画像表示装置の構成例を示す。本構成では、光制御部材4の上に光拡散フィルムシート22を重ね、この上に偏光分離フィルム23を重ね合わせ、さらに、この上に液晶パネル24を重ね合わせている。この場合、偏光分離フィルム23の透過偏光軸と液晶パネル24の入射面の偏光フィルムの透過軸とを互いに一致させている。
尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
Here, the image display device refers to a display module in which a lighting device and a display element are combined, and a device having at least an image display function such as a television or a personal computer monitor using the display module. FIG. 16 shows a configuration example of an image display device in which a lighting device and a display element are combined. In this configuration, the light diffusion film sheet 22 is overlaid on the light control member 4, the polarization separation film 23 is overlaid thereon, and the liquid crystal panel 24 is overlaid thereon. In this case, the transmission polarization axis of the polarization separation film 23 and the transmission axis of the polarization film on the incident surface of the liquid crystal panel 24 are made to coincide with each other.
It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

実施例中の測定方法および諸物性の評価方法を以下に示す。
全光線透過率は図6に示した前記の方法で、光制御部材に、レンズでコリメートした平行光8を用いて測定した。
Measurement methods and evaluation methods of various physical properties in the examples are shown below.
The total light transmittance was measured by using the parallel light 8 collimated with a lens on the light control member by the method shown in FIG.

光線方向変換部が入射面に法線方向から入射した光の方向を変換する割合は、次のようにして測定する。測定する光制御部材に出光制御部を設けない構成からなる光線変換能測定用部材を別途用意する。出光制御部が光制御部材の出射面上に形成した凸部である場合は、光線変換能測定用部材の出射面は入射面と平行な平滑面である。該光線変換能測定用部材の入射面に法線方向から平行光を照射し、ヘイズメーターで出光方向が変化した光の割合を測定する。また通常、出光制御部の光線方向制御は通常計算で予測でき、この場合、光制御部材の輝度角度分布を直接測定することで光線方向変換部が入射面に法線方向から入射した光の方向を変換する割合を計算することもできる。本実施例および比較例では、(JIS K7136)法に準拠した手法でヘイズメーター(HR−100;村上色彩研究所(株)製)を用いて測定した。
光源から光制御部材の入射面に入射した光が光線方向変換部を通過して出光制御部に到達する割合については、光線変換能測定用部材の全光線透過率を測定して、この値とした。光線変換能測定用部材としては、出光制御部を設けない以外は、実施例で用いる光制御部材と同じ方法でそれぞれ作成した。
実施例および比較例に用いた光線方向変換材は、走査型電子顕微鏡(SEM)にて観察し、得られた写真を用いて粒子数200個の粒子径を実測することにより、数平均粒子径、数平均粒子径に対する標準偏差を算出した。
また、粒子径分布の指標として、百分率(%)で示される変動係数(CV値)は次式により求めた。
CV=(平均粒子径に対する標準偏差/平均粒子径)×100
The rate at which the light beam direction conversion unit converts the direction of light incident on the incident surface from the normal direction is measured as follows. A light conversion ability measuring member having a configuration in which the light control member is not provided in the light control member to be measured is separately prepared. When the light emission control unit is a convex portion formed on the light emission surface of the light control member, the light emission surface of the member for measuring light beam conversion ability is a smooth surface parallel to the incident surface. The incident surface of the member for measuring light conversion ability is irradiated with parallel light from the normal direction, and the ratio of the light whose output direction is changed is measured with a haze meter. In general, the light direction control of the light output control unit can be predicted by normal calculation. In this case, the light direction conversion unit directly measures the luminance angle distribution of the light control member, so that the direction of the light incident on the incident surface from the normal direction. It is also possible to calculate the rate of converting. In Examples and Comparative Examples, measurement was performed using a haze meter (HR-100; manufactured by Murakami Color Research Laboratory Co., Ltd.) by a method based on the (JIS K7136) method.
For the rate at which the light incident on the incident surface of the light control member from the light source passes through the light beam direction conversion section and reaches the light output control section, the total light transmittance of the light conversion ability measuring member is measured, and this value and did. The light conversion ability measuring member was prepared by the same method as the light control member used in the examples except that the light output control unit was not provided.
The light direction changing materials used in the examples and comparative examples were observed with a scanning electron microscope (SEM), and the number average particle diameter was measured by measuring the particle diameter of 200 particles using the obtained photographs. The standard deviation with respect to the number average particle diameter was calculated.
Further, as an index of the particle size distribution, a coefficient of variation (CV value) expressed as a percentage (%) was obtained by the following equation.
CV = (standard deviation with respect to average particle size / average particle size) × 100

以下の実施例および比較例は次のような構成の照明装置を用いて評価した。光制御部材の出光制御部は出射面上に平行に配列した幅0.3mm、深さ0.2mmの蒲鉾状の凸部であり、溝状の平行な凹部を設けた金型を用いて、射出成形で形成する。   The following examples and comparative examples were evaluated using an illumination device having the following configuration. The light output control part of the light control member is a ridge-like convex part with a width of 0.3 mm and a depth of 0.2 mm arranged in parallel on the emission surface, and using a mold provided with a groove-like parallel concave part, It is formed by injection molding.

光制御部材の主面サイズは707mm×436mmで厚さ2mmである。
反射板の材料は発泡ペット樹脂で反射率は95%である。
458mm×730mm×35mmで、出射側に698mm×長さ416mmの矩形の開口部を持つ直方体状の白色のABS樹脂製のハウジングを用意する。
次に前記ハウジングの出射側の開口部に対向する位置にある底部を覆うように、前記反射板を配置する。
The main surface size of the light control member is 707 mm × 436 mm and has a thickness of 2 mm.
The material of the reflector is foamed PET resin and the reflectance is 95%.
A rectangular parallelepiped white ABS resin housing having a rectangular opening of 458 mm × 730 mm × 35 mm and 698 mm × length 416 mm on the emission side is prepared.
Next, the reflection plate is disposed so as to cover a bottom portion at a position facing the opening on the emission side of the housing.

次に前記反射板の出射側に2mmの間隔をおいて、該反射板と平行に線状光源を配置する。線状光源1としては直径3mm、長さ700mmの複数の冷陰極管をX方向に沿ってY方向に平行に配置する。冷陰極管16本を22mmずつの間隔をおいて配置する。
次に光制御部材を開口部に被せるように配置する。
線状光源の中心から光制御部材までの距離は15.5mm、隣接する線状光源の中心同士の距離は25mmである。
Next, a linear light source is arranged in parallel with the reflecting plate with an interval of 2 mm on the exit side of the reflecting plate. As the linear light source 1, a plurality of cold-cathode tubes having a diameter of 3 mm and a length of 700 mm are arranged along the X direction and parallel to the Y direction. Sixteen cold cathode tubes are arranged at intervals of 22 mm.
Next, the light control member is disposed so as to cover the opening.
The distance from the center of the linear light source to the light control member is 15.5 mm, and the distance between the centers of the adjacent linear light sources is 25 mm.

実施例1.
メタクリルスチレン系共重合樹脂ペレット(TX−800S:電位化学工業(株)社製、屈折率nD:1.55)と、メタクリル酸メチル系重合体粒子(MBXR−8N:積水化成品工業(株)社製、数平均粒子径8μm、CV値25%)0.25質量%とをヘンシェルミキサーで混合後、射出成形(押出樹脂温度280℃)にて、横340mm×縦270mm、厚み2mmの光制御部材を作製した。この光制御部材を用いて上記の照明装置を組んで評価した。評価結果を図12に示す。
Example 1.
Methacryl styrene copolymer resin pellets (TX-800S: manufactured by Potential Chemical Industry Co., Ltd., refractive index nD: 1.55) and methyl methacrylate polymer particles (MBXR-8N: Sekisui Plastics Co., Ltd.) After being mixed with a Henschel mixer, a light control of 340 mm in width, 270 mm in length and 2 mm in thickness by injection molding (extrusion resin temperature 280 ° C.). A member was prepared. The above lighting device was assembled and evaluated using this light control member. The evaluation results are shown in FIG.

実施例2.
メタクリル酸メチル系重合体粒子(MBXR−8N:積水化成品工業(株)社製、数平均粒子径8μm、CV値25%)を0.13重量%用いる以外は実施例1と同様にして光制御部材を作成した。この光制御部材を用いて上記の照明装置を組んで評価した。評価結果を図12に示す。
Example 2
Light in the same manner as in Example 1 except that 0.13% by weight of methyl methacrylate polymer particles (MBXR-8N: manufactured by Sekisui Plastics Co., Ltd., number average particle diameter 8 μm, CV value 25%) was used. A control member was created. The above lighting device was assembled and evaluated using this light control member. The evaluation results are shown in FIG.

実施例3.
スチレン系共重合樹脂ペレット(G−100C:東洋スチレン(株)社製、屈折率nD:1.59)と、メタクリル酸メチル系重合体粒子(SMX−8V:積水化成品工業(株)社製、数平均粒子径8μm、CV値22%)0.5質量%とをヘンシェルミキサーで混合後、射出成形(押出樹脂温度280℃)にて、横340mm×縦270mm、厚み2mmの光制御部材を作製した。この光制御部材を用いて上記の照明装置を組んで評価した。評価結果を図12に示す。
Example 3
Styrene copolymer resin pellets (G-100C: manufactured by Toyo Styrene Co., Ltd., refractive index nD: 1.59) and methyl methacrylate polymer particles (SMX-8V: manufactured by Sekisui Plastics Co., Ltd.) After mixing with a Henschel mixer, a light control member having a width of 340 mm × length of 270 mm and a thickness of 2 mm is mixed with a Henschel mixer. Produced. The above lighting device was assembled and evaluated using this light control member. The evaluation results are shown in FIG.

実施例4.
メタクリル酸メチル系重合体粒子(MBXR−8N:積水化成品工業(株)社製、数平均粒子径8μm、CV値25%)を0.25重量%用いる以外は実施例3と同様にして光制御部材を作成した。この光制御部材を用いて上記の照明装置を組んで評価した。評価結果を図12に示す。
Example 4
Light in the same manner as in Example 3 except that 0.25% by weight of methyl methacrylate polymer particles (MBXR-8N: manufactured by Sekisui Plastics Co., Ltd., number average particle diameter 8 μm, CV value 25%) was used. A control member was created. The above lighting device was assembled and evaluated using this light control member. The evaluation results are shown in FIG.

実施例5.
メタクリルスチレン系共重合樹脂ペレット(TX−800S:電位化学工業(株)社製、屈折率nD:1.55)を射出成形(押出樹脂温度280℃)にて、横340mm×縦270mm、厚み2mmの光制御部材を作製した。このとき成形金型によって入射面側にシボ面を形成した。この光制御部材を用いて上記の照明装置を組んで評価した。評価結果を図12に示す。
Example 5 FIG.
Methacryl styrene copolymer resin pellets (TX-800S: manufactured by Potential Chemical Industry Co., Ltd., refractive index nD: 1.55) were injection molded (extruded resin temperature 280 ° C.), 340 mm wide × 270 mm long, 2 mm thick A light control member was prepared. At this time, a textured surface was formed on the incident surface side by a molding die. The above lighting device was assembled and evaluated using this light control member. The evaluation results are shown in FIG.

比較例1〜4.
比較例1、2は光制御部材に代えて光線方向変換材を基材中に分散した横340mm×縦270mm、厚み2mmの板を用いる。
比較例3、4は光制御部材に代えて横340mm×縦270mm、厚み2mmの板であり、入射面側にシボ面を形成しているものを用いる。
なお比較例1〜4は出光制御部を有さない。
これら比較例1〜4の評価結果を図19に示す。
Comparative Examples 1-4.
In Comparative Examples 1 and 2, instead of the light control member, a plate of horizontal 340 mm × longitudinal 270 mm and thickness 2 mm in which a light beam redirecting material is dispersed in a base material is used.
In Comparative Examples 3 and 4, instead of the light control member, a plate having a width of 340 mm, a length of 270 mm, and a thickness of 2 mm is used, which has a textured surface formed on the incident surface side.
In addition, Comparative Examples 1-4 does not have a light emission control part.
The evaluation results of these comparative examples 1 to 4 are shown in FIG.

本発明に係る照明装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the illuminating device which concerns on this invention. 本発明に係る複数の光源上に設けた仮想面に入射する光線の入射エネルギーを模式的に説明する入射エネルギー分布図である。It is an incident energy distribution figure which illustrates typically the incident energy of the light ray which injects into the virtual surface provided on the several light source which concerns on this invention. 本発明に係る線状光源真上での光制御部材(仮想面)に入射する光線の輝度(入射エネルギー)を模式的に説明する輝度分布図である。It is a luminance distribution figure which illustrates typically the brightness | luminance (incident energy) of the light ray which injects into the light control member (virtual surface) just above the linear light source which concerns on this invention. 本発明に係る複数の線状光源間での光制御部材(仮想面)に入射する光線の輝度(出射エネルギー)を模式的に説明する輝度分布図である。It is a luminance distribution figure which illustrates typically the brightness | luminance (emitted energy) of the light ray which injects into the light control member (virtual surface) between the some linear light sources concerning this invention. 本発明に係る複数の光源間に位置する光制御部材に入射する光線の入射角度を説明する概略構成図である。It is a schematic block diagram explaining the incident angle of the light ray which injects into the light control member located between the some light sources which concerns on this invention. 本発明に係る光制御部材の全光線透過率の角度依存性を測定する装置の一例を説明する概略構成図である。It is a schematic block diagram explaining an example of the apparatus which measures the angle dependence of the total light transmittance of the light control member which concerns on this invention. 本発明に用いることのできる光制御部材の出射面における凸部の断面形状を説明する概略構成図である。It is a schematic block diagram explaining the cross-sectional shape of the convex part in the output surface of the light control member which can be used for this invention. 本発明に係る光制御部材に対し斜め方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light beam when light injects into the diagonal direction with respect to the light control member which concerns on this invention. 本発明に係る光制御部材に対し垂直方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light ray when light is incident on the light control member according to the present invention in the vertical direction. 本発明に係る光制御部材に対し出射面凸部で屈折し出射する光の光路と角度との関係を説明する概略構成図である。It is a schematic block diagram explaining the relationship between the optical path and angle of the light which is refracted | emitted and radiate | emitted by the output surface convex part with respect to the light control member which concerns on this invention. 本発明に用いることのできる光制御部材の断面形状の一例を示す説明図である。It is explanatory drawing which shows an example of the cross-sectional shape of the light control member which can be used for this invention. 本発明の実施例1〜5、比較例1〜4の評価結果を示す表である。It is a table | surface which shows the evaluation result of Examples 1-5 of this invention, and Comparative Examples 1-4. 本発明に係る光源に点光源を用いた場合の構成例を示す説明図である。It is explanatory drawing which shows the structural example at the time of using a point light source for the light source which concerns on this invention. 本発明に用いることのできる照明装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the illuminating device which can be used for this invention. 本発明に用いることのできる照明装置の構成例の別の一例を示す説明図である。It is explanatory drawing which shows another example of a structural example of the illuminating device which can be used for this invention. 本発明の面照明装置に液晶パネルを載せて液晶表示装置とした構成例を示す説明図である。It is explanatory drawing which shows the structural example which carried the liquid crystal panel on the surface illumination device of this invention, and was set as the liquid crystal display device. 従来の照明装置の概略構成図である。It is a schematic block diagram of the conventional illuminating device. 本発明に係る光拡散板に対し斜め方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light ray when light inclines in the diagonal direction with respect to the light diffusing plate which concerns on this invention. 本発明に係る光拡散板に対し垂直方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light ray when light is incident on the light diffusing plate according to the present invention in the vertical direction.

符号の説明Explanation of symbols

1 光源
2 反射板
3 仮想面
4 光制御部材
5 積分球
6 開口部
7 測定対象物
8 平行光
9 凸部
10 略直線(部)
11 曲線(部)
12 斜め入射光
13 垂直入射光
15 線状光源(冷陰極管)
20 光拡散板
20a 開口部
21 点光源
22 光拡散フィルムシート(拡散板)
23 偏光分離フィルム
24 液晶パネル(透過型表示素子)
DESCRIPTION OF SYMBOLS 1 Light source 2 Reflector 3 Virtual surface 4 Light control member 5 Integrating sphere 6 Aperture 7 Measurement object 8 Parallel light 9 Convex part 10 Substantially straight line (part)
11 Curve (part)
12 oblique incident light 13 perpendicular incident light 15 linear light source (cold cathode tube)
20 light diffusion plate 20a opening 21 point light source 22 light diffusion film sheet (diffusion plate)
23 Polarized light separation film 24 Liquid crystal panel (transmission type display element)

Claims (5)

反射板と、複数の光源と、板状の光制御部材を備える照明装置であって、
前記光源は1つの仮想平面内に規則的に配置されており、
前記反射板、前記光源が配置されている仮想平面、前記光制御部材が、それぞれの主面を平行にして、かつ、この順に配置されており、
前記光制御部材は、
前記光源からの光の方向を変換するための光線方向変換部と、
前記光線方向変換部を通過した光の出射エネルギーを制御するための出光制御部とを備え、
前記複数の光源の内、所定の光源とその最近傍にある他の光源との間の距離をD、前記所定の光源と前記光制御部材との距離をHとしたとき、前記光源からの光が入射する前記光制御部材の入射面に、当該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、当該全光線透過率が前記入射面上の法線方向から光が入射した光の全光線透過率の1.05乃至3倍であり、
前記光線方向変換部は入射面に法線方向から入射した光の80%乃至10%の光の方向を変換するとともに、
前記光源から前記入射面に入射した光の80%以上が前記光線方向変換部を通過して、前記出光制御部に到達することを特徴とする照明装置。
A lighting device comprising a reflector, a plurality of light sources, and a plate-like light control member,
The light sources are regularly arranged in one virtual plane,
The reflector, a virtual plane on which the light source is arranged, and the light control member are arranged in this order with their main surfaces parallel to each other,
The light control member is
A light beam direction conversion unit for converting the direction of light from the light source;
A light output control unit for controlling the emission energy of the light that has passed through the light beam direction conversion unit,
Of the plurality of light sources, when the distance between the predetermined light source and another light source nearest to the predetermined light source is D and the distance between the predetermined light source and the light control member is H, the light from the light source Is incident on the light incident surface of the light control member at an angle of α = Tan-1 {(D / 2) / H} with respect to the normal direction of the light incident surface. And the total light transmittance is 1.05 to 3 times the total light transmittance of light incident from the normal direction on the incident surface,
The light beam direction conversion unit converts the direction of 80% to 10% of the light incident on the incident surface from the normal direction, and
80% or more of the light incident on the incident surface from the light source passes through the light beam direction conversion unit and reaches the light output control unit.
前記光制御部材が基材部を有し、前記光線方向変換部が前記基材部中に分散する光線方向変換材であり、該光制御部材を構成する基材部100質量部に対して粒子径1〜50μmの光線方向変換材を0.01〜1質量部含有し、かつ、前記基材部と前記光線方向変換材の屈折率の差が0.005乃至0.08であることを特徴とする請求項1に記載の照明装置。   The light control member has a base material portion, and the light beam direction conversion portion is a light beam direction conversion material dispersed in the base material portion, and particles with respect to 100 parts by mass of the base material portion constituting the light control member. 0.01 to 1 part by mass of a light direction changing material having a diameter of 1 to 50 μm is contained, and a difference in refractive index between the base material part and the light direction changing material is 0.005 to 0.08. The lighting device according to claim 1. 前記光線方向変換部が前記入射面上の凹凸構造であることを特徴とする請求項1に記載の照明装置。   The illuminating device according to claim 1, wherein the light beam direction conversion unit is an uneven structure on the incident surface. 請求項1〜3に記載の照明装置が備える光制御部材。   The light control member with which the illuminating device of Claims 1-3 is provided. 請求項1〜3に記載の照明装置上に透過型表示素子を設けたことを特徴とする画像表示装置。   An image display device comprising a transmissive display element on the illumination device according to claim 1.
JP2005295751A 2005-10-07 2005-10-07 Light control member provided in illumination device and image display device using the same Expired - Fee Related JP4563294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005295751A JP4563294B2 (en) 2005-10-07 2005-10-07 Light control member provided in illumination device and image display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295751A JP4563294B2 (en) 2005-10-07 2005-10-07 Light control member provided in illumination device and image display device using the same

Publications (2)

Publication Number Publication Date
JP2007103323A true JP2007103323A (en) 2007-04-19
JP4563294B2 JP4563294B2 (en) 2010-10-13

Family

ID=38030049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295751A Expired - Fee Related JP4563294B2 (en) 2005-10-07 2005-10-07 Light control member provided in illumination device and image display device using the same

Country Status (1)

Country Link
JP (1) JP4563294B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022725A1 (en) * 2007-08-14 2009-02-19 Dai Nippon Printing Co., Ltd. Optical control sheet, surface illuminant device, and transmission type display device
JP2011044610A (en) * 2009-08-21 2011-03-03 Stanley Electric Co Ltd Led lighting apparatus
JP2011248227A (en) * 2010-05-28 2011-12-08 Toppan Printing Co Ltd Lighting unit equipped with shielding structure, lighting device, and display device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155244A (en) * 1978-05-30 1979-12-07 Asahi Chem Ind Co Ltd Light-scattering synthetic resin
JPH0217A (en) * 1987-11-12 1990-01-05 Mitsubishi Rayon Co Ltd Surface light source element
JPH04194821A (en) * 1990-11-22 1992-07-14 Sharp Corp Display device with back light
US5161041A (en) * 1990-04-26 1992-11-03 Ois Optical Imaging Systems, Inc. Lighting assembly for a backlit electronic display including an integral image splitting and collimating means
JPH08320489A (en) * 1995-01-31 1996-12-03 Toshiba Lighting & Technol Corp Backlight, liquid crystal display device and display device
JPH08335044A (en) * 1995-06-07 1996-12-17 Dainippon Printing Co Ltd Lens sheet, surface light source, and display device
JPH0973004A (en) * 1995-09-06 1997-03-18 Nippon Kayaku Co Ltd Laminate of prism sheet, light source device using the same and liquid crystal display device
JPH1082973A (en) * 1996-06-18 1998-03-31 Eastman Kodak Co Optical device
JP2852424B2 (en) * 1987-12-25 1999-02-03 株式会社エンプラス Lighting equipment
JP2000338895A (en) * 1999-05-31 2000-12-08 Toshiba Lighting & Technology Corp Direct-under back light device and liquid crystal display device
JP2002244572A (en) * 2001-02-14 2002-08-30 Tama Electric Co Ltd Backlight device
JP2002352611A (en) * 2001-05-24 2002-12-06 Sharp Corp Lighting system and display device equipped with it
JP2004006256A (en) * 2002-03-26 2004-01-08 Sharp Corp Backlight and liquid crystal display device
JP2004031312A (en) * 2002-06-26 2004-01-29 Samsung Electronics Co Ltd Backlight assembly and perpendicular transmission type liquid crystal display device
JP2006140124A (en) * 2004-04-12 2006-06-01 Kuraray Co Ltd Lighting system and image display apparatus using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155244A (en) * 1978-05-30 1979-12-07 Asahi Chem Ind Co Ltd Light-scattering synthetic resin
JPH0217A (en) * 1987-11-12 1990-01-05 Mitsubishi Rayon Co Ltd Surface light source element
JP2852424B2 (en) * 1987-12-25 1999-02-03 株式会社エンプラス Lighting equipment
US5161041A (en) * 1990-04-26 1992-11-03 Ois Optical Imaging Systems, Inc. Lighting assembly for a backlit electronic display including an integral image splitting and collimating means
JPH04194821A (en) * 1990-11-22 1992-07-14 Sharp Corp Display device with back light
JPH08320489A (en) * 1995-01-31 1996-12-03 Toshiba Lighting & Technol Corp Backlight, liquid crystal display device and display device
JPH08335044A (en) * 1995-06-07 1996-12-17 Dainippon Printing Co Ltd Lens sheet, surface light source, and display device
JPH0973004A (en) * 1995-09-06 1997-03-18 Nippon Kayaku Co Ltd Laminate of prism sheet, light source device using the same and liquid crystal display device
JPH1082973A (en) * 1996-06-18 1998-03-31 Eastman Kodak Co Optical device
JP2000338895A (en) * 1999-05-31 2000-12-08 Toshiba Lighting & Technology Corp Direct-under back light device and liquid crystal display device
JP2002244572A (en) * 2001-02-14 2002-08-30 Tama Electric Co Ltd Backlight device
JP2002352611A (en) * 2001-05-24 2002-12-06 Sharp Corp Lighting system and display device equipped with it
JP2004006256A (en) * 2002-03-26 2004-01-08 Sharp Corp Backlight and liquid crystal display device
JP2004031312A (en) * 2002-06-26 2004-01-29 Samsung Electronics Co Ltd Backlight assembly and perpendicular transmission type liquid crystal display device
JP2006140124A (en) * 2004-04-12 2006-06-01 Kuraray Co Ltd Lighting system and image display apparatus using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022725A1 (en) * 2007-08-14 2009-02-19 Dai Nippon Printing Co., Ltd. Optical control sheet, surface illuminant device, and transmission type display device
JP2011044610A (en) * 2009-08-21 2011-03-03 Stanley Electric Co Ltd Led lighting apparatus
JP2011248227A (en) * 2010-05-28 2011-12-08 Toppan Printing Co Ltd Lighting unit equipped with shielding structure, lighting device, and display device

Also Published As

Publication number Publication date
JP4563294B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
KR100858851B1 (en) A lighting device, an image displaying device using the lighting device, and a light diffusing plate used in the devices
JP4584133B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP4638752B2 (en) Light diffusion plate
US7220038B2 (en) Light source device and light polarizing element
TWI427333B (en) Point light source with light diffusion plate and straight type point light source backlight device
TWI417612B (en) Lighting apparatus and image display apparatus using the same
JP4425164B2 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP5137581B2 (en) Light guide plate
TW200302381A (en) Light source device
JPWO2008093426A1 (en) Backlight unit
JP2007226063A (en) Light control sheet
JP5279015B2 (en) Light guide plate
JP4522938B2 (en) Light control member provided in illumination device and image display device using the same
JPWO2008047794A1 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP2012243612A (en) Light guide plate, surface light source device and display device
JP2009053623A (en) Lens sheet, optical sheet for display, backlight unit and display apparatus using them
JP5098520B2 (en) Light diffusing plate, backlight unit for display, display device
JP4563294B2 (en) Light control member provided in illumination device and image display device using the same
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP4522937B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP3429388B2 (en) Surface light source device and liquid crystal display
JP2009123397A (en) Illumination device, and image display device using it
JP4600425B2 (en) Backlight unit
JP2007109608A (en) Illumination device and display device using it
JP4400867B2 (en) Light deflection element and light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees