JP2006140124A - Lighting system and image display apparatus using the same - Google Patents

Lighting system and image display apparatus using the same Download PDF

Info

Publication number
JP2006140124A
JP2006140124A JP2005062333A JP2005062333A JP2006140124A JP 2006140124 A JP2006140124 A JP 2006140124A JP 2005062333 A JP2005062333 A JP 2005062333A JP 2005062333 A JP2005062333 A JP 2005062333A JP 2006140124 A JP2006140124 A JP 2006140124A
Authority
JP
Japan
Prior art keywords
light
control member
incident
light control
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005062333A
Other languages
Japanese (ja)
Other versions
JP4425164B2 (en
Inventor
Ikuo Onishi
伊久雄 大西
Masako Horikoshi
理子 堀越
Toshiyuki Ito
敏幸 伊藤
Shigeki Kikuyama
茂樹 菊山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005062333A priority Critical patent/JP4425164B2/en
Priority to TW094110848A priority patent/TWI364600B/en
Priority to CNB2005100634883A priority patent/CN100476535C/en
Priority to US11/102,636 priority patent/US7237930B2/en
Priority to EP05007876.5A priority patent/EP1586920B1/en
Priority to KR1020050030085A priority patent/KR100858851B1/en
Publication of JP2006140124A publication Critical patent/JP2006140124A/en
Priority to US11/700,066 priority patent/US7556393B2/en
Application granted granted Critical
Publication of JP4425164B2 publication Critical patent/JP4425164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting system and an image display apparatus in which it is not necessary to adjust the position of light sources, a lamp image is eliminated and the luminance in an outgoing plane is excellently uniformalized. <P>SOLUTION: In the lighting system, a reflector 2, light sources 1 and a light control member 4 are sequentially disposed from a light incident side to a light outgoing side. The light control member 4 has an incident plane and an outgoing plane. When a distance between an arbitrary light source X and another light source Y most adjacent thereto is D, and a distance between the light source X and the light control member 4 is H, the total light transmittance of the light entering to an arbitrary point on the incident plane at the angle α=Tan<SP>-1</SP>ä(D/2)/H} to the normal direction of the incident plane is more than 50%, and 1.05-3.0 times as much as that of the light entering the point on the incident plane in the normal direction. A plurality of projection portions 9 are formed on the outgoing plane, and 10-50% of the light entering at the incident angle α outgoes at the outgoing angle -15° to +15°. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の光源を有する照明装置およびこれを用いた画像表示装置に関するものであり、特に、大型で高輝度と輝度均一性が要求される照明看板装置、液晶ディスプレイ装置等に好適に用いられる直下方式の照明装置およびこれを用いた画像表示装置に関するものである。   The present invention relates to an illuminating device having a plurality of light sources and an image display device using the illuminating device, and is particularly suitable for a large-sized illumination signage device, liquid crystal display device and the like that are required to have high luminance and luminance uniformity. The present invention relates to a direct illumination device and an image display device using the same.

画像表示装置用の照明装置を例にすると、導光板の側端に配した光源の光を導光板で正面方向に誘導し、拡散シートで均一化するエッジライト方式と、照明面の裏側に光源を配し、光を拡散板で均一化する直下方式が挙げられる。   Taking an illumination device for an image display device as an example, an edge light system in which light from a light source disposed on the side edge of the light guide plate is guided in the front direction by the light guide plate and made uniform by a diffusion sheet, and a light source on the back side of the illumination surface And a direct system in which light is made uniform with a diffuser.

直下方式は、光源を装置の背面に備えることから厚さが厚くなる傾向があり、このため、携帯電話やモバイルパソコンなどの薄さを要求される分野では、光源を側端に備えることで有利となるエッジライト方式が主流であった。   The direct type has a tendency to increase the thickness because the light source is provided on the back surface of the apparatus. For this reason, it is advantageous to provide the light source at the side edge in a field where thinness is required such as a mobile phone or a mobile personal computer. The edge-light method is the mainstream.

一方で、近年、テレビやパソコンモニターなどの市場を中心にディスプレイの大型化および高輝度化の要求が高まってきた。特にディスプレイの大型化に伴い、上記エッジライト方式では、光源を配置できる周辺部の長さの表示面積に対する割合が減少して、光量が不足するため、充分な輝度を得ることができない。   On the other hand, in recent years, there has been an increasing demand for larger displays and higher brightness mainly in the market of televisions and personal computer monitors. In particular, with the increase in the size of the display, the edge light method reduces the ratio of the length of the peripheral portion where the light source can be arranged to the display area, and the amount of light is insufficient, so that sufficient luminance cannot be obtained.

そこで、面光源上に複数の輝度向上のためのフィルムを配置して、光の利用効率を向上させる方法が提案されている(例えば、特許文献1参照)。   Therefore, a method has been proposed in which a plurality of films for improving luminance are arranged on a surface light source to improve the light use efficiency (see, for example, Patent Document 1).

しかしながら、輝度向上フィルムは、コストアップに繋がること、また使用するフィルムの数が多くなることから、生産性や薄型化の観点から必ずしも有利とはいえない。また、エッジライト方式ではディスプレイの大型化に伴い導光板の重量が増加するといった問題もある。このように、エッジライト方式では、近年のディスプレイの大型化、高輝度化のといった市場の要求に応えることは困難となってきた。   However, the brightness enhancement film is not necessarily advantageous from the viewpoint of productivity and thinning because it leads to an increase in cost and the number of films to be used increases. Further, the edge light system has a problem that the weight of the light guide plate increases as the display becomes larger. As described above, in the edge light system, it has been difficult to meet market demands such as an increase in display size and brightness in recent years.

そこで、複数光源による直下方式が注目されている。この方式は、光源から放射される光の利用効率、即ち光源から放射される光束のうち発光面から放射される光束の割合が高く、かつ、光源の数を自由に増加させることができる。   Therefore, a direct method using a plurality of light sources is attracting attention. In this method, the utilization efficiency of light emitted from the light source, that is, the ratio of the light flux emitted from the light emitting surface to the light flux emitted from the light source is high, and the number of light sources can be increased freely.

すなわち、光量を自由に増加させることができるため、要求される高輝度が容易に得られ、また、大型化による輝度低下や輝度均一性の低下がない。さらに、光を正面に向ける導光板が不要となるため、軽量化を図ることができる。   That is, since the amount of light can be increased freely, the required high brightness can be easily obtained, and there is no reduction in brightness or brightness uniformity due to an increase in size. Furthermore, since a light guide plate that directs light to the front is not necessary, the weight can be reduced.

また、他の照明装置として、例えば照明看板などでは、構成が単純であり、輝度向上のためのフィルムなどを用いることなく、容易に高輝度が得られることから、複数光源による直下方式が主流である。   Also, as other lighting devices, for example, lighting signboards, etc., have a simple configuration, and high brightness can be easily obtained without using a film for improving brightness. is there.

しかしながら、直下方式では、ランプイメージの解消、薄型化、省エネルギーといった独特の課題を解決しなければならない。特に、前記ランプイメージは、エッジライト方式よりもはるかに顕著な輝度ムラとして現れる。このため、従来、エッジライト方式で用いられてきた手段、即ち、フィルム表面に光拡散材を塗布した拡散フィルムなどの手段では、ランプイメージの解消が困難である。   However, the direct system has to solve unique problems such as elimination of lamp image, thinning, and energy saving. In particular, the lamp image appears as brightness unevenness much more remarkable than the edge light method. For this reason, it is difficult to eliminate the lamp image by means conventionally used in the edge light system, that is, means such as a diffusion film in which a light diffusing material is applied to the film surface.

そこで、光拡散材を含有した拡散板が広く用いられている。この方式では、たとえば、図23に示すように、背面側に反射板2を配置した光源1の前面側に拡散板20を設置している。そして、良好な拡散性と光利用効率を得るために、メタクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、塩化ビニル系樹脂等の基材樹脂に、無機微粒子や架橋有機微粒子を光拡散材として配合した光拡散板を用いる方法が検討されている(例えば、特許文献2参照)。   Therefore, a diffusion plate containing a light diffusing material is widely used. In this method, for example, as shown in FIG. 23, a diffusion plate 20 is installed on the front side of the light source 1 in which the reflection plate 2 is arranged on the back side. In order to obtain good diffusibility and light utilization efficiency, inorganic fine particles and cross-linked organic fine particles are blended as a light diffusing material in base resin such as methacrylic resin, polycarbonate resin, styrene resin, and vinyl chloride resin. A method using a light diffusion plate that has been used has been studied (for example, see Patent Document 2).

しかし、これら光拡散材を用いる方法では光拡散材への光の吸収や、不要な方向への光の拡散のため光の利用効率が低下し省エネルギーの観点から好ましくない。また、光源を近接して多数配置することでランプイメージは軽減できるが、消費電力が増加する問題がある。   However, these methods using a light diffusing material are not preferable from the viewpoint of energy saving because the light use efficiency decreases due to light absorption into the light diffusing material and diffusion of light in unnecessary directions. Moreover, although a lamp image can be reduced by arranging many light sources close to each other, there is a problem that power consumption increases.

一方、反射板に独特の形状をもたせて、ランプイメージを消去する方法も提案されている(例えば、特許文献3参照)。しかし、反射板形状と光源との位置合わせが必要であること、反射板の形状のため、薄型化が阻害される場合があること、などから好ましくない。   On the other hand, a method of erasing the lamp image by giving the reflector a unique shape has been proposed (see, for example, Patent Document 3). However, it is not preferable because it is necessary to align the shape of the reflector and the light source, and the thickness of the reflector may be hindered due to the shape of the reflector.

また、光源に対向して反射性部材を設置する方法(例えば、特許文献4参照)、光源ごとに、例えばフレネルレンズのような光線方向変換素子を配す方法など(例えば、特許文献5参照)も提案されているが、特許文献3に記載の方法と同様に、前記部材と光源との正確な位置合わせが必要であることから、生産性が劣るといった課題が生じる。   Also, a method of installing a reflective member facing the light source (for example, see Patent Document 4), a method of arranging a light beam direction conversion element such as a Fresnel lens for each light source, etc. (for example, see Patent Document 5) However, as in the method described in Patent Document 3, since accurate alignment between the member and the light source is necessary, there arises a problem that productivity is inferior.

大型照明装置においては、携帯電話やモバイルパソコンなどに比べて、薄型化についての要求は厳しくないため、光源と拡散板との距離を短くすることや、光学フィルムの枚数削減などで対応できる。   In large illuminating devices, the demand for thinning is not strict as compared with mobile phones, mobile personal computers, and the like, so it can be dealt with by shortening the distance between the light source and the diffusion plate or reducing the number of optical films.

また、省エネルギーを実現するには、光利用効率を高めることが必要である。直下方式は、前述のように光源本数を増やすことができ、高輝度を得ることが容易であるが、省エネルギーの視点からは、ランプイメージ解消のために大量の光拡散材を用いるなどの、光利用効率を大きく下げる手段によることは避けなければならない。   In order to realize energy saving, it is necessary to increase the efficiency of light utilization. The direct method can increase the number of light sources as described above, and it is easy to obtain high brightness. However, from the viewpoint of energy saving, a large amount of light diffusing material is used to eliminate the lamp image. It must be avoided by means of greatly reducing the utilization efficiency.

特開平2−17号公報Japanese Patent Laid-Open No. 2-17 特開昭54−155244号公報JP 54-155244 A 特許2852424号公報Japanese Patent No. 2852424 特開2000−338895号公報JP 2000-338895 A 特開2002−352611号公報JP 2002-352611 A 米国特許第5161041号公報US Pat. No. 5,161,041

そこで、本発明は、出射面における輝度が高く、かつ、光利用効率が高く、大型化に伴う部材の光学設計変更や輝度低下や輝度均一性低下がないことから大型化への対応が容易で、光源と他の部材の厳密な位置合わせをすることなくランプイメージが解消され、光源と他の部材を近づけたりフィルム構成を単純化したりするという薄型化にも対応できる、複数光源直下方式の照明装置およびこれを用いた画像表示装置を提供することを目的とする。   Therefore, the present invention has high brightness on the exit surface, high light utilization efficiency, and there is no change in the optical design of the member, brightness reduction, and brightness uniformity reduction associated with the increase in size, making it easy to cope with the increase in size. The lamp image is eliminated without strict alignment between the light source and other members, and the lighting system directly below the multiple light sources can be used to reduce the thickness of the light source and other members close to each other or simplify the film configuration. An object is to provide an apparatus and an image display apparatus using the same.

本発明者らは上記課題に鑑みて、以下の検討を行い本発明に至った。   In view of the above-mentioned problems, the present inventors have made the following studies and have reached the present invention.

複数光源直下方式の照明装置では、出射する光のエネルギーは、各光源に対向する位置では大きく、隣接する光源同士の間に対向する位置では小さい。そこで、光源に対向する位置から出光する光を、光制御部材での適度な反射によって弱めると共に、反射光を反射板で拡散光として、再び光制御部材に戻して出射させる。   In the illumination device of the type directly below the plurality of light sources, the energy of the emitted light is large at a position facing each light source and small at a position facing between adjacent light sources. Therefore, the light emitted from the position facing the light source is weakened by appropriate reflection at the light control member, and the reflected light is returned to the light control member again as diffused light by the reflector.

これにより、光の利用効率を大きく低下させることなく、光源に対向する位置とそれ以外の位置から出射する光のエネルギーとが等しくなり、ランプイメージが解消されること、ならびに、この目的を達成するために、光制御部材の、光源に対向する位置と隣接する2つの光源の中間点に対向する位置の全光線透過率の比を適当な範囲に制御する、という手段を見出すに至った。   As a result, the energy of the light emitted from the position opposite to the light source and the position other than the light source becomes equal without greatly reducing the light use efficiency, and the lamp image is eliminated, and this object is achieved. For this reason, the inventors have found a means for controlling the ratio of the total light transmittance of the light control member at a position facing the light source and a position facing the midpoint between the two adjacent light sources to an appropriate range.

本発明者らはさらに詳細に検討し、最適な全光線透過率の比の範囲を見出した。また、この方法によって、光利用効率を下げる光拡散材の使用を回避もしくは大幅に減少することができ、高い光利用効率が達成されることを見出した。   The inventors of the present invention studied in more detail and found an optimum range of the total light transmittance ratio. It has also been found that this method can avoid or significantly reduce the use of a light diffusing material that lowers the light utilization efficiency, and achieves a high light utilization efficiency.

また、光源と光制御部材の位置あわせを不要とするためには、光制御部材における入射面上の任意の点で、全光線透過率について同じ性質をもつ必要がある。すなわち、入射面上の任意の点で均一な光学的性質を持つことが必要であると結論した。ここで「点」とは少なくとも視覚に影響を及ぼさない微小な領域を示す。   Further, in order to eliminate the need for alignment of the light source and the light control member, it is necessary to have the same property with respect to the total light transmittance at an arbitrary point on the incident surface of the light control member. That is, it was concluded that it is necessary to have a uniform optical property at an arbitrary point on the incident surface. Here, “point” indicates at least a minute region that does not affect the visual perception.

上記の検討結果に基づいて成された請求項1記載の発明は、規則的に配置した複数の光源と、反射板と、前記光源および前記反射板からの光が透過する際に出射方向を制御する光制御部材とを少なくとも備える直下方式の照明装置であって、光入射側から光出射側に向かって前記反射板、光源および光制御部材がこの順に配置され、該光制御部材が主として受光する入射面と、主として出光する出射面とを備え、任意の光源Xとその最近傍にある別の光源Yとの間の距離をD、該光源Xと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜3倍である照明装置を提供する。 The invention according to claim 1, which is made based on the above examination results, controls a light emitting direction when a plurality of regularly arranged light sources, a reflecting plate, and light from the light source and the reflecting plate are transmitted. A direct-type illumination device including at least a light control member that is arranged in this order from the light incident side to the light emitting side, and the light control member mainly receives light. Provided with an incident surface and an exit surface that mainly emits light, D is a distance between an arbitrary light source X and another light source Y that is nearest to it, and H is a distance between the light source X and the light control member. In this case, the total light transmittance of light incident on an arbitrary point on the incident surface at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface is 50% or more. And the total light transmittance is such that light is transmitted from a normal direction to a point on the incident surface. To provide a lighting device which is 1.05 to 3 times of total light transmittance of light when the shines.

この構成によれば、上記光制御部材の入射面の法線方向に対して所定の角度α=Tan-1{(D/2)/H}で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記法線方向から入射した光の場合の全光線透過率の1.05倍〜3倍、即ち、上記光源に対向する真上位置に入射する光の全光線透過率よりも適度に高くなる。従って、前記光制御部材から出射する光エネルギーの出射面内分布が均一化される。また、入射面上の任意の点で好ましい光学的性質が得られる。 According to this configuration, the total light transmittance of light incident at a predetermined angle α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface of the light control member is 50% or more. And the total light transmittance is 1.05 to 3 times the total light transmittance in the case of the light incident from the normal direction, that is, the light incident on the position directly above the light source. It becomes moderately higher than the total light transmittance. Therefore, the in-plane distribution of light energy emitted from the light control member is made uniform. Further, preferable optical properties can be obtained at any point on the incident surface.

請求項2記載の発明は、上記光制御部材の出射面上に複数の凸部が形成されている請求項1記載の照明装置を提供する。   According to a second aspect of the present invention, there is provided the lighting device according to the first aspect, wherein a plurality of convex portions are formed on the emission surface of the light control member.

この構成によれば、上記出射面上に複数の凸部が形成されているので、光制御部材に入射して出射面に向かった光は、複数の凸部により多方向に拡散して出射される。   According to this configuration, since the plurality of convex portions are formed on the emission surface, the light incident on the light control member and directed toward the emission surface is diffused and emitted in multiple directions by the plurality of convex portions. The

請求項3記載の発明は、上記光制御部材の出射面上に形成されている凸部の斜面傾きの絶対値が50°〜70°である範囲をUとし、単位凸部の光制御部材への投影面積に対するUの光制御部材への投影面積の割合が0.2〜0.8の範囲であることを特徴とする請求項1または2記載の照明装置を提供する。   According to a third aspect of the present invention, the absolute value of the slope inclination of the convex portion formed on the light exit surface of the light control member is defined as U and the light control member of the unit convex portion is U. The ratio of the projected area of U to the light control member with respect to the projected area is in the range of 0.2 to 0.8, and the illumination device according to claim 1 or 2 is provided.

この構成によれば、光源間の位置に相当する光制御部材に入射した光のうち、領域Uに入射した光は、略正面方向に出射するため、面内の輝度均一性を得ることが出来る。   According to this configuration, out of the light incident on the light control member corresponding to the position between the light sources, the light incident on the region U is emitted substantially in the front direction, so that in-plane luminance uniformity can be obtained. .

請求項4記載の発明は、上記光制御部材の上記出射面に直交し、かつ、上記凸部の頂部を含む少なくとも所定の一方向に沿った断面の光出射部分における輪郭線が、延長線の交差する角度θが鋭角である2つの略直線と、該2つの略直線の各一端同士を結ぶ凸状の曲線とを含む請求項1、2または3記載の照明装置を提供する。   According to a fourth aspect of the present invention, the contour line in the light emission part of the cross section that is orthogonal to the emission surface of the light control member and includes the top of the convex part along at least one predetermined direction is an extension line. The illumination device according to claim 1, comprising two substantially straight lines having an acute angle θ intersecting with each other and a convex curve connecting each end of the two substantially straight lines.

この構成によれば、上記凸部の輪郭線が、鋭角θの交差方向に延びる2つの略直線と、それらの各一端同士を結ぶ凸状の曲線とを有する形状であるので、前記略直線の部分と曲線の部分とでは集光効率および拡散効率が互いに異なる。従って、直線部と曲線部の割合を適宜選択することで集光機能と拡散機能を同時に実現することができる。   According to this configuration, the contour line of the convex portion has a shape having two substantially straight lines extending in the intersecting direction of the acute angle θ and a convex curve connecting the respective ends thereof. The light collection efficiency and the diffusion efficiency are different between the portion and the curved portion. Therefore, the light condensing function and the diffusing function can be realized at the same time by appropriately selecting the ratio of the straight part and the curved part.

請求項5記載の発明は、上記光制御部材の入射面の法線方向に対し角度αで入射した光の10〜50%は、出射面の法線方向と成す角度が−15°〜+15°の範囲で出射する請求項1、2、3または4記載の照明装置を提供する。   According to a fifth aspect of the present invention, 10 to 50% of the light incident at an angle α with respect to the normal direction of the incident surface of the light control member has an angle of −15 ° to + 15 ° with the normal direction of the output surface. The illumination device according to claim 1, 2, 3, or 4 that emits light in a range of

この構成によれば、角度αで入射した光の10〜50%が出射角度−15°〜+15°で出射するので、前記光制御部材の出射面において光制御部材の正面方向、即ち、入射面の法線方向から出射する成分の割合が著しく増大する。   According to this configuration, since 10 to 50% of the light incident at the angle α is emitted at the emission angle of −15 ° to + 15 °, the front direction of the light control member on the emission surface of the light control member, that is, the incidence surface. The ratio of components emitted from the normal direction is significantly increased.

請求項6記載の発明は、上記光制御部材は、上記入射面上に複数の凸部が形成され、該凸部の頂部を含み、かつ、前記入射面に直交する方向から断面した輪郭線が、前記凸部の頂部を挟む2つの略直線を含み、上記光源から上記光制御部材に照射した光を、前記入射面で複数の角度に偏向させる請求項1、2、3、4または5記載の照明装置を提供する。   According to a sixth aspect of the present invention, the light control member has a plurality of convex portions formed on the incident surface, includes a top portion of the convex portions, and has a contour line sectioned from a direction orthogonal to the incident surface. 6. The light that includes two substantially straight lines sandwiching the top of the convex portion and that irradiates the light control member from the light source at a plurality of angles on the incident surface. A lighting device is provided.

この構成によれば、前記入射面において光が複数の角度に偏向されるので、該入射面に対して垂直方向に入射した光と、斜め方向に入射した光とでは、後者の全光線透過率が前者の全光線透過率よりも高くなる。さらに、斜め方向に入射した光の一部は入射面上に形成した凸部内部で全反射することにより光制御部材に対し垂直に近い角度で出射する。つまり光源間の法線方向輝度が向上し面内の輝度分布の均一性を向上することができる。   According to this configuration, since light is deflected at a plurality of angles on the incident surface, the latter has a total light transmittance for light incident in a direction perpendicular to the incident surface and light incident in an oblique direction. Becomes higher than the total light transmittance of the former. Furthermore, a part of the light incident in the oblique direction is emitted at an angle close to the perpendicular to the light control member by being totally reflected inside the convex portion formed on the incident surface. That is, the luminance in the normal direction between the light sources can be improved and the uniformity of the in-plane luminance distribution can be improved.

請求項7に記載の発明は、上記光源が線状光源であり、上記光制御部材の出射面上に複数の凸部が形成され、該出射面に直交し、かつ、該出射面上の前記凸部の頂部を含む前記線状光源と平行な方向で断面した光出射部分における稜線が、前記線状光源に対して平行な方向に延びる直線である請求項1、2、3、4、5または6記載の照明装置を提供する。   According to a seventh aspect of the present invention, the light source is a linear light source, and a plurality of convex portions are formed on the emission surface of the light control member, orthogonal to the emission surface, and the light source on the emission surface. 6. A ridge line in a light emitting portion, which is cut in a direction parallel to the linear light source including the top of a convex portion, is a straight line extending in a direction parallel to the linear light source. Or the illuminating device of 6 is provided.

この構成によれば、出射面に形成した稜線の直線方向が、線状光源の長手方向と平行であるので、特に線状光源の真上に進行して光制御部材に入射した光は、出射面側の凸部により一部が全反射される。   According to this configuration, since the linear direction of the ridge line formed on the emission surface is parallel to the longitudinal direction of the linear light source, the light that travels directly above the linear light source and enters the light control member is emitted. A part is totally reflected by the convex part on the surface side.

請求項8記載の発明は、上記光制御部材の入射面および出射面の少なくともいずれかに、該光制御部材の基材の屈折率よりも屈折率が低い材質より成る厚さ1μm以下の層が少なくとも1層形成されている請求項1記載の照明装置を提供する。   According to an eighth aspect of the present invention, a layer having a thickness of 1 μm or less made of a material having a refractive index lower than that of the base material of the light control member is provided on at least one of the incident surface and the emission surface of the light control member. The lighting device according to claim 1, wherein at least one layer is formed.

この構成によれば、前記光制御部材の入射面または出射面に、該光制御部材よりも屈折率の小さい材質より成る薄い(1μm以下)層が形成されているので、光の干渉作用により垂直入射の光線の透過率よりも斜め入射の光線の透過率を大きくすることができる。   According to this configuration, since a thin (1 μm or less) layer made of a material having a refractive index smaller than that of the light control member is formed on the incident surface or the output surface of the light control member, the light control member is perpendicular to the light interference effect. The transmittance of obliquely incident light can be made larger than the transmittance of incident light.

請求項9記載の発明は、上記光源が点状光源である請求項1、2、3、4、5、6または8記載の照明装置を提供する。   A ninth aspect of the present invention provides the illumination device according to the first, second, third, fourth, fifth, sixth or eighth aspect, wherein the light source is a point light source.

この構成によれば、複数の光源が点状光源であっても、上記した線状光源と同様に輝度が均一化する。   According to this configuration, even when the plurality of light sources are point light sources, the luminance is uniform as in the case of the linear light source described above.

請求項10記載の発明は、請求1〜9のいずれか1項に記載の上記照明装置上に透過型表示素子を設けたことを特徴とする画像表示装置を提供する。   According to a tenth aspect of the present invention, there is provided an image display device characterized in that a transmissive display element is provided on the illumination device according to any one of the first to ninth aspects.

この構成によれば、照明装置上に液晶パネル等の透過型表示素子を設けたので、前記光制御部材により効率良く集光および拡散された光線が、透過型表示素子を透過する。   According to this configuration, since the transmissive display element such as a liquid crystal panel is provided on the illumination device, the light rays that are efficiently condensed and diffused by the light control member are transmitted through the transmissive display element.

本発明は、規則的に配置した複数の光源と、反射板と、前記光源および前記反射板からの光が透過する際に出射方向を制御する光制御部材とを少なくとも備える直下方式の照明装置であって、光入射側から光出射側に向かって前記反射板、光源および光制御部材がこの順に配置され、該光制御部材が主として受光する入射面と、主として出光する出射面とを備え、隣接する2つの光源の中間点に対向する部分で光制御部材に入射する光の全光線透過率を、光源に対向する位置に入射する光の全光線透過率よりも適度に高くすることで、光制御部材から出射する光エネルギーの出射面内分布を均一化することができることから、ランプイメージが解消され、輝度が高く、かつ、光利用効率が高い、出射面内の輝度が均一な照明装置を得ることができる。   The present invention is a direct lighting system including at least a plurality of regularly arranged light sources, a reflecting plate, and a light control member that controls an emission direction when light from the light source and the reflecting plate is transmitted. The reflector, the light source, and the light control member are arranged in this order from the light incident side to the light emission side, the light control member includes an incident surface that mainly receives light, and an emission surface that mainly emits light, and is adjacent By making the total light transmittance of light incident on the light control member at a portion facing the intermediate point of the two light sources moderately higher than the total light transmittance of light incident on the position facing the light source, the light Since the distribution of the light energy emitted from the control member in the exit surface can be made uniform, a lamp image is eliminated, the brightness is high, and the light utilization efficiency is high. To get Kill.

本発明で用いる光制御部材は、入射面上の任意の点で好ましい光学的性質が得られることから、光源と光制御部材との位置合わせが不要である。さらに、前記光源に対向する位置に入射する光と、隣接する光源の中間に対向する位置に入射する光の全光線透過率の割合を、光源同士の距離および光源と光制御部材の距離に関連付けている。このため、大型化、薄型化、省エネルギーなどの要求に答えるための、ディスプレイサイズや光源の本数や配置の変更にも柔軟に対応でき、生産性よく照明装置を製造することができる。また、照明装置として望ましい高輝度、輝度均一性、輝度角度分布性を容易に得ることができることから、機能性光学フィルムや光拡散材の使用を回避もしくは大幅に減少することができる。   The light control member used in the present invention can obtain favorable optical properties at an arbitrary point on the incident surface, so that alignment between the light source and the light control member is unnecessary. Further, the ratio of the total light transmittance of the light incident on the position facing the light source and the light incident on the position facing the middle of the adjacent light sources is related to the distance between the light sources and the distance between the light source and the light control member. ing. For this reason, it is possible to flexibly respond to changes in the display size, the number of light sources, and the arrangement for responding to the demands for enlargement, thinning, energy saving, etc., and the lighting device can be manufactured with high productivity. In addition, since high brightness, brightness uniformity, and brightness angle distribution desirable as a lighting device can be easily obtained, the use of a functional optical film or a light diffusing material can be avoided or greatly reduced.

また本発明は、光制御部材により集光および拡散された光線が透過型表示素子を透過するので、簡単な構成でありながら、光源位置の調整が不要であり、ランプイメージを解消でき、かつ、優れた出射面内均一な明るさを有する画像表示装置を容易に得ることができる。   In the present invention, since the light condensed and diffused by the light control member is transmitted through the transmissive display element, the light source position is not required to be adjusted while the configuration is simple, and the lamp image can be eliminated. It is possible to easily obtain an image display device having excellent brightness on the exit surface.

本発明は、光入射側から光出射側に向かって前記反射板、光源および光制御部材がこの順に配置され、該光制御部材が主として受光する入射面と、主として出光する出射面とを備え、任意の光源Xとその最近傍にある別の光源Yとの間の距離をD、該光源Xと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍乃至3倍であることにより、構成がシンプルで生産性が向上し、光源位置の調整が不要となり、ランプイメージを解消すると共に、出射面内における輝度均一化に優れた照明装置および画像表示装置を安価に得るという目的を実現した。 The present invention includes the reflector, the light source, and the light control member arranged in this order from the light incident side toward the light emission side, and includes an incident surface on which the light control member mainly receives light, and an output surface on which light is mainly emitted. When the distance between an arbitrary light source X and another light source Y nearest to it is D and the distance between the light source X and the light control member is H, the incident is made at an arbitrary point on the incident surface. The total light transmittance of light incident at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the surface is 50% or more, and the total light transmittance is 1.05 to 3 times the total light transmittance of light when light is incident on a point on the surface from the normal direction, resulting in a simple structure and improved productivity and no need to adjust the light source position In addition to eliminating the lamp image, the illumination device has excellent brightness uniformity in the exit surface, and We realized the objective of obtaining an image display device at low cost.

さらに、前記光制御部材の全光線透過率は入射角度のみに依存し、光制御部材に対する入射位置には依存しないため、複数の各光源と光制御部材との位置調整が不要である。つまり、照明装置の組立時に、光制御部材の面内方向における位置を厳密に設定する必要はない。従って、本発明の光制御部材を大面積で作製した後、必要寸法に応じて任意の位置から切出したものを使用することができるため、照明装置の生産性を著しく向上させることができる。   Furthermore, since the total light transmittance of the light control member depends only on the incident angle and does not depend on the incident position with respect to the light control member, it is not necessary to adjust the positions of the light sources and the light control member. That is, it is not necessary to strictly set the position of the light control member in the in-plane direction when the lighting device is assembled. Therefore, after the light control member of the present invention is manufactured with a large area, it is possible to use a light control member cut out from an arbitrary position according to a required dimension, so that the productivity of the lighting device can be remarkably improved.

以下、本発明の一実施の形態を図1乃至図34に従って説明する。
図1に示すように、光入射側から光出射側に向かって反射板2、複数の光源1、および光制御部材4がこの順序で配置され、該光制御部材4は規則的な複数の凸部9を有する。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the reflector 2, the plurality of light sources 1, and the light control member 4 are arranged in this order from the light incident side to the light emission side, and the light control member 4 has a plurality of regular protrusions. Part 9.

図2に示すように、反射板2の上に複数の光源1を配置して成る照明装置にあっては、正面方向(図中では上)に垂直な仮想面3へ入射した光は、各光源1の直上部分と、該直上部分と隣り合う光源1それぞれの直上の間の部分とでは入射エネルギーが異なる。仮想面3は図1における前記光制御部材4の入射面に相当するので、このことは該光制御部材4への入射エネルギーが、各光源1の直上部分と、隣り合う光源1それぞれの直上の間の部分とで異なることを意味する。   As shown in FIG. 2, in the illuminating device in which a plurality of light sources 1 are arranged on the reflector 2, the light incident on the virtual plane 3 perpendicular to the front direction (up in the drawing) Incident energy is different between the portion immediately above the light source 1 and the portion immediately above each of the adjacent light sources 1. Since the virtual surface 3 corresponds to the incident surface of the light control member 4 in FIG. 1, this means that the incident energy to the light control member 4 is directly above each light source 1 and immediately above each adjacent light source 1. It means different in the part between.

即ち、各光源1位置に対向する真上領域では、光源1に近いため入射エネルギーが大きい一方、複数の光源1同士の間の位置に対向する非真上領域(各光源1の斜上部分)では、光源1から離れているため入射エネルギーは小さい。   That is, in the region directly above the position of each light source 1, the incident energy is large because it is close to the light source 1, while the non-directly above region facing the position between the plurality of light sources 1 (the obliquely upper portion of each light source 1). Then, since it is away from the light source 1, the incident energy is small.

図3は、図2における光源1位置に対向する真上の前記仮想面3に入射する光線の入射角度と入射エネルギーの関係を示す説明図である。ここで該構成の入射角度とは仮想面3の法線に対する角度を言う。図3に示すように、前記仮想面3に対し垂直に入射する光線の輝度が最も高い。さらに、光線の進行方向が垂直からずれて、入射角度が大きくなるに伴い、輝度は次第に低くなる。   FIG. 3 is an explanatory diagram showing the relationship between the incident angle of the light beam incident on the virtual surface 3 directly above the position of the light source 1 in FIG. 2 and the incident energy. Here, the incident angle of the configuration means an angle with respect to the normal line of the virtual plane 3. As shown in FIG. 3, the luminance of the light ray that enters perpendicularly to the virtual surface 3 is the highest. Furthermore, as the traveling direction of the light beam deviates from vertical and the incident angle increases, the luminance gradually decreases.

一方、図4は、図2における光源1同士の間の部分に相当する前記仮想面3に入射する光線の入射角度と入射エネルギーの関係を説明する図である。同図で示すように、仮想面3に対して垂直に入射する光線の輝度は低く、また,光線の入射方向が法線方向からずれて、最近傍の光源を見込む角度でピークをとる。   On the other hand, FIG. 4 is a diagram for explaining the relationship between the incident angle of light rays incident on the virtual plane 3 corresponding to the portion between the light sources 1 in FIG. 2 and the incident energy. As shown in the figure, the luminance of light rays that are perpendicularly incident on the virtual plane 3 is low, and the incident direction of the light rays deviates from the normal direction, and peaks at an angle at which the nearest light source is viewed.

図5は本発明に係る照明装置における、任意の光源Xと、該光源Xに対し最近傍に位置する別の光源Yおよび反射板2、光制御部材4の位置関係を示す図である。任意の光源Xと、該光源Xに対し最近傍に位置する別の光源Yとの距離をD、該光源Xと光制御部材4との距離をHとした場合、該光制御部材4の入射面上における任意の点について、該入射面に以下に示すαの角度で入光した光が該光制御部材4の出射面から出光する割合であるところの全光線透過率に関しては、50%以上乃至100%の範囲であって、かつ、次のような関係を有する。   FIG. 5 is a view showing the positional relationship between an arbitrary light source X and another light source Y, the reflector 2 and the light control member 4 which are located nearest to the light source X in the illumination device according to the present invention. When the distance between an arbitrary light source X and another light source Y located closest to the light source X is D and the distance between the light source X and the light control member 4 is H, the incidence of the light control member 4 With respect to an arbitrary point on the surface, the total light transmittance is 50% or more with respect to the ratio at which light incident on the incident surface at an angle α shown below is emitted from the exit surface of the light control member 4. Or in the range of 100% and has the following relationship.

すなわち、該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で光が入射した場合の該光の全光線透過率R1は、該入射面に対して垂直方向に光が入射した場合の該光の全光線透過率R2の1.05倍〜3.00倍であることを特徴としている。また、該全光線透過率の割合R1/R2は1.05〜2.00倍であることが、光利用効率の観点からより好ましい。 That is, when light is incident at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is relative to the incident surface. The total light transmittance R2 of the light when the light is incident in the vertical direction is 1.05 to 3.00 times. The ratio R1 / R2 of the total light transmittance is more preferably 1.05 to 2.00 times from the viewpoint of light utilization efficiency.

前記角度αは、光源Xまたは光源Yから発した光が、該光源Xと光源Yとの中間点の直上位置の光制御部材4に入射した場合の光線の入射角度に相当する。全光線透過率については、光制御部材4に対し垂直方向から入射したときの光の全光線透過率R2よりも、光制御部材4に対し斜め方向から入射角α(≠0)で入射したときの光の全光線透過率R1の方が高い。このため、各光源X,Yの真上の部分と、光源Xと光源Yの間の部分において、光制御部材4の出射光エネルギーを全体として均一化することができる。   The angle α corresponds to the incident angle of a light beam when light emitted from the light source X or the light source Y enters the light control member 4 at a position immediately above the intermediate point between the light source X and the light source Y. With respect to the total light transmittance, when the light is incident on the light control member 4 from an oblique direction at an incident angle α (≠ 0), rather than the total light transmittance R2 of light when the light is incident on the light control member 4 from the vertical direction. The total light transmittance R1 of the light is higher. For this reason, the emitted light energy of the light control member 4 can be made uniform as a whole in the portion directly above the light sources X and Y and the portion between the light sources X and Y.

図6に、本発明で用いる光制御部材を選択するために必要となる全光線透過率の測定方法を示す。平坦な入射面を有する測定対象物7へ入射角βで入射した平行光8において、同図に示すように、積分球5の開口部6の下側にこれを閉鎖するように測定対象物7を設置し、レーザー光もしくはレンズでコリメートした平行光8を、測定対象物7の法線方向に対しβの角度で入射させる。   FIG. 6 shows a method for measuring the total light transmittance necessary for selecting the light control member used in the present invention. In the parallel light 8 incident on the measurement object 7 having a flat incident surface at an incident angle β, the measurement object 7 is closed so as to be closed below the opening 6 of the integrating sphere 5 as shown in FIG. The collimated light 8 collimated with a laser beam or a lens is incident at an angle β with respect to the normal direction of the measurement object 7.

しかして、測定対象物7を透過した光は積分球5内で乱反射され、図示していないフォトマルチプライヤーに代表される検出器でその反射エネルギーを測定する。ここで、測定対象物7を図示のように設置して、角度βで平行光8を入射した場合の検出器の出力をV(β)、測定対象物7が設置されていない場合の検出器の出力をV0とすると、角度βにおける全光線透過率はV(β)/V0で得られる。   Thus, the light transmitted through the measuring object 7 is diffusely reflected in the integrating sphere 5 and the reflected energy is measured by a detector (not shown) represented by a photomultiplier. Here, the measurement object 7 is installed as shown, and the output of the detector when the parallel light 8 is incident at an angle β is V (β), and the detector when the measurement object 7 is not installed is the detector. Is V0, the total light transmittance at an angle β is obtained as V (β) / V0.

ここで、本発明では、全光線透過率の測定に際し、測定対象物への平行光の光束の幅は、光制御部材の表面に凹凸形状を形成している場合において、例えば、凹凸形状の一斜面のみといった微小領域に入射する程度のものではなく、該凹凸形状の特徴を全光線透過率に反映するために、少なくとも凹凸形状部のピッチ以上の広い領域に入射する程度のものである必要がある。   Here, in the present invention, when measuring the total light transmittance, the width of the light beam of the parallel light to the measurement object is, for example, an uneven shape when the uneven shape is formed on the surface of the light control member. In order to reflect the feature of the uneven shape on the total light transmittance, it is necessary not to be incident on a minute region such as only a slope, but to be incident on a wide region at least larger than the pitch of the uneven portion. is there.

以下、光制御部材4に対して光が垂直方向および斜め方向から入射したときにおける全光線透過率の調整の具体的手段の例について説明する。   Hereinafter, an example of specific means for adjusting the total light transmittance when light enters the light control member 4 from the vertical direction and the oblique direction will be described.

まず、該具体的手段の第1の例としては、図1に示したように光制御部材4の出射面に複数の凸部9を設けた態様が挙げられる。該凸部9を、光制御部材4の出射面に直交して凸部9の頂部を含む少なくとも所定の一方向に沿って断面したときの好適な該断面形状として次のような形状が挙げられる。   First, as a first example of the specific means, there may be mentioned a mode in which a plurality of convex portions 9 are provided on the exit surface of the light control member 4 as shown in FIG. The following shape is preferable as the cross-sectional shape when the convex portion 9 is crossed along at least one predetermined direction including the top of the convex portion 9 perpendicular to the emission surface of the light control member 4. .

すなわち、輪郭線の傾きの絶対値が50°〜70°である範囲をUとした、単位凸部の光制御部材への投影面積に対するUの光制御部材への投影面積の割合が0.2〜0.8の範囲である。   That is, the ratio of the projected area on the light control member of U to the projected area on the light control member of the unit convex portion is 0.2, where U is a range where the absolute value of the inclination of the contour line is 50 ° to 70 °. It is in the range of ~ 0.8.

図28は、前記光制御部材4の出射面に複数の凸部9を設けた態様における、出射面に直交して、頂部を含む所定の一方向に沿って断面した場合の輪郭線と、輪郭線上の各点の傾きの関係を示す図である。該輪郭線の傾きの絶対値が50°〜70°である範囲をUとした場合、単位凸部の光制御部材への投影面積に対するUの光制御部材への投影面積の割合が0.2〜0.8の範囲である。単位凸部の光制御部材への投影面積に対するUの光制御部材への投影面積の割合が0.2未満になると斜め入射光12のうち正面方向へ出射する光の割合が減少するため、出射面内の均一性が低下する。またこの割合が0.8を超えると光の分散効果が小さくなり、輝度均一性が低下する。   FIG. 28 shows a contour line and a contour when the light control member 4 is provided with a plurality of convex portions 9 on the exit surface, and is crossed along a predetermined direction including the apex perpendicular to the exit surface. It is a figure which shows the relationship of the inclination of each point on a line. When the range in which the absolute value of the inclination of the contour line is 50 ° to 70 ° is U, the ratio of the projected area of U on the light control member to the projected area of the unit convex portion on the light control member is 0.2. It is in the range of ~ 0.8. When the ratio of the projected area of U to the light control member with respect to the projected area of the unit convex portion on the light control member is less than 0.2, the ratio of the light emitted in the front direction of the oblique incident light 12 is decreased. In-plane uniformity is reduced. On the other hand, if this ratio exceeds 0.8, the light dispersion effect is reduced and the luminance uniformity is lowered.

ここで、前記領域Uの光制御部材への投影面積の割合は、出射面内の輝度均一性の観点から0.4〜0.75の範囲であることが好ましく、さらに、0.5〜0.7の範囲であることがより一層優れて好ましい。また、前記所定の一方向とは、断面形状が光制御する性能を最も顕著に顕す方向であり、光源Xから光源Yへの方向に平行な方向を意味する。   Here, the ratio of the projected area of the region U onto the light control member is preferably in the range of 0.4 to 0.75 from the viewpoint of luminance uniformity within the exit surface, and more preferably 0.5 to 0. Is more preferably in the range of .7. The predetermined one direction is a direction in which the cross-sectional shape exhibits the light control performance most remarkably, and means a direction parallel to the direction from the light source X to the light source Y.

図29に示すように、光制御部材4に垂直に入射した光13は、前記凸部9の領域Uにあたらない傾きの絶対値が小さい頂部周辺において出射方向を分散し、領域Uにあたる表面にあたった光も出射方向を分散し、凸部9の領域Uにあたる凸部裾部付近の表面に当たった光は全反射を起こして出射せず、該光の全光線透過率を抑えることが可能となる。光制御部材4に垂直に入射した垂直光13の全光線透過率が小さくなることによって、輝度均一性が高く、かつ、高輝度な照明装置を容易に得ることができる。   As shown in FIG. 29, the light 13 incident perpendicularly to the light control member 4 is distributed in the emission direction around the apex where the absolute value of the inclination that does not correspond to the region U of the convex portion 9 is small, and the surface corresponds to the region U. The incident light also disperses the emission direction, and the light that hits the surface near the bottom of the convex portion 9 corresponding to the region U of the convex portion 9 does not emit with total reflection, and the total light transmittance of the light can be suppressed. It becomes. By reducing the total light transmittance of the vertical light 13 perpendicularly incident on the light control member 4, it is possible to easily obtain a lighting device with high luminance uniformity and high luminance.

領域Uが光制御部材4に垂直に入射した光を全反射によって出射させないためには、領域Uは少なくとも凸部9の頂部付近ではなく、裾部付近であり、頂部付近は領域Uよりも傾きの絶対値が小さい領域からなることが好ましい。   In order to prevent the region U from being incident on the light control member 4 perpendicularly, the region U is not at least near the top of the convex portion 9 but near the bottom, and the top is inclined more than the region U. It is preferable that it consists of an area | region where the absolute value of is small.

しかしながら隣接する凸部が図29に示すように裾部で接しているとき、裾部端部が領域Uによってなるとき、これを成形するための金型は鋭い凸状となり、金型凸部の変形による賦形不良が起こり易くなる。これを防ぐには凸部9の谷部の狭い領域の傾きの絶対値を小さく設定することが好ましい。   However, when the adjacent convex portions are in contact with each other at the skirt portion as shown in FIG. 29, when the hem end portion is formed by the region U, the mold for molding this becomes a sharp convex shape. Shaping defects due to deformation are likely to occur. In order to prevent this, it is preferable to set the absolute value of the inclination of the narrow region of the valley of the convex portion 9 small.

なお図示していないが、前記凸部の絶対値が70°を超える領域については、同様に全反射するものの、反射角度が垂直方向に対して40°以下となるため、多くは出射面から出光してしまい全光線透過率を抑えることが困難である。   Although not shown in the figure, the region where the absolute value of the convex portion exceeds 70 ° is also totally reflected, but the reflection angle is 40 ° or less with respect to the vertical direction. Therefore, it is difficult to suppress the total light transmittance.

図30に示すように、光制御部材4の入射面19に斜めに入射した斜め入射光12は、屈折作用により、光制御部材4の出射面側から略垂直方向(入射面19の略垂直方向と同方向)に出射させることができる。   As shown in FIG. 30, the oblique incident light 12 that is obliquely incident on the incident surface 19 of the light control member 4 is refracted so as to be in a substantially vertical direction (substantially perpendicular to the incident surface 19) from the emission surface side of the light control member 4. In the same direction).

光制御部材4の入射面19に対する凸部斜面の接線の傾きを角度γとすると、
γ=(π−θ)/2
で表すことが出来る。ここで、光制御部材4への入射角度をφ1、光制御部材4の屈折率をnとすると、図10に示すように、凸部9の一方の凸部9上の点から透過する光の光制御部材4の法線方向に対する角度φ5は、下記の通り求めることができる。
When the inclination of the tangent line of the convex slope with respect to the incident surface 19 of the light control member 4 is an angle γ,
γ = (π−θ) / 2
It can be expressed as Here, when the incident angle to the light control member 4 is φ1 and the refractive index of the light control member 4 is n, as shown in FIG. The angle φ5 with respect to the normal direction of the light control member 4 can be obtained as follows.

φ2=Sin-1{(sinφ1)/n}
φ3=γ−φ2
φ4=Sin-1(n×sinφ3)
φ5=φ4−γ
φ2 = Sin −1 {(sin φ1) / n}
φ3 = γ−φ2
φ4 = Sin −1 (n × sin φ3)
φ5 = φ4-γ

ここで、φ4≦90°である必要があり、一方、0≦γであることから、
0≦γ≦Sin-1(1/n)+Sin-1{(sinφ1)/n}
となる。
Here, φ4 ≦ 90 ° needs to be satisfied, while 0 ≦ γ,
0 ≦ γ ≦ Sin −1 (1 / n) + Sin −1 {(sin φ1) / n}
It becomes.

例えば、光源間距離Dを33mm、光源中心から光制御部材4までの最短距離Hを15mmの場合、光源間の中央位置においてφ1(=α)がおよそ48°であるので、光制御部材4の屈折率nを1.54とすると、0°≦γ≦69°である。つまり、γが69°よりも大きいと、入射光は光制御部材内部を進んだ後に、出射面に対して臨界角を超える角度で入射するため、光制御部材に全反射して、斜め方向に出光することになる。   For example, when the distance D between the light sources is 33 mm and the shortest distance H from the light source center to the light control member 4 is 15 mm, φ1 (= α) is approximately 48 ° at the center position between the light sources. When the refractive index n is 1.54, 0 ° ≦ γ ≦ 69 °. That is, if γ is greater than 69 °, the incident light enters the light control member and then enters the light exit surface at an angle exceeding the critical angle. It will come out.

本発明の主旨から、光線の出射方向は光制御部材4に対して極力正面方向であることが好ましい。従って、φ1=αの場合に、−15°≦φ5≦15°であることが望ましい。また、−10°≦φ5≦10°であることがより望ましい。さらには、−5°≦φ5≦5°となるようにγを選択することが優れて好適である。そして、−15°≦φ5≦15°であるようにγが選択された領域に入射する光が、全入射光の10〜50%の範囲内であることが、輝度の均一性の観点から好ましい。   From the gist of the present invention, it is preferable that the emission direction of the light beam is as front as possible with respect to the light control member 4. Therefore, it is desirable that −15 ° ≦ φ5 ≦ 15 ° when φ1 = α. Further, it is more desirable that −10 ° ≦ φ5 ≦ 10 °. Furthermore, it is excellent and preferable to select γ so that −5 ° ≦ φ5 ≦ 5 °. And it is preferable from a viewpoint of the uniformity of a brightness | luminance that the light which injects into the area | region where (gamma) was selected so that it may be -15 degrees <= φ5 <= 15 degrees is in the range of 10 to 50% of all the incident lights. .

例えば、上記のように、光源間距離Dを33mm、光源中心から光制御部材4までの最短距離Hを15mm、光制御部材4の屈折率nを1.54とすると、γの望ましい範囲は51°≦γ≦69°(42°≦θ≦78°)、より望ましい範囲は57°≦γ≦68°(44°≦θ≦66°)であり、さらに好適な範囲は62°≦γ≦67°(46°≦θ≦56°)となる。   For example, as described above, when the distance D between the light sources is 33 mm, the shortest distance H from the light source center to the light control member 4 is 15 mm, and the refractive index n of the light control member 4 is 1.54, the desirable range of γ is 51. ° ≦ γ ≦ 69 ° (42 ° ≦ θ ≦ 78 °), a more preferable range is 57 ° ≦ γ ≦ 68 ° (44 ° ≦ θ ≦ 66 °), and a more preferable range is 62 ° ≦ γ ≦ 67. ° (46 ° ≦ θ ≦ 56 °).

以上の入射角度φ1と凸部傾きの絶対値γと出射角度φ5の関係から、本発明で好適とする照明装置においては、光制御部材の光源間に対向する点に入射した光のうち、領域Uの斜面で屈折し出射する光は正面付近に出射し、また斜入射光が領域U以外の斜面で屈折し出射する場合には光制御部材の法線方向に対し斜めに出射する。この出射光が隣接する凸部に再入射し、光源側へ戻されるのを避けるためには領域Uの中心を凸部片側の中心より外側に配置することが有効である。   From the above relationship between the incident angle φ1, the absolute value γ of the convex portion inclination, and the outgoing angle φ5, in the illumination device suitable for the present invention, the region of the light incident on the point facing the light source of the light control member The light refracted and emitted on the slope of U is emitted near the front, and when oblique incident light is refracted and emitted on the slope other than the region U, the light is emitted obliquely with respect to the normal direction of the light control member. In order to prevent the emitted light from re-entering the adjacent convex portion and returning to the light source side, it is effective to arrange the center of the region U outside the center of the convex portion piece side.

図4に示すように光源間に相当する位置においては分布が対称な光が入射する。従って、凸部断面形状を対称形とすることで光制御部材の垂直方向に対して対称な出射光分布を有することができる。   As shown in FIG. 4, light having a symmetric distribution is incident at a position corresponding to between light sources. Therefore, by making the convex section cross-sectional shape symmetrical, it is possible to have an outgoing light distribution that is symmetric with respect to the vertical direction of the light control member.

図7に凸部9がストライプ状に形成された好適な断面形状の例を示す。前記凸部9の立体形状を、鋭角θをなす2つの略斜面部(断面略直線10に相当)と曲面部(断面曲線11に相当)とによって構成することにより、前記略直線の部分と曲線の部分とでは、光出射面に於ける集光および拡散の程度が互いに異なるので、出射面における集光性能および拡散性能が一層向上し、もって、出射面内輝度の均一化をより効果的に高めることができる。   FIG. 7 shows an example of a suitable cross-sectional shape in which the convex portions 9 are formed in a stripe shape. By forming the three-dimensional shape of the convex portion 9 by two substantially inclined portions (corresponding to a substantially straight section 10) and a curved surface portion (corresponding to a sectional curve 11) forming an acute angle θ, the substantially straight portion and the curve are formed. Since the degree of condensing and diffusing on the light exit surface is different from that of this part, the condensing performance and diffusing performance on the exit surface are further improved, so that the brightness in the exit surface can be made more uniform. Can be increased.

また図8、図9に示すようにこのような形状では同じ方向から入射して略直線部10にあたる光は同じ方向に屈折し、または反射するので、出光方向の制御がしやすく、望ましい輝度角度分布を得るための光学設計が容易となる。図8に示すように、光制御部材4の入射面19に斜めに入射した斜め入射光12は、断面略直線10の部分において屈折作用により、光制御部材4の出射面側から略垂直方向(入射面19の略垂直方向と同方向)に出射させることができる。なお輪郭線の頂部を構成する曲線の曲率半径は、無限大、すなわち直線であってもよい。   In addition, as shown in FIGS. 8 and 9, in such a shape, light incident from the same direction and hitting the substantially straight portion 10 is refracted or reflected in the same direction, so that the light output direction can be easily controlled, and a desirable luminance angle. Optical design for obtaining the distribution is facilitated. As shown in FIG. 8, the oblique incident light 12 obliquely incident on the incident surface 19 of the light control member 4 is refracted at the portion of the substantially straight line 10 in a substantially vertical direction (from the emission surface side of the light control member 4). The light can be emitted in the same direction as the vertical direction of the incident surface 19. In addition, the curvature radius of the curve which comprises the top part of an outline may be infinite, ie, a straight line.

凸部9の形状としては、2つの断面略直線10と断面曲線11を、全方向で有する略円錐状または略台錐状の立体形状に形成していてもよい。   As the shape of the convex portion 9, two substantially straight lines 10 and a section curve 11 may be formed in a substantially conical or substantially trapezoidal three-dimensional shape having all directions.

図11に、本発明で実施可能な凸部9の別の形状を示す。この場合、凸部9の谷部分に谷部14を設けている。この断面曲線部14により光の出射方向が多方向に分散され、輝度均一性の高い照明装置を得ることができる。さらに、光制御部材4内部で様々な方向に光を伝搬させて分散効果を高めるための手段としては、光制御部材4の入射面に平行光を複数の角度に偏向させる手段を用いてもよい。具体的には、光制御部材4の入射面に、ランダムまたは周期性を有する凹凸構造を形成することが挙げられる。   FIG. 11 shows another shape of the convex portion 9 that can be implemented in the present invention. In this case, a valley portion 14 is provided in the valley portion of the convex portion 9. The cross-sectional curve portion 14 disperses the light emission direction in multiple directions, and an illumination device with high luminance uniformity can be obtained. Further, as means for propagating light in various directions within the light control member 4 to enhance the dispersion effect, means for deflecting parallel light at a plurality of angles on the incident surface of the light control member 4 may be used. . Specifically, it is possible to form a concavo-convex structure having random or periodicity on the incident surface of the light control member 4.

また谷部14によって、これを成形するための金型の凸部の先端は曲線状の鈍い形状となるため、鋭く尖った形状の場合と比較して金型凸部の変形による賦形不良が起こりにくくなる。なお、輪郭線の頂部を形成する曲線の曲率半径は無限大であってもよく、このとき該頂部を構成する曲線は直線となる。   Moreover, since the tip of the convex portion of the mold for molding the trough portion 14 has a blunt shape that is curved, there is a problem of shaping failure due to the deformation of the convex portion of the mold as compared with a sharply sharp shape. Less likely to occur. Note that the radius of curvature of the curve forming the top of the contour line may be infinite, and at this time, the curve forming the top is a straight line.

また、光源が線状光源である場合には、出射面側の複数の凸部9を平行に配列したストライプ状レンズに形成し、そのレンズの長手方向を線状光源の長手方向と平行にすることができる。これにより、光制御部材4の出射面における出射光の角度分布調整が一層容易となる。   When the light source is a linear light source, a plurality of convex portions 9 on the emission surface side are formed in a stripe lens arranged in parallel, and the longitudinal direction of the lens is made parallel to the longitudinal direction of the linear light source. be able to. Thereby, the angle distribution adjustment of the outgoing light on the outgoing surface of the light control member 4 is further facilitated.

次に、全光線透過率調整手段に係る別の光制御部材4の構成例を、図12に示す。本構成では、複数の線状光源15と、該線状光源15からの光を反射する反射板(図示せず)と、前記線状光源15および前記反射板からの光を拡散透過させる光制御部材4とを備えた直下方式の照明装置において、前記光制御部材4の前記線状光源15と対向する側の入射面に、複数のストライプ状プリズム16が前記線状光源15の長手方向と平行に形成されている。   Next, FIG. 12 shows a configuration example of another light control member 4 according to the total light transmittance adjusting means. In this configuration, a plurality of linear light sources 15, a reflecting plate (not shown) that reflects light from the linear light sources 15, and light control that diffuses and transmits light from the linear light sources 15 and the reflecting plate. In the direct illumination device including the member 4, a plurality of striped prisms 16 are parallel to the longitudinal direction of the linear light source 15 on the incident surface of the light control member 4 on the side facing the linear light source 15. Is formed.

また、前記ストライプ状プリズム16は、前記線状光源15に臨む側の稜線部における頂角が30°乃至60°の範囲である。さらに、上記光制御部材4の光出射面に複数の凹凸17が形成されている。該出射面凹凸17もストライプ状に形成され、ストライプ状凹凸17の長手方向は、上記光入射面側ストライプ状プリズム16の長手方向に対して平行な関係を有している。   The stripe prism 16 has a vertex angle of 30 ° to 60 ° at the ridge line portion facing the linear light source 15. Further, a plurality of irregularities 17 are formed on the light exit surface of the light control member 4. The output surface unevenness 17 is also formed in a stripe shape, and the longitudinal direction of the stripe unevenness 17 has a parallel relationship with the longitudinal direction of the light incident surface side stripe prism 16.

図12に示すように、線状光源15の直上方向に入射した垂直入射光13は、入射面に形成したプリズム16の斜面により屈折し、屈折後、出射面に形成した凹凸17により、光の一部が全反射される。これにより、光制御部材4に対して垂直に入射した光の透過割合が小さくなるので、光制御部材4による全光線透過率を制御することができる。   As shown in FIG. 12, the normal incident light 13 incident in the direction directly above the linear light source 15 is refracted by the inclined surface of the prism 16 formed on the incident surface, and after the refraction, the unevenness 17 formed on the output surface causes the light to be reflected. Some are totally reflected. Thereby, since the transmission ratio of the light incident perpendicularly to the light control member 4 is reduced, the total light transmittance by the light control member 4 can be controlled.

図13に示すように、線状光源15の間に入射した光、即ち、光制御部材4に対する斜め入射光12は、前記入射面に形成したプリズム16により屈折、全反射し、光制御部材4に対して略正面方向に出射する。これにより、各線状光源15間の正面方向付近の輝度を向上させることができる。   As shown in FIG. 13, the light incident between the linear light sources 15, that is, the oblique incident light 12 with respect to the light control member 4 is refracted and totally reflected by the prism 16 formed on the incident surface, and the light control member 4. The light is emitted substantially in the front direction. Thereby, the brightness | luminance of the front direction vicinity between each linear light source 15 can be improved.

本発明に用いることのできるさらに別の光制御部材4の構成例を、図14に示す。本発明は、複数の線状光源15から出る光線を拡散透過させる光制御部材4に於いて、該光制御部材4の前記線状光源15と対向する入射面に、該線状光源15の長手方向と平行に延びる複数のストライプ状プリズム16が形成されていると共に、該複数のプリズム16の間には所定長さの平坦部18が設けられている。また、前記光制御部材4の光出射面には、前記ストライプ状プリズム16の長手方向と平行に延びる複数の出射面凹凸17が形成され、該出射面凹凸17はプリズム形状等から成る断面形状を有する。このことにより、出射面内輝度の均一化を実現した。   FIG. 14 shows a configuration example of still another light control member 4 that can be used in the present invention. In the light control member 4 that diffuses and transmits the light emitted from the plurality of linear light sources 15, the longitudinal direction of the linear light source 15 is formed on the incident surface of the light control member 4 that faces the linear light source 15. A plurality of stripe prisms 16 extending in parallel with the direction are formed, and a flat portion 18 having a predetermined length is provided between the plurality of prisms 16. The light output surface of the light control member 4 is formed with a plurality of light emission surface irregularities 17 extending in parallel with the longitudinal direction of the stripe prism 16, and the light emission surface irregularities 17 have a cross-sectional shape composed of a prism shape or the like. Have. As a result, the in-plane brightness was made uniform.

図14に示すように、線状光源15の直上に入射した垂直入射光13は、入射面に形成したプリズム16で屈折し、出射面に形成した凹凸17により一部が全反射される。これにより、光制御部材4に対し垂直に入射した垂直光13の透過率を制御することが可能となる。また、入射面側の複数のプリズム16間に形成した平坦部18により、光制御部材4による光の透過率の調整がし易くなる。該平坦部18の入射面全体に対する比率は40%以下が好ましい。   As shown in FIG. 14, the normal incident light 13 incident on the linear light source 15 is refracted by the prism 16 formed on the incident surface, and part of the light is totally reflected by the unevenness 17 formed on the output surface. Thereby, it is possible to control the transmittance of the vertical light 13 incident perpendicularly to the light control member 4. Further, the flat portion 18 formed between the plurality of prisms 16 on the incident surface side makes it easy to adjust the light transmittance by the light control member 4. The ratio of the flat portion 18 to the entire incident surface is preferably 40% or less.

図15に示すように、線状光源15の間に入射した斜め入射光12は、入射面に形成したプリズム16で屈折、全反射し、略正面方向に出射する。これにより、線状光源15間の正面方向における輝度を向上させることができる。   As shown in FIG. 15, the obliquely incident light 12 incident between the linear light sources 15 is refracted and totally reflected by a prism 16 formed on the incident surface, and is emitted substantially in the front direction. Thereby, the brightness | luminance in the front direction between the linear light sources 15 can be improved.

図16に、光制御部材4の入射面に形成したプリズム16内部で全反射を生じる場合の光の進行方向を示す。光制御部材4の入射面の法線方向に対する入射光100の入射角度をε1とすると、入射面に形成したプリズム16で全反射した後、この進行光25の光制御部材4内部での法線方向に対する角度ε5は、以下の通り計算できる。   FIG. 16 shows the traveling direction of light when total reflection occurs inside the prism 16 formed on the incident surface of the light control member 4. Assuming that the incident angle of the incident light 100 with respect to the normal direction of the incident surface of the light control member 4 is ε1, after the total reflection by the prism 16 formed on the incident surface, the normal line of the traveling light 25 inside the light control member 4 The angle ε5 with respect to the direction can be calculated as follows.

ε2=δ1−ε1
ε3=Sin-1{(sinε2)/n}
ε4=δ1−ε3+δ2−90°
ε5=90°−(ε4+δ2)
本発明の主旨から、光線の出射方向は光制御部材4の正面方向、即ち、法線方向と同方向であることが好ましい。このためには、光制御部材4内部において進行光25が出射面の法線方向に進行することが好適である。従って、ε1=αの場合、−20°≦ε5≦20°であることが望ましい。また、−10°≦ε5≦10°であることがより望ましい。さらには、−5°≦ε5≦5°となるようにδ1、δ2を選択することが好適である。
ε2 = δ1−ε1
ε3 = Sin −1 {(sin ε2) / n}
ε4 = δ1-ε3 + δ2-90 °
ε5 = 90 ° − (ε4 + δ2)
From the gist of the present invention, the light emission direction is preferably the front direction of the light control member 4, that is, the same direction as the normal direction. For this purpose, it is preferable that the traveling light 25 travels in the normal direction of the emission surface inside the light control member 4. Therefore, when ε1 = α, it is desirable that −20 ° ≦ ε5 ≦ 20 °. Further, it is more desirable that −10 ° ≦ ε5 ≦ 10 °. Furthermore, it is preferable to select δ1 and δ2 so that −5 ° ≦ ε5 ≦ 5 °.

例えば、光源間距離Dを33mm、光源中心と光制御部材4間の離間距離Hを15mm、光制御部材4の屈折率nを1.54とすると、55°≦δ1≦72°であることが望ましい。また、59°≦δ1≦67°であることがより望ましい。さらには、61°≦δ1≦65°と選択することが好適である。   For example, assuming that the distance D between the light sources is 33 mm, the distance H between the light source center and the light control member 4 is 15 mm, and the refractive index n of the light control member 4 is 1.54, 55 ° ≦ δ1 ≦ 72 °. desirable. Further, it is more desirable that 59 ° ≦ δ1 ≦ 67 °. Furthermore, it is preferable to select 61 ° ≦ δ1 ≦ 65 °.

上記出射面側に形成する凹凸17の高さまたは深さは、1μm以上かつ1000μm以下が望ましい。1000μmを越えると、凹凸が観察されるため品位の低下を招く。また、1μm未満であると、光の回折現象により着色が発生して品位の低下を生じる。また10μm以上、500μm以下であることが望ましい。さらに30μm以上、300μm以下がより好適である。   The height or depth of the irregularities 17 formed on the emission surface side is desirably 1 μm or more and 1000 μm or less. When the thickness exceeds 1000 μm, unevenness is observed, so that the quality is lowered. On the other hand, when the thickness is less than 1 μm, coloring occurs due to the diffraction phenomenon of light, and the quality deteriorates. Moreover, it is desirable that it is 10 micrometers or more and 500 micrometers or less. Furthermore, 30 μm or more and 300 μm or less are more preferable.

また、入射面に形成するプリズムについては、図33に示す通り、複数の傾きを持たせる事が出来る。図33では、左右対称な入射面プリズム領域U1と、U1の中心に対し線対称である1対の非対称プリズムU2,および金型の作成を容易にするためにU1とU2の間に微小な隙間U3を設けている。プリズム群U1およびU2は、3つ以上の組から成ることができるが、全体で見たときに対称である事が好ましい。図34に示す通り、入射面を図33の形状にした光制御部材4では、光源(図示せず)からの斜め入射光12がより広い方向に拡散出射し、ランプイメージを消す点で好ましい。   Also, the prism formed on the incident surface can have a plurality of inclinations as shown in FIG. In FIG. 33, an entrance plane prism region U1 that is symmetrical to the left and right, a pair of asymmetric prisms U2 that are line symmetric with respect to the center of U1, and a minute gap between U1 and U2 to facilitate the creation of the mold. U3 is provided. The prism groups U1 and U2 can be composed of three or more sets, but are preferably symmetrical when viewed as a whole. As shown in FIG. 34, the light control member 4 whose incident surface has the shape shown in FIG. 33 is preferable in that the oblique incident light 12 from the light source (not shown) is diffused and emitted in a wider direction, and the lamp image is erased.

上記に示したプリズムなどの表面パターンを設ける場合は、押出し成形、射出成形、紫外線硬化型樹脂を用いた2P成形等の何れも用いることができる。成形方法は、プリズムの大きさ、必要形状、量産性を考慮して適宜用いればよく、特に限定されない。   When the surface pattern such as the prism shown above is provided, any of extrusion molding, injection molding, 2P molding using an ultraviolet curable resin, and the like can be used. The molding method may be appropriately used in consideration of the size of the prism, the required shape, and mass productivity, and is not particularly limited.

全光線透過率調整手段に係る別の光制御部材4の構成例においては、光制御部材4の入射面および出射面の少なくとも片面に、光制御部材4の基材より屈折率の低い材質より成る厚さ1μm以下の薄い層が少なくとも1層設けられる。このように構成すれば、光の干渉作用により、光制御部材4に対する垂直入射時の全光線透過率が小さくなり、斜め入射時の全光線透過率が高くなる。   In another configuration example of the light control member 4 according to the total light transmittance adjusting means, at least one of the incident surface and the exit surface of the light control member 4 is made of a material having a lower refractive index than the base material of the light control member 4. At least one thin layer having a thickness of 1 μm or less is provided. If comprised in this way, the total light transmittance at the time of perpendicular | vertical incidence with respect to the light control member 4 will become small by the interference effect | action of light, and the total light transmittance at the time of diagonal incidence will become high.

なお、本発明の照明装置上に透過型の表示素子を設けることで、表示面における輝度均一性に優れる画像表示装置を容易に得ることが出来る。   Note that by providing a transmissive display element on the lighting device of the present invention, an image display device excellent in luminance uniformity on the display surface can be easily obtained.

本発明の第1の実施例を図27に示す。本実施例では、
c=8.33
k=−0.44
で表されるシリンドリカル状の溝をもつ雌型を切削加工により作製した。ここでxは単位形状の中心からの距離を表す。また上記kの場合は楕円形状を表す。1つのシリンドリカル形状の幅は0.3mmとした。つまり−0.15≦x≦0.15(mm)である。
A first embodiment of the present invention is shown in FIG. In this example,
c = 8.33
k = −0.44
A female die having a cylindrical groove represented by the following formula was produced by cutting. Here, x represents the distance from the center of the unit shape. The case of k represents an elliptical shape. The width of one cylindrical shape was 0.3 mm. That is, −0.15 ≦ x ≦ 0.15 (mm).

次に金型から、紫外線硬化樹脂でポリカーボネートフィルム表面上に凸形状を形成した。さらに、このポリカーボネートフィルムのプリズムを形成していない面を厚さ2mmの透明なアクリル板に貼り合わせ、光制御部材を得た。線状光源として冷陰極管を30mm間隔で配置し、冷陰極管から18mmの位置に前記アクリル板の凸部を有する面が出射面になるよう設置した。この場合α=40°となる。また冷陰極管のアクリル板とは対向する側に反射シートを設けた。   Next, a convex shape was formed from the mold on the polycarbonate film surface with an ultraviolet curable resin. Further, the surface of the polycarbonate film on which the prism was not formed was bonded to a transparent acrylic plate having a thickness of 2 mm to obtain a light control member. As the linear light source, cold cathode tubes were arranged at intervals of 30 mm, and the surface having the convex portion of the acrylic plate was placed at a position 18 mm from the cold cathode tube so as to be an emission surface. In this case, α = 40 °. A reflective sheet was provided on the side of the cold cathode tube facing the acrylic plate.

この状態で観察した結果、ランプイメージが解消され、出射面の輝度が均一な照明装置を得ることができた。ここで用いた入射光制御部材の入射面に、入射面の法線方向と角度α=40°をなす角度に光を入射した場合の透過率は66%、該法線方向に光を照射した場合の透過率は52%であり、これら透過率の比は1.27であった。   As a result of observation in this state, it was possible to obtain an illumination device in which the lamp image was eliminated and the brightness of the exit surface was uniform. The incident light of the incident light control member used here has a transmittance of 66% when light is incident at an angle α = 40 ° with the normal direction of the incident surface, and the light is irradiated in the normal direction. The transmittance in this case was 52%, and the ratio of these transmittances was 1.27.

以下に、本発明の第2の実施例について詳しく説明する。先ず、図7における2つの略直線10の延長線がなす角θ=50°、P1=260μm、A1=182μmの柱状の溝を有する雌金型を切削加工により作製した。   The second embodiment of the present invention will be described in detail below. First, a female die having a columnar groove with angles θ = 50 °, P1 = 260 μm, and A1 = 182 μm formed by the extended lines of the two substantially straight lines 10 in FIG. 7 was manufactured by cutting.

次に、この雌金型を使用して紫外線硬化型樹脂により、ポリカーボネートフィルム表面上に凸形状のプリズムを成形した。さらに、このポリカーボネートフィルムのプリズムを形成していない側の面を、厚さ2mmの透明なアクリル板に貼り合わせることにより、凸形状のプリズムが形成された光制御部材を得た。   Next, using this female mold, a convex prism was formed on the polycarbonate film surface with an ultraviolet curable resin. Further, the surface of the polycarbonate film on which the prism was not formed was bonded to a transparent acrylic plate having a thickness of 2 mm to obtain a light control member on which a convex prism was formed.

次に、光制御部材と反射板の間に複数の線状光源を設置した。この場合、線状光源として複数の冷陰極管を33mm間隔で配置し、冷陰極管から15mmの位置に前記アクリル板の凸形状部をもつ側の面が出射面になるよう設置した。この場合、前記角度α=48°となるように配置した。また、冷陰極管のアクリル板とは対向する側の面に反射シートを設けた。   Next, a plurality of linear light sources were installed between the light control member and the reflecting plate. In this case, a plurality of cold-cathode tubes as linear light sources were arranged at intervals of 33 mm, and the surface having the convex portion of the acrylic plate was placed at a position 15 mm from the cold-cathode tube so as to be an emission surface. In this case, the angle α is set to 48 °. A reflective sheet was provided on the surface of the cold cathode tube facing the acrylic plate.

この状態で冷陰極管の点灯により光制御部材に光照射して、該光制御部材を観察した。その結果、ランプイメージが解消され、出射面内の輝度が均一な照明装置を得ることができた。ここで用いた光制御部材の入射面に、入射面の法線方向に対して入射角度α=48°で光を照射した場合の該光の全光線透過率R1は75%、該法線方向に光を照射した場合の該光の全光線透過率R2は51%であり、これら全光線透過率の比R1/R2は1.47であった。   In this state, the light control member was irradiated with light by turning on the cold cathode tube, and the light control member was observed. As a result, it was possible to obtain an illuminating device in which the lamp image was eliminated and the luminance within the exit surface was uniform. When the incident surface of the light control member used here is irradiated with light at an incident angle α = 48 ° with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is 75%, and the normal direction. When irradiated with light, the total light transmittance R2 of the light was 51%, and the ratio R1 / R2 of these total light transmittances was 1.47.

本発明の第3の実施例を図24に示す。本実施例では、2つの直線のなす角度θa=40°、P1a=0.113mm、A1a=0.045mmであるS1、およびθb=70°、P1b=0.113mm、A1b=0.045mmであるS2のシリンドリカル状の溝をもつ雌型を切削加工により作製した。次に、金型から、紫外線硬化樹脂でポリカーボネートフィルム表面上に凸形状を形成した。さらに、このポリカーボネートフィルムのプリズムを形成していない面を厚さ2mmの透明なアクリル板に貼り合わせ、光制御部材を得た。線状光源として冷陰極管を33mm間隔で配置し、冷陰極管から16.5mmの位置に前記アクリル板の凸部を有する面が出射面になるよう設置した。この場合α=45°となる。また冷陰極管のアクリル板とは対向する側に反射シートを設けた。   A third embodiment of the present invention is shown in FIG. In this embodiment, the angle between two straight lines θa = 40 °, P1a = 0.113 mm, S1 where A1a = 0.045 mm, and θb = 70 °, P1b = 0.113 mm, A1b = 0.045 mm. A female die having a cylindrical groove of S2 was produced by cutting. Next, a convex shape was formed on the polycarbonate film surface with an ultraviolet curable resin from the mold. Further, the surface of the polycarbonate film on which the prism was not formed was bonded to a transparent acrylic plate having a thickness of 2 mm to obtain a light control member. Cold cathode tubes were arranged as linear light sources at intervals of 33 mm, and the surface having the convex portions of the acrylic plate was placed at the position 16.5 mm away from the cold cathode tube. In this case, α = 45 °. A reflective sheet was provided on the side of the cold cathode tube facing the acrylic plate.

この状態で観察した結果、ランプイメージが解消され、出射面の輝度が均一な照明装置を得ることができた。ここで用いた入射光制御部材の入射面に、入射面の法線方向と角度α=45°をなす角度に光を入射した場合の透過率は76%、該法線方向に光を照射した場合の透過率は52%であり、これら透過率の比は1.46であった。   As a result of observation in this state, it was possible to obtain an illumination device in which the lamp image was eliminated and the brightness of the exit surface was uniform. When light is incident on the incident surface of the incident light control member used here at an angle α = 45 ° with the normal direction of the incident surface, the transmittance is 76%, and the light is irradiated in the normal direction. The transmittance in this case was 52%, and the ratio of these transmittances was 1.46.

このように2種類のシリンドリカル形状を有することで、図25に示すように光制御部材への垂直入射光13は形状S1、S2で異なる出射光特性L1、L2を得ることができる。また図26で示すように斜め入射光12も出射光特性はS1、S2に対応したL3、L4を得ることができる。このように光の出射方向を分散させることができるため面内の輝度ムラをより低減することができる。つまり1種類のシリンドリカル形状での出射光制御に対して形状設定の自由度が増すため、出射光の特性をより制御しやすくなる。
シリンドリカル形状は2種類に限定するものではなく、3種類以上でも問題ないことは明らかである。
By having two types of cylindrical shapes in this way, as shown in FIG. 25, the vertically incident light 13 to the light control member can obtain different outgoing light characteristics L1 and L2 in the shapes S1 and S2. Further, as shown in FIG. 26, the oblique incident light 12 can also obtain L3 and L4 corresponding to S1 and S2 as the outgoing light characteristics. Thus, since the light emission direction can be dispersed, in-plane luminance unevenness can be further reduced. That is, since the degree of freedom of shape setting is increased with respect to the emission light control in one kind of cylindrical shape, it becomes easier to control the characteristics of the emission light.
It is clear that the cylindrical shape is not limited to two types, and there are no problems with three or more types.

次に、本発明の第4の実施例について詳しく説明する。まず、頂角40°を有するプリズム部と各プリズム部の間に面全体の30%の比率で等間隔に設置した平坦部からなるプリズム面、および頂角140°を有するプリズム形状に形成された凹凸面をそれぞれ成形するために、各プリズム形状に応ずる複数の溝部を有する金型を切削加工により作製した。この場合、前記複数の溝部は50μm間隔で設けた。また、切削加工により作製した前記金型の表面形状は、前記プリズム形状と対応する対称形状とし、該対称形状の溝部の深さも面内で一定とした。   Next, a fourth embodiment of the present invention will be described in detail. First, a prism surface having a prism portion having an apex angle of 40 ° and a prism portion having a flat portion arranged at equal intervals at a ratio of 30% of the entire surface between each prism portion and a prism shape having an apex angle of 140 ° were formed. In order to form each uneven surface, a mold having a plurality of grooves corresponding to each prism shape was produced by cutting. In this case, the plurality of grooves were provided at intervals of 50 μm. Further, the surface shape of the mold produced by the cutting process was a symmetric shape corresponding to the prism shape, and the depth of the groove portion of the symmetric shape was also constant in the plane.

そして、該金型内にポリカーボネートフィルムをセットして、紫外線硬化型樹脂を注入することにより、該ポリカーボネートフィルムの片面上に、前記各プリズム形状に応ずる形状部をそれぞれ形成した。さらに、各ポリカーボネートフィルムのプリズム形状部が形成されていない側の面を、それぞれ厚さ2mmの透明なアクリル板貼り合わせた。この場合、頂角40度を成す入射側プリズム部の稜線と、頂角140度を成す出射側凹凸面の稜線とが互いに平行となるように貼り合わせることにより、表裏両面に凸形状部が形成された光制御部材を得た。   Then, a polycarbonate film was set in the mold and an ultraviolet curable resin was injected to form a shape portion corresponding to each prism shape on one side of the polycarbonate film. Furthermore, the surface of each polycarbonate film on which the prism-shaped portion was not formed was bonded to a transparent acrylic plate having a thickness of 2 mm. In this case, convex portions are formed on both the front and back surfaces by bonding so that the ridge line of the incident side prism portion having an apex angle of 40 degrees and the ridge line of the output side uneven surface having an apex angle of 140 degrees are parallel to each other. A light control member was obtained.

次に、線状光源として複数の冷陰極管を33mm間隔で配置し、冷陰極管から16.5mmの位置に前記光制御部材を配置した。この場合、光制御部材の前記プリズム部が冷陰極管の長手方向と平行、かつ前記凹凸面が光制御部材の出射面側になるよう設置した。この場合、前記角度α=45°となるように配置した。また、冷陰極管のアクリル板とは対向する側に反射シートを設けた。   Next, a plurality of cold cathode tubes as linear light sources were arranged at intervals of 33 mm, and the light control member was arranged at a position 16.5 mm from the cold cathode tubes. In this case, the prism portion of the light control member was installed in parallel with the longitudinal direction of the cold cathode tube, and the uneven surface was on the light exit surface side of the light control member. In this case, the angle α is set to 45 °. A reflective sheet was provided on the side of the cold cathode tube facing the acrylic plate.

この状態で冷陰極管の点灯により光制御部材に光照射して、該光制御部材を観察した。
その結果、ランプイメージが解消され、出射面内の輝度が均一な照明装置を得ることができた。ここで用いた光制御部材の入射面に、入射面の法線方向に対して入射角度α=45°で光を照射した場合の該光の全光線透過率R1は79%、該法線方向に光を照射した場合の該光の全光線透過率R2は66%であり、これら全光線透過率の比R1/R2は1.19であった。
In this state, the light control member was irradiated with light by turning on the cold cathode tube, and the light control member was observed.
As a result, it was possible to obtain an illuminating device in which the lamp image was eliminated and the luminance within the exit surface was uniform. When the incident surface of the light control member used here is irradiated with light at an incident angle α = 45 ° with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is 79%, and the normal direction When irradiated with light, the total light transmittance R2 of the light was 66%, and the ratio R1 / R2 of these total light transmittances was 1.19.

次に、本発明の光制御部材を照明装置に使用した場合と、該光制御部材に代えて通常の微粒子含有の光拡散板を使用した場合とで、輝度均一性などを比較するための実験を行った。まず、図17(a)に示すように、前記プリズム形状部が形成されていない微粒子含有の光拡散板20に幅Bの開口部20aを形成した。次に、微粒子含有光拡散板20と反射板2の間に、線状光源15である冷陰極管を設置して点灯した。この場合、該光拡散板20の開口部20aには何も置かなかった。   Next, an experiment for comparing the brightness uniformity between the case where the light control member of the present invention is used in a lighting device and the case where a normal light diffusion plate containing fine particles is used instead of the light control member. Went. First, as shown in FIG. 17A, an opening 20a having a width B was formed in the light-diffusing plate 20 containing fine particles in which the prism-shaped portion was not formed. Next, a cold cathode tube, which is a linear light source 15, was installed between the fine particle-containing light diffusion plate 20 and the reflection plate 2 and turned on. In this case, nothing was placed in the opening 20a of the light diffusing plate 20.

冷陰極管を点灯した状態で、前記光拡散板20の明るさを正面方向から測定した。この測定結果を図17(b)に示す。この結果から判るように、冷陰極管の真上領域において輝度が高く、隣り合う冷陰極管同士の間(斜め上領域)では輝度が低くなった。これにより、冷陰極管の真上領域と斜め上領域とで、両者の輝度差が大きいため、画像表示面における輝度均一性などの品質が大きく低下した。   With the cold cathode tube turned on, the brightness of the light diffusion plate 20 was measured from the front. The measurement result is shown in FIG. As can be seen from this result, the luminance was high in the region directly above the cold cathode fluorescent lamps, and the luminance was low between the adjacent cold cathode fluorescent tubes (obliquely upper regions). As a result, there is a large difference in luminance between the region directly above and the obliquely upper region of the cold cathode tube, so that the quality such as luminance uniformity on the image display surface is greatly reduced.

次に、前記ポリカーボネートフィルムが両面に貼着されたアクリル板、即ち、前記入射面プリズム部および出射面凹凸が形成された光制御部材4を前記開口部20aの大きさに合わせて切り出し、前記開口部20a内に設置した。この場合、前記光制御部材4は、前記入射面プリズム部側の表面を前記冷陰極管に臨ませ、かつ、該冷陰極管の長手方向に前記入射面プリズムの稜線方向を一致させた。   Next, the acrylic plate having the polycarbonate film adhered on both sides thereof, that is, the light control member 4 on which the incident surface prism portion and the output surface unevenness are formed is cut out according to the size of the opening 20a, and the opening It installed in the part 20a. In this case, the light control member 4 has the surface on the incident surface prism portion side facing the cold cathode tube, and the ridge line direction of the incident surface prism is made to coincide with the longitudinal direction of the cold cathode tube.

この後、前記光制御部材4の上に拡散シートを重ね合わせた。そして、前記冷陰極管15を点灯させ、その状態で前記拡散シート面上の明るさを正面方向から測定した。この測定結果を図17(c)に示す。これから判るように、前記入射面にプリズム部が形成された前記光制御部材4を用いたときは、線状光源15のイメージが解消され、該線状光源15の真上の部分と、複数の線状光源15の間の部分とで、ほぼ均一な輝度が得られた。   Thereafter, a diffusion sheet was overlaid on the light control member 4. And the said cold-cathode tube 15 was lighted and the brightness on the said diffusion sheet surface was measured from the front direction in the state. The measurement result is shown in FIG. As can be seen from this, when the light control member 4 having the prism portion formed on the incident surface is used, the image of the linear light source 15 is eliminated, and a portion directly above the linear light source 15 and a plurality of parts A substantially uniform luminance was obtained at the portion between the linear light sources 15.

図17(c)中の光制御部材4に対応する位置範囲のB部の明るさと、微粒子含有光拡散板20に対応する位置範囲のC部の明るさを比較すると、B部の明るさがC部の明るさよりも10%ほど高い。つまり、本発明の光制御部材4を使用した場合は、従来の微粒子含有の光拡散板20を使用した場合よりも、明るい照明装置を得ることができた。   When the brightness of the portion B in the position range corresponding to the light control member 4 in FIG. 17C and the brightness of the portion C in the position range corresponding to the fine particle-containing light diffusion plate 20 are compared, the brightness of the portion B is It is about 10% higher than the brightness of part C. That is, when the light control member 4 of the present invention is used, a brighter illumination device can be obtained than when the conventional light diffusion plate 20 containing fine particles is used.

さらに、微粒子含有の光拡散板20を使用して、光制御部材4による輝度と同程度の輝度を得ようとした場合には、冷陰極管の真上で輝度が高く、複数の冷陰極管の間で輝度が低くなる現象が見られたため、光制御部材4による輝度と同程度の輝度を得ることは困難になる。   Further, when the light diffusion plate 20 containing fine particles is used to obtain a brightness comparable to that of the light control member 4, the brightness is high directly above the cold cathode tube, and a plurality of cold cathode tubes are provided. Since a phenomenon in which the luminance decreases during the period is observed, it is difficult to obtain the same luminance as the luminance by the light control member 4.

また、本発明の第5の実施例を図18に示す。本実施例では、屈折率1.54のメタクリル酸メチル−スチレン共重合体よりなる厚さ2mmの基材の入出射面に、屈折率がそれぞれ1.48、1.62および1.38である透明材料製薄膜N1、N2およびN3をそれぞれ厚み0.1μm、0.078μmおよび0.179μmで積層することにより、光制御部材4とした。尚、26は反射光である。   A fifth embodiment of the present invention is shown in FIG. In this example, the refractive indexes are 1.48, 1.62, and 1.38 on the entrance and exit surfaces of a 2 mm thick substrate made of a methyl methacrylate-styrene copolymer having a refractive index of 1.54, respectively. Transparent control thin films N1, N2, and N3 were laminated with thicknesses of 0.1 μm, 0.078 μm, and 0.179 μm, respectively, to obtain a light control member 4. Reference numeral 26 denotes reflected light.

光制御部材4に光を照射する線状光源として、複数の冷陰極管を使用した。この場合、複数の冷陰極管は33mm間隔で配置し、冷陰極管から16.5mmの位置に前記光制御部材4を設置した。この場合、前記角度α=45°となるように配置した。また、冷陰極管のアクリル板と対向する側に反射シートを設けた。   A plurality of cold cathode tubes were used as a linear light source for irradiating the light control member 4 with light. In this case, the plurality of cold cathode tubes were arranged at intervals of 33 mm, and the light control member 4 was installed at a position of 16.5 mm from the cold cathode tubes. In this case, the angle α is set to 45 °. A reflective sheet was provided on the side of the cold cathode tube facing the acrylic plate.

この状態で冷陰極管の点灯により光制御部材4を光照射して、光制御部材4を観察した。その結果、ランプイメージが解消され、出射面内の輝度が均一な照明装置を得ることができた。ここで用いた光制御部材の入射面に、入射面の法線方向に対して入射角度α=45°で光を照射した場合の該光の全光線透過率R1は90%、該法線方向に光を照射した場合の該光の全光線透過率R2は85%であり、これら全光線透過率の比R1/R2は1.09であった。   In this state, the light control member 4 was irradiated with light by turning on the cold cathode tube, and the light control member 4 was observed. As a result, it was possible to obtain an illuminating device in which the lamp image was eliminated and the luminance within the exit surface was uniform. When the incident surface of the light control member used here is irradiated with light at an incident angle α = 45 ° with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is 90%, and the normal direction When irradiated with light, the total light transmittance R2 of the light was 85%, and the ratio R1 / R2 of these total light transmittances was 1.09.

本発明の光源としては線状光源に限定されず、複数の点光源を用いることができる。図19に、反射板2と光制御部材4の間に点光源21を設置した場合の構成例を示す。点光源21を用いても、線状光源を用いたときと同様な作用効果が期待できる。   The light source of the present invention is not limited to a linear light source, and a plurality of point light sources can be used. FIG. 19 shows a configuration example when a point light source 21 is installed between the reflector 2 and the light control member 4. Even when the point light source 21 is used, the same effect as when the linear light source is used can be expected.

図20に、本発明で用いることの出来る別の構成例を示す。本構成では、光制御部材4の出射面に拡散シート22を重ね合わせている。この場合、拡散シート22により、出射光の輝度角度分布を出射面内でより均一化することができるため、一層高品位な照明装置を得ることができる。   FIG. 20 shows another configuration example that can be used in the present invention. In this configuration, the diffusion sheet 22 is superposed on the exit surface of the light control member 4. In this case, since the luminance angle distribution of the emitted light can be made more uniform in the emission surface by the diffusion sheet 22, a higher-quality illumination device can be obtained.

図21に、本発明で用いることのできる別の構成例を示す。本構成では、拡散シート22の上に偏光分離フィルム23を重ね合わせている。偏光分離フィルム23が直交する直線偏光を分離する場合には、発光面上に液晶パネルを載せ、偏光分離フィルム23の透過偏光軸と液晶パネル入射面の偏光フィルムの透過軸を一致させることで、より高輝度な液晶表示装置を得ることができる。   FIG. 21 shows another configuration example that can be used in the present invention. In this configuration, the polarization separation film 23 is superimposed on the diffusion sheet 22. When the polarized light separating film 23 separates orthogonally polarized light, the liquid crystal panel is placed on the light emitting surface, and the transmission polarization axis of the polarizing separation film 23 is matched with the transmission axis of the polarizing film on the liquid crystal panel incident surface, A liquid crystal display device with higher brightness can be obtained.

また、偏光分離フィルム23が右回りおよび左回りの円偏光を分離する場合には、偏光分離フィルム23の出射面に1/4波長板を重ね合わせ、1/4波長板透過後に直線偏光に変換し、その直線偏光方向が、液晶パネル入射面の偏光フィルムの透過軸と一致する方向になればよい。   When the polarization separation film 23 separates clockwise and counterclockwise circularly polarized light, a quarter wavelength plate is superimposed on the exit surface of the polarization separation film 23 and converted to linearly polarized light after passing through the quarter wavelength plate. And the linear polarization direction should just become a direction which corresponds with the transmission axis of the polarizing film of a liquid crystal panel entrance plane.

次に、液晶表示装置(画像表示装置)の概略構成例に関しては、光制御部材4の上に液晶パネルを載置することにより、該パネル表示面内において輝度が均一な液晶表示装置を得ることができる。本発明の照明装置上に透過型表示素子を用いることで、構成が簡単な画像表示装置を容易に得ることができる。透過型表示素子の代表例としては、液晶パネルが挙げられる。   Next, regarding a schematic configuration example of a liquid crystal display device (image display device), by placing a liquid crystal panel on the light control member 4, a liquid crystal display device having uniform brightness within the panel display surface is obtained. Can do. By using a transmissive display element on the lighting device of the present invention, an image display device having a simple configuration can be easily obtained. A typical example of the transmissive display element is a liquid crystal panel.

ここで、画像表示装置とは、照明装置と表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器のことを言う。図22に、照明装置と表示素子を組み合わせて成る画像表示装置の構成例を示す。本構成では、光制御部材4の上に光拡散フィルムシート22を重ね、この上に偏光分離フィルム23を重ね合わせ、さらに、この上に液晶パネル24を重ね合わせている。この場合、偏光分離フィルム23の透過偏光軸と液晶パネル24の入射面の偏光フィルムの透過軸とを互いに一致させている。   Here, the image display device refers to a display module in which a lighting device and a display element are combined, and a device having at least an image display function such as a television or a personal computer monitor using the display module. FIG. 22 shows a configuration example of an image display device in which a lighting device and a display element are combined. In this configuration, the light diffusion film sheet 22 is overlaid on the light control member 4, the polarization separation film 23 is overlaid thereon, and the liquid crystal panel 24 is overlaid thereon. In this case, the transmission polarization axis of the polarization separation film 23 and the transmission axis of the polarization film on the incident surface of the liquid crystal panel 24 are made to coincide with each other.

<比較例>
特許文献6では光源を2つの像に分離することで均一な面光源素子を得ることが提案されている。
特許文献6で提案されている手段と本発明の光制御部材を比較するために、特許文献6に示されている光源を2つの像に分離する手段として、頂角が90°のプリズムが出射面に形成されたシートをプリズムが線光源と平行になるように配置した。図32に示すように本シートは斜め方向からの入射光を正面方向に出射させる。しかし図31で表すようにシートに対して垂直に入射した光は全反射により正面方向に出射する光は大幅に低下する。正面方向から観察した結果、光源の真上部分では輝度の低下が大きくなり、面内の輝度ムラが大きくなった。またシートの入射面に入射面の法線方向と角度α=45°をなす角度に光を入射した場合の透過率は90%であり、法線方向に光を照射した場合の透過率は5%であった。つまり透過率の比は18である。このように透過率比が大きくなると光源真上の輝度低下により面内輝度ムラを整えることはできない。
<Comparative example>
Patent Document 6 proposes to obtain a uniform surface light source element by separating a light source into two images.
In order to compare the means proposed in Patent Document 6 and the light control member of the present invention, a prism having an apex angle of 90 ° is emitted as means for separating the light source shown in Patent Document 6 into two images. The sheet formed on the surface was arranged so that the prism was parallel to the line light source. As shown in FIG. 32, this sheet emits incident light from an oblique direction in the front direction. However, as shown in FIG. 31, the light incident perpendicularly to the sheet is significantly reduced in the light emitted in the front direction due to total reflection. As a result of observing from the front direction, the luminance was greatly reduced in the portion directly above the light source, and the in-plane luminance unevenness was increased. Further, the transmittance when light is incident on the incident surface of the sheet at an angle α = 45 ° with the normal direction of the incident surface is 90%, and the transmittance when light is irradiated in the normal direction is 5%. %Met. That is, the transmittance ratio is 18. Thus, when the transmittance ratio is increased, in-plane luminance unevenness cannot be adjusted due to a decrease in luminance directly above the light source.

図31、図32に該シートの光制御の原理を示す。図31に示すように光制御部材の入射面に法線方向から入射した光は全て全反射して入射側に戻るためこの領域の全光線透過率は原理的には0であり、実測値も5%と非常に低い。一方、図32に示すように、斜め方向から入射した光は凸部で屈折して正面付近に向かうため、高い全光線透過率を示す。実施した構成では90%であった。すなわち、本発明と比較して、斜め方向から入射した光の全光線透過率の割合が非常に高い。   31 and 32 show the principle of light control of the sheet. As shown in FIG. 31, since all the light incident on the incident surface of the light control member from the normal direction is totally reflected and returns to the incident side, the total light transmittance in this region is 0 in principle, and the actually measured value is also Very low at 5%. On the other hand, as shown in FIG. 32, light incident from an oblique direction is refracted by the convex portion and travels to the vicinity of the front surface, and thus exhibits a high total light transmittance. In the implemented configuration, it was 90%. That is, compared with the present invention, the ratio of the total light transmittance of light incident from an oblique direction is very high.

このような斜め方向から入射した光と法線方向から入射した光の全光線透過率の割合の違いがもたらす輝度均一性の相違を詳しく比較するため、図35に示すように、冷陰極間から55mmの位置に、図27で示される第1の実施例の光制御部材または上記比較例のプリズムシートをそれぞれ設け、冷陰極間を点灯させた状態で発生する像をカメラで撮影した。   In order to compare in detail the difference in luminance uniformity caused by the difference in the ratio of the total light transmittance between the light incident from the oblique direction and the light incident from the normal direction, as shown in FIG. The light control member of the first example shown in FIG. 27 or the prism sheet of the comparative example shown in FIG. 27 was provided at a position of 55 mm, and an image generated in a state where the cold cathodes were lit was taken with a camera.

この結果、第1の実施例の光制御部材では、図36の写真に示すように、光源からの光が広い範囲から出射されることが確認され、このため、面内の輝度均一性により、優れる面光源を得ることができるのに対して、特許文献6に提案される上記比較例のプリズムシートでは、図37の写真に示すように、光源が明確に2つの像に分割されており、それぞれの位置で高輝度な領域が形成され、輝度の不均一を生じることが予想できる。ここで、図38の写真は光源を直接撮影した写真である。   As a result, in the light control member of the first example, as shown in the photograph of FIG. 36, it was confirmed that the light from the light source was emitted from a wide range. Therefore, due to the in-plane luminance uniformity, While an excellent surface light source can be obtained, in the prism sheet of the comparative example proposed in Patent Document 6, the light source is clearly divided into two images as shown in the photograph of FIG. It can be expected that a high-brightness region is formed at each position, resulting in uneven brightness. Here, the photograph in FIG. 38 is a photograph taken directly from the light source.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものにおよぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified one.

本発明に係る照明装置の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the illuminating device which concerns on this invention. 本発明に係る複数の光源上に設けた仮想面に入射する光線の入射エネルギーを模式的に説明する入射エネルギー分布図である。It is an incident energy distribution figure which illustrates typically the incident energy of the light ray which injects into the virtual surface provided on the several light source which concerns on this invention. 本発明に係る線状光源真上での光制御部材(仮想面)に入射する光線の輝度(入射エネルギー)を模式的に説明する輝度分布図である。It is a luminance distribution figure which illustrates typically the brightness | luminance (incident energy) of the light ray which injects into the light control member (virtual surface) just above the linear light source which concerns on this invention. 本発明に係る複数の線状光源間での光制御部材(仮想面)に入射する光線の輝度(出射エネルギー)を模式的に説明する輝度分布図である。It is a luminance distribution figure which illustrates typically the brightness | luminance (emitted energy) of the light ray which injects into the light control member (virtual surface) between the some linear light sources concerning this invention. 本発明に係る複数の光源間に位置する光制御部材に入射する光線の入射角度を説明する概略構成図である。It is a schematic block diagram explaining the incident angle of the light ray which injects into the light control member located between the some light sources which concerns on this invention. 本発明に係る光制御部材の全光線透過率の角度依存性を測定する装置の一例を説明する概略構成図である。It is a schematic block diagram explaining an example of the apparatus which measures the angle dependence of the total light transmittance of the light control member which concerns on this invention. 本発明に用いることのできる光制御部材の出射面における凸部の断面形状を説明する概略構成図である。It is a schematic block diagram explaining the cross-sectional shape of the convex part in the output surface of the light control member which can be used for this invention. 本発明に係る光制御部材に対し斜め方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light beam when light injects into the diagonal direction with respect to the light control member which concerns on this invention. 本発明に係る光制御部材に対し垂直方向に光が入射した場合の光線の進行状態を説明する概略構成図である。It is a schematic block diagram explaining the advancing state of the light ray when light is incident on the light control member according to the present invention in the vertical direction. 本発明に係る光制御部材に対し出射面凸部で屈折し出射する光の光路と角度との関係を説明する概略構成図である。It is a schematic block diagram explaining the relationship between the optical path and angle of the light which is refracted | emitted and radiate | emitted by the output surface convex part with respect to the light control member which concerns on this invention. 本発明に用いることのできる光制御部材の断面形状の一例を示す説明図である。It is explanatory drawing which shows an example of the cross-sectional shape of the light control member which can be used for this invention. 本発明に用いることのできる光制御部材の断面形状の別の一例を示す説明図である。It is explanatory drawing which shows another example of the cross-sectional shape of the light control member which can be used for this invention. 本発明に係る光制御部材へ斜めに光が入射した場合の光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray when light injects into the light control member which concerns on this invention diagonally. 本発明に用いることのできる光制御部材の断面形状のさらに別の一例を示す説明図である。It is explanatory drawing which shows another example of the cross-sectional shape of the light control member which can be used for this invention. 本発明に係る平坦部を有する光制御部材へ斜めに光が入射した場合の光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray when light injects into the light control member which has the flat part which concerns on this invention diagonally. 本発明に係る入射面に設けたプリズムに入射した光の光路と角度との関係を説明する概略構成図である。It is a schematic block diagram explaining the relationship between the optical path and angle of the light which injected into the prism provided in the incident surface which concerns on this invention. 本発明の別の実施例を評価した構成およびその結果を示す説明図である。It is explanatory drawing which shows the structure which evaluated another Example of this invention, and its result. 本発明に係る光制御部材表面に薄膜を形成した本発明のさらに別の実施例を示す説明図である。It is explanatory drawing which shows another Example of this invention which formed the thin film in the light-control member surface based on this invention. 本発明に係る光源に点光源を用いた場合の構成例を示す説明図である。It is explanatory drawing which shows the structural example at the time of using a point light source for the light source which concerns on this invention. 本発明に用いることのできる照明装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the illuminating device which can be used for this invention. 本発明に用いることのできる照明装置の構成例の別の一例を示す説明図である。It is explanatory drawing which shows another example of a structural example of the illuminating device which can be used for this invention. 本発明の面照明装置に液晶パネルを載せて液晶表示装置とした構成例を示す説明図である。It is explanatory drawing which shows the structural example which carried the liquid crystal panel on the surface illumination device of this invention, and was set as the liquid crystal display device. 従来の照明装置の概略構成図である。It is a schematic block diagram of the conventional illuminating device. 本発明に用いることのできる光制御部材の第三の実施例を示す説明図である。It is explanatory drawing which shows the 3rd Example of the light control member which can be used for this invention. 本発明に関わる複数のシリンドリカル状の凸部を持つ光制御部材へ垂直に入射した光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray which injected into the light control member which has the some cylindrical convex part in connection with this invention perpendicularly | vertically. 本発明に関わる複数のシリンドリカル状の凸部を持つ光制御部材へ斜めに入射した光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray which injected into the light control member which has the some cylindrical convex part in connection with this invention diagonally. 本発明に用いることの出来る光制御部材の、第一の実施例の凸部断面形状を示す説明図である。It is explanatory drawing which shows the convex part cross-sectional shape of a 1st Example of the light control member which can be used for this invention. 本発明に用いることの出来る光制御部材の、第一の実施例の凸部において、出射面に直交して、頂部を含む所定の一方向に沿って断面した場合の輪郭線と、輪郭線上の各点の傾きの関係を説明する図である。In the convex portion of the first embodiment of the light control member that can be used in the present invention, a contour line when it is crossed along a predetermined direction including the apex, perpendicular to the exit surface, and on the contour line It is a figure explaining the relationship of the inclination of each point. 本発明に用いることの出来る光制御部材の第一の実施例において、垂直に入射した光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray injected perpendicular | vertical in the 1st Example of the light control member which can be used for this invention. 本発明に用いることの出来る光制御部材の第一の実施例において、斜めに入射した光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray which injected diagonally in the 1st Example of the light control member which can be used for this invention. 頂角が90°のプリズムが出射面に形成されたシートの垂直方向から入射した光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray which injected from the perpendicular | vertical direction of the sheet | seat in which the prism whose apex angle is 90 degrees was formed in the output surface. 頂角が90°のプリズムが出射面に形成されたシートの斜め方向から入射した光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray which injected from the diagonal direction of the sheet | seat in which the prism whose apex angle is 90 degrees was formed in the output surface. 本発明に用いることのできる光制御部材の断面形状のさらに別の一例を示す説明図である。It is explanatory drawing which shows another example of the cross-sectional shape of the light control member which can be used for this invention. 本発明に係る入射面に非対称プリスムを設けた光制御部材に斜め方向に入射した光線の軌跡を説明する概略構成図である。It is a schematic block diagram explaining the locus | trajectory of the light ray which injected into the light control member which provided the asymmetric prism in the incident surface which concerns on this invention in the diagonal direction. 本発明に係る光制御部材と特許文献6で提案されている手段とを比較するためのカメラの設置状態をしめす説明図である。It is explanatory drawing which shows the installation state of the camera for comparing the light control member which concerns on this invention, and the means proposed by patent document 6. FIG. 本発明に係る光制御部材と特許文献6で提案されている手段とを比較する写真で、第1の実施例の光制御部材の写真である。It is the photograph which compares the light control member which concerns on this invention, and the means proposed by patent document 6, It is a photograph of the light control member of 1st Example. 本発明に係る光制御部材と特許文献6で提案されている手段とを比較する写真で、特許文献6に提案されるプリズムシートの写真である。It is the photograph which compares the light control member which concerns on this invention, and the means proposed by patent document 6, It is a photograph of the prism sheet proposed by patent document 6. FIG. 本発明に係る光制御部材と特許文献6で提案されている手段とを比較する写真で、光源を直接撮影した写真である。It is the photograph which compared the light control member concerning the present invention with the means proposed by patent documents 6, and is the photograph which photoed the light source directly.

符号の説明Explanation of symbols

1 光源
2 反射板
3 仮想面
4 光制御部材
5 積分球
6 開口部
7 測定対象物
8 平行光
9 凸部
10 直線部
11 曲線部
12 斜め入射光
13 垂直入射光
14 谷部
15 線状光源
16 プリズム
17 出射面凹凸
18 平坦部
19 入射面
20 微粒子含有光拡散板
20a 開口部
21 点状光源
22 拡散シート
23 偏光分離フィルム
24 液晶パネル
25 進行光
26 反射光
100 入射光
DESCRIPTION OF SYMBOLS 1 Light source 2 Reflector 3 Virtual surface 4 Light control member 5 Integrating sphere 6 Aperture 7 Measurement object 8 Parallel light 9 Convex part 10 Linear part 11 Curved part 12 Oblique incident light 13 Vertical incident light 14 Valley part 15 Linear light source 16 Prism 17 Emitting surface unevenness 18 Flat portion 19 Incident surface 20 Fine particle-containing light diffusion plate 20a Opening portion 21 Point-like light source 22 Diffusion sheet 23 Polarization separation film 24 Liquid crystal panel 25 Progressive light 26 Reflected light 100 Incident light

Claims (10)

規則的に配置した複数の光源と、反射板と、前記光源および前記反射板からの光が透過する際に出射方向を制御する光制御部材とを少なくとも備える直下方式の照明装置であって、光入射側から光出射側に向かって前記反射板、光源および光制御部材がこの順に配置され、該光制御部材が主として受光する入射面と、主として出光する出射面とを備え、任意の光源Xとその最近傍にある別の光源Yとの間の距離をD、該光源Xと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、且つ、該全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜3倍であることを特徴とする照明装置。 A direct illumination system comprising at least a plurality of regularly arranged light sources, a reflecting plate, and a light control member that controls an emission direction when light from the light source and the reflecting plate is transmitted. The reflection plate, the light source, and the light control member are arranged in this order from the incident side to the light emission side, the light control member includes an incident surface that mainly receives light, and an emission surface that mainly emits light. When the distance between the nearest light source Y is D and the distance between the light source X and the light control member is H, the normal direction of the incident surface at any point on the incident surface The total light transmittance of light incident at an angle of α = Tan −1 {(D / 2) / H} is 50% or more, and the total light transmittance is a point on the incident surface. 1.05 times to 3 times the total light transmittance of light when light is incident from the normal direction to Lighting apparatus according to claim and. 上記光制御部材の出射面上に複数の凸部が形成されていることを特徴とする請求項1記載の照明装置。   The lighting device according to claim 1, wherein a plurality of convex portions are formed on an emission surface of the light control member. 上記光制御部材の出射面上に形成されている凸部の斜面傾きの絶対値が50°〜70°である範囲をUとし、単位凸部の光制御部材への投影面積に対するUの光制御部材への投影面積の割合が0.2〜0.8の範囲であることを特徴とする請求項1または2記載の照明装置。   The light control of U with respect to the projected area of the unit convex portion on the light control member, where U is a range where the slope slope of the convex portion formed on the light exit surface of the light control member is 50 ° to 70 °. The lighting device according to claim 1, wherein a ratio of a projected area onto the member is in a range of 0.2 to 0.8. 上記光制御部材は、上記出射面に直交し、且つ、上記凸部の頂部を含む、少なくとも所定の一方向に沿った断面の光出射部分における輪郭線が、延長線の交差する角度θが鋭角である2つの略直線と、該2つの略直線の各一端同士を結ぶ凸状の曲線とを含むことを特徴とする請求項1〜3のいずれか1項に記載の照明装置。   The light control member has an acute angle θ at which an outline intersects an extension line of a contour line in a light emission part of a cross section along at least a predetermined direction that is orthogonal to the emission surface and includes the top of the convex part. The lighting device according to claim 1, comprising: two substantially straight lines, and a convex curve that connects one end of each of the two substantially straight lines. 上記光制御部材の入射面の法線方向に対し角度αで入射した光の10〜50%は、出射面の法線方向と成す角度が−15°〜+15°の範囲で出射することを特徴とする請求項1〜4のいずれか1項に記載の照明装置。   10 to 50% of light incident at an angle α with respect to the normal direction of the incident surface of the light control member is emitted in an angle range of −15 ° to + 15 ° with the normal direction of the output surface. The illumination device according to any one of claims 1 to 4. 上記光制御部材は、上記入射面上に複数の凸部が形成され、該凸部の頂部を含み、且つ、前記入射面に直交する方向から断面した輪郭線が、前記凸部の頂部を挟む2つの略直線を含み、上記光源から上記光制御部材に照射した光を、前記入射面で複数の角度に偏向させることを特徴とする請求項1〜5のいずれか1項に記載の照明装置。   The light control member includes a plurality of convex portions formed on the incident surface, includes a top portion of the convex portion, and a contour line sectioned from a direction orthogonal to the incident surface sandwiches the top portion of the convex portion. The illumination device according to claim 1, wherein the illumination device includes two substantially straight lines, and deflects light emitted from the light source to the light control member at a plurality of angles on the incident surface. . 上記光源が線状光源であり、上記光制御部材の出射面上に複数の凸部が形成され、該出射面に直交し、且つ、該出射面上の前記凸部の頂部を含む、前記線状光源と平行な方向で断面した光出射部分における稜線が、前記線状光源に対して平行な方向に延びる直線であることを特徴とする請求項1〜6のいずれか1項に記載の照明装置。   The light source is a linear light source, a plurality of convex portions are formed on the exit surface of the light control member, the line is orthogonal to the exit surface, and includes the top of the convex portion on the exit surface. 7. The illumination according to claim 1, wherein a ridge line in a light emitting portion sectioned in a direction parallel to the linear light source is a straight line extending in a direction parallel to the linear light source. apparatus. 上記光制御部材の入射面および出射面の少なくともいずれかに、該光制御部材の基材の屈折率よりも屈折率が低い材質より成る厚さ1μm以下の層が少なくとも1層形成されていることを特徴とする請求項1記載の照明装置。   At least one layer having a thickness of 1 μm or less made of a material having a refractive index lower than that of the base material of the light control member is formed on at least one of the incident surface and the emission surface of the light control member. The lighting device according to claim 1. 上記光源が点状光源であることを特徴とする請求項1〜8のいずれか1項に記載の照明装置。   The lighting device according to claim 1, wherein the light source is a point light source. 請求項1〜9のいずれか1項に記載の上記照明装置上に透過型表示素子を設けたことを特徴とする画像表示装置。   An image display device comprising a transmissive display element on the illumination device according to claim 1.
JP2005062333A 2004-04-12 2005-03-07 LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME Expired - Fee Related JP4425164B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005062333A JP4425164B2 (en) 2004-04-12 2005-03-07 LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
TW094110848A TWI364600B (en) 2004-04-12 2005-04-06 An illumination device an image display device using the illumination device and a light diffusing board used by the devices
US11/102,636 US7237930B2 (en) 2004-04-12 2005-04-11 Lighting system image display apparatus using the same and light diffusion plate used therefor
EP05007876.5A EP1586920B1 (en) 2004-04-12 2005-04-11 Lighting system, image display apparatus using the same and light diffuson plate used therefor
CNB2005100634883A CN100476535C (en) 2004-04-12 2005-04-11 Lighting system, image display apparatus using the same and light diffusion plate used therefor
KR1020050030085A KR100858851B1 (en) 2004-04-12 2005-04-11 A lighting device, an image displaying device using the lighting device, and a light diffusing plate used in the devices
US11/700,066 US7556393B2 (en) 2004-04-12 2007-01-31 Lighting system, image display apparatus using the same and light diffusion plate used therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004117290 2004-04-12
JP2004117291 2004-04-12
JP2004297177 2004-10-12
JP2005062333A JP4425164B2 (en) 2004-04-12 2005-03-07 LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2006140124A true JP2006140124A (en) 2006-06-01
JP4425164B2 JP4425164B2 (en) 2010-03-03

Family

ID=36620803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062333A Expired - Fee Related JP4425164B2 (en) 2004-04-12 2005-03-07 LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP4425164B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162827A (en) * 2004-12-06 2006-06-22 Dainippon Printing Co Ltd Surface light source device, and transmission display device
WO2007004573A1 (en) * 2005-07-01 2007-01-11 Dai Nippon Printing Co., Ltd. Surface light source device
JP2007103323A (en) * 2005-10-07 2007-04-19 Kuraray Co Ltd Lighting device, light control member lighting device has, and image display device using same
JP2007103325A (en) * 2005-10-07 2007-04-19 Kuraray Co Ltd Lighting device, light control member provided for it and image display apparatus using it
WO2008013203A1 (en) * 2006-07-28 2008-01-31 Sony Corporation Planar light emitting device, optical element and liquid crystal display device
WO2008026348A1 (en) * 2006-08-31 2008-03-06 Sharp Kabushiki Kaisha Illumination device and liquid crystal display device using the same
JP2008066086A (en) * 2006-09-06 2008-03-21 Dainippon Printing Co Ltd Surface light source device and transmissive display device
JP2008117639A (en) * 2006-11-06 2008-05-22 Sumitomo Chemical Co Ltd Light diffusion plate, backlight, and transmission type image display device
WO2008093819A1 (en) * 2007-02-02 2008-08-07 Dai Nippon Printing Co., Ltd. Optical sheet, surface light source device and transmissive display device
JP2009042661A (en) * 2007-08-10 2009-02-26 Dainippon Printing Co Ltd Optical sheet, surface light source device, and transmissive display device
JP2009104073A (en) * 2007-10-25 2009-05-14 Sumitomo Chemical Co Ltd Light control plate, surface light source device and transmission type image display apparatus
WO2009096293A1 (en) * 2008-01-30 2009-08-06 Zeon Corporation Direct backlighting device
JP2010078980A (en) * 2008-09-26 2010-04-08 Toppan Printing Co Ltd Optical control stack, backlight unit using the same and display device
JP2010117707A (en) * 2008-10-16 2010-05-27 Asahi Kasei E-Materials Corp Light diffusion plate and direct point-like light source backlight device
KR20100064170A (en) * 2008-12-04 2010-06-14 삼성전자주식회사 Backlight assembly
JP2010170127A (en) * 2008-12-26 2010-08-05 Dainippon Printing Co Ltd Optical sheet, surface light source device, and display device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162827A (en) * 2004-12-06 2006-06-22 Dainippon Printing Co Ltd Surface light source device, and transmission display device
WO2007004573A1 (en) * 2005-07-01 2007-01-11 Dai Nippon Printing Co., Ltd. Surface light source device
JP2007012517A (en) * 2005-07-01 2007-01-18 Dainippon Printing Co Ltd Surface light source device
JP4644544B2 (en) * 2005-07-01 2011-03-02 大日本印刷株式会社 Surface light source device
US8152320B2 (en) 2005-07-01 2012-04-10 Dai Nippon Printing Co., Ltd. Surface light source device
JP2007103325A (en) * 2005-10-07 2007-04-19 Kuraray Co Ltd Lighting device, light control member provided for it and image display apparatus using it
JP4522938B2 (en) * 2005-10-07 2010-08-11 株式会社クラレ Light control member provided in illumination device and image display device using the same
JP2007103323A (en) * 2005-10-07 2007-04-19 Kuraray Co Ltd Lighting device, light control member lighting device has, and image display device using same
JP4563294B2 (en) * 2005-10-07 2010-10-13 株式会社クラレ Light control member provided in illumination device and image display device using the same
WO2008013203A1 (en) * 2006-07-28 2008-01-31 Sony Corporation Planar light emitting device, optical element and liquid crystal display device
US7768593B2 (en) 2006-07-28 2010-08-03 Sony Corporation Surface emission device, optical element and liquid crystal display device
WO2008026348A1 (en) * 2006-08-31 2008-03-06 Sharp Kabushiki Kaisha Illumination device and liquid crystal display device using the same
JP2008066086A (en) * 2006-09-06 2008-03-21 Dainippon Printing Co Ltd Surface light source device and transmissive display device
JP2008117639A (en) * 2006-11-06 2008-05-22 Sumitomo Chemical Co Ltd Light diffusion plate, backlight, and transmission type image display device
WO2008093819A1 (en) * 2007-02-02 2008-08-07 Dai Nippon Printing Co., Ltd. Optical sheet, surface light source device and transmissive display device
US9158041B2 (en) 2007-02-02 2015-10-13 Dai Nippon Printing Co., Ltd. Optical sheet, surface light source device, and transmission display device
JP2009042661A (en) * 2007-08-10 2009-02-26 Dainippon Printing Co Ltd Optical sheet, surface light source device, and transmissive display device
JP2009104073A (en) * 2007-10-25 2009-05-14 Sumitomo Chemical Co Ltd Light control plate, surface light source device and transmission type image display apparatus
WO2009096293A1 (en) * 2008-01-30 2009-08-06 Zeon Corporation Direct backlighting device
JP2010078980A (en) * 2008-09-26 2010-04-08 Toppan Printing Co Ltd Optical control stack, backlight unit using the same and display device
JP2011076115A (en) * 2008-10-16 2011-04-14 Asahi Kasei E-Materials Corp Light diffusion plate and direct point-like light source backlight device
JP2010117707A (en) * 2008-10-16 2010-05-27 Asahi Kasei E-Materials Corp Light diffusion plate and direct point-like light source backlight device
JP2010135328A (en) * 2008-12-04 2010-06-17 Samsung Electronics Co Ltd Backlight assembly, and display including the same
KR20100064170A (en) * 2008-12-04 2010-06-14 삼성전자주식회사 Backlight assembly
KR101601634B1 (en) * 2008-12-04 2016-03-11 삼성디스플레이 주식회사 Backlight assembly
JP2010170127A (en) * 2008-12-26 2010-08-05 Dainippon Printing Co Ltd Optical sheet, surface light source device, and display device

Also Published As

Publication number Publication date
JP4425164B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP4425164B2 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
KR100858851B1 (en) A lighting device, an image displaying device using the lighting device, and a light diffusing plate used in the devices
JP4638752B2 (en) Light diffusion plate
JP5429625B2 (en) Light guide plate, surface light source device and display device
JP2007003852A (en) Diffusion sheet, method for manufacturing diffusion sheet, backlight device and liquid crystal display device
JP2010055057A (en) Liquid crystal display apparatus
CN110730926B (en) Optical structure and display device
JP2009110765A (en) Surface light source device and liquid crystal display device
US7864266B2 (en) Diffuser plate, backlight and display having the same
CN101140331A (en) Dual prism sheet and backlight assembly having the same
JP4522938B2 (en) Light control member provided in illumination device and image display device using the same
TW201314314A (en) Light guide plate, surface light source device, and transmissive image display device
JP4815930B2 (en) Light transmissive film, backlight device, and liquid crystal display device
JP2012079460A (en) Lighting unit using concealment lens sheet and display device equipped with this
JP2015191686A (en) Light guide, edge light type lighting apparatus and image display device
TWI526742B (en) Curved back light module
JP2008304700A (en) Optical sheet, illumination device and display device
JP5293177B2 (en) Optical sheet, surface light source device and display device
JP2009158468A (en) Backlight
JP2007103322A (en) Illumination device, light control member equipped with it, and image display device using it
JP2003114430A (en) Front light type liquid crystal display
JP5223408B2 (en) Optical sheet, backlight unit and display device
TWI352861B (en) Site edge backlight module of a liquid crystal dis
JP2009158467A (en) Light guide plate and backlight
JP2009265380A (en) Back light and optical sheet for back light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Ref document number: 4425164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees