JP2007101910A - Confocal microscope - Google Patents

Confocal microscope Download PDF

Info

Publication number
JP2007101910A
JP2007101910A JP2005291909A JP2005291909A JP2007101910A JP 2007101910 A JP2007101910 A JP 2007101910A JP 2005291909 A JP2005291909 A JP 2005291909A JP 2005291909 A JP2005291909 A JP 2005291909A JP 2007101910 A JP2007101910 A JP 2007101910A
Authority
JP
Japan
Prior art keywords
confocal
filter
wavelength
confocal microscope
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005291909A
Other languages
Japanese (ja)
Inventor
Koshi Kei
虹之 景
Kenta Mikuriya
健太 御厨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2005291909A priority Critical patent/JP2007101910A/en
Publication of JP2007101910A publication Critical patent/JP2007101910A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a confocal microscope capable of obtaining a highly accurate multi-color confocal image by correcting displacement of a formed confocal image, resulting from a color aberration caused by returning fluorescence of a different wavelength. <P>SOLUTION: The confocal microscope switches a filter so as to correspond to the multi-wavelength, and thereby obtains the confocal slice image formed by fluorescence returning from a sample excited with the multi-wavelength laser beam. The confocal microscope has a filter means having a plurality of filters differing in thickness in the direction of the optical axis so as to correspond to the multi-wavelengths. The confocal microscope switches a filter of a different thickness according to a corresponding multi-wavelength and thereby obtains each confocal slice image. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多波長のレーザ光に励起される試料からの戻り蛍光の共焦点スライス画像を、多波長に対応してフィルタを切り換えて取得する共焦点顕微鏡に関するものである。   The present invention relates to a confocal microscope that acquires a confocal slice image of a return fluorescence from a sample excited by a multi-wavelength laser beam by switching a filter corresponding to the multi-wavelength.

図3は、多波長レーザ光を用いる共焦点顕微鏡のシステム構成例を示す機能ブロック図である。1は観察対象の試料、2は試料を搭載するステージ、21はステージ支持部である。3は蛍光顕微鏡、31は試料1に対向配置された蛍光顕微鏡の対物レンズである。   FIG. 3 is a functional block diagram illustrating a system configuration example of a confocal microscope using multi-wavelength laser light. 1 is a sample to be observed, 2 is a stage on which the sample is mounted, and 21 is a stage support. Reference numeral 3 denotes a fluorescence microscope, and 31 denotes an objective lens of the fluorescence microscope arranged to face the sample 1.

4は共焦点スキャナであり、レーザ光源5からファイバ51を介して入力される多波長(λ1,λ2,…λn,)のレーザ光を、試料1への焦点光を走査するビームに変換して蛍光顕微鏡3に出力する。共焦点スキャナに関しては、ニポウディスク方式の共焦点スキャナの構成が特許文献1に開示されている。   Reference numeral 4 denotes a confocal scanner, which converts multi-wavelength (λ1, λ2,..., Λn) laser light input from a laser light source 5 through a fiber 51 into a beam for scanning focus light on the sample 1. Output to the fluorescence microscope 3. With regard to the confocal scanner, Japanese Patent Application Laid-Open No. 2004-151867 discloses a configuration of a Niipou disk type confocal scanner.

試料1の異なる部位の観察を行うのに、異なる波長の蛍光指示薬を用いる。その際、多波長のレーザ光に励起される試料1からの戻り蛍光は、蛍光顕微鏡3、共焦点スキャナ4を戻り、フィルタホイール6に配置されている多波長のレーザ光に対応して切り換えられる、戻り蛍光の波長のフィルタ手段を介してカメラ7内に結像され、PC8に取り込まれてモニタ9に表示される。   In order to observe different parts of the sample 1, fluorescent indicators having different wavelengths are used. At that time, the return fluorescence from the sample 1 excited by the multi-wavelength laser light returns to the fluorescence microscope 3 and the confocal scanner 4 and is switched corresponding to the multi-wavelength laser light arranged on the filter wheel 6. Then, the light is imaged in the camera 7 through the filter means of the return fluorescence wavelength, taken into the PC 8 and displayed on the monitor 9.

フィルタホイール6に配置されるフィルタ手段は、レーザ光のn個の波長(λ1,λ2,…λn,)に対応する戻り蛍光の波長を透過するn個のフィルタを備え、PC8からの制御信号Mにより時系列的に所定の周期で切り替え操作される。この切り換え周期は、試料1の反応速度よりも十分速く設定され、観察者はこの切り換えを意識することなく連続的に多色の共焦点画像をモニタすることができる。   The filter means disposed on the filter wheel 6 includes n filters that transmit the wavelengths of the return fluorescence corresponding to the n wavelengths (λ1, λ2,... Λn,) of the laser light, and a control signal M from the PC 8. Thus, the switching operation is performed at a predetermined cycle in time series. This switching cycle is set sufficiently faster than the reaction speed of the sample 1, and the observer can continuously monitor multicolor confocal images without being aware of this switching.

図4は、従来のフィルタ手段を備えた共焦点顕微鏡の光学系を示すイメージ図である。試料1からの戻り蛍光の共焦点画像Gは、蛍光顕微鏡3の対物レンズ31を経由して共焦点スキャナ4内に結像され、さらにリレーレンズ41及びフィルタホイール6において選択されているフィルタ(図示では62)を経てカメラ7内に結像する。この結像位置にイメージセンサ(図示せず)が配置されている。   FIG. 4 is an image diagram showing an optical system of a confocal microscope equipped with a conventional filter means. A confocal image G of the return fluorescence from the sample 1 is imaged in the confocal scanner 4 via the objective lens 31 of the fluorescence microscope 3, and a filter (illustrated) selected by the relay lens 41 and the filter wheel 6. Then, the image is formed in the camera 7 through 62). An image sensor (not shown) is disposed at this imaging position.

図5は、レーザ光のn個の波長(λ1,λ2,…λn,)に対応した戻り蛍光の波長に合わせて、フィルタホイール6に備えられるn個のフィルタの配列を示す平面図である。円盤状のフィルタホイール6の円周に沿って透過周波数特性の異なるn個のフィルタ61,62,…6nが配置されており、所定周期で回転制御されて時系列的に光学経路に切り換え配置される。   FIG. 5 is a plan view showing an arrangement of n filters provided in the filter wheel 6 in accordance with the return fluorescence wavelengths corresponding to the n wavelengths (λ1, λ2,... Λn,) of the laser light. N filters 61, 62,... 6n having different transmission frequency characteristics are arranged along the circumference of the disk-like filter wheel 6, and are rotationally controlled in a predetermined cycle and are switched to the optical path in time series. The

n個のフィルタ61,62,…6nは、表面の光学的な処理によりその透過周波数特性が、レーザ光のn個の波長(λ1,λ2,…λn,)に対応する戻り蛍光の波長を透過する特性を備えるものであるが、図4に示されるように、各フィルタの光軸方向の厚さが、すべて同一の厚さTとされている。   The n filters 61, 62,..., 6n transmit the return fluorescence wavelengths corresponding to the n wavelengths (λ1, λ2,. As shown in FIG. 4, the thicknesses of the filters in the optical axis direction are all set to the same thickness T.

特開平5−60980号公報Japanese Patent Laid-Open No. 5-60980

蛍光指示薬の波長はほぼ全可視領域に渡るため、対物レンズ31あるいはリレーレンズ41において必ず色収差が生じ、戻り蛍光の波長毎に結像位置が異なる。その結果、多色の共焦点画像を重ねた時に、色ずれが生じ、実際の構造とは異なる画像が得られ、観察の精度が落ちてしまう。   Since the wavelength of the fluorescent indicator covers almost the entire visible region, chromatic aberration always occurs in the objective lens 31 or the relay lens 41, and the imaging position differs for each return fluorescence wavelength. As a result, when multi-color confocal images are superimposed, a color shift occurs, an image different from the actual structure is obtained, and the observation accuracy is lowered.

図6は、レーザ光の波長λ1及びλ2に対応する異なる波長の戻り蛍光が、同一の厚さTを有するフィルタ61及び62を介してカメラ7内に結像する共焦点画像Gの結像位置のずれを示すイメージ図である。   FIG. 6 shows an imaging position of the confocal image G in which the return fluorescence having different wavelengths corresponding to the wavelengths λ1 and λ2 of the laser beam forms an image in the camera 7 through the filters 61 and 62 having the same thickness T. It is an image figure which shows deviation | shift.

本発明は上述した問題点を解決するためになされたものであり、異なる波長の戻り蛍光による色収差に起因する共焦点画像の結像位置ずれを補正して、精度の高い多色の共焦点画像を取得することができる共焦点顕微鏡を実現することを目的としている。   The present invention has been made to solve the above-described problems, and corrects an imaging position shift of a confocal image caused by chromatic aberration due to return fluorescence of different wavelengths, thereby providing a highly accurate multicolor confocal image. The objective is to realize a confocal microscope capable of acquiring

このような課題を達成するために、本発明は次の通りの構成になっている。
(1)多波長のレーザ光に励起される試料からの戻り蛍光の共焦点スライス画像を、前記多波長に対応してフィルタを切り換えて取得する共焦点顕微鏡において、
前記多波長に対応して光軸方向に異なる厚さになった複数のフィルタを備えたフィルタ手段を有し、多波長に対応して厚さの異なるフィルタを切り換えて共焦点スライス画像を取得することを特徴とする共焦点顕微鏡。
In order to achieve such a subject, the present invention has the following configuration.
(1) In a confocal microscope that acquires a confocal slice image of a return fluorescence from a sample excited by a multi-wavelength laser beam by switching a filter corresponding to the multi-wavelength,
A filter unit having a plurality of filters having different thicknesses in the optical axis direction corresponding to the multi-wavelengths, and acquiring confocal slice images by switching the filters having different thicknesses corresponding to the multi-wavelengths. A confocal microscope characterized by this.

(2)前記フィルタの厚さをT、材料の屈折率をNとするとき、前記共焦点スライス画像の結像位置の移動量Pは、P=(1−1/N)Tで与えられることを特徴とする(1)に記載の共焦点顕微鏡。 (2) When the thickness of the filter is T and the refractive index of the material is N, the moving amount P of the image formation position of the confocal slice image is given by P = (1-1 / N) T (2) The confocal microscope according to (1).

(3)前記多波長に対応した前記共焦点スライス画像の結像位置が、同一位置に維持されることを特徴とする(1)又は(2)に記載の共焦点顕微鏡。 (3) The confocal microscope according to (1) or (2), wherein the imaging positions of the confocal slice images corresponding to the multiple wavelengths are maintained at the same position.

(4)前記フィルタ手段は、円盤状のフィルタホイールの円周に沿って厚さの異なる複数のフィルタが配置され、所定周期で回転制御されて時系列的にフィルタが切り換えられることを特徴とする(1)乃至(3)のいずれかに記載の共焦点顕微鏡。 (4) The filter means is characterized in that a plurality of filters having different thicknesses are arranged along the circumference of a disk-like filter wheel, and the filters are switched in time series by being controlled in rotation at a predetermined period. The confocal microscope according to any one of (1) to (3).

以上説明したことから明らかなように、本発明によれば次のような効果がある。
(1)戻り蛍光の異なる波長による色収差を、この波長に対応するフィルタの厚さを変えることで補正し、全ての共焦点画像を同一位置に結像させることができる。
As is apparent from the above description, the present invention has the following effects.
(1) Chromatic aberration due to different wavelengths of return fluorescence can be corrected by changing the thickness of the filter corresponding to this wavelength, and all confocal images can be formed at the same position.

(2)この結果、多色の共焦点画像を重ねた時の色ずれの発生がなくなるので、多波長レーザ光による精度の高い多色の共焦点画像の観察が可能となる。 (2) As a result, the occurrence of color misregistration when multi-color confocal images are overlaid is eliminated, so that it is possible to observe a multi-color confocal image with high accuracy using multi-wavelength laser light.

以下、本発明を図面により詳細に説明する。図1は、本発明を適用したフィルタ手段を備えた共焦点顕微鏡の光学系を示すイメージ図である。図3乃至図6で説明した要素と同一要素には同一符号を付して説明を省略する。以下、本発明の特徴部につき説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an image diagram showing an optical system of a confocal microscope equipped with a filter means to which the present invention is applied. The same elements as those described in FIGS. 3 to 6 are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, the characteristic part of the present invention will be described.

図1において、本発明が適用されたフィルタ601(λ1用),602(λ2用),…60n(λn用)は、図5と同様に、フィルタホイール600の円周に沿って配置され、制御信号Mにより回転操作される。   In FIG. 1, filters 601 (for λ1), 602 (for λ2),... 60n (for λn) to which the present invention is applied are arranged along the circumference of the filter wheel 600 and controlled as in FIG. The rotation is performed by the signal M.

本発明の特徴は、フィルタ601(λ1用),602(λ2用),…60n(λn用)の光軸方向の厚さが、夫々T1,T2,…Tnのように、各戻り蛍光の波長に対応して異なる厚さを備える点にある。   The feature of the present invention is that the filter 601 (for λ1), 602 (for λ2),... 60n (for λn) has a thickness in the optical axis direction such as T1, T2,. It is in the point provided with different thickness corresponding to.

本発明は、フィルタの光軸方向の厚さTにより共焦点画像Gの結像位置が移動する光学的な特性を利用して、各戻り蛍光の波長に対応した結像位置を、色収差によるずれと逆方向に移動させて補正し、結果として各戻り蛍光の波長に対応した結像位置を一定位置に維持させるものである。   The present invention utilizes the optical characteristic that the image formation position of the confocal image G moves depending on the thickness T in the optical axis direction of the filter, and shifts the image formation position corresponding to each return fluorescence wavelength due to chromatic aberration. As a result, the imaging position corresponding to each return fluorescence wavelength is maintained at a fixed position.

一般的には、リレーレンズ41とカメラ7の間に厚さTのフィルタを挿入した場合、フィルタを挿入しない場合に比べて、結像位置が次式で計算される距離P分だけ移動する。
結像位置の移動量P=(1−1/N)T (1)
In general, when a filter having a thickness T is inserted between the relay lens 41 and the camera 7, the imaging position moves by a distance P calculated by the following equation, compared to a case where no filter is inserted.
Moving amount of image forming position P = (1-1 / N) T (1)

ここで、Nはフィルタの材料の屈折率を表す。屈折率nは波長によって異なるため、フィルタの厚さTが一定であれば、結像位置の移動量Pが波長毎に異なり、前記した色収差による結像位置のずれが生じる。   Here, N represents the refractive index of the filter material. Since the refractive index n varies depending on the wavelength, if the filter thickness T is constant, the moving amount P of the imaging position varies with the wavelength, and the imaging position shifts due to the chromatic aberration described above.

本発明では、前記式(1)の特性を利用して、各戻り蛍光の波長に対応した結像位置の移動量が等しくなるように、波長毎の屈折率Nに対応したフィルタの厚さTを変化させて結像位置を補正して一定位置に維持させている。   In the present invention, the filter thickness T corresponding to the refractive index N for each wavelength is used so that the amount of movement of the imaging position corresponding to the wavelength of each return fluorescence becomes equal using the characteristic of the equation (1). Is changed to correct the image formation position and maintain it at a fixed position.

図2は、レーザ光の異なる波長に対応する異なる波長の戻り蛍光の共焦点画像Gが、厚さの異なるフィルタを介してカメラ7内の同一位置に結像することを説明するイメージ図である。   FIG. 2 is an image diagram for explaining that confocal images G of return fluorescence having different wavelengths corresponding to different wavelengths of laser light are imaged at the same position in the camera 7 through filters having different thicknesses.

図2(A)は、レーザ光の波長λ1に対応する戻り蛍光の波長用の厚さT1のフィルタ601による共焦点画像Gの結像位置を示す。図2(B)は、レーザ光の波長λ2に対応する戻り蛍光の波長用の厚さT2のフィルタ602による共焦点画像Gの結像位置を示す。これら画像位置は一致している。   FIG. 2A shows an imaging position of the confocal image G by the filter 601 having the thickness T1 for the return fluorescence wavelength corresponding to the wavelength λ1 of the laser light. FIG. 2B shows the imaging position of the confocal image G by the filter 602 having a thickness T2 for the wavelength of the return fluorescence corresponding to the wavelength λ2 of the laser beam. These image positions match.

図2(A)において、仮にフィルタ601の厚さT1がフィルタ602の厚さT2に等しい従来構成であった場合には、レーザ光の波長λ1による戻り蛍光の共焦点画像G´は点線で示すようにGの位置からずれることになる。本発明によればこのずれが補正され、全てのレーザ光波長による戻り蛍光の共焦点画像Gの結像位置が同一位置に維持される。   In FIG. 2A, if the thickness T1 of the filter 601 is a conventional configuration equal to the thickness T2 of the filter 602, the return fluorescence confocal image G ′ by the wavelength λ1 of the laser light is indicated by a dotted line. Thus, the position of G is shifted. According to the present invention, this shift is corrected, and the imaging positions of the confocal images G of the return fluorescence with all laser light wavelengths are maintained at the same position.

本発明を適用したフィルタ手段を備えた共焦点顕微鏡の光学系を示すイメージ図である。It is an image figure which shows the optical system of the confocal microscope provided with the filter means to which this invention is applied. レーザ光の異なる波長に対応する異なる波長の戻り蛍光の共焦点画像が、厚さの異なるフィルタを介してカメラ内の同一位置に結像することを説明するイメージ図である。It is an image figure explaining that the confocal image of the return fluorescence of a different wavelength corresponding to a different wavelength of a laser beam forms in the same position in a camera through a filter with different thickness. 多波長レーザ光を用いる共焦点顕微鏡のシステム構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the system configuration | structure of a confocal microscope using a multiwavelength laser beam. 従来のフィルタ手段を備えた共焦点顕微鏡の光学系を示すイメージ図である。It is an image figure which shows the optical system of the confocal microscope provided with the conventional filter means. 多波長のレーザ光による戻り蛍光に対応して、フィルタホイールに備えられるフィルタの配列を示す平面図である。It is a top view which shows the arrangement | sequence of the filter with which a filter wheel is equipped corresponding to the return fluorescence by the laser beam of multiple wavelengths. レーザ光の異なる波長に対応する異なる波長の戻り蛍光が、同一の厚さを有するフィルタを介してカメラ内に結像する共焦点画像の結像位置ずれを示すイメージ図である。It is an image figure which shows the imaging position shift of the confocal image which the return fluorescence of a different wavelength corresponding to a different wavelength of a laser beam forms in a camera through the filter which has the same thickness.

符号の説明Explanation of symbols

1 試料
3 蛍光顕微鏡
31 対物レンズ
4 共焦点スキャナ
41 リレーレンズ
7 カメラ
600 フィルタホイール
601,602,…60n フィルタ
T1,T2,…Tn フィルタの厚さ
G 共焦点画像
DESCRIPTION OF SYMBOLS 1 Sample 3 Fluorescence microscope 31 Objective lens 4 Confocal scanner 41 Relay lens 7 Camera 600 Filter wheel 601,602, ... 60n Filter T1, T2, ... Tn Filter thickness G Confocal image

Claims (4)

多波長のレーザ光に励起される試料からの戻り蛍光の共焦点スライス画像を、前記多波長に対応してフィルタを切り換えて取得する共焦点顕微鏡において、
前記多波長に対応して光軸方向に異なる厚さになった複数のフィルタを備えたフィルタ手段を有し、多波長に対応して厚さの異なるフィルタを切り換えて共焦点スライス画像を取得することを特徴とする共焦点顕微鏡。
In the confocal microscope that acquires the confocal slice image of the return fluorescence from the sample excited by the laser light of multiple wavelengths by switching the filter corresponding to the multiple wavelengths,
A filter unit having a plurality of filters having different thicknesses in the optical axis direction corresponding to the multi-wavelengths, and acquiring confocal slice images by switching the filters having different thicknesses corresponding to the multi-wavelengths. A confocal microscope characterized by this.
前記フィルタの厚さをT、材料の屈折率をNとするとき、前記共焦点スライス画像の結像位置の移動量Pは、P=(1−1/N)Tで与えられることを特徴とする請求項1に記載の共焦点顕微鏡。   When the thickness of the filter is T and the refractive index of the material is N, the moving amount P of the imaging position of the confocal slice image is given by P = (1-1 / N) T. The confocal microscope according to claim 1. 前記多波長に対応した前記共焦点スライス画像の結像位置が、同一位置に維持されることを特徴とする請求項1又は2に記載の共焦点顕微鏡。   3. The confocal microscope according to claim 1, wherein an imaging position of the confocal slice image corresponding to the multiple wavelengths is maintained at the same position. 前記フィルタ手段は、円盤状のフィルタホイールの円周に沿って厚さの異なる複数のフィルタが配置され、所定周期で回転制御されて時系列的にフィルタが切り換えられることを特徴とする請求項1乃至3のいずれかに記載の共焦点顕微鏡。

































The filter means is characterized in that a plurality of filters having different thicknesses are arranged along the circumference of a disk-shaped filter wheel, and the filters are switched in time series by being controlled to rotate at a predetermined period. The confocal microscope according to any one of 1 to 3.

































JP2005291909A 2005-10-05 2005-10-05 Confocal microscope Pending JP2007101910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291909A JP2007101910A (en) 2005-10-05 2005-10-05 Confocal microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291909A JP2007101910A (en) 2005-10-05 2005-10-05 Confocal microscope

Publications (1)

Publication Number Publication Date
JP2007101910A true JP2007101910A (en) 2007-04-19

Family

ID=38028913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291909A Pending JP2007101910A (en) 2005-10-05 2005-10-05 Confocal microscope

Country Status (1)

Country Link
JP (1) JP2007101910A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059378A1 (en) * 2007-11-09 2009-05-14 Commonwealth Scientific & Industrial Research Organisation Differential aberration correction microscopy (dac)
US8275226B2 (en) 2008-12-09 2012-09-25 Spectral Applied Research Ltd. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
CN103293829A (en) * 2012-02-23 2013-09-11 上海锐势机器视觉科技有限公司 Day-night switching camera back focal length inconsistence compensation method
US8670178B2 (en) 2009-12-08 2014-03-11 Spectral Applied Research Inc. Imaging distal end of multimode fiber
WO2014097489A1 (en) * 2012-12-21 2014-06-26 グローリー株式会社 Spectral sensor
CN106443966A (en) * 2016-08-29 2017-02-22 中山联合光电科技股份有限公司 Optical lens for adjusting compensation back focal length through combination of horizontal and vertical light paths
CN107065139A (en) * 2017-04-28 2017-08-18 中山联合光电科技股份有限公司 Burnt optical system after a kind of multi-pass combination regulation compensation
WO2022057334A1 (en) * 2020-09-17 2022-03-24 湖北华鑫光电有限公司 Method for resolving lens day/night non-confocal focus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743614A (en) * 1993-07-29 1995-02-14 Nikon Corp Confocal microscope
JPH09123526A (en) * 1995-10-30 1997-05-13 Konica Corp Color image recorder
JPH11183806A (en) * 1997-12-18 1999-07-09 Nikon Corp Confocal microscope
JPH11231222A (en) * 1998-01-27 1999-08-27 Carl Zeiss Jena Gmbh Microscope with scanning unit, and arrangement therefor and operation method therefor
JPH11328297A (en) * 1998-05-12 1999-11-30 Sankyo Seiki Mfg Co Ltd Optical reader

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743614A (en) * 1993-07-29 1995-02-14 Nikon Corp Confocal microscope
JPH09123526A (en) * 1995-10-30 1997-05-13 Konica Corp Color image recorder
JPH11183806A (en) * 1997-12-18 1999-07-09 Nikon Corp Confocal microscope
JPH11231222A (en) * 1998-01-27 1999-08-27 Carl Zeiss Jena Gmbh Microscope with scanning unit, and arrangement therefor and operation method therefor
JPH11328297A (en) * 1998-05-12 1999-11-30 Sankyo Seiki Mfg Co Ltd Optical reader

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059378A1 (en) * 2007-11-09 2009-05-14 Commonwealth Scientific & Industrial Research Organisation Differential aberration correction microscopy (dac)
US8275226B2 (en) 2008-12-09 2012-09-25 Spectral Applied Research Ltd. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
US9134519B2 (en) 2008-12-09 2015-09-15 Spectral Applied Reseach Inc. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
US8670178B2 (en) 2009-12-08 2014-03-11 Spectral Applied Research Inc. Imaging distal end of multimode fiber
US8922887B2 (en) 2009-12-08 2014-12-30 Spectral Applied Research Inc. Imaging distal end of multimode fiber
CN103293829A (en) * 2012-02-23 2013-09-11 上海锐势机器视觉科技有限公司 Day-night switching camera back focal length inconsistence compensation method
WO2014097489A1 (en) * 2012-12-21 2014-06-26 グローリー株式会社 Spectral sensor
CN106443966A (en) * 2016-08-29 2017-02-22 中山联合光电科技股份有限公司 Optical lens for adjusting compensation back focal length through combination of horizontal and vertical light paths
CN107065139A (en) * 2017-04-28 2017-08-18 中山联合光电科技股份有限公司 Burnt optical system after a kind of multi-pass combination regulation compensation
WO2022057334A1 (en) * 2020-09-17 2022-03-24 湖北华鑫光电有限公司 Method for resolving lens day/night non-confocal focus

Similar Documents

Publication Publication Date Title
JP2007101910A (en) Confocal microscope
JP4723806B2 (en) Confocal microscope
JP4565115B2 (en) Multifocal imaging device
JP5287252B2 (en) Laser scanning confocal microscope
JP4469956B2 (en) Multifocal imaging device
US20170356735A1 (en) Interference observation device
JP2012003232A (en) Projection type display and method for displaying whole image
JP7130628B2 (en) optical microscope
EP3373061B1 (en) Image acquisition device, image acquisition method, and spatial light modulation unit
EP3486706A1 (en) Functional module and microscope equipped with the same
JP6233784B2 (en) Confocal microscope
US20230160827A1 (en) Large-field 3d spectral microscopy
WO2017077776A1 (en) Image acquisition device, image acquisition method, and spatial light modulation unit
JP2009168964A (en) Confocal microscope
JP2006301541A (en) Scanning type fluorescence observation apparatus
JP2006119347A (en) Laser scanning microscope
JP2013167654A (en) Confocal microscope imaging system
JP2011118070A (en) Confocal scanning microscope
WO2018061756A1 (en) Observation device and method, and observation device control program
EP3359996B1 (en) Fluorescence microscope instrument comprising an actively switched beam path separator
US20060109547A1 (en) Adjustment of a microscope
JPH1152252A (en) Fluorescent microscope
JP4987233B2 (en) Laser scanning microscope
JP5019279B2 (en) Confocal microscope and method for generating focused color image
JP4952293B2 (en) Photometric device and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080702

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110630

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110827

A02 Decision of refusal

Effective date: 20110915

Free format text: JAPANESE INTERMEDIATE CODE: A02