JP2007101320A - Processor and method for processing ultrasonic flaw detection image - Google Patents

Processor and method for processing ultrasonic flaw detection image Download PDF

Info

Publication number
JP2007101320A
JP2007101320A JP2005290395A JP2005290395A JP2007101320A JP 2007101320 A JP2007101320 A JP 2007101320A JP 2005290395 A JP2005290395 A JP 2005290395A JP 2005290395 A JP2005290395 A JP 2005290395A JP 2007101320 A JP2007101320 A JP 2007101320A
Authority
JP
Japan
Prior art keywords
image
defect
flaw detection
ultrasonic flaw
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005290395A
Other languages
Japanese (ja)
Other versions
JP4728762B2 (en
Inventor
Akira Tsuyuki
陽 露木
Katsumi Kubo
克巳 久保
Kiyoshi Iwata
潔 岩田
Takashi Butsuen
隆 仏円
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2005290395A priority Critical patent/JP4728762B2/en
Publication of JP2007101320A publication Critical patent/JP2007101320A/en
Application granted granted Critical
Publication of JP4728762B2 publication Critical patent/JP4728762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a processor and a method for processing an ultrasonic flaw detection image, capable of obtaining an ultrasonic flaw detection inspection result of stable quality. <P>SOLUTION: The processor 1 transmits an ultrasonic wave toward an inspected object, and receives an echo image corresponding an echo reflected by a reflection source inside the inspected object to detect a defect, the processor has an image preparation part 3 for converting the received echo image into an image data, a continuous image display part 5 for displaying continuously a plurality of images generated in the image preparation part 3, an image area information processing part 6 for limiting a pixel resolution and a display area of the image and for preparing a limited area image, an image-to-image motion tracking processing part 7 for tracking the moving of a pixel serving as a defect candidate, using the successive front and rear side images in the images, and a defect position determination part 8 for extracting the defect from the continuity of the plurality of defect candidates to determine a defect position thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超音波探傷装置により取得した画像から欠陥を検出する超音波探傷画像処理装置及び超音波探傷画像処理方法に関する。   The present invention relates to an ultrasonic flaw detection image processing apparatus and an ultrasonic flaw detection image processing method for detecting a defect from an image acquired by an ultrasonic flaw detection apparatus.

プラントなどにおいて構造物の溶接部の検査を行う手段として超音波探傷検査(UT)が広く行われてきた。超音波探傷検査によって得られた超音波探傷データを評価して構造物の溶接部に欠陥があるかないかの判定を行うのは検査員であり、専門知識と経験から評価を行っている。そのため、かなりの熟練を要し、かつ検査員によって評価結果にばらつきが生じる可能性があり、更なる評価の客観性が求められてきた。   Ultrasonic flaw detection (UT) has been widely performed as a means for inspecting welds of structures in plants and the like. It is an inspector who evaluates the ultrasonic flaw detection data obtained by the ultrasonic flaw detection inspection to determine whether or not there is a defect in the welded portion of the structure, and evaluates it from expertise and experience. Therefore, considerable skill is required, and the evaluation results may vary depending on the inspector, and further objectivity of evaluation has been demanded.

そこで、超音波探傷検査によって得られた画像を基にニューラルネットワークを用いて欠陥の評価を行う超音波探傷データ評価装置が提案されてきた(特許文献1参照)。   Therefore, an ultrasonic flaw detection data evaluation apparatus that evaluates defects using a neural network based on an image obtained by ultrasonic flaw inspection has been proposed (see Patent Document 1).

また、超音波の送信から受信までの経過時間から検査対象の縦波および横波の音速を利用して検査対象物内の反射源の位置を算出する超音波の反射源の映像処理方法が提案されてきた(特許文献2参照)。
特開平9−210970号公報 特開平9−292371号公報
In addition, an image processing method for an ultrasonic reflection source is proposed in which the position of the reflection source in the inspection object is calculated from the elapsed time from the transmission to reception of the ultrasonic wave using the longitudinal and transverse sound velocities. (See Patent Document 2).
Japanese Patent Laid-Open No. 9-210970 JP-A-9-292371

特許文献1に記載されたニューラルネットワークを用いた方法では、学習する順序やデータによって超音波探傷データ評価装置毎に特性をもつため、検査品質が一様ではなくなる恐れがあるという課題があった。   In the method using the neural network described in Patent Document 1, there is a problem that the inspection quality may not be uniform because each ultrasonic flaw detection data evaluation apparatus has characteristics depending on the learning order and data.

また、超音波探傷データ評価装置で大量の検査データについて評価を行うことは大変困難な作業であるという課題があった。   Further, there is a problem that it is a very difficult task to evaluate a large amount of inspection data with an ultrasonic flaw detection data evaluation apparatus.

特許文献2に記載された超音波の送信から受信までの経過時間を用いた超音波の反射源の映像処理方法では、同じ位置または接近した位置にある反射源のみしか映像化できないという課題があった。   In the image processing method of the ultrasonic reflection source using the elapsed time from the transmission to the reception of the ultrasonic wave described in Patent Document 2, there is a problem that only the reflection source at the same position or a close position can be imaged. It was.

本発明は、上記課題を鑑みなされたものであり、超音波探傷検査結果を安定した品質で得ることができる超音波探傷画像処理方法および超音波探傷画像処理装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic flaw detection image processing method and an ultrasonic flaw detection image processing apparatus that can obtain ultrasonic flaw detection test results with stable quality.

上記課題を解決するために、本発明に係る超音波探傷画像処理装置では、請求項1に記載したように、検査対象物に超音波を発信して、前記検査対象物内の反射源で反射したエコーに相応するエコー像を受信して欠陥を検出する超音波探傷画像処理装置において、受信したエコー像を画像データにA/D変換する画像作成部と、前記画像作成部で生成された複数の画像を連続的に表示する連続画像表示部と、前記画像の画素分解能や表示領域を限定して限定領域画像を作成する画像領域情報処理部と、前記画像の連続した前後の画像を用いて欠陥候補となる画素の移動を追跡する画像間移動追跡処理部と、複数の欠陥候補の連続性から欠陥を抽出してその欠陥位置を判定する欠陥位置判定部とを有することを特徴とする。   In order to solve the above-described problem, in the ultrasonic flaw detection image processing apparatus according to the present invention, as described in claim 1, ultrasonic waves are transmitted to an inspection object and reflected by a reflection source in the inspection object. An ultrasonic flaw detection image processing apparatus that receives an echo image corresponding to the received echo and detects a defect, an image creation unit that A / D converts the received echo image into image data, and a plurality of images created by the image creation unit A continuous image display unit that continuously displays the image, an image region information processing unit that creates a limited region image by limiting the pixel resolution and display region of the image, and images before and after the image The image processing apparatus includes an inter-image movement tracking processing unit that tracks the movement of a pixel that is a defect candidate, and a defect position determination unit that extracts a defect from the continuity of a plurality of defect candidates and determines the defect position.

また、請求項4に記載したように、検査対象物に超音波を発信して前記検査対象物内の反射源で反射したエコーに相応するエコー像を受信し、受信したエコー像を画像データにA/D変換して連続的に表示し、前記画像の画素分解能や表示領域を限定して限定領域画像を作成するとともに、前記画像の連続した前後の画像を用いて欠陥候補となる画素の移動を追跡して、複数の欠陥候補の連続性から欠陥を抽出してその欠陥位置を判定することを特徴とする。   According to a fourth aspect of the present invention, an ultrasonic wave is transmitted to the inspection object, an echo image corresponding to an echo reflected by a reflection source in the inspection object is received, and the received echo image is converted into image data. A / D conversion is performed for continuous display, a limited area image is created by limiting the pixel resolution and display area of the image, and pixels that are defect candidates are moved using images before and after the image is continuous. , The defect is extracted from the continuity of a plurality of defect candidates, and the defect position is determined.

さらに、請求項6に記載したように、検査対象物に超音波を発信して、前記検査対象物内の反射源で反射したエコーに相応するエコー像を受信して欠陥を検出する超音波探傷画像処理装置において、受信したエコー像から超音波の反射波の照度分布を求め、この照度分布に基づいて欠陥を決定する欠陥抽出部が設けられたことを特徴とする。   Furthermore, as described in claim 6, ultrasonic flaw detection is performed by transmitting an ultrasonic wave to an inspection object and receiving an echo image corresponding to an echo reflected by a reflection source in the inspection object to detect a defect. The image processing apparatus is characterized in that a defect extraction unit is provided for obtaining an illuminance distribution of the reflected wave of the ultrasonic wave from the received echo image and determining a defect based on the illuminance distribution.

そして、請求項8に記載したように、検査対象物に超音波を発信して、前記検査対象物内の反射源で反射したエコーに相応するエコー像を受信し、受信したエコー像から超音波の反射波の照度分布を求めるとともに、この照度分布に基づいて欠陥を決定することを特徴とする。   Then, as described in claim 8, an ultrasonic wave is transmitted to the inspection object, an echo image corresponding to an echo reflected by a reflection source in the inspection object is received, and an ultrasonic wave is received from the received echo image. An illuminance distribution of the reflected wave is obtained, and a defect is determined based on the illuminance distribution.

本発明に係る超音波探傷画像処理装置及び超音波探傷画像処理方法によると、超音波探傷検査の際に、検査員の経験・レベルに依存することなく検査の品質を一定にすることが可能となる。   According to the ultrasonic flaw detection image processing apparatus and the ultrasonic flaw detection image processing method according to the present invention, it is possible to make the inspection quality constant without depending on the experience and level of the inspector during the ultrasonic flaw inspection. Become.

本発明に係る超音波探傷画像処理装置の実施形態について、添付図面を参照して説明する。   An embodiment of an ultrasonic flaw detection image processing apparatus according to the present invention will be described with reference to the accompanying drawings.

〔第1実施形態〕
図1〜図5は、本発明に係る超音波探傷画像処理装置の第1実施形態を示す図である。
[First Embodiment]
1 to 5 are views showing a first embodiment of an ultrasonic flaw detection image processing apparatus according to the present invention.

第1実施形態の超音波探傷画像処理装置1は、図1に示すように、超音波を検査対象物に発信して検査対象物の反射源で反射した超音波の反射波(エコー)を受信する超音波探傷装置2と、受信したエコー像をデジタル化して画像データに変換し画像を作成する画像作成部3と、作成された画像や一連の画像データ等を記憶する画像記憶部4と、画像作成部3から作成された複数の画像を連続的に表示する連続画像表示部5と、画像の画素分解能や領域を限定して限定領域画像を作成する画像領域情報処理部6と、連続した前後の画像を用いて欠陥候補となる画素の移動を追跡する画像間移動追跡処理部7と、最終的に複数の欠陥候補の連続性から欠陥を抽出して欠陥位置を判定する欠陥位置判定部8とを備える。   As shown in FIG. 1, the ultrasonic flaw detection image processing apparatus 1 according to the first embodiment receives ultrasonic reflected waves (echoes) that are transmitted to an inspection object and reflected by a reflection source of the inspection object. An ultrasonic flaw detector 2 that performs an image creation unit 3 that digitizes the received echo image and converts it into image data to create an image, an image storage unit 4 that stores the created image, a series of image data, and the like, A continuous image display unit 5 that continuously displays a plurality of images created from the image creation unit 3, an image region information processing unit 6 that creates a limited region image by limiting the pixel resolution and region of the image, and An inter-image movement tracking processing unit 7 that tracks the movement of pixels that are defect candidates using previous and subsequent images, and a defect position determination unit that finally extracts defects from the continuity of a plurality of defect candidates and determines a defect position 8.

また、超音波探傷画像処理装置1は、欠陥位置判定部8で抽出された欠陥位置のデータ等の探傷結果履歴を管理する履歴管理部9と、デジタル画像として取得した画像を用いて必要に応じて報告書を自動で作成する自動報告書作成部10と、複数のデータを連続で処理する自動処理部11とを備える。   Further, the ultrasonic flaw detection image processing apparatus 1 uses a history management unit 9 that manages flaw detection result history such as defect position data extracted by the defect position determination unit 8 and an image acquired as a digital image as necessary. An automatic report creation unit 10 that automatically creates a report, and an automatic processing unit 11 that continuously processes a plurality of data.

さらに、超音波探傷画像処理装置1は、必要に応じて評価手法を表示して検査員に評価を促す評価手法学習部12を備える。   Furthermore, the ultrasonic flaw detection image processing apparatus 1 includes an evaluation method learning unit 12 that displays an evaluation method as needed and prompts the inspector to evaluate.

超音波探傷装置2は、超音波を検査対象物に発信するとともにその超音波の反射源から反射波を受信して、鋼材等の検査対象物の傷の有無、寸法などを非破壊検査する、主に超音波探傷器と超音波探触子とからなる装置であり、一般的に市販されているものである。   The ultrasonic flaw detector 2 transmits ultrasonic waves to the inspection object and receives reflected waves from the ultrasonic reflection source, and performs nondestructive inspection on the presence / absence, dimensions, etc. of the inspection object such as steel materials, An apparatus mainly composed of an ultrasonic flaw detector and an ultrasonic probe, and is generally commercially available.

画像作成部3は、超音波探傷処置2から受信したアナログ信号の生データをデジタル信号の画像データにA/D変換して、この画像データを連続画像表示部5に送信する。   The image creation unit 3 performs A / D conversion on the analog signal raw data received from the ultrasonic flaw detection procedure 2 into digital signal image data, and transmits the image data to the continuous image display unit 5.

画像記憶部4は、必要に応じて画像作成部3により作成された画像データ等のデータを記憶する。また、記憶されたデータは必要時にいつでも取り出して参照することができる。   The image storage unit 4 stores data such as image data created by the image creation unit 3 as necessary. The stored data can be retrieved and referenced whenever necessary.

連続画像表示部5は、画像作成部3から受信した複数の画像を連続的に表示する機能を有し、静止画の画像データから動画の画像データを作成する。   The continuous image display unit 5 has a function of continuously displaying a plurality of images received from the image creation unit 3, and creates moving image data from still image data.

画像領域情報処理部6は、連続画像表示部5を用いて動画を作成する際に、検出する欠陥(亀裂)の画像内の出現位置、及び画素分解能の情報を取得することにより、亀裂の位置、画素分解能を実寸に換算する。   When the image area information processing unit 6 creates a moving image using the continuous image display unit 5, the position of the crack is obtained by acquiring the appearance position in the image of the defect (crack) to be detected and the information of the pixel resolution. The pixel resolution is converted to the actual size.

画像間移動追跡処理部7は、画像領域情報処理部6が亀裂等の欠陥の位置、画素分解能を計算する処理を行ってから、もしくは並行して、前後に連続する画像を用いて、画素の移動や画素集合の移動を追跡し、欠陥候補を抽出し決定する。   The inter-image movement tracking processing unit 7 performs processing for calculating the position of the defect such as a crack and the pixel resolution by the image region information processing unit 6, or in parallel, The movement and the movement of the pixel set are traced, and defect candidates are extracted and determined.

欠陥位置判定部8は、画像集合を用いて最終的に複数の欠陥候補から欠陥位置を判定する。画素集合の作成手法としては一般に用いられているラベリング処理を用いて行うが、必要であれば前処理として着目画素とその周囲の画素を比較した結果を着目画素に埋め込み画像をベクトルの集合として扱うベクトル画像処理などを行う。なお、ラベリング処理とは、連結した画素をひとつの塊として認識してそれ以外の背景と区別する処理法である。   The defect position determination unit 8 finally determines a defect position from a plurality of defect candidates using the image set. As a method for creating a pixel set, a commonly used labeling process is used, but if necessary, the result of comparing the target pixel and its surrounding pixels is treated as a set of vectors by embedding the target pixel in the target pixel. Perform vector image processing. Note that the labeling process is a processing method in which connected pixels are recognized as one block and distinguished from other backgrounds.

なお、超音波探傷装置2の探触子を手動もしくは一定速度で動かすことにより、画像間移動追跡処理部7による移動追跡結果の長さ(着目した反射源の領域の連続性)を調整して検出精度を調整することが可能である。   The length of the movement tracking result by the inter-image movement tracking processing unit 7 (continuity of the region of the focused reflection source) is adjusted by moving the probe of the ultrasonic flaw detector 2 manually or at a constant speed. It is possible to adjust the detection accuracy.

履歴管理部9は、欠陥位置判定部8により抽出された欠陥のデータを探傷結果履歴として記憶し、欠陥のデータを必要な時に取り出せる状態で管理する。欠陥のデータに検査日時を付与することにより、時系列に従って欠陥の進展を観察・推測することが可能である。また、時系列に従って観察することにより検査対象物の交換時期を決定することができる。   The history management unit 9 stores the defect data extracted by the defect position determination unit 8 as a flaw detection result history, and manages the defect data so that it can be taken out when necessary. By attaching the inspection date and time to the defect data, it is possible to observe and infer the progress of the defect according to the time series. In addition, it is possible to determine the replacement time of the inspection object by observing according to the time series.

自動報告書作成部10は、画像記憶部4に記憶された画像データを取得して、予め記憶された文書データと関連付けることにより、報告書データを自動で作成する。また、自動報告書作成部10は、画像データと文書データとを関連付けてなる報告書データを記憶する。   The automatic report creation unit 10 automatically creates report data by acquiring image data stored in the image storage unit 4 and associating it with previously stored document data. Further, the automatic report creation unit 10 stores report data in which image data and document data are associated with each other.

自動処理部11は、上述した画像作成部3から自動報告書作成部10までに対して、各々が行う処理を、超音波探傷装置2から次々と送られてエコー像について連続して行うよう促す。よって自動処理部11は、一定の検査品質で大量のデータを解析することが可能であるとともに、検査の品質を落とさずに大量のデータを処理することができる。また、自動処理部11を用いることにより人間による処理を介す必要がなくなるため、24時間連続処理することも出来る。   The automatic processing unit 11 urges the above-described image creation unit 3 to automatic report creation unit 10 to sequentially perform the processes performed by the ultrasonic flaw detector 2 sequentially on the echo images. . Therefore, the automatic processing unit 11 can analyze a large amount of data with a constant inspection quality, and can process a large amount of data without degrading the inspection quality. In addition, the use of the automatic processing unit 11 eliminates the need for human processing, so that continuous processing can be performed for 24 hours.

評価手法学習部12は、予め記憶されている評価手法を示した評価手法データを検査員に対して表示して、検査員に評価を促す。検査の頻度が低下したときに検査員のレベルを維持することが可能となり、検査品質を維持することができる。   The evaluation method learning unit 12 displays evaluation method data indicating the evaluation method stored in advance for the inspector, and prompts the inspector to evaluate. When the frequency of inspection decreases, the level of the inspector can be maintained, and the inspection quality can be maintained.

超音波探傷画像処理装置1を用いて探傷検査を行った結果の一例として、欠陥候補D〜Gが左方向に移動していく連続画像のうちの3時点における静止画像を、図2〜図4に示した。   As an example of the result of the flaw detection inspection using the ultrasonic flaw detection image processing apparatus 1, still images at three time points among the continuous images in which the defect candidates D to G move in the left direction are shown in FIGS. It was shown to.

図2によると、領域Aに欠陥候補Dと思われる欠陥候補D1が、領域Bに欠陥候補E、Fと思われる欠陥候補E1、F1が、領域Cに欠陥候補Gと思われる欠陥候補G1が表示されている。図3によると、領域Aに欠陥候補Dと思われる欠陥候補D2が、領域Bに欠陥候補Eと思われる欠陥候補E2、F2が表示されているが、領域Cには欠陥候補が表示されていない。次に、図4によると、領域Bには欠陥候補E、Fと思われる欠陥候補E3、F3が、領域Cには欠陥候補Gと思われる欠陥候補G3が表示されているが、領域Aには欠陥候補が表示されていない。   According to FIG. 2, defect candidate D1 that appears to be a defect candidate D in area A, defect candidates E1 and F1 that appear as defect candidates E and F in area B, and defect candidate G1 that appears to be defect candidate G in area C It is displayed. According to FIG. 3, defect candidate D2 that appears to be defect candidate D is displayed in area A, and defect candidates E2 and F2 that are considered to be defect candidate E are displayed in area B, but defect candidates are displayed in area C. Absent. Next, according to FIG. 4, defect candidates E3 and F3 considered to be defect candidates E and F are displayed in area B, and defect candidate G3 considered to be defect candidate G is displayed in area C. No defect candidates are displayed.

ここで、図5は、図2〜図4に示した欠陥候補の特徴領域を一画面に重ねて表示したものである。図5から分かるとおり、領域Aでは欠陥候補Dと思われる欠陥候補D3が、領域Cでは欠陥候補Gと思われる欠陥候補G2がそれぞれ表示されてない。   Here, FIG. 5 shows the feature areas of the defect candidates shown in FIGS. 2 to 4 superimposed on one screen. As can be seen from FIG. 5, the defect candidate D3 that appears to be the defect candidate D is not displayed in the area A, and the defect candidate G2 that appears to be the defect candidate G is not displayed in the area C.

超音波探傷画像処理装置1では、欠陥から得られる画像とノイズ、その他の材質的不均一部から得られる画像の違いを、連続性の長短で評価した。領域Bの欠陥候補E、Fは図2〜図4に連続して表示されているので、3つの領域A〜Cの中からは領域Bの欠陥候補E、Fを最終的に亀裂と判断して抽出した。   In the ultrasonic flaw detection image processing apparatus 1, the difference between the image obtained from the defect and the image obtained from the noise and other material non-uniform portions was evaluated by the continuity. Since the defect candidates E and F in the area B are continuously displayed in FIGS. 2 to 4, the defect candidates E and F in the area B are finally determined as cracks from the three areas A to C. Extracted.

第1実施形態の超音波探傷画像処理装置1によると、欠陥候補を連続画像で評価することにより検査員の違いによる評価の違いがなくなり、検査員の経験・レベルに依存することなく検査の品質を一定にすることが可能となる。   According to the ultrasonic flaw detection image processing apparatus 1 of the first embodiment, by evaluating defect candidates with continuous images, there is no difference in evaluation due to different inspectors, and the quality of inspection without depending on the experience and level of the inspector. Can be made constant.

また、第1実施形態の超音波探傷画像処理装置1によると、大量のデータをスムーズに評価することが可能となる。   In addition, according to the ultrasonic flaw detection image processing apparatus 1 of the first embodiment, a large amount of data can be smoothly evaluated.

〔第2実施形態〕
次に、本発明に係る第2実施形態を、図6〜図8を用いて説明する。なお第1実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Second Embodiment]
Next, a second embodiment according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

第2実施形態の超音波探傷画像処理装置1Aは、図6に示すように、超音波を発信して超音波の反射波(エコー)を受信する超音波探傷装置2と、超音波が欠陥に対して微小の広がりをもって当たる性質を利用して欠陥を決定する欠陥抽出部13と、画像や一連のデータなどを記憶する画像記憶部4とを備える。   As shown in FIG. 6, the ultrasonic flaw detection image processing apparatus 1 </ b> A according to the second embodiment includes an ultrasonic flaw detection apparatus 2 that transmits an ultrasonic wave and receives a reflected wave (echo) of the ultrasonic wave. On the other hand, it includes a defect extraction unit 13 that determines a defect by using a property that hits with a minute spread, and an image storage unit 4 that stores an image, a series of data, and the like.

また、超音波探傷画像処理装置1Aは、決定された欠陥のデータ等の探傷結果履歴を管理する履歴管理部9と、デジタル画像として取得した画像を用いて必要に応じて報告書を自動で作成する自動報告書作成部10と、複数のデータを連続で処理する自動処理部11とを備える。   In addition, the ultrasonic flaw detection image processing apparatus 1A automatically creates a report as necessary using a history management unit 9 that manages flaw detection result histories such as determined defect data and images acquired as digital images. And an automatic processing unit 11 that continuously processes a plurality of data.

超音波探傷装置2により発信された超音波は、超音波探傷装置2の性能に起因して、欠陥に対して微小の広がりをもって当たる性質を有する。検査対象物に超音波を発信した際に、欠陥に対して垂直に当たった超音波の反射強度を100とすると、垂直に当たらなかった超音波の反射強度は、垂直でなくなるにつれ非完全弾性衝突となることから90、80、・・・と低下していく。なお、この反射強度の低下には超音波の回り込みによる影響(回折)等の要因も含まれると考える。   Due to the performance of the ultrasonic flaw detector 2, the ultrasonic wave transmitted by the ultrasonic flaw detector 2 has a property of hitting the defect with a minute spread. When an ultrasonic wave is transmitted to an inspection object and the reflection intensity of the ultrasonic wave hitting the defect perpendicularly is 100, the reflection intensity of the ultrasonic wave not hitting the vertical object becomes non-perfectly elastic as it becomes non-perpendicular. It becomes 90, 80, and so on. In addition, it is considered that the decrease in the reflection intensity includes factors such as influence (diffraction) due to the wraparound of ultrasonic waves.

図7及び図8は、縦軸を照度、横軸を位置とした超音波の反射波の照度分布を示した図である。超音波の反射強度の低下を考慮して反射強度を輝度に変換すると、微小な亀裂があれば図7に示すような輝度分布が得られる。一方、材質の不均一位置や妨害エコーでは図8のような輝度分布が得られる。   7 and 8 are diagrams illustrating the illuminance distribution of the reflected wave of the ultrasonic wave with the ordinate indicating the illuminance and the abscissa indicating the position. When the reflection intensity is converted into luminance in consideration of a decrease in the reflection intensity of the ultrasonic wave, a luminance distribution as shown in FIG. 7 is obtained if there are minute cracks. On the other hand, the luminance distribution as shown in FIG.

欠陥抽出部13は、図7に示される輝度分布の広がりが超音波探傷装置1Aの性能に起因しているものであることを利用し、照度分布のヒストグラムの半値幅を用いて一対の欠陥候補を決定して、配管UT検査における欠陥開口部・欠陥端部の位置を決定する。   The defect extraction unit 13 uses the fact that the spread of the luminance distribution shown in FIG. 7 is caused by the performance of the ultrasonic flaw detector 1A, and uses a half width of the histogram of the illuminance distribution as a pair of defect candidates. And the positions of the defect opening and defect end in the pipe UT inspection are determined.

第2実施形態の超音波探傷画像処理装置1Aによると、超音波の反射強度から照度分布を求めることにより、検査員の違いによる評価の違いがなくなるなので、検査の品質を一定にすることができる。   According to the ultrasonic flaw detection image processing apparatus 1A of the second embodiment, by obtaining the illuminance distribution from the ultrasonic reflection intensity, the difference in evaluation due to the difference between the inspectors is eliminated, so that the quality of the inspection can be made constant. .

また、第2実施形態の超音波探傷画像処理装置1Aによると、大量のデータをスムーズに評価することが可能となる。   In addition, according to the ultrasonic flaw detection image processing apparatus 1A of the second embodiment, a large amount of data can be smoothly evaluated.

本発明に係る超音波探傷画像処理装置の第1実施形態を示す構成図。1 is a configuration diagram showing a first embodiment of an ultrasonic flaw detection image processing apparatus according to the present invention. FIG. 配管内のBスコープの画像を示す図。The figure which shows the image of B scope in piping. 配管内のBスコープの画像を示す図。The figure which shows the image of B scope in piping. 配管内のBスコープの画像を示す図。The figure which shows the image of B scope in piping. 図2から図4を重ねて一画面に表示した図。FIG. 5 is a diagram in which FIGS. 2 to 4 are superimposed and displayed on one screen. 本発明に係る超音波探傷画像処理装置の第2実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the ultrasonic flaw detection image processing apparatus which concerns on this invention. 亀裂を示すエコーの輝度分布を示す図。The figure which shows the luminance distribution of the echo which shows a crack. 材質等による妨害を示すエコーの輝度分布を示す図。The figure which shows the luminance distribution of the echo which shows the disturbance by a material etc.

符号の説明Explanation of symbols

1、1A 超音波探傷画像処理装置
2 超音波探傷装置
3 画像作成部
4 画像記憶部
5 連続画像表示部
6 画像領域情報処理部
7 画像間移動追跡処理部
8 欠陥位置判定部
9 履歴管理部
10 自動報告書作成部
11 自動処理部
12 評価手法学習部
13 欠陥抽出部
D1、D2 欠陥候補
E1〜E3 欠陥候補
F1〜F3 欠陥候補
G1、G3 欠陥候補
DESCRIPTION OF SYMBOLS 1, 1A Ultrasonic flaw detection image processing apparatus 2 Ultrasonic flaw detection apparatus 3 Image creation part 4 Image storage part 5 Continuous image display part 6 Image area information processing part 7 Inter-image movement tracking processing part 8 Defect position determination part 9 History management part 10 Automatic report creation unit 11 Automatic processing unit 12 Evaluation method learning unit 13 Defect extraction unit D1, D2 Defect candidates E1-E3 Defect candidates F1-F3 Defect candidates G1, G3 Defect candidates

Claims (12)

検査対象物に超音波を発信して、前記検査対象物内の反射源で反射したエコーに相応するエコー像を受信して欠陥を検出する超音波探傷画像処理装置において、
受信したエコー像を画像データにA/D変換する画像作成部と、
前記画像作成部で生成された複数の画像を連続的に表示する連続画像表示部と、
前記画像の画素分解能や表示領域を限定して限定領域画像を作成する画像領域情報処理部と、
前記画像の連続した前後の画像を用いて欠陥候補となる画素の移動を追跡する画像間移動追跡処理部と、
複数の欠陥候補の連続性から欠陥を抽出してその欠陥位置を判定する欠陥位置判定部とを有することを特徴とする超音波探傷画像処理装置。
In the ultrasonic flaw detection image processing apparatus for detecting a defect by transmitting an ultrasonic wave to an inspection object, receiving an echo image corresponding to an echo reflected by a reflection source in the inspection object,
An image creation unit for A / D converting the received echo image into image data;
A continuous image display unit for continuously displaying a plurality of images generated by the image creation unit;
An image area information processing unit for creating a limited area image by limiting the pixel resolution and display area of the image;
An inter-image movement tracking processing unit that tracks the movement of pixels that are defect candidates using images before and after the image; and
An ultrasonic flaw detection image processing apparatus comprising: a defect position determination unit that extracts a defect from the continuity of a plurality of defect candidates and determines the defect position.
前記画像作成部により作成された画像データを記憶する画像記憶部が設けられた請求項1記載の超音波探傷画像処理装置。 The ultrasonic flaw detection image processing apparatus according to claim 1, further comprising an image storage unit that stores image data created by the image creation unit. 前記受信したエコー像から超音波の反射波の照度分布を求め、この照度分布に基づいて欠陥を決定する欠陥抽出部が設けられた請求項1または2記載の超音波探傷画像処理装置。 The ultrasonic flaw detection image processing apparatus according to claim 1, further comprising a defect extraction unit that obtains an illuminance distribution of an ultrasonic reflected wave from the received echo image and determines a defect based on the illuminance distribution. 検査対象物に超音波を発信して前記検査対象物内の反射源で反射したエコーに相応するエコー像を受信し、受信したエコー像を画像データにA/D変換して連続的に表示し、前記画像の画素分解能や表示領域を限定して限定領域画像を作成するとともに、
前記画像の連続した前後の画像を用いて欠陥候補となる画素の移動を追跡して、複数の欠陥候補の連続性から欠陥を抽出してその欠陥位置を判定することを特徴とする超音波探傷画像処理方法。
An ultrasonic wave is transmitted to the inspection object, an echo image corresponding to the echo reflected by the reflection source in the inspection object is received, and the received echo image is A / D converted into image data and continuously displayed. Creating a limited area image by limiting the pixel resolution and display area of the image,
Ultrasonic flaw detection characterized in that the movement of pixels as defect candidates is tracked using images before and after the image is continuous, defects are extracted from the continuity of a plurality of defect candidates, and the defect positions are determined. Image processing method.
前記受信したエコー像から超音波の反射波の照度分布を求め、この照度分布に基づいて欠陥を決定する請求項4記載の超音波探傷画像処理方法。 The ultrasonic flaw detection image processing method according to claim 4, wherein an illuminance distribution of a reflected wave of ultrasonic waves is obtained from the received echo image, and a defect is determined based on the illuminance distribution. 検査対象物に超音波を発信して、前記検査対象物内の反射源で反射したエコーに相応するエコー像を受信して欠陥を検出する超音波探傷画像処理装置において、
受信したエコー像から超音波の反射波の照度分布を求め、この照度分布に基づいて欠陥を決定する欠陥抽出部が設けられたことを特徴とする超音波探傷画像処理装置。
In the ultrasonic flaw detection image processing apparatus for detecting a defect by transmitting an ultrasonic wave to an inspection object, receiving an echo image corresponding to an echo reflected by a reflection source in the inspection object,
An ultrasonic flaw detection image processing apparatus, comprising: a defect extraction unit that obtains an illuminance distribution of a reflected wave of an ultrasonic wave from a received echo image and determines a defect based on the illuminance distribution.
前記欠陥抽出部により求められた照度分布のデータなどを記憶する画像記憶部が設けられた請求項6記載の超音波探傷画像処理装置。 The ultrasonic flaw detection image processing apparatus according to claim 6, further comprising an image storage unit that stores data of illuminance distribution obtained by the defect extraction unit. 検査対象物に超音波を発信して、前記検査対象物内の反射源で反射したエコーに相応するエコー像を受信し、受信したエコー像から超音波の反射波の照度分布を求めるとともに、この照度分布に基づいて欠陥を決定することを特徴とする超音波探傷画像処理方法。 The ultrasonic wave is transmitted to the inspection object, an echo image corresponding to the echo reflected by the reflection source in the inspection object is received, the illuminance distribution of the reflected wave of the ultrasonic wave is obtained from the received echo image, and this An ultrasonic flaw detection image processing method, wherein a defect is determined based on an illuminance distribution. 超音波探傷検査により求められた欠陥のデータを探傷結果履歴として記憶し、必要な時に取り出せるよう管理する履歴管理部が設けられた請求項1〜3、6、7のいずれか記載の超音波探傷画像処理装置。 8. The ultrasonic flaw detection according to claim 1, further comprising a history management unit that stores defect data obtained by ultrasonic flaw detection as a flaw detection result history and manages the data so that it can be taken out when necessary. Image processing device. 前記画像作成部が作成した画像データと予め記憶された文書データとを関連付けてなる報告書データを自動で作成する自動報告書作成部が設けられた請求項1〜3、6、7、9のいずれか記載の超音波探傷画像処理装置。 10. The automatic report creation unit for automatically creating report data in which the image data created by the image creation unit is associated with document data stored in advance is provided. The ultrasonic flaw detection image processing apparatus according to any one of the above. 複数のエコー像について、連続的に処理するように促す自動処理部が設けられた1〜3、6、7、9、10のいずれか記載の超音波探傷画像処理装置。 The ultrasonic flaw detection image processing apparatus according to any one of 1 to 3, 6, 7, 9, and 10 provided with an automatic processing unit that prompts to continuously process a plurality of echo images. 予め記憶されている評価手法を示した評価手法データを表示する評価手法学習部が設けられた請求項1〜3、6、7、9〜11のいずれか記載の超音波探傷画像処理装置。   The ultrasonic flaw detection image processing apparatus according to any one of claims 1 to 3, 6, 7, and 9 to 11, further comprising an evaluation method learning unit that displays evaluation method data indicating an evaluation method stored in advance.
JP2005290395A 2005-10-03 2005-10-03 Ultrasonic flaw detection image processing device Expired - Fee Related JP4728762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290395A JP4728762B2 (en) 2005-10-03 2005-10-03 Ultrasonic flaw detection image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290395A JP4728762B2 (en) 2005-10-03 2005-10-03 Ultrasonic flaw detection image processing device

Publications (2)

Publication Number Publication Date
JP2007101320A true JP2007101320A (en) 2007-04-19
JP4728762B2 JP4728762B2 (en) 2011-07-20

Family

ID=38028413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290395A Expired - Fee Related JP4728762B2 (en) 2005-10-03 2005-10-03 Ultrasonic flaw detection image processing device

Country Status (1)

Country Link
JP (1) JP4728762B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506992A (en) * 2007-12-21 2011-03-03 ヴイ・アンド・エム・フランス Non-destructive inspection for pipes, especially during production or in the finished state
KR20160124775A (en) * 2014-02-20 2016-10-28 케이엘에이-텐코 코포레이션 Signal response metrology for image based overlay measurements
DE102016012000A1 (en) 2015-10-08 2017-04-13 Hitachi Power Solutions Co., Ltd. Fault inspection method and apparatus
JP2020085825A (en) * 2018-11-30 2020-06-04 株式会社島津製作所 Analysis system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118658A (en) * 1984-11-15 1986-06-05 Hitachi Ltd Two-probe ultrasonic flaw detection method and apparatus
JPH0381661A (en) * 1989-08-24 1991-04-08 Nkk Corp Ultrasonic flaw detection device
JPH03152454A (en) * 1989-11-09 1991-06-28 Hitachi Constr Mach Co Ltd Ultrasonic wave measuring apparatus
JPH04128650A (en) * 1990-09-19 1992-04-30 Kinki Nippon Tetsudo Kk Automatic scanning method for detecting rail flaw and device thereof
JPH09210970A (en) * 1996-01-30 1997-08-15 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic flaw detection data evaluating device
JP2005098768A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Supersonic crack detection image display method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118658A (en) * 1984-11-15 1986-06-05 Hitachi Ltd Two-probe ultrasonic flaw detection method and apparatus
JPH0381661A (en) * 1989-08-24 1991-04-08 Nkk Corp Ultrasonic flaw detection device
JPH03152454A (en) * 1989-11-09 1991-06-28 Hitachi Constr Mach Co Ltd Ultrasonic wave measuring apparatus
JPH04128650A (en) * 1990-09-19 1992-04-30 Kinki Nippon Tetsudo Kk Automatic scanning method for detecting rail flaw and device thereof
JPH09210970A (en) * 1996-01-30 1997-08-15 Ishikawajima Harima Heavy Ind Co Ltd Ultrasonic flaw detection data evaluating device
JP2005098768A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Supersonic crack detection image display method and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506992A (en) * 2007-12-21 2011-03-03 ヴイ・アンド・エム・フランス Non-destructive inspection for pipes, especially during production or in the finished state
KR20160124775A (en) * 2014-02-20 2016-10-28 케이엘에이-텐코 코포레이션 Signal response metrology for image based overlay measurements
KR102184029B1 (en) 2014-02-20 2020-11-27 케이엘에이 코포레이션 Signal response metrology for image based overlay measurements
DE102016012000A1 (en) 2015-10-08 2017-04-13 Hitachi Power Solutions Co., Ltd. Fault inspection method and apparatus
CN107024541A (en) * 2015-10-08 2017-08-08 株式会社日立电力解决方案 Defect detecting method and its device
US10354372B2 (en) 2015-10-08 2019-07-16 Hitachi Power Solutions Co., Ltd. Defect inspection method and apparatus
US10529068B2 (en) 2015-10-08 2020-01-07 Hitachi Power Solutions Co., Ltd. Defect inspection method and apparatus
JP2020085825A (en) * 2018-11-30 2020-06-04 株式会社島津製作所 Analysis system
JP7238366B2 (en) 2018-11-30 2023-03-14 株式会社島津製作所 Analysis system

Also Published As

Publication number Publication date
JP4728762B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5113340B2 (en) Method and system for inspecting an object using ultrasonic scanning data
EP2570806B1 (en) Method and apparatus for imaging a welding area
US20170247092A1 (en) Data Capture Device and System
CN107576729B (en) Ultrasonic phased array-based weld defect detection and rapid extraction system and method
JP2019197007A (en) Determination device, determination program, and determination method of ultrasonic flaw detection
JP5156707B2 (en) Ultrasonic inspection method and apparatus
JP4728762B2 (en) Ultrasonic flaw detection image processing device
JP2009210339A (en) Defect inspection method and defect inspection device
WO2020184521A1 (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, facility for manufacturing steel material, method for manufacturing steel material, and steel material quality control method
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP4738243B2 (en) Ultrasonic flaw detection system
JP2010127689A (en) Ultrasonic flaw detection device, cross-sectional image forming method, and cross-sectional image forming program
CN111047547B (en) Combined defect quantification method based on multi-view TFM
Aoki et al. Intelligent image processing for abstraction and discrimination of defect image in radiographic film
ATE426157T1 (en) METHOD FOR EVALUATION OF ULTRASOUND SIGNALS OF A DEFECT IN A WORKPIECE
JP7455046B2 (en) Underwater inspection equipment and underwater inspection method
KR100546827B1 (en) System and its method for processing digital ultrasonic image
JP2002139478A (en) Creep damage detection method and device of structural material
JP4209220B2 (en) Ultrasonic signal processing method
JP2014070968A (en) Ultrasonic inspection device and ultrasonic inspection method
CN117686588A (en) Nondestructive monitoring system and method for welding quality of gas pipeline
Elewa et al. Assessment of welding defects for gas pipeline radiographs using computer vision
Tsimogiannis et al. Ultrasonic Processing Methodologies with Alternative Thickness Computation for Massive Corrosion Mapping Tests
JPH03125960A (en) B-scope image processing apparatus in ultrasonic measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Ref document number: 4728762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees