JP2007101215A - Shape measurement method, shape measurement system and shape measurement device - Google Patents

Shape measurement method, shape measurement system and shape measurement device Download PDF

Info

Publication number
JP2007101215A
JP2007101215A JP2005287817A JP2005287817A JP2007101215A JP 2007101215 A JP2007101215 A JP 2007101215A JP 2005287817 A JP2005287817 A JP 2005287817A JP 2005287817 A JP2005287817 A JP 2005287817A JP 2007101215 A JP2007101215 A JP 2007101215A
Authority
JP
Japan
Prior art keywords
light
measurement
unit
amount
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005287817A
Other languages
Japanese (ja)
Inventor
Takuya Kondo
拓也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2005287817A priority Critical patent/JP2007101215A/en
Publication of JP2007101215A publication Critical patent/JP2007101215A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measurement method, shape measurement system and shape measurement device capable of measuring the shape of a measurement object while inhibiting the degradation of the measurement precision. <P>SOLUTION: In the case, the XY stage 14 is driven with a constant speed, while previously performing a sampling mode, information of the temporal variation of the max. light receiving amount on the light receiving surface 19a is obtained. When the measurement mode is performed, the distances of the work W is measured at each moving position of irradiation spot Q while changing the moving speed of the XY stage 14 based on the variation of the max. light receiving amount. At each moving position of the irradiation spot Q where the variation of the light receiving amount is large at the time of performing the sampling mode, the lowering of the precision of measurement caused by the tracking delay of the feed back control is inhibited by lowering the moving speed of the XY stage 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、形状測定方法、形状測定システム及び形状測定装置に関する。   The present invention relates to a shape measuring method, a shape measuring system, and a shape measuring apparatus.

例えば下記特許文献1には、光源からの光を測定対象物に照射し、その反射光をイメージセンサで受光して、当該反射光のイメージセンサにおける受光位置に基づき光源及びイメージセンサから測定対象物までの距離を測定する光学式変位計が開示されている。このような光学式変位計では、常時一定の投光量で投光部を駆動すると、測定対象物表面の凹凸や色の相違などによってイメージセンサにおける受光量が変化し、イメージセンサにおける受光位置を精度良く検出できず距離測定に支障を来たすおそれがある。そこで、従来の光学式変位計の中には、そのイメージセンサでの受光量をフィードバックして一定の受光量になるよう投光部の投光量を制御するものがある。   For example, in Patent Document 1 below, a measurement object is irradiated with light from a light source, the reflected light is received by an image sensor, and the measurement object is received from the light source and the image sensor based on the light reception position of the reflected light in the image sensor. An optical displacement meter for measuring the distance to is disclosed. In such an optical displacement meter, when the light projecting unit is always driven with a constant light projection amount, the amount of light received by the image sensor changes due to unevenness or color difference on the surface of the measurement object, and the light reception position in the image sensor is accurately determined. It may not be detected well and may interfere with distance measurement. Therefore, some conventional optical displacement meters control the amount of light emitted from the light projecting unit so that the amount of light received by the image sensor is fed back to obtain a constant amount of received light.

そして、このような光学式変位計は、光源からの光の照射方向に交差する方向に測定対象物を移動機構によって相対的に移動させることで、各移動位置に対応するイメージセンサでの受光位置に基づき測定対象物の表面形状を測定する形状測定にも利用される。
特開2001−50711公報
And such an optical displacement meter moves the measurement object relative to the direction intersecting the irradiation direction of the light from the light source, so that the light receiving position at the image sensor corresponding to each moving position. It is also used for shape measurement for measuring the surface shape of the measurement object based on the above.
JP 2001-50711 A

ところで、上記形状測定に利用される場合、移動機構による光の照射スポットの移動過程において測定対象物表面の凹凸形状や色の変化などによってイメージセンサでの受光量が変動する。勿論、上記構成では、フィードバック制御によって比較的に緩やかな受光量変化であれば追従して是正される。しかしながら、受光量変化が比較的に大きく変動する場合には、上記フィードバック制御の追従遅れが生じたまま一定の速度で移動機構が駆動されてしまい、各照射スポットに対応するイメージセンサでの受光位置を正確に検出できず、その結果、形状測定の精度が低下するという問題があった。   By the way, when used for the shape measurement, the amount of light received by the image sensor fluctuates due to the uneven shape or color change of the surface of the measurement object during the movement of the light irradiation spot by the movement mechanism. Of course, in the above configuration, if the received light amount change is relatively gradual by feedback control, it is corrected following. However, when the change in the amount of received light fluctuates relatively large, the moving mechanism is driven at a constant speed while the follow-up delay of the feedback control occurs, and the light receiving position at the image sensor corresponding to each irradiation spot. Cannot be detected accurately, and as a result, there is a problem that accuracy of shape measurement is lowered.

本発明は上記のような事情に基づいて完成されたものであって、その目的は、測定精度の低下を抑えつつ測定対象物の形状測定を行うことが可能な形状測定方法、形状測定システム及び形状測定装置を提供するところにある。   The present invention has been completed based on the above circumstances, and its purpose is to provide a shape measuring method, a shape measuring system, and a shape measuring method capable of measuring the shape of a measurement object while suppressing a decrease in measurement accuracy. A shape measuring device is provided.

上記の目的を達成するための手段として、請求項1の発明に係る形状測定方法は、投光部からの光を測定対象物に照射し、その反射光を前記測定対象物までの距離に応じて変化する受光面上の位置で検出可能な位置検出部に受光させ、前記測定対象物上における前記投光部からの光の照射スポットを測定範囲内で移動させつつ、各移動位置において前記位置検出部で順次検出される前記受光面での受光位置に基づき前記測定対象物の形状測定を行う形状測定方法において、前記投光部の投光量を一定に保ちつつ前記測定対象物上における前記照射スポットを前記測定範囲内で移動させたときの前記位置検出部での受光量変化をサンプリングする第1ステップと、前記受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行いつつ、前記第1ステップでサンプリングされた受光量変化に基づき前記照射スポットの移動速度を前記第1ステップでの移動速度に対して変更しつつ前記照射スポットを前記測定範囲内で移動させて前記形状測定を行う第2ステップとを含むことを特徴とする。
なお、本発明の「位置検出部での受光量変化」には、受光面上において最大受光量を示す部分の当該最大受光量の変化、受光面全体が受ける総受光量の変化、受光面のうち一定レベル以上の受光量を示す範囲内での総受光量の変化が含まれる。
「照射スポットを移動」は、投光部及び位置検出部側と測定対象物とを相対的に移動することで照射スポットを移動させることを意味する。具体的には、投光部及び位置検出部側を測定対象物に対して移動することで照射スポットを移動させることと、測定対象物を投光部及び位置検出部側に対して移動することで照射スポットを移動させることとが含まれる。
「位置検出部で受光される反射光」は、測定対象物での投光部からの光の正反射光であっても、拡散反射光であってもよい概念である。
As a means for achieving the above object, the shape measuring method according to the invention of claim 1 irradiates the measurement object with light from the light projecting unit, and reflects the reflected light according to the distance to the measurement object. The position detection unit detects light at a position on the light-receiving surface that changes, and moves the irradiation spot of light from the light projecting unit on the measurement object within the measurement range, while moving the position at each moving position. In the shape measurement method for measuring the shape of the measurement object based on the light receiving position on the light receiving surface sequentially detected by the detection unit, the irradiation on the measurement object while keeping the light projection amount of the light projection unit constant A first step of sampling a change in the amount of light received by the position detection unit when the spot is moved within the measurement range, and the amount of light received at the light receiving surface is fed back to make the amount of received light constant. While measuring the amount of light emitted from the light section, the irradiation spot is measured while changing the movement speed of the irradiation spot with respect to the movement speed in the first step based on the change in the amount of received light sampled in the first step. And a second step of measuring the shape by moving within a range.
The “change in the amount of received light at the position detector” of the present invention includes a change in the maximum amount of received light at the portion showing the maximum amount of received light on the light receiving surface, a change in the total amount of received light received by the entire light receiving surface, Among them, the change in the total received light amount within a range showing the received light amount above a certain level is included.
“Move the irradiation spot” means that the irradiation spot is moved by relatively moving the light projecting unit and the position detecting unit and the measurement object. Specifically, the irradiation spot is moved by moving the light projecting unit and the position detecting unit side with respect to the measurement target, and the measurement target is moved with respect to the light projecting unit and the position detecting unit side. And moving the irradiation spot.
The “reflected light received by the position detection unit” is a concept that may be regular reflection light of the light from the light projecting unit on the measurement object or diffuse reflection light.

請求項2の発明に係る形状測定方法は、投光部からの光を測定対象物に照射し、その反射光を前記測定対象物までの距離に応じて変化する受光面上の位置で検出可能な位置検出部に受光させ、前記測定対象物上における前記投光部からの光の照射スポットを測定範囲内で移動させて、各移動位置において前記位置検出部で順次検出される前記受光面での受光位置に基づき前記測定対象物の形状測定を行う形状測定方法において、前記投光部の投光量を一定に保ちつつ前記測定対象物上における前記照射スポットを前記測定範囲内で移動させたときの前記位置検出部での受光量変化をサンプリングする第1ステップと、前記第1ステップでサンプリングされた受光量変化に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量を調整しつつ前記照射スポットを前記測定範囲内で移動させて前記形状測定を行う第2ステップとを含むことを特徴とする。   In the shape measuring method according to the second aspect of the present invention, the measurement object is irradiated with light from the light projecting unit, and the reflected light can be detected at a position on the light receiving surface that varies depending on the distance to the measurement object. A light receiving surface that is detected by a position detection unit, moves an irradiation spot of light from the light projecting unit on the measurement object within a measurement range, and is sequentially detected by the position detection unit at each moving position. In the shape measuring method for measuring the shape of the measurement object based on the light receiving position, the irradiation spot on the measurement object is moved within the measurement range while keeping the light projection amount of the light projecting unit constant. The first step of sampling the received light amount change at the position detecting unit, and adjusting the projected light amount of the light projecting unit in the increasing / decreasing direction to cancel the received light amount change based on the received light amount change sampled in the first step The irradiation spot is moved within the measurement range, characterized in that it comprises a second step of performing the shape measurement with.

請求項3の発明に係る形状測定システムは、測定対象物に光を照射する投光部と、前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、前記測定対象物上における、前記投光部からの光の照射スポットを測定範囲内で移動させる移動機構と、前記移動機構による前記照射スポットの移動過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、前記測定部による測定動作に先立ってサンプリングされ、前記投光部の投光量を一定に保ちつつ前記移動機構を駆動して前記測定対象物上における前記照射スポットを前記測定範囲内で移動させたときの前記位置検出部での受光量変化情報が記憶されるメモリと、前記測定部による測定動作時において、前記位置検出部の受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行う投光量フィードバック制御部と、前記測定部による前記測定動作時において、前記メモリに記憶された受光量変化情報に基づき前記移動機構による移動速度を制御する速度制御部と、を備えることを特徴とする。   A shape measurement system according to a third aspect of the present invention includes a light projecting unit that irradiates light to a measurement object, and a light receiving surface that receives reflected light from the measurement object, and the reflected light on the light receiving surface A position detection unit that outputs a position signal based on a light receiving position at the light source, a moving mechanism that moves an irradiation spot of light from the light projecting unit on the measurement object within a measurement range, and the irradiation by the moving mechanism In the process of moving the spot, a measurement unit that repeatedly captures a position signal from the position detection unit to measure the shape of the measurement object, and is sampled prior to the measurement operation by the measurement unit, and the light projection amount of the light projection unit A memory for storing received light amount change information in the position detection unit when the irradiation mechanism on the measurement object is moved within the measurement range by driving the moving mechanism while maintaining a constant; At the time of the measurement operation by the measurement unit, a light projection amount feedback control unit that performs a light projection amount control of the light projection unit to feed back a light reception amount on the light receiving surface of the position detection unit and make the light reception amount constant, A speed control unit configured to control a moving speed of the moving mechanism based on received light amount change information stored in the memory during the measurement operation by the measuring unit;

なお、下記の構成であってもよい。
(構成A)前記速度制御部は、前記受光量変化情報に基づき所定値以上の受光量変化がある照射スポットの移動位置において前記移動機構の移動速度を低下させることを特徴とすることを特徴とする請求項3に記載の形状測定システム。
(構成B)前記測定部は、前記受光量変化情報に基づき所定値以上の受光量変化がある照射スポットの移動位置で前記位置検出部から得た位置信号は前記測定対象物の形状測定に使用しないことを特徴とする構成Aに記載の形状測定システム。
In addition, the following structure may be sufficient.
(Structure A) The speed control unit is characterized in that the moving speed of the moving mechanism is reduced at a moving position of an irradiation spot where there is a change in received light amount that is a predetermined value or more based on the received light amount change information. The shape measuring system according to claim 3.
(Configuration B) The measurement unit uses a position signal obtained from the position detection unit at a moving position of an irradiation spot having a change in received light amount of a predetermined value or more based on the received light amount change information, for measuring the shape of the measurement object. The shape measuring system according to Configuration A, wherein the shape measuring system is not.

請求項4の発明に係る形状測定システムは、測定対象物に光を照射する投光部と、前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、前記測定対象物上における、前記投光部からの光の照射スポットを測定範囲内で移動させる移動機構と、前記移動機構による前記照射スポットの移動過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、前記測定部による測定動作に先立ってサンプリングされ、前記投光部の投光量を一定に保ちつつ前記移動機構を駆動して前記測定対象物上における前記照射スポットを前記測定範囲内で移動させたときの前記位置検出部での受光量変化情報が記憶されるメモリと、前記測定部による前記測定動作時において、前記メモリに記憶された受光量変化情報に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量をフォワード制御する投光量フォワード制御部と、を備えることを特徴とする。   A shape measuring system according to a fourth aspect of the present invention includes a light projecting unit that irradiates light to a measurement object, and a light receiving surface that receives reflected light from the measurement object, and the reflected light on the light receiving surface A position detection unit that outputs a position signal based on a light receiving position at the light source, a moving mechanism that moves an irradiation spot of light from the light projecting unit on the measurement object within a measurement range, and the irradiation by the moving mechanism In the process of moving the spot, a measurement unit that repeatedly captures a position signal from the position detection unit to measure the shape of the measurement object, and is sampled prior to the measurement operation by the measurement unit, and the light projection amount of the light projection unit A memory for storing received light amount change information in the position detection unit when the irradiation mechanism on the measurement object is moved within the measurement range by driving the moving mechanism while maintaining a constant; A light projection amount forward control unit that forward-controls the light projection amount of the light projecting unit in an increase / decrease direction that cancels the light reception amount change based on the light reception amount change information stored in the memory during the measurement operation by the measurement unit; It is characterized by providing.

請求項5の発明に係る形状測定システムは、測定対象物に光を照射する投光部と、前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、前記測定対象物上における、前記投光部からの光の照射スポットを測定範囲内で移動させる移動機構と、前記移動機構による前記照射スポットの移動過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、前記照射スポットに対してその移動方向手前の位置に一定光量の光を照射しその反射光の受光量を検出する光電センサと、前記測定部による前記測定動作時において、前記位置検出部の受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行う投光量フィードバック制御部と、前記測定部による前記測定動作時において、前記光電センサにて先行して検出される受光量の変化に基づき前記移動機構による移動速度を制御する速度制御部と、を備えることを特徴とする。   The shape measurement system according to the invention of claim 5 includes a light projecting unit that irradiates light to the measurement object, and a light receiving surface that receives reflected light from the measurement object, and the reflected light on the light receiving surface A position detection unit that outputs a position signal based on a light receiving position at the light source, a moving mechanism that moves an irradiation spot of light from the light projecting unit on the measurement object within a measurement range, and the irradiation by the moving mechanism In the process of moving the spot, a measurement unit that repeatedly captures a position signal from the position detection unit and measures the shape of the measurement object, and irradiates the irradiation spot with a certain amount of light at a position in the front of the moving direction. And a photoelectric sensor for detecting the amount of received reflected light and the projection for feeding back the amount of received light on the light receiving surface of the position detecting unit during the measurement operation by the measuring unit. A projection light amount feedback control unit for controlling the projection light amount of the unit, and a moving speed by the moving mechanism is controlled based on a change in received light amount detected in advance by the photoelectric sensor during the measurement operation by the measurement unit. And a speed control unit.

請求項6の発明に係る形状測定システムは、測定対象物に光を照射する投光部と、前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、前記測定対象物上における、前記投光部からの光の照射スポットを測定範囲内で移動させる移動機構と、前記移動機構による前記照射スポットの移動過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、前記照射スポットに対してその移動方向手前の位置に一定光量の光を照射しその反射光の受光量を検出する光電センサと、前記測定部による前記測定動作時において、前記光電センサにて先行して検出される受光量の変化に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量をフォワード制御する投光量フォワード制御部と、を備えることを特徴とする。   The shape measuring system according to the invention of claim 6 has a light projecting unit for irradiating light to the measuring object and a light receiving surface for receiving the reflected light from the measuring object, and the reflected light on the light receiving surface A position detection unit that outputs a position signal based on a light receiving position at the light source, a moving mechanism that moves an irradiation spot of light from the light projecting unit on the measurement object within a measurement range, and the irradiation by the moving mechanism In the process of moving the spot, a measurement unit that repeatedly captures a position signal from the position detection unit and measures the shape of the measurement object, and irradiates the irradiation spot with a certain amount of light at a position in the front of the moving direction. A photoelectric sensor for detecting the amount of received reflected light, and a method of increasing / decreasing the amount of received light based on a change in the amount of received light detected in advance by the photoelectric sensor during the measurement operation by the measurement unit Characterized in that and a projection amount forward control unit for forward control the projection amount of the projecting portion.

請求項7の発明に係る形状測定装置は、移動機構により相対的に移動する測定対象物に光を照射する投光部と、前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、前記移動機構により前記投光部からの光の照射スポットが測定範囲内で移動される過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、前記測定部による測定動作に先立ってサンプリングされ、前記投光部の投光量を一定に保ちつつ前記移動機構により前記測定対象物上における前記照射スポットを前記測定範囲内で移動されたときの前記位置検出部での受光量変化情報が記憶されるメモリと、前記測定部による前記測定動作時において、前記位置検出部の受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行う投光量フィードバック制御部と、前記測定部による前記測定動作時において、前記メモリに記憶された受光量変化情報に基づき前記移動機構による移動速度を制御するための制御信号を前記移動機構に出力する制御信号出力部と、を備えることを特徴とする。   The shape measuring apparatus according to the invention of claim 7 has a light projecting unit that irradiates light to a measurement object that is relatively moved by a moving mechanism, and a light receiving surface that receives reflected light from the measurement object, A position detection unit that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface, and a process in which an irradiation spot of light from the light projecting unit is moved within a measurement range by the moving mechanism, A measurement unit that repeatedly captures a position signal from a position detection unit and measures the shape of the measurement object, and is sampled prior to the measurement operation by the measurement unit, and the movement while keeping the light projection amount of the light projection unit constant A memory storing received light amount change information in the position detection unit when the irradiation spot on the measurement object is moved within the measurement range by a mechanism, and during the measurement operation by the measurement unit At the time of the measurement operation by the measurement unit, a light projection amount feedback control unit that performs a light projection amount control of the light projection unit to feed back a light reception amount on the light receiving surface of the position detection unit and make the light reception amount constant And a control signal output unit that outputs a control signal for controlling the moving speed of the moving mechanism to the moving mechanism based on the received light amount change information stored in the memory.

請求項8の発明に係る形状測定装置は、移動機構により相対的に移動する測定対象物に光を照射する投光部と、前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、前記移動機構により前記投光部からの光の照射スポットが測定範囲内で移動される過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、前記測定部による測定動作に先立ってサンプリングされ、前記投光部の投光量を一定に保ちつつ前記移動機構により前記測定対象物上における前記照射スポットを前記測定範囲内で移動されたときの前記位置検出部での受光量変化情報が記憶されるメモリと、前記測定部による前記測定動作時において、前記メモリに記憶された受光量変化情報に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量をフォワード制御する投光量フォワード制御部と、を備えることを特徴とする。   The shape measuring apparatus according to the invention of claim 8 has a light projecting unit that irradiates light to a measurement object that is relatively moved by a moving mechanism, and a light receiving surface that receives reflected light from the measurement object, A position detection unit that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface, and a process in which an irradiation spot of light from the light projecting unit is moved within a measurement range by the moving mechanism, A measurement unit that repeatedly captures a position signal from a position detection unit and measures the shape of the measurement object, and is sampled prior to the measurement operation by the measurement unit, and the movement while keeping the light projection amount of the light projection unit constant A memory storing received light amount change information in the position detection unit when the irradiation spot on the measurement object is moved within the measurement range by a mechanism, and during the measurement operation by the measurement unit Characterized in that and a projection amount forward control unit for forward control the projection amount of the projecting portion in the decrease direction to offset the amount of received light changes on the basis of the received light amount change information stored in the memory.

請求項9の発明に係る形状測定装置は、移動機構により相対的に移動する測定対象物に光を照射する投光部と、前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、前記移動機構により前記投光部からの光の照射スポットが測定範囲内で移動される過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、前記照射スポットに対してその移動方向手前の位置に一定光量の光を照射しその反射光の受光量を検出する光電センサと、前記測定部による前記測定動作時において、前記位置検出部の受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行う投光量フィードバック制御部と、前記測定部による前記測定動作時において、前記光電センサにて先行して検出される受光量の変化に基づき前記移動機構による移動速度を制御するための制御信号を前記移動機構に出力する制御信号出力部と、を備えることを特徴とする。   The shape measuring apparatus according to the invention of claim 9 includes a light projecting unit that irradiates light to a measurement object that is relatively moved by a moving mechanism, and a light receiving surface that receives reflected light from the measurement object, A position detection unit that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface, and a process in which an irradiation spot of light from the light projecting unit is moved within a measurement range by the moving mechanism, A measurement unit that repeatedly captures a position signal from a position detection unit and measures the shape of the measurement object, and a received amount of reflected light by irradiating the irradiation spot with a certain amount of light at a position before the movement direction And a light projection amount control of the light projecting unit for feeding back the amount of received light on the light receiving surface of the position detecting unit and making the received light amount constant during the measurement operation by the measuring unit. The amount of light to be emitted During the measurement operation by the back control unit and the measurement unit, a control signal for controlling the movement speed by the movement mechanism based on a change in the amount of received light detected in advance by the photoelectric sensor is sent to the movement mechanism. And a control signal output unit for outputting.

請求項10の発明に係る形状測定装置は、移動機構により相対的に移動する測定対象物に光を照射する投光部と、前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、前記移動機構ににより前記投光部からの光の照射スポットが測定範囲内で移動される過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、前記照射スポットに対してその移動方向手前の位置に一定光量の光を照射しその反射光の受光量を検出する光電センサと、前記測定部による前記測定動作時において、前記光電センサにて先行して検出される受光量の変化に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量をフォワード制御する投光量フォワード制御部と、を備えることを特徴とする。   The shape measuring apparatus according to the invention of claim 10 includes a light projecting unit that irradiates light to a measurement object that is relatively moved by a moving mechanism, and a light receiving surface that receives reflected light from the measurement object, A position detection unit that outputs a position signal based on a light receiving position on the light receiving surface of the reflected light, and a process in which an irradiation spot of light from the light projecting unit is moved within the measurement range by the moving mechanism, A measurement unit that repeatedly captures a position signal from the position detection unit and measures the shape of the measurement object; and receives a reflected light by irradiating the irradiation spot with a predetermined amount of light at a position before the moving direction. A photoelectric sensor for detecting the amount of light, and during the measurement operation by the measurement unit, the light projecting unit in an increasing / decreasing direction that cancels the change in the amount of received light based on a change in the amount of received light detected in advance by the photoelectric sensor The amount of light emitted Characterized in that it comprises a projection amount forward control unit for de control, the.

<請求項1,3,7の発明>
本構成によれば、投光部からの光の照射に基づく各移動位置での受光位置検出に先立ってサンプリングされた受光量変化特性に基づく速度で照射スポットを移動さつつ測定対象物の形状測定を行う。例えば、受光量変化が大きい場合にはその分だけフィードバック制御が必要となり、これに対応して照射スポットの移動速度を低下させる。これにより、フィードバック制御の追従遅れを抑制しつつ形状測定を行うことができる。なお、受光量変化をサンプリングする際には、測定対象物上の照射スポットを、その移動速度を変更しつつ移動させる構成であってもよいが、一定速度で移動させる構成の方がより望ましい。
<Invention of claims 1, 3 and 7>
According to this configuration, the shape of the measurement object is measured while moving the irradiation spot at a speed based on the received light amount change characteristic sampled before detecting the light receiving position at each moving position based on the light irradiation from the light projecting unit. I do. For example, when the change in the amount of received light is large, feedback control is required correspondingly, and the movement speed of the irradiation spot is reduced correspondingly. Thereby, it is possible to perform shape measurement while suppressing a follow-up delay in feedback control. When sampling the change in the amount of received light, the irradiation spot on the measurement object may be moved while changing its moving speed, but the structure of moving at a constant speed is more desirable.

<請求項2,4,8の発明>
本構成によれば、投光部からの光の照射に基づく各移動位置での受光位置検出に先立ってサンプリングされた受光量変化特性に基づきその受光量変化を相殺する増減方向に投光部の投光量を調整するようした。従って、従来構成で生じえたフィードバック制御の追従遅れによる形状測定精度の低下を抑制できる。
<Invention of Claims 2, 4 and 8>
According to this configuration, the light projecting unit is increased or decreased in the increase / decrease direction to cancel the light reception amount change based on the received light amount change characteristic sampled prior to detection of the light reception position at each moving position based on the light irradiation from the light projecting unit. The amount of emitted light was adjusted. Therefore, it is possible to suppress a decrease in shape measurement accuracy due to a feedback control follow-up delay that may have occurred in the conventional configuration.

<請求項5,9の発明>
本構成によれば、投光部からの光の照射スポットに対してその移動方向手前における反射光量を検出する光電センサからの先取り的な反射光量変化に基づき移動機構の移動速度を制御する構成とした。これにより、フィードバック制御の追従遅れを抑制しつつ形状測定を行うことができる。
<Invention of Claims 5 and 9>
According to this configuration, the moving speed of the moving mechanism is controlled based on a pre-change in the reflected light amount from the photoelectric sensor that detects the reflected light amount before the moving direction with respect to the irradiation spot of the light from the light projecting unit; did. Thereby, it is possible to perform shape measurement while suppressing a follow-up delay in feedback control.

<請求項6,10の発明>
本構成によれば、投光部からの光の照射スポットに対してその移動方向手前における反射光量を検出する光電センサからの先取り的な反射光量変化に基づき投光部の投光量を制御する構成とした。これにより、投光部自身からの光の照射スポットでの反射光量に基づきフィードバック制御をしていた従来構成に比べて余裕を持って投光量制御が行われ、形状測定制度の低下を抑制できる。
<Invention of claims 6 and 10>
According to this configuration, the amount of light emitted from the light projecting unit is controlled based on a pre-change in the amount of reflected light from the photoelectric sensor that detects the amount of reflected light before the light spot emitted from the light projecting unit. It was. Thereby, the light projection amount control is performed with a margin compared to the conventional configuration in which feedback control is performed based on the reflected light amount at the light irradiation spot from the light projecting unit itself, and the reduction of the shape measurement system can be suppressed.

<実施形態1>
本発明の実施形態1を図1〜図3を参照しつつ説明する。
1.形状測定システムの全体構成
図1は、本実施形態の形状測定システム10の全体概要図である。この形状測定システム10は、センサヘッド部11及びコントローラ部12が信号ケーブルを介して接続された形状測定装置13と、ワークW(本発明の「測定対象物」に相当)が載置されたXYステージ14(本発明の「移動機構」に相当)とを備えて構成されている。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS.
1. Overall Configuration of Shape Measurement System FIG. 1 is an overall schematic diagram of a shape measurement system 10 of this embodiment. This shape measuring system 10 includes an XY on which a shape measuring device 13 to which a sensor head portion 11 and a controller portion 12 are connected via a signal cable, and a workpiece W (corresponding to the “measurement object” of the present invention) are placed. A stage 14 (corresponding to the “movement mechanism” of the present invention) is provided.

(1)形状測定装置
センサヘッド部11は、投光素子としてのレーザダイオード(LD)15と、そのレーザダイオード15を駆動するためのLD駆動回路16と、レーザダイオード15から発せられたレーザ光L1をワークW表面上に照射させる投光レンズ17とを備えている。これらのレーザダイオード15、LD駆動回路16及び投光レンズ17が本発明の「投光部」に相当する。
(1) Shape Measuring Device The sensor head unit 11 includes a laser diode (LD) 15 as a light projecting element, an LD drive circuit 16 for driving the laser diode 15, and a laser beam L1 emitted from the laser diode 15. Is provided on the surface of the workpiece W. The laser diode 15, the LD drive circuit 16, and the light projecting lens 17 correspond to the “light projecting unit” of the present invention.

更に、センサヘッド部11は、受光レンズ18と、その受光レンズ18を透過したレーザ光L2を受光する位置検出素子としてのCCDリニアセンサ19と、そのCCDリニアセンサ19を駆動するためのCCD駆動回路20とを備えている。これらの受光レンズ18、CCDリニアセンサ19及びCCD駆動回路20が本発明の「位置検出部」に相当する。   Further, the sensor head unit 11 includes a light receiving lens 18, a CCD linear sensor 19 as a position detecting element that receives the laser light L 2 transmitted through the light receiving lens 18, and a CCD drive circuit for driving the CCD linear sensor 19. 20. The light receiving lens 18, the CCD linear sensor 19, and the CCD drive circuit 20 correspond to the “position detection unit” of the present invention.

レーザダイオード15から発せられたレーザ光L1は、投光レンズ17を透過してワークW上に照射される。そして、このワークW上での拡散反射光L2は、受光レンズ18を透過してCCDリニアセンサ19に入射する。このCCDリニアセンサ19において受光量とワークの相対位置に応じて蓄積された電荷は、CCD駆動回路20によって読み出され、時系列の電圧信号に変換される。   The laser light L1 emitted from the laser diode 15 passes through the light projecting lens 17 and is irradiated onto the workpiece W. Then, the diffusely reflected light L 2 on the workpiece W passes through the light receiving lens 18 and enters the CCD linear sensor 19. The charge accumulated in the CCD linear sensor 19 according to the received light amount and the relative position of the work is read out by the CCD drive circuit 20 and converted into a time-series voltage signal.

CCD駆動回路20が所定の転送用クロックをCCDリニアセンサ19に与えることにより、CCDリニアセンサ19は、各画素に蓄積された電荷を1画素ずつ順番に転送する。そして、CCD駆動回路20は、全画素の蓄積電荷に対応する時系列の電圧信号S1(本発明の「位置信号」に相当)を出力する。   When the CCD drive circuit 20 gives a predetermined transfer clock to the CCD linear sensor 19, the CCD linear sensor 19 sequentially transfers the charges accumulated in each pixel one pixel at a time. Then, the CCD drive circuit 20 outputs a time-series voltage signal S1 (corresponding to the “position signal” of the present invention) corresponding to the accumulated charges of all the pixels.

コントローラ部12は、CPU21、メモリ22及び操作キー23を備えている。CPU21は、後述する「測定モード」時及び「サンプリングモード」時において、LD駆動回路16に駆動信号S2を与えてレーザダイオード15に投光動作をさせ、例えば操作キー23での入力操作によって設定された設定サンプリング周期TでCCD駆動回路20を駆動させてCCDリニアセンサ19の各画素の蓄積電荷を転送させる受光動作を実行させて、CCD駆動回路20からの電圧信号S1をA/D変換して受ける。   The controller unit 12 includes a CPU 21, a memory 22, and operation keys 23. In the “measurement mode” and “sampling mode” described later, the CPU 21 gives a drive signal S2 to the LD drive circuit 16 to cause the laser diode 15 to perform a light projection operation, and is set by, for example, an input operation with the operation key 23. The CCD driving circuit 20 is driven at the set sampling period T to execute a light receiving operation for transferring the accumulated charge of each pixel of the CCD linear sensor 19, and the voltage signal S1 from the CCD driving circuit 20 is A / D converted. receive.

以上の構成により、センサヘッド部11では、CCDリニアセンサ19の受光面19a上における拡散反射光L2の受光位置P(本発明の「受光面での受光位置」に相当)が、形状測定装置13(投光レンズ17)からワークWの照射スポットQまでの距離によって移動する。そして、CPU21は、CCDリニアセンサ19の受光面19a上における拡散反射光L2の受光位置Pを、電圧信号S1を解析して検出することによりワークWの高さ変位を測定することできる。   With the above configuration, in the sensor head unit 11, the light receiving position P of the diffusely reflected light L2 on the light receiving surface 19a of the CCD linear sensor 19 (corresponding to the “light receiving position on the light receiving surface” in the present invention) is the shape measuring device 13. It moves according to the distance from the (projecting lens 17) to the irradiation spot Q of the workpiece W. The CPU 21 can measure the height displacement of the workpiece W by analyzing the voltage signal S1 and detecting the light receiving position P of the diffuse reflected light L2 on the light receiving surface 19a of the CCD linear sensor 19.

より具体的には、CPU21は、CCD駆動回路20からの電圧信号S1を受けて、CCDリニアセンサ19の受光面19a上の全画素から最大受光量の画素を検出しメモリ22の測定データ記憶領域に時系列で格納する。このとき、CPU21は本発明の「測定部」として機能する。   More specifically, the CPU 21 receives the voltage signal S <b> 1 from the CCD drive circuit 20, detects a pixel having the maximum light reception amount from all the pixels on the light receiving surface 19 a of the CCD linear sensor 19, and stores a measurement data storage area in the memory 22. Store in chronological order. At this time, the CPU 21 functions as a “measurement unit” of the present invention.

(2)XYステージ
XYステージ14は、ワークWが載置され水平面上においてXYの直交2方向に移動可能とされている。このXYステージ14は、CPU21からの制御信号S3を受けて、この制御信号S3に応じた方向及び速度で移動する。
そして、形状測定システム10は、投光動作をさせ、XYステージ14を例えばX方向(図1で白抜き矢印方向)に移動させつつ、上記設定サンプリング周期T毎に受光動作を実行させることで、ワークWのX方向における断面形状(高さ変位)を測定することができる。
(2) XY stage The XY stage 14 is configured to be movable in two directions orthogonal to XY on the horizontal plane on which the workpiece W is placed. The XY stage 14 receives a control signal S3 from the CPU 21 and moves at a direction and speed according to the control signal S3.
Then, the shape measurement system 10 performs a light projecting operation, and performs a light receiving operation at each set sampling period T while moving the XY stage 14 in, for example, the X direction (the direction of the white arrow in FIG. 1). The cross-sectional shape (height displacement) in the X direction of the workpiece W can be measured.

なお、本実施形態では、例えば照射スポットQをワークW表面で走査する過程で、何回の距離測定(後述する図3のS8)を行ってワークWの形状測定を行うかを設定するためのその測定回数や各距離測定の測定ピッチ間隔を操作キー23で設定できるようになっている。そして、CPU21は、設定された上記測定回数や測定ピッチ間隔に連動して、これらに適した設定サンプリング周期や、XYステージ14の移動速度を条件設定するようになっている。   In the present embodiment, for example, in the process of scanning the irradiation spot Q on the surface of the workpiece W, the number of distance measurements (S8 in FIG. 3 described later) is performed to set the shape measurement of the workpiece W. The number of measurements and the measurement pitch interval for each distance measurement can be set with the operation keys 23. Then, the CPU 21 sets the conditions for the set sampling cycle and the moving speed of the XY stage 14 suitable for the above-mentioned measurement times and measurement pitch intervals.

具体的には、例えば所望の測定回数及びワークWの長さが設定された場合、現在設定されているXYステージ14の移動速度(第1速度)から、所望の測定回数でワークWの全長ついて距離測定を行えるよう設定サンプリング周期Tを自動で変更する。或いは、現在の設定サンプリング周期Tから、所望の測定回数でワークWの全長ついて距離測定を行えるようXYステージ14の移動速度(第1速度)を自動で変更する。   Specifically, for example, when the desired number of measurements and the length of the workpiece W are set, the total length of the workpiece W is determined by the desired number of measurements from the currently set moving speed (first speed) of the XY stage 14. The set sampling period T is automatically changed so that distance measurement can be performed. Alternatively, the moving speed (first speed) of the XY stage 14 is automatically changed so that the distance measurement can be performed for the entire length of the workpiece W with a desired number of measurements from the current set sampling period T.

また、後述する投光量制御時において何周期分の最大受光量データの平均値に基づき実行するかについても操作キー23で設定できるようになっている。この場合、CPU21は、設定された周期回数に応じて設定サンプリング周期を変更(例えば周期回数が多い場合は、サンプリング周期を短くするなど)や、XYステージ14の移動速度を変更(例えば周期回数が多い場合は、移動速度を遅くするなど)する。   In addition, it is possible to set with the operation key 23 how many cycles of the maximum received light amount data are to be executed based on the average value of the maximum received light amount data at the time of light emission amount control described later. In this case, the CPU 21 changes the set sampling period according to the set number of periods (for example, shortens the sampling period when the number of periods is large) or changes the moving speed of the XY stage 14 (for example, the number of periods is If there are many, slow down the moving speed, etc.).

2.サンプリングモード及び測定モード
さて、CCDリニアセンサ19の受光面19a上における拡散反射光L2の受光位置P、より具体的には、CCDリニアセンサ19の受光面19a上の全画素から最大受光量の画素を高い精度で検出するには、拡散反射光L2の受光面19aでの受光量レベルを適切な一定の目標レベルTh1に保つ必要がある。その理由は、受光面19aでの受光量レベルが低いと最大受光量の画素と他の画素との受光量差が小さくなり、その分だけ最大受光量の画素を特定しづらくなる。一方、受光面19aでの受光量レベルを高くするにしてもCCDリニアセンサ19が飽和するレベルまで高くするわけにはいかないからである。
2. Sampling Mode and Measurement Mode Now, the light receiving position P of the diffusely reflected light L2 on the light receiving surface 19a of the CCD linear sensor 19, more specifically, the pixels having the maximum light receiving amount from all the pixels on the light receiving surface 19a of the CCD linear sensor 19 Is detected with high accuracy, the received light level of the diffusely reflected light L2 on the light receiving surface 19a must be kept at an appropriate constant target level Th1. The reason is that if the light receiving level at the light receiving surface 19a is low, the difference in the received light amount between the pixel having the maximum light receiving amount and the other pixels becomes small, and it becomes difficult to specify the pixel having the maximum light receiving amount accordingly. On the other hand, even if the amount of light received at the light receiving surface 19a is increased, it cannot be increased to a level at which the CCD linear sensor 19 is saturated.

そこで、CPU21は、測定モード実行時において各設定サンプリング周期T毎に、受光面19aでの受光量レベルを上記目標レベルTh1に保つようにフィードバック制御(いわゆるAPC(Automatic Power Control)制御)を実行する。具体的には、CPU21は、CCD駆動回路20からの電圧信号S1に基づき最大受光量の画素の受光量を監視し、この受光量(本実施形態では一設定サンプリングタイミング時以前の4周期分の最大受光量平均値)と上記目標レベルTh1との差を相殺する増減方向にレーザダイオード15の投光量を制御すべく駆動信号S2をLD駆動回路16に与える。このとき、CPU21は、本発明の「投光フィードバック制御部」として機能する。   Therefore, the CPU 21 executes feedback control (so-called APC (Automatic Power Control) control) so as to keep the received light amount level on the light receiving surface 19a at the target level Th1 at each set sampling period T when the measurement mode is executed. . Specifically, the CPU 21 monitors the received light amount of the pixel having the maximum received light amount based on the voltage signal S1 from the CCD drive circuit 20, and this received light amount (in this embodiment, four cycles before the set sampling timing). A drive signal S2 is applied to the LD drive circuit 16 in order to control the amount of light emitted from the laser diode 15 in an increasing / decreasing direction that cancels out the difference between the maximum received light amount average value) and the target level Th1. At this time, the CPU 21 functions as the “light projection feedback control unit” of the present invention.

しかしながら、ワークWのなかには例えば表面光沢や色が一様でないものもあり、このようなワークWの形状測定を行う場合、XYステージ14を一定速度で移動させて照射スポットQを移動させる走査過程で、受光面19aでの受光量レベルが極端に変化することがある。例えば、表面が黒色部分と白色部分を有するワークWの場合には、その黒色部分と白色部分との境で受光面19aでの受光量レベルが大きく変化する。このため、XYステージ14を一定速度で移動させつつ上記設定サンプリング周期Tで繰り返し受光動作を行う構成では、CPU21は、上述のフィードバック制御が追いつかず受光面19aでの受光量レベルが目標レベルTh1に達しない低いレベルでの電圧信号S1に基づき受光面19aでの受光位置Pを検出することになり、その検出精度(感度)が低下し、ひいては形状測定全体の精度が低下してしまうおそれがある。   However, some of the workpieces W have, for example, surface gloss and color that are not uniform. When measuring the shape of the workpiece W, for example, in the scanning process of moving the irradiation spot Q by moving the XY stage 14 at a constant speed. The amount of light received at the light receiving surface 19a may change extremely. For example, in the case of a workpiece W having a black portion and a white portion on the surface, the received light amount level at the light receiving surface 19a greatly changes at the boundary between the black portion and the white portion. For this reason, in the configuration in which the XY stage 14 is moved at a constant speed and the light receiving operation is repeatedly performed at the set sampling period T, the CPU 21 cannot catch up with the above-described feedback control, and the light receiving level at the light receiving surface 19a reaches the target level Th1. The light receiving position P on the light receiving surface 19a is detected on the basis of the voltage signal S1 at a low level that does not reach, so that the detection accuracy (sensitivity) is lowered, and as a result, the accuracy of the entire shape measurement may be lowered. .

そこで、本実施形態では、コントローラ部12は、操作キー23の操作によって「サンプリングモード」と「測定モード」とを選択設定できるようになっている。なお、以下では、XYステージ14をX方向に駆動させた場合の形状測定について説明するが、Y方向に駆動させた場合の形状測定も同様の処理であり、説明を割愛する。   Therefore, in the present embodiment, the controller unit 12 can select and set the “sampling mode” and the “measurement mode” by operating the operation keys 23. In the following, the shape measurement when the XY stage 14 is driven in the X direction will be described. However, the shape measurement when the XY stage 14 is driven in the Y direction is the same process, and the description is omitted.

(1)サンプリングモード
ユーザが操作キー23で「サンプリングモード」に設定して所定の確定操作をすると、CPU21は、例えばX方向に一定の第1速度V1で移動させることを指示する制御信号S3をXYステージ14に与えて駆動させる。それとともに、CPU21は、投光動作を実行させつつ上記設定サンプリング周期T毎に受光動作を繰り返し実行させ、各サンプリングタイミングでの最大受光量の画素の受光量Dn(以下、単に「最大受光量Dn」ということがある)を時系列でメモリ22の受光量データ記憶領域に記憶する。
(1) Sampling mode When the user sets the “sampling mode” with the operation key 23 and performs a predetermined confirming operation, the CPU 21 sends a control signal S3 instructing to move at a constant first speed V1, for example, in the X direction. The XY stage 14 is given and driven. At the same time, the CPU 21 repeatedly executes the light receiving operation for each set sampling period T while executing the light projecting operation, and the light receiving amount Dn of the pixel having the maximum light receiving amount at each sampling timing (hereinafter simply referred to as “the maximum light receiving amount Dn”). Is stored in the received light amount data storage area of the memory 22 in time series.

そして、この動作を、ワークWのX方向の全長に亘って実行する。このとき、CPU21は上述のフィードバック制御を実行せず、レーザダイオード15を一定レベルで投光させたときの受光面19aでの最大受光量Dnを時系列にサンプリングするのである。なお、この時系列の最大受光量の画素の受光量Dnデータが本発明の「受光量変化情報」に相当する。   And this operation | movement is performed over the full length of the X direction of the workpiece | work W. FIG. At this time, the CPU 21 does not execute the above-described feedback control, and samples the maximum received light amount Dn on the light receiving surface 19a when the laser diode 15 is projected at a constant level in time series. Note that the received light amount Dn data of the pixel having the maximum received light amount in time series corresponds to the “received light amount change information” of the present invention.

図2上段は、ワークWのX方向長を基準として、各設定サンプリング周期T毎における、ワークW上の照射スポットQのX方向の移動位置、及び、最大受光量Dnの推移を示したタイミングチャートである。なお、同図中のワークW表面の白抜き部分は表面が白色部分を示し、斜線部分は表面が黒色部分を示す。   The upper part of FIG. 2 is a timing chart showing the movement position of the irradiation spot Q on the workpiece W in the X direction and the transition of the maximum received light amount Dn for each set sampling period T with reference to the length of the workpiece W in the X direction. It is. In addition, the white part of the surface of the workpiece | work W in the same figure shows a white part, and a shaded part shows a black part.

CPU21は、メモリ22の受光量データ記憶領域に記憶された時系列の最大受光量Dnデータを読み出して例えば各サンプリングタイミング間で所定レベルTh2以上の受光量変化があったサンプリングタイミングを抽出する。同図上段では、照射スポットQの移動位置AB間,CD間で最大受光量Dnが所定レベルTh2以上大きく変化している。この所定レベルTh2は、上述のフィードバック制御が実行される最大受光量(平均値)の変化量であり、この所定レベルTh2よりも小さい変化量の場合には測定精度に実質的に影響はなくフィードバック制御は実行されない。   The CPU 21 reads the time-series maximum received light amount Dn data stored in the received light amount data storage area of the memory 22 and extracts, for example, a sampling timing at which a received light amount change of a predetermined level Th2 or more has occurred between each sampling timing. In the upper part of the figure, the maximum received light amount Dn greatly changes between the movement positions AB of the irradiation spots Q and between the CDs by a predetermined level Th2 or more. The predetermined level Th2 is a change amount of the maximum received light amount (average value) for which the above-described feedback control is executed. In the case of a change amount smaller than the predetermined level Th2, there is substantially no influence on the measurement accuracy and feedback. Control is not performed.

そして、CPU21は、上記所定レベルTh2以上の受光量変化があった照射スポットQの移動位置AB間で照射スポットQが移動する間、及び、所定レベルTh2以上の受光量変化があった照射スポットQの移動位置CD間で照射スポットQが移動する間は、XYステージ14の移動速度を、第1速度V1よりも遅い第2速度V2(<V1)に一時的に切り替えるための制御信号S3を生成してメモリ22に記憶しておく。なお、CPU21は、測定モード時において本発明の「速度制御部」、「制御信号出力部」として機能する。   Then, the CPU 21 moves the irradiation spot Q between the movement positions AB of the irradiation spot Q where the received light amount change is equal to or higher than the predetermined level Th2, and the irradiation spot Q where the received light amount change is higher than the predetermined level Th2. While the irradiation spot Q moves between the movement positions CD, the control signal S3 for temporarily switching the movement speed of the XY stage 14 to the second speed V2 (<V1) slower than the first speed V1 is generated. And stored in the memory 22. The CPU 21 functions as a “speed control unit” and a “control signal output unit” of the present invention in the measurement mode.

(2)測定モード
サンプリングモードの実行が終わった後、ユーザが操作キー23で「測定モード」に設定して所定の確定操作をすると、CPU21は、図3のフローチャートに示す制御を実行する。CPU21は、まずS1でサンプリングカウンタN(上記測定回数)を「1」に初期化する、次に、CPU21は、S2で投光動作を開始し、S3でメモリ22に記憶された制御信号S3をXYステージ14に与えて駆動させつつ、S4で上記設定サンプリング周期T毎のサンプリングタイミングを待つ。そして、CPU21は、そのサンプリングタイミングが到来したときに(S4で「Y」)、受光動作を実行させてCCD駆動回路20からの電圧信号S1を取り込む(S5)。
(2) Measurement mode After the execution of the sampling mode, when the user sets the “measurement mode” with the operation key 23 and performs a predetermined confirmation operation, the CPU 21 executes the control shown in the flowchart of FIG. The CPU 21 first initializes the sampling counter N (the above-mentioned number of measurements) to “1” in S1, and then the CPU 21 starts the light projection operation in S2, and receives the control signal S3 stored in the memory 22 in S3. While being supplied to the XY stage 14 and being driven, it waits for the sampling timing for each set sampling period T in S4. When the sampling timing arrives (“Y” in S4), the CPU 21 executes a light receiving operation and takes in the voltage signal S1 from the CCD drive circuit 20 (S5).

そして、CPU21は、S6で、この電圧信号S1の解析により最大受光量Dnを検出しメモリ22に各サンプリングタイミングに対応付けて記憶し、たとえば現在のサンプリングタイミング以前の複数周期分(本実施形態では4周期分)の最大受光量(Dn−3,Dn−2,Dn−1,Dn)の平均値Kを演算する。次に、CPU21は、S7でこの平均値Kと目標レベルTh1との差が、所定レベルTh2未満かどうかを判定する。所定レベルTh2未満であれば(S7で「Y」)、CPU21は、現在のサンプリングタイミングで取り込んだ電圧信号S1の解析により受光面19aでの受光位置Pを検出し、このときのXYステージ14の移動位置と対応付けてメモリ22の測定データ記憶領域に記憶する(S8)。その後、CPU21は、S9でサンプリングカウンタNに1を加えて次のサンプリングタイミングを待つ待機状態となる。   In S6, the CPU 21 detects the maximum received light amount Dn by analyzing the voltage signal S1 and stores it in the memory 22 in association with each sampling timing. For example, for a plurality of cycles before the current sampling timing (in this embodiment, An average value K of the maximum received light amounts (Dn-3, Dn-2, Dn-1, Dn) for 4 cycles) is calculated. Next, in S7, the CPU 21 determines whether or not the difference between the average value K and the target level Th1 is less than a predetermined level Th2. If it is less than the predetermined level Th2 (“Y” in S7), the CPU 21 detects the light receiving position P on the light receiving surface 19a by analyzing the voltage signal S1 captured at the current sampling timing, and the XY stage 14 at this time The data is stored in the measurement data storage area of the memory 22 in association with the movement position (S8). Thereafter, the CPU 21 enters a standby state in which S1 is added to the sampling counter N in S9 and the next sampling timing is waited.

一方、CPU21は、平均値Kと目標レベルTh1との差が所定レベルTh2以上であると判定した場合には(S7で「N」)、S10でこの平均値Kの元なる4周期分の最大受光量(Dn−3,Dn−2,Dn−1,Dn)データをメモリ22から破棄し、平均値Kと目標レベルTh1との差を相殺するように上記フィードバック制御による投光量調整を実行する(S11)。   On the other hand, if the CPU 21 determines that the difference between the average value K and the target level Th1 is greater than or equal to the predetermined level Th2 (“N” in S7), the maximum of the four cycles from which the average value K is based in S10 The received light amount (Dn-3, Dn-2, Dn-1, Dn) data is discarded from the memory 22, and the light emission amount adjustment by the feedback control is executed so as to cancel the difference between the average value K and the target level Th1. (S11).

次いで、CPU21は、S12で複数周期分(本実施形態では3周期分)の受光動作による最大受光量データを検出しメモリ22に記憶し、S4に戻り次の次のサンプリングタイミングを待つ待機状態となる。そして、CPU21は、当該次のサンプリングタイミングが到来したときに(S4で「Y」)、S5〜S7の処理を実行する(S6では上記S12での3周期分の最大受光量と現在の最大受光量の平均値Kが演算される)。このとき、上記S11で平均値Kと目標レベルTh1との差を相殺するようにフィードバック制御が実行され投光量調整が行わているので、S7で平均値Kと目標レベルTh1との差が所定レベルTh2未満と判定され(S7で「Y」)、S8での距離測定が実行される。   Next, in S12, the CPU 21 detects the maximum received light amount data by the light receiving operation for a plurality of periods (three periods in the present embodiment), stores it in the memory 22, returns to S4, and waits for the next sampling timing. Become. Then, when the next sampling timing arrives (“Y” in S4), the CPU 21 executes the processing of S5 to S7 (in S6, the maximum light reception amount for the three cycles in S12 and the current maximum light reception). The average value K of the quantity is calculated). At this time, the feedback control is executed so as to cancel the difference between the average value K and the target level Th1 in S11, and the light emission amount adjustment is performed, so in S7, the difference between the average value K and the target level Th1 is a predetermined level. It is determined that it is less than Th2 (“Y” in S7), and the distance measurement in S8 is executed.

3.本実施形態の作用効果
図2下段は、ワークWのX方向長を基準として、各設定サンプリング周期T毎における、ワークW上の照射スポットQのX方向の移動位置、及び、XYステージ14の移動速度を示したタイミングチャートである。なお、同図中のワークW表面の白抜き部分は表面が白色部分を示し、斜線部分は表面が黒色部分を示す。
3. 2 shows the movement position of the irradiation spot Q on the workpiece W in the X direction and the movement of the XY stage 14 at each set sampling period T with reference to the length of the workpiece W in the X direction. It is a timing chart which showed speed. In addition, the white part of the surface of the workpiece | work W in the same figure shows a white part, and a shaded part shows a black part.

CPU21により上記で説明した測定モードが実行されると、同図下段に示すようにXYステージ14は第1速度で駆動する。照射スポットQがワークWの白色部分に位置している間は、CPU21によって平均値Kと目標レベルTh1との差が所定レベルTh2未満と判定される(S7で「Y」)。すなわち、受光面19aでの受光量変化はほとんどなくほぼ目標レベルTh1に保たれており、フィードバック制御は実行されず照射スポットQの各移動位置において受光位置Pの安定的な検出を行うことができ、設定サンプリング周期T毎にS8の距離測定が実行される。   When the measurement mode described above is executed by the CPU 21, the XY stage 14 is driven at the first speed as shown in the lower part of FIG. While the irradiation spot Q is located in the white portion of the workpiece W, the CPU 21 determines that the difference between the average value K and the target level Th1 is less than the predetermined level Th2 (“Y” in S7). That is, there is almost no change in the amount of received light on the light receiving surface 19a, and the target level Th1 is maintained substantially. Feedback control is not executed, and the light receiving position P can be stably detected at each movement position of the irradiation spot Q. The distance measurement of S8 is executed every set sampling period T.

その後、照射スポットQがワークW上の移動位置Aに差し掛かったときに、XYステージ14の移動速度が第1速度よりも遅い第2速度に切り替えられる。そして、照射スポットQが移動位置Aから移動位置Bに移動する間は、この第2速度で照射スポットQが移動することになる。そして、この間で照射スポットQがワークW上の白色部分から黒色部分へと移動する際に、CPU21によって平均値Kと目標レベルTh1との差が所定レベルTh2以上と判定され(S7で「N」)、フィードバック制御による投光量調整が行われる。そして、この投光量調整後、新たに4周期分の最大受光量データを取得後に距離測定(S8)が実行される。   Thereafter, when the irradiation spot Q reaches the movement position A on the workpiece W, the movement speed of the XY stage 14 is switched to a second speed that is slower than the first speed. While the irradiation spot Q moves from the movement position A to the movement position B, the irradiation spot Q moves at this second speed. During this time, when the irradiation spot Q moves from the white portion on the workpiece W to the black portion, the CPU 21 determines that the difference between the average value K and the target level Th1 is equal to or greater than the predetermined level Th2 (“N” in S7). ), The light emission amount is adjusted by feedback control. Then, after this light projection amount adjustment, the distance measurement (S8) is executed after newly acquiring the maximum received light amount data for four cycles.

ここで、本実施形態では、受光面19aでの受光量が大きく変化したときに取得した最大受光量データは破棄し、投光量制御によってある程度安定したときの最大受光量データに基づき受光位置Pを検出し距離測定を行う。このため、精度の高い距離測定に基づくワークWの形状測定が可能となる。しかも、照射スポットQは、受光面19aでの受光量が大きく変化し得る移動位置A,B間では、受光面19aでの受光量が小さい部分を移動している間に比べて移動速度が遅いため、上記のような処理をしても測定ピッチにそれほど影響を与えずに済む。   Here, in the present embodiment, the maximum received light amount data acquired when the received light amount on the light receiving surface 19a changes significantly is discarded, and the light receiving position P is determined based on the maximum received light amount data when stabilized to some extent by the light projection amount control. Detect and measure distance. For this reason, the shape measurement of the workpiece | work W based on distance measurement with high precision is attained. Moreover, the movement speed of the irradiation spot Q is slower between the movement positions A and B where the amount of light received on the light receiving surface 19a can change greatly than when moving in a portion where the amount of light received on the light receiving surface 19a is small. Therefore, even if the above processing is performed, the measurement pitch is not so much affected.

なお、受光面19aでの受光量が大きく変化したときに取得した最大受光量データは破棄せずにこれに基づく受光位置PもワークWの形状測定に利用する構成であっても、単に一定速度で照射スポットQを移動させる従来構成に比べれば精度の高い形状測定が行える。しかし、本実施形態では、受光面19aでの受光量が大きく変化したときに取得した最大受光量データに基づく受光位置Pを利用しないことで、より高精度の形状測定を行うようにしている。   Note that the maximum received light amount data acquired when the amount of light received at the light receiving surface 19a changes greatly is not discarded, and the light receiving position P based on the maximum received light amount data is also used for measuring the shape of the workpiece W. Compared to the conventional configuration in which the irradiation spot Q is moved, the shape can be measured with high accuracy. However, in the present embodiment, more accurate shape measurement is performed by not using the light reception position P based on the maximum light reception amount data acquired when the light reception amount on the light receiving surface 19a changes greatly.

また、照射スポットQがワークW上の移動位置Cに差し掛かったときにも、XYステージ14の移動速度が第1速度よりも遅い第2速度に切り替えられ、照射スポットQが移動位置Cから移動位置Dに移動する間は、この第2速度で照射スポットQが移動することになる。   Also, when the irradiation spot Q reaches the movement position C on the workpiece W, the movement speed of the XY stage 14 is switched to the second speed slower than the first speed, and the irradiation spot Q moves from the movement position C to the movement position. While moving to D, the irradiation spot Q moves at this second speed.

<実施形態2>
実施形態2(請求項2,4,8の発明に対応する)は、上記実施形態1に対して測定モードでの制御内容が一部異なり、その他の点は前記実施形態1と同様である。従って、実施形態1と同一符号を付して重複する説明を省略し、異なるところのみを次に説明する。
<Embodiment 2>
The second embodiment (corresponding to the inventions of claims 2, 4, and 8) is partially different from the first embodiment in the control contents in the measurement mode, and the other points are the same as the first embodiment. Therefore, the same reference numerals as those in the first embodiment are given and the redundant description is omitted, and only different points will be described next.

上記実施形態1では、サンプリングモードの実行によって得た時系列の最大受光量Dnに基づきXYステージ14の移動速度を変更する構成であった。これに対して、本実施形態では、サンプリングモードの実行によって得た時系列の最大受光量Dnに基づきレーザダイオード15の投光量をフォワード制御する構成である。   In the first embodiment, the moving speed of the XY stage 14 is changed based on the time-series maximum received light amount Dn obtained by executing the sampling mode. In contrast, in the present embodiment, the light projection amount of the laser diode 15 is forward-controlled based on the time-series maximum received light amount Dn obtained by executing the sampling mode.

即ち、CPU21は、測定モード時において、XYステージ14を一定速度(第1速度)で移動させる。そして、CPU21は、拡散反射光L2の反射光量が大きく変化し得る照射スポットQの移動位置AB間,CD間で、そのときの受光面19aでの最大受光量に基づくフィードバック制御ではなく、予めサンプリングモードで取得した受光量変化情報に基づき受光面19aでの最大受光量が低下しないようなフォワード制御を実行するのである。例えば、上記移動位置AD間では他の位置での第1レベルによりも高い第2レベルに変更する。   That is, the CPU 21 moves the XY stage 14 at a constant speed (first speed) in the measurement mode. The CPU 21 does not perform feedback control based on the maximum amount of light received at the light receiving surface 19a at that time between the movement positions AB and CD of the irradiation spot Q where the amount of reflected light of the diffusely reflected light L2 can change greatly. Based on the received light amount change information acquired in the mode, forward control is performed so that the maximum received light amount on the light receiving surface 19a does not decrease. For example, between the moving positions AD, the second level is changed to be higher than the first level at other positions.

フォワード制御によってレーザダイオード15は適宜な投光量に変更されるため、図3のS11でのフィードバック制御は実行されない(S7で「Y」)。フィードバック制御で投光量調整を行う場合に比べて、フォワード制御で投光量調整を行う場合には追従遅れが少なく、受光面19aでの最大受光量をほぼ一定の目標レベルTh1に保持された状態で照射スポットQの各移動位置での距離測定(S8)が実行される。これにより、ワークWの形状測定を精度よく行うことができる。   Since the laser diode 15 is changed to an appropriate light projection amount by the forward control, the feedback control in S11 of FIG. 3 is not executed (“Y” in S7). Compared to the case where the light emission amount is adjusted by feedback control, the case where the light amount adjustment is performed by forward control has less follow-up delay, and the maximum light reception amount at the light receiving surface 19a is held at a substantially constant target level Th1. Distance measurement (S8) at each movement position of the irradiation spot Q is executed. Thereby, the shape measurement of the workpiece | work W can be performed accurately.

<実施形態3>
図4は実施形態3(請求項5,6,9,10の発明に対応する)を示す。本実施形態の形状測定システム30は、実施形態1で説明したセンサヘッド部11及びコントローラ部12に加えて、反射型の光電センサ31を備えている。この光電センサ31は、ワークWに対するセンサヘッド部11の移動方向の前方に配され、センサヘッド部11による照射スポットQの手前の位置での反射光量をサンプリングするものである。具体的には、光電センサ31は、投光素子としてのレーザダイオード32と、このレーザダイオード32から出射されワークW表面で反射した反射光を受光する受光素子33とを備えている。そして、光電センサ31は、受光素子33での受光量に応じて受光信号S4を例えば上記設定サンプリング周期に同期したタイミングで順次CPU21に与える。なお、光電センサ31の受光素子は、実施形態1のセンサヘッド部11と同様に、最大受光画素を特定できるCCDリニアセンサであってもよい。
<Embodiment 3>
FIG. 4 shows a third embodiment (corresponding to the inventions of claims 5, 6, 9 and 10). The shape measurement system 30 of the present embodiment includes a reflective photoelectric sensor 31 in addition to the sensor head unit 11 and the controller unit 12 described in the first embodiment. The photoelectric sensor 31 is arranged in front of the movement direction of the sensor head unit 11 with respect to the workpiece W, and samples the amount of reflected light at a position before the irradiation spot Q by the sensor head unit 11. Specifically, the photoelectric sensor 31 includes a laser diode 32 as a light projecting element, and a light receiving element 33 that receives reflected light emitted from the laser diode 32 and reflected by the surface of the workpiece W. Then, the photoelectric sensor 31 sequentially gives the light reception signal S4 to the CPU 21 at a timing synchronized with the set sampling cycle, for example, according to the amount of light received by the light receiving element 33. The light receiving element of the photoelectric sensor 31 may be a CCD linear sensor that can specify the maximum light receiving pixel, as in the sensor head unit 11 of the first embodiment.

そして、本実施形態では、上述したサンプリングモードの実行を要せずに、測定モードの実行時において、光電センサ31にて先取り的に取得される受光量データに基づきXYステージ14の速度制御やレーザダイオード15の投光量制御を行う。   In the present embodiment, the speed control of the XY stage 14 and the laser are performed based on the received light amount data preliminarily acquired by the photoelectric sensor 31 when the measurement mode is executed without executing the sampling mode described above. The amount of light emitted from the diode 15 is controlled.

具体的には、実施形態1に対して、CPU21は、サンプリングモードによって取得された最大受光量データではなく、光電センサ31にて少し前のタイミングで検出される受光量変化が所定レベルTh2以上であると判定した場合、当該タイミングだけ遅れたタイミングでXYステージ14の移動速度を第1速度V1から第2速度V2へと一時的に切り替えるのである。   Specifically, in contrast to the first embodiment, the CPU 21 does not use the maximum received light amount data acquired in the sampling mode, but the received light amount change detected at a slightly previous timing by the photoelectric sensor 31 is a predetermined level Th2 or more. If it is determined that there is, the moving speed of the XY stage 14 is temporarily switched from the first speed V1 to the second speed V2 at a timing delayed by that timing.

また、実施形態2に対しては、CPU21は、サンプリングモードによって取得された最大受光量データではなく、光電センサ31にて少し前のタイミングで検出される受光量変化が所定レベルTh2以上であると判定した場合、当該タイミングだけ遅れたタイミングでレーザダイオード15を第1レベルから第2レベルに変更する。   For the second embodiment, the CPU 21 determines that the change in the amount of received light detected at a slightly previous timing by the photoelectric sensor 31 is not less than the predetermined level Th2, not the maximum amount of received light data acquired in the sampling mode. If determined, the laser diode 15 is changed from the first level to the second level at a timing delayed by the timing.

このような構成であれば、実施形態1,2のようなサンプリングモードを要することなく、測定モード時において光電センサ31で先取り的に取得される受光量変化情報に基づきXYステージ14の速度制御やレーザダイオード15の投光量制御を行うことができる。   With such a configuration, the speed control of the XY stage 14 can be performed based on the received light amount change information acquired in advance by the photoelectric sensor 31 in the measurement mode without requiring the sampling mode as in the first and second embodiments. The amount of light emitted from the laser diode 15 can be controlled.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記各実施形態では、位置検出部は、位置検出素子としてCCDリニアセンサ19を用いたリニアイメージセンサ方式のものであったが、これに限らず、位置検出素子としてPSD(Position Sensitive Detector)をPSD方式のものであってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In each of the above embodiments, the position detection unit is of a linear image sensor type using the CCD linear sensor 19 as a position detection element. However, the position detection unit is not limited to this, and a PSD (Position Sensitive Detector) is used as the position detection element. ) May be of the PSD system.

(2)上記各実施形態では、センサヘッド部11は、ワークWから拡散反射光を受光する、いわゆる拡散反射型のものであったが、これに限らず、例えばワークWが正反射表面を有するものであるときは、レーザダイオード15からのレーザ光L1をワークWに対して斜め上方から照射し、その正反射光を受光する、いわゆる正反射型のものであってもよい。   (2) In each of the above embodiments, the sensor head unit 11 is a so-called diffuse reflection type that receives diffusely reflected light from the workpiece W. However, the present invention is not limited to this, and for example, the workpiece W has a regular reflection surface. If it is, the so-called specular reflection type that irradiates the workpiece W with the laser light L1 from the laser diode 15 obliquely from above and receives the specular reflection light may be used.

(3)上記実施形態1では、受光量変化が大きく変更する照射スポットQの移動位置においてXYステージ14をその受光量レベルにかかわらず一律の第2速度V2に変更する構成であったが、これに限らず、最大受光量の変化量に応じた(比例した)分だけ速度を低下させる構成であってもよい。   (3) In the first embodiment, the configuration is such that the XY stage 14 is changed to the uniform second speed V2 regardless of the level of the received light amount at the movement position of the irradiation spot Q where the change in the received light amount changes greatly. However, the speed may be reduced by an amount corresponding to (proportional to) the amount of change in the maximum amount of received light.

(4)上記実施形態2では、受光量変化が大きく変更する照射スポットQの移動位置においてレーザダイオード15の投光量を受光量レベルにかかわらず一律の第2レベルに変更する構成であったが、これに限らず、最大受光量の変化量に応じた(比例した)分だけ投光量を変更する構成であってもよい。   (4) In the second embodiment, the light projection amount of the laser diode 15 is changed to the uniform second level regardless of the received light amount level at the movement position of the irradiation spot Q where the change in the received light amount changes greatly. However, the present invention is not limited to this, and the configuration may be such that the light projection amount is changed by an amount corresponding to (proportional to) the change amount of the maximum light reception amount.

(5)上記実施形態では、「測定範囲」は、ワークWのX方向の全長に亘る範囲であったが、これに限らず、ワークW表面の一部の範囲であっても勿論よい。   (5) In the above-described embodiment, the “measurement range” is a range extending over the entire length of the workpiece W in the X direction, but is not limited to this, and may be a partial range of the surface of the workpiece W.

本発明の実施形態1に係る形状測定システムの全体概要図1 is an overall schematic diagram of a shape measurement system according to Embodiment 1 of the present invention. 各設定サンプリング周期T毎の照射スポットQの移動位置や最大受光量Dn等の推移を示したタイミングチャートTiming chart showing the transition of the movement position of the irradiation spot Q, the maximum received light amount Dn, etc. for each set sampling period T 測定モードの制御内容を示すフローチャートFlow chart showing control contents in measurement mode 実施形態3に係る形状測定システムの全体概要図Overall schematic diagram of shape measurement system according to Embodiment 3

符号の説明Explanation of symbols

10,30…形状測定システム
13…形状測定装置
14…XYステージ(移動機構)
15…レーザダイオード(投光部)
16…LD駆動回路(投光部)
17…投光レンズ(投光部)
18…受光レンズ(位置検出部)
19…CCDリニアセンサ(位置検出部)
19a…受光面
20…CCD駆動回路(位置検出部)
21…CPU(投光フィードバック制御部、測定部、速度制御部、制御信号出力部)
22…メモリ
31…光電センサ
P…受光位置(受光面での受光位置)
Q…照射スポット
S1…電圧信号(位置信号)
S3…制御信号
W…ワーク(測定対象物)
DESCRIPTION OF SYMBOLS 10,30 ... Shape measuring system 13 ... Shape measuring apparatus 14 ... XY stage (movement mechanism)
15 ... Laser diode (light emitting part)
16 ... LD drive circuit (light emitting part)
17 ... Projection lens (projection unit)
18. Light receiving lens (position detection unit)
19 ... CCD linear sensor (position detector)
19a ... Light receiving surface 20 ... CCD drive circuit (position detection unit)
21 ... CPU (projection feedback control unit, measurement unit, speed control unit, control signal output unit)
22 ... Memory 31 ... Photoelectric sensor P ... Light receiving position (light receiving position on the light receiving surface)
Q ... Irradiation spot S1 ... Voltage signal (position signal)
S3 ... Control signal W ... Workpiece (object to be measured)

Claims (10)

投光部からの光を測定対象物に照射し、その反射光を前記測定対象物までの距離に応じて変化する受光面上の位置で検出可能な位置検出部に受光させ、前記測定対象物上における前記投光部からの光の照射スポットを測定範囲内で移動させつつ、各移動位置において前記位置検出部で順次検出される前記受光面での受光位置に基づき前記測定対象物の形状測定を行う形状測定方法において、
前記投光部の投光量を一定に保ちつつ前記測定対象物上における前記照射スポットを前記測定範囲内で移動させたときの前記位置検出部での受光量変化をサンプリングする第1ステップと、
前記受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行いつつ、前記第1ステップでサンプリングされた受光量変化に基づき前記照射スポットの移動速度を前記第1ステップでの移動速度に対して変更しつつ前記照射スポットを前記測定範囲内で移動させて前記形状測定を行う第2ステップとを含むことを特徴とする形状測定方法。
The measurement object is irradiated with light from the light projecting unit, and the reflected light is received by the position detection unit that can be detected at a position on the light receiving surface that changes according to the distance to the measurement object. Measuring the shape of the measurement object based on the light receiving position on the light receiving surface sequentially detected by the position detecting unit at each moving position while moving the irradiation spot of the light from the light projecting unit on the upper side In the shape measurement method for performing
A first step of sampling a change in received light amount at the position detection unit when the irradiation spot on the measurement object is moved within the measurement range while keeping a light projection amount of the light projecting unit constant;
The irradiation spot is moved based on the change in the received light amount sampled in the first step while controlling the light projection amount of the light projecting unit to feed back the received light amount on the light receiving surface to make the received light amount constant. And a second step of measuring the shape by moving the irradiation spot within the measurement range while changing the speed with respect to the moving speed in the first step.
投光部からの光を測定対象物に照射し、その反射光を前記測定対象物までの距離に応じて変化する受光面上の位置で検出可能な位置検出部に受光させ、前記測定対象物上における前記投光部からの光の照射スポットを測定範囲内で移動させて、各移動位置において前記位置検出部で順次検出される前記受光面での受光位置に基づき前記測定対象物の形状測定を行う形状測定方法において、
前記投光部の投光量を一定に保ちつつ前記測定対象物上における前記照射スポットを前記測定範囲内で移動させたときの前記位置検出部での受光量変化をサンプリングする第1ステップと、
前記第1ステップでサンプリングされた受光量変化に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量を調整しつつ前記照射スポットを前記測定範囲内で移動させて前記形状測定を行う第2ステップとを含むことを特徴とする形状測定方法。
The measurement object is irradiated with light from the light projecting unit, and the reflected light is received by the position detection unit that can be detected at a position on the light receiving surface that changes according to the distance to the measurement object. The irradiation spot of the light from the light projecting unit is moved within the measurement range, and the shape of the measurement object is measured based on the light receiving position on the light receiving surface sequentially detected by the position detecting unit at each moving position. In the shape measurement method for performing
A first step of sampling a change in received light amount at the position detection unit when the irradiation spot on the measurement object is moved within the measurement range while keeping a light projection amount of the light projecting unit constant;
The shape measurement is performed by moving the irradiation spot within the measurement range while adjusting the light projection amount of the light projecting unit in the increasing / decreasing direction that cancels the light reception amount change sampled in the first step. And a second step of performing a shape measurement method.
測定対象物に光を照射する投光部と、
前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、
前記測定対象物上における、前記投光部からの光の照射スポットを測定範囲内で移動させる移動機構と、
前記移動機構による前記照射スポットの移動過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、
前記測定部による測定動作に先立ってサンプリングされ、前記投光部の投光量を一定に保ちつつ前記移動機構を駆動して前記測定対象物上における前記照射スポットを前記測定範囲内で移動させたときの前記位置検出部での受光量変化情報が記憶されるメモリと、
前記測定部による前記測定動作時において、前記位置検出部の受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行う投光量フィードバック制御部と、
前記測定部による前記測定動作時において、前記メモリに記憶された受光量変化情報に基づき前記移動機構による移動速度を制御する速度制御部と、を備えることを特徴とする形状測定システム。
A light projecting unit for irradiating the object to be measured;
A position detecting unit that has a light receiving surface that receives reflected light from the measurement object, and that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface;
A moving mechanism for moving an irradiation spot of light from the light projecting unit on the measurement object within a measurement range;
In the process of moving the irradiation spot by the moving mechanism, a measurement unit that repeatedly takes in a position signal from the position detection unit and measures the shape of the measurement object;
Sampled prior to the measurement operation by the measurement unit, and when the irradiation spot on the measurement object is moved within the measurement range by driving the moving mechanism while keeping the light projection amount of the light projection unit constant A memory for storing received light amount change information in the position detection unit,
A light projection amount feedback control unit for performing a light projection amount control of the light projecting unit to feed back a light reception amount on a light receiving surface of the position detection unit and to make the light reception amount constant during the measurement operation by the measurement unit; ,
A shape measuring system comprising: a speed control unit that controls a moving speed of the moving mechanism based on received light amount change information stored in the memory during the measuring operation by the measuring unit.
測定対象物に光を照射する投光部と、
前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、
前記測定対象物上における、前記投光部からの光の照射スポットを測定範囲内で移動させる移動機構と、
前記移動機構による前記照射スポットの移動過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、
前記測定部による測定動作に先立ってサンプリングされ、前記投光部の投光量を一定に保ちつつ前記移動機構を駆動して前記測定対象物上における前記照射スポットを前記測定範囲内で移動させたときの前記位置検出部での受光量変化情報が記憶されるメモリと、
前記測定部による前記測定動作時において、前記メモリに記憶された受光量変化情報に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量をフォワード制御する投光量フォワード制御部と、を備えることを特徴とする形状測定システム。
A light projecting unit for irradiating the object to be measured;
A position detecting unit that has a light receiving surface that receives reflected light from the measurement object, and that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface;
A moving mechanism for moving an irradiation spot of light from the light projecting unit on the measurement object within a measurement range;
In the process of moving the irradiation spot by the moving mechanism, a measurement unit that repeatedly takes in a position signal from the position detection unit and measures the shape of the measurement object;
Sampled prior to the measurement operation by the measurement unit, and when the irradiation spot on the measurement object is moved within the measurement range by driving the moving mechanism while keeping the light projection amount of the light projection unit constant A memory for storing received light amount change information in the position detection unit,
At the time of the measurement operation by the measurement unit, a light projection amount forward control unit that forward-controls the light projection amount of the light projection unit in an increase / decrease direction that cancels the light reception amount change based on the light reception amount change information stored in the memory; A shape measuring system comprising:
測定対象物に光を照射する投光部と、
前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、
前記測定対象物上における、前記投光部からの光の照射スポットを測定範囲内で移動させる移動機構と、
前記移動機構による前記照射スポットの移動過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、
前記照射スポットに対してその移動方向手前の位置に一定光量の光を照射しその反射光の受光量を検出する光電センサと、
前記測定部による前記測定動作時において、前記位置検出部の受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行う投光量フィードバック制御部と、
前記測定部による前記測定動作時において、前記光電センサにて先行して検出される受光量の変化に基づき前記移動機構による移動速度を制御する速度制御部と、を備えることを特徴とする形状測定システム。
A light projecting unit for irradiating the object to be measured;
A position detecting unit that has a light receiving surface that receives reflected light from the measurement object, and that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface;
A moving mechanism for moving an irradiation spot of light from the light projecting unit on the measurement object within a measurement range;
In the process of moving the irradiation spot by the moving mechanism, a measurement unit that repeatedly takes in a position signal from the position detection unit and measures the shape of the measurement object;
A photoelectric sensor that irradiates the irradiation spot with a certain amount of light at a position before the moving direction and detects the amount of reflected light received;
A light projection amount feedback control unit for performing a light projection amount control of the light projecting unit to feed back a light reception amount on a light receiving surface of the position detection unit and to make the light reception amount constant during the measurement operation by the measurement unit; ,
A shape control comprising: a speed control unit that controls a moving speed of the moving mechanism based on a change in received light amount detected in advance by the photoelectric sensor during the measurement operation by the measuring unit. system.
測定対象物に光を照射する投光部と、
前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、
前記測定対象物上における、前記投光部からの光の照射スポットを測定範囲内で移動させる移動機構と、
前記移動機構による前記照射スポットの移動過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、
前記照射スポットに対してその移動方向手前の位置に一定光量の光を照射しその反射光の受光量を検出する光電センサと、
前記測定部による前記測定動作時において、前記光電センサにて先行して検出される受光量の変化に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量をフォワード制御する投光量フォワード制御部と、を備えることを特徴とする形状測定システム。
A light projecting unit for irradiating the object to be measured;
A position detecting unit that has a light receiving surface that receives reflected light from the measurement object, and that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface;
A moving mechanism for moving an irradiation spot of light from the light projecting unit on the measurement object within a measurement range;
In the process of moving the irradiation spot by the moving mechanism, a measurement unit that repeatedly takes in a position signal from the position detection unit and measures the shape of the measurement object;
A photoelectric sensor that irradiates the irradiation spot with a certain amount of light at a position before the moving direction and detects the amount of reflected light received;
Light projection amount for forward control of the light projection amount of the light projecting unit in the increase / decrease direction that cancels the change in the light reception amount based on the change in the light reception amount detected in advance by the photoelectric sensor during the measurement operation by the measurement unit A shape measuring system comprising: a forward control unit;
移動機構により相対的に移動する測定対象物に光を照射する投光部と、
前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、
前記移動機構により前記投光部からの光の照射スポットが測定範囲内で移動される過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、
前記測定部による測定動作に先立ってサンプリングされ、前記投光部の投光量を一定に保ちつつ前記移動機構により前記測定対象物上における前記照射スポットを前記測定範囲内で移動されたときの前記位置検出部での受光量変化情報が記憶されるメモリと、
前記測定部による前記測定動作時において、前記位置検出部の受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行う投光量フィードバック制御部と、
前記測定部による前記測定動作時において、前記メモリに記憶された受光量変化情報に基づき前記移動機構による移動速度を制御するための制御信号を前記移動機構に出力する制御信号出力部と、を備えることを特徴とする形状測定装置。
A light projecting unit that irradiates light to a measurement object that is relatively moved by a moving mechanism;
A position detecting unit that has a light receiving surface that receives reflected light from the measurement object, and that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface;
In the process in which the irradiation spot of light from the light projecting unit is moved within the measurement range by the moving mechanism, a measurement unit that repeatedly captures a position signal from the position detection unit and measures the shape of the measurement object;
The position when the irradiation spot is sampled prior to the measurement operation by the measurement unit and the irradiation spot on the measurement object is moved within the measurement range by the moving mechanism while keeping the light projection amount of the light projection unit constant. A memory for storing received light amount change information in the detection unit;
A light projection amount feedback control unit for performing a light projection amount control of the light projecting unit to feed back a light reception amount on a light receiving surface of the position detection unit and to make the light reception amount constant during the measurement operation by the measurement unit; ,
A control signal output unit that outputs a control signal for controlling the moving speed of the moving mechanism to the moving mechanism based on the received light amount change information stored in the memory during the measurement operation by the measuring unit; A shape measuring apparatus characterized by that.
移動機構により相対的に移動する測定対象物に光を照射する投光部と、
前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、
前記移動機構により前記投光部からの光の照射スポットが測定範囲内で移動される過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、
前記測定部による測定動作に先立ってサンプリングされ、前記投光部の投光量を一定に保ちつつ前記移動機構により前記測定対象物上における前記照射スポットを前記測定範囲内で移動されたときの前記位置検出部での受光量変化情報が記憶されるメモリと、
前記測定部による前記測定動作時において、前記メモリに記憶された受光量変化情報に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量をフォワード制御する投光量フォワード制御部と、を備えることを特徴とする形状測定装置。
A light projecting unit that irradiates light to a measurement object that is relatively moved by a moving mechanism;
A position detecting unit that has a light receiving surface that receives reflected light from the measurement object, and that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface;
In the process in which the irradiation spot of light from the light projecting unit is moved within the measurement range by the moving mechanism, a measurement unit that repeatedly captures a position signal from the position detection unit and measures the shape of the measurement object;
The position when the irradiation spot is sampled prior to the measurement operation by the measurement unit and the irradiation spot on the measurement object is moved within the measurement range by the moving mechanism while keeping the light projection amount of the light projection unit constant. A memory for storing received light amount change information in the detection unit;
At the time of the measurement operation by the measurement unit, a light projection amount forward control unit that forward-controls the light projection amount of the light projection unit in an increase / decrease direction that cancels the light reception amount change based on the light reception amount change information stored in the memory; A shape measuring apparatus comprising:
移動機構により相対的に移動する測定対象物に光を照射する投光部と、
前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、
前記移動機構により前記投光部からの光の照射スポットが測定範囲内で移動される過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、
前記照射スポットに対してその移動方向手前の位置に一定光量の光を照射しその反射光の受光量を検出する光電センサと、
前記測定部による前記測定動作時において、前記位置検出部の受光面での受光量をフィードバックして当該受光量を一定とするための前記投光部の投光量制御を行う投光量フィードバック制御部と、
前記測定部による前記測定動作時において、前記光電センサにて先行して検出される受光量の変化に基づき前記移動機構による移動速度を制御するための制御信号を前記移動機構に出力する制御信号出力部と、を備えることを特徴とする形状測定装置。
A light projecting unit that irradiates light to a measurement object that is relatively moved by a moving mechanism;
A position detecting unit that has a light receiving surface that receives reflected light from the measurement object, and that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface;
In the process in which the irradiation spot of light from the light projecting unit is moved within the measurement range by the moving mechanism, a measurement unit that repeatedly captures a position signal from the position detection unit and measures the shape of the measurement object;
A photoelectric sensor that irradiates the irradiation spot with a certain amount of light at a position before the moving direction and detects the amount of reflected light received;
A light projection amount feedback control unit for performing a light projection amount control of the light projecting unit to feed back a light reception amount on a light receiving surface of the position detection unit and to make the light reception amount constant during the measurement operation by the measurement unit; ,
At the time of the measurement operation by the measurement unit, a control signal output for outputting a control signal for controlling the moving speed by the moving mechanism to the moving mechanism based on a change in the amount of received light detected in advance by the photoelectric sensor And a shape measuring device comprising: a portion.
移動機構により相対的に移動する測定対象物に光を照射する投光部と、
前記測定対象物からの反射光を受光する受光面を有し、その反射光の前記受光面上での受光位置に基づく位置信号を出力する位置検出部と、
前記移動機構ににより前記投光部からの光の照射スポットが測定範囲内で移動される過程で、前記位置検出部からの位置信号を繰り返し取り込んで前記測定対象物の形状測定を行う測定部と、
前記照射スポットに対してその移動方向手前の位置に一定光量の光を照射しその反射光の受光量を検出する光電センサと、
前記測定部による前記測定動作時において、前記光電センサにて先行して検出される受光量の変化に基づき当該受光量変化を相殺する増減方向に前記投光部の投光量をフォワード制御する投光量フォワード制御部と、を備えることを特徴とする形状測定装置。
A light projecting unit that irradiates light to a measurement object that is relatively moved by a moving mechanism;
A position detecting unit that has a light receiving surface that receives reflected light from the measurement object, and that outputs a position signal based on a light receiving position of the reflected light on the light receiving surface;
A measurement unit that repeatedly captures a position signal from the position detection unit and measures the shape of the measurement object in a process in which an irradiation spot of light from the light projecting unit is moved within a measurement range by the moving mechanism; ,
A photoelectric sensor that irradiates the irradiation spot with a certain amount of light at a position before the moving direction and detects the amount of reflected light received;
Light projection amount for forward control of the light projection amount of the light projecting unit in the increase / decrease direction that cancels the change in the light reception amount based on the change in the light reception amount detected in advance by the photoelectric sensor during the measurement operation by the measurement unit And a forward control unit.
JP2005287817A 2005-09-30 2005-09-30 Shape measurement method, shape measurement system and shape measurement device Pending JP2007101215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287817A JP2007101215A (en) 2005-09-30 2005-09-30 Shape measurement method, shape measurement system and shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287817A JP2007101215A (en) 2005-09-30 2005-09-30 Shape measurement method, shape measurement system and shape measurement device

Publications (1)

Publication Number Publication Date
JP2007101215A true JP2007101215A (en) 2007-04-19

Family

ID=38028332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287817A Pending JP2007101215A (en) 2005-09-30 2005-09-30 Shape measurement method, shape measurement system and shape measurement device

Country Status (1)

Country Link
JP (1) JP2007101215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093235A (en) * 2010-10-27 2012-05-17 Nikon Corp Three-dimensional shape measurement device, three-dimensional shape measurement method, structure manufacturing method, and structure manufacturing system
WO2013080726A1 (en) * 2011-11-30 2013-06-06 オムロン株式会社 Optical displacement sensor
JP2017073323A (en) * 2015-10-08 2017-04-13 株式会社キーエンス Photoelectric switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093235A (en) * 2010-10-27 2012-05-17 Nikon Corp Three-dimensional shape measurement device, three-dimensional shape measurement method, structure manufacturing method, and structure manufacturing system
WO2013080726A1 (en) * 2011-11-30 2013-06-06 オムロン株式会社 Optical displacement sensor
JP2013113796A (en) * 2011-11-30 2013-06-10 Omron Corp Optical displacement sensor
TWI500950B (en) * 2011-11-30 2015-09-21 Omron Tateisi Electronics Co Optical displacement sensor
JP2017073323A (en) * 2015-10-08 2017-04-13 株式会社キーエンス Photoelectric switch

Similar Documents

Publication Publication Date Title
AU2019268121B2 (en) LiDAR scanner calibration
JP6633197B2 (en) Photodetector and electronic equipment
US9961253B2 (en) Autofocus system for a high speed periodically modulated variable focal length lens
JP6045963B2 (en) Optical distance measuring device
US9188432B2 (en) Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, and non-transitory computer readable medium
US7643159B2 (en) Three-dimensional shape measuring system, and three-dimensional shape measuring method
US10638021B2 (en) Measurement device, processing device, and article manufacturing method
JP2008111821A (en) Optical displacement gauge, optical displacement measuring technique, optical displacement measuring program, and readable recording media with computer as well as recording equipment
JP2008096123A (en) Optical displacement gauge, optical displacement measuring method, optical displacement measuring program, computer-readable memory medium and recording equipment
JP5271427B2 (en) Optical displacement meter, optical displacement measuring method, optical displacement measuring program
US9417123B2 (en) Illumination setting method, apparatus and computer-readable medium for a brightness tool of an image measuring apparatus
JP2009085775A (en) Measuring apparatus
JP2007101215A (en) Shape measurement method, shape measurement system and shape measurement device
JP4165010B2 (en) Optical displacement measuring device and method for correcting the amount of projected light
JP2007271519A (en) Displacement sensor and shape measuring system
JP4533482B2 (en) Optical displacement meter
JP2000097629A (en) Optical sensor
JP2005326340A (en) Image sensor using apparatus, optical displacement gage, and optical information reading device
JP4973836B2 (en) Displacement sensor with automatic measurement area setting means
JP2009085739A (en) Shape measuring instrument and shape measuring method
JP4773802B2 (en) Displacement sensor
JP2008096118A (en) Optical displacement gauge, optical displacement measurement method, optical displacement measurement program, computer readable recording medium and recording equipment
JP7379096B2 (en) Measuring device and light amount control method
JP2009162659A (en) Three-dimensional shape measuring instrument
JP4184315B2 (en) Image sensor and optical displacement meter using image sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710