JP2007101035A - Burner for liquid fuel of boiler with exhaustion port along center axis of furnace - Google Patents

Burner for liquid fuel of boiler with exhaustion port along center axis of furnace Download PDF

Info

Publication number
JP2007101035A
JP2007101035A JP2005289983A JP2005289983A JP2007101035A JP 2007101035 A JP2007101035 A JP 2007101035A JP 2005289983 A JP2005289983 A JP 2005289983A JP 2005289983 A JP2005289983 A JP 2005289983A JP 2007101035 A JP2007101035 A JP 2007101035A
Authority
JP
Japan
Prior art keywords
furnace
burner
combustion
air
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005289983A
Other languages
Japanese (ja)
Inventor
Wataru Kobayashi
渉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU OLYMPIA KOGYO KK
Original Assignee
KYUSHU OLYMPIA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU OLYMPIA KOGYO KK filed Critical KYUSHU OLYMPIA KOGYO KK
Priority to JP2005289983A priority Critical patent/JP2007101035A/en
Publication of JP2007101035A publication Critical patent/JP2007101035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a burner which effectively reduces NOx without increasing CO and soot, in a combustion furnace having exhaustion ports along an axis of a furnace. <P>SOLUTION: The burner is equipped with: a spray nozzle 3 for spraying fuel toward the furnace; an inner cylinder 2 in which a tip end side of the spray nozzle is stored; and an outer cylinder 1 provided on an outer circumference side of the inner cylinder. A plurality of air nozzles 7 are provided in a downstream end face of the outer cylinder which extend further toward a downstream side. A blowout port for blowing out main air for combustion into the furnace is formed in a downstream end face of these air nozzles. When inside of the furnace is separated by a plane produced with a line drawing through the axis of the furnace and connecting the axis and the exhaust port of the furnace and a line positioned at ±100°, the burner has air nozzles only on the exhaust port side of the furnace, and a combustion guide 8 is provided in the downstream of the air nozzles so as not to overlap these nozzles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は燃焼にともない発生するNOxを抑制できる液体燃料用低NOxバーナに関するものである。   The present invention relates to a low-NOx burner for liquid fuel that can suppress NOx generated by combustion.

従来、燃焼にともない発生するNOxを抑制するために、燃料中にN分を含まない気体燃料をもちいるバーナが実用に供されているが、この種のバーナは火炎制御が容易でかつ燃料中にN分を含まないことから、燃焼で生じるNOxを容易に抑制することができるという特徴を備えているものの、高価な気体燃料をもちいるためランニングコストが高くつくという問題がある。   Conventionally, in order to suppress NOx generated by combustion, a burner using a gaseous fuel containing no N component in the fuel has been put to practical use. This type of burner is easy to control the flame and in the fuel. Since it contains no N component, it has the feature that NOx generated by combustion can be easily suppressed, but there is a problem that running gas is expensive because expensive gas fuel is used.

そこで、ランニングコストを抑えるために、NOxの抑制は困難であるが、比較的低コストの液体燃料をもちい、この種の液体燃料の燃焼時に発生するNOxの発生量を低減できる排ガス外部再循環法や水噴霧法または、両者を併用したバーナが採用されてきた。   Therefore, although it is difficult to suppress NOx in order to reduce running costs, an external exhaust gas recirculation method that uses a relatively low-cost liquid fuel and can reduce the amount of NOx generated during combustion of this type of liquid fuel. Burners using water spraying or a combination of both have been employed.

しかし、これらの方法は、設備費の増加だけでなく、熱効率の低下や、耐久性の低下となりやすいため、近年、より簡単で低NOx化が図れる液体燃料用低NOxバーナが提案されている(たとえば、特許文献1参照)。
特許第3527456号
However, these methods not only increase the equipment cost, but also tend to decrease thermal efficiency and durability, and in recent years, a low-NOx burner for liquid fuel that can be more easily reduced in NOx has been proposed ( For example, see Patent Document 1).
Patent No. 3527456

前記特許文献1に記載のバーナは図5に示される構造をしており、NOx抑制の原理として、火炎分割、濃淡燃焼、排ガス内部再循環法を併用したバーナである。   The burner described in Patent Document 1 has the structure shown in FIG. 5, and is a burner that uses flame splitting, concentration combustion, and exhaust gas internal recirculation as a principle of NOx suppression.

なかでも、バーナが取り付けられている火炉内の燃焼ガスを燃焼空気の噴流による流体力学効果からバーナ下流直下へ導き、燃焼ガスと燃焼空気に混合による低酸素燃焼で燃焼時のNOx生成を抑制する排ガス再循環法が主なNOx抑制機構であるため、炉筒煙管型のような順流タイプの燃焼炉では十分機能するが、火炉の構造によってはその機能を十分発揮できない場合がある。 In particular, the combustion gas in the furnace to which the burner is attached is guided directly below the burner from the hydrodynamic effect of the jet of combustion air, and NOx generation during combustion is suppressed by low oxygen combustion by mixing the combustion gas and combustion air. Since the exhaust gas recirculation method is the main NOx suppression mechanism, it works well in a forward-flow type combustion furnace such as a flue tube type, but depending on the structure of the furnace, the function may not be fully demonstrated.

たとえば、反転燃焼炉といわれるような、バーナ取り付け部分のすぐ近くに燃焼ガス出口をもつ火炉や、火炉の中心軸に沿って排気口のある(一般にΩ流炉と呼ばれている)燃焼炉では、炉の煙道のもつドラフト力の方がバーナの燃焼空気の噴流がもたらすドラフト力より強いため、燃焼排ガスがバーナ元に戻らずNOx抑制が図れないばかりか、逆に噴流口から出る燃焼空気をもすぐに排気口に引き抜き燃焼性を悪くする場合もある。 For example, in a furnace that has a combustion gas outlet in the immediate vicinity of the burner attachment, such as a reversal combustion furnace, or a combustion furnace that has an exhaust outlet along the central axis of the furnace (commonly called an Ω-flow furnace) Because the draft force of the furnace flue is stronger than the draft force produced by the burner combustion air jet, the combustion exhaust gas does not return to the burner and NOx suppression is not achieved, and conversely the combustion air exiting the jet outlet In some cases, the exhaust gas is pulled out to the exhaust port immediately and the combustibility is deteriorated.

また、火炉の中心軸に沿って排気口のある燃焼炉では、バーナの火炎がこの軸に沿って伸び、排気口側に流れるため、燃焼が完結する前に、火炉の排気口に入り、水管や水冷壁で冷却されるため、ススの生成や、COの増加の原因となる。 Also, in a combustion furnace with an exhaust port along the center axis of the furnace, the flame of the burner extends along this axis and flows to the exhaust port side, so before the combustion is completed, it enters the furnace exhaust port and the water pipe And because it is cooled by a water-cooled wall, it causes soot generation and CO increase.

しかし、このような構造の炉でも、近年の厳しい環境規制に対応させることが望まれ、バーナの改良や炉構造の改良が行なわれている。 However, even in such a furnace, it is desired to comply with recent strict environmental regulations, and burners and furnace structures have been improved.

本発明の目的は火炉の中心軸に沿って排気口のある燃焼炉において、CO、ススの増加をもたらすことなく、効果的にNOxを低減できるバーナを提供することにある。 An object of the present invention is to provide a burner capable of effectively reducing NOx without causing an increase in CO and soot in a combustion furnace having an exhaust port along the central axis of the furnace.

本発明のバーナは、火炉の中心軸に沿って細長く開口した排気口を有するボイラに取付けられるバーナで、火炉に向かって燃料を噴霧する噴霧ノズルと噴霧ノズルの先端側が収容される内筒部材とこの内筒部材の外周側に配置された外筒部材とを備え、前記外筒部材の下流端面には更に下流側へと延び出た空気ノズルが設けられ、これら空気ノズル下流端面に火炉内に燃焼用主空気(以下2次空気と呼ぶ)を噴出する噴出口が形成されているバーナにあって、火炉内を火炉の中心軸をとおり、この軸と火炉排気口炉を結ぶ線と±100°なる線からできる平面で2分割すると排気口側となる端面にのみに複数の空気ノズルをもつことを特徴とする。 The burner of the present invention is a burner attached to a boiler having an exhaust port that is elongated along the central axis of the furnace, and includes a spray nozzle that sprays fuel toward the furnace, and an inner cylinder member that houses the tip side of the spray nozzle. An outer cylinder member disposed on the outer peripheral side of the inner cylinder member, and an air nozzle extending further downstream is provided on the downstream end face of the outer cylinder member, and these air nozzle downstream end faces are provided in the furnace. The burner is formed with a jet outlet for jetting combustion main air (hereinafter referred to as secondary air), and the furnace passes through the central axis of the furnace and the line connecting this axis and the furnace exhaust furnace is ± 100 When divided into two planes formed from a line of °, a plurality of air nozzles are provided only on the end face on the exhaust port side.

従来のバーナでは、空気ノズルの2次空気口からの燃焼空気は、火炉の中心軸回りに略均等に分布するように噴出されており、これにより、火炉の中心軸と火炎の中心軸が略一致するものと考えられていた。しかしながら、図6に示すごとく、火炉の中心軸に沿った排気口を有するΩフロー形式の貫流ボイラでは、燃焼排ガスが沿道を流れることで生じるドラフト力により、火炎は排気口側になびき、火炉中心軸から外れて形成されることが多い。   In the conventional burner, the combustion air from the secondary air port of the air nozzle is ejected so as to be distributed substantially evenly around the central axis of the furnace, so that the central axis of the furnace and the central axis of the flame are substantially the same. It was considered a match. However, as shown in FIG. 6, in the Ω flow type once-through boiler having an exhaust port along the central axis of the furnace, the flame flutters to the exhaust port side due to the draft force generated when the combustion exhaust gas flows along the road, and the center of the furnace Often formed off axis.

このため、火炎の一部が排気口に近い水管に接触してススが生成したり、燃焼が完結する前に燃焼ガスが火炉形成する水管の外に配列されている水管群の対流伝熱ゾーンに流れ、COが増加する原因となる。
また、燃焼排ガスが早い時点で排気口から排気されると、燃焼排ガスをバーナ元に循環する力も弱くなり、NOx生成の抑制も小さくなる。
For this reason, a convection heat transfer zone of a water tube group in which soot is generated when a part of the flame comes into contact with the water tube near the exhaust port or combustion gas is arranged outside the water tube that forms the furnace before the combustion is completed To increase CO.
Further, if the combustion exhaust gas is exhausted from the exhaust port at an early point, the force for circulating the combustion exhaust gas to the burner becomes weak, and the suppression of NOx generation is also reduced.

仮に、図5で示す低NOxバーナを採用しても、燃焼排ガスがバーナ元に循環する力が弱く、期待するほどの結果は得られない。   Even if the low NOx burner shown in FIG. 5 is employed, the force of circulating the combustion exhaust gas to the burner is weak, and the expected result cannot be obtained.

これに対して、本発明によれば、2次空気口からの燃焼空気は火炉の排気口に沿って空気カーテンを作る形で集中的に噴流し、この2次空気による生成する火炎もカーテン状に細く・速く形成するため、燃焼が完結していない燃焼ガスの排気口への流れを抑制し、未燃油滴や、燃焼途中の油滴が排気側水管に届くのを抑えるように働く。 On the other hand, according to the present invention, the combustion air from the secondary air port is intensively jetted in the form of creating an air curtain along the exhaust port of the furnace, and the flame generated by this secondary air is also curtain-shaped. Because it is thin and fast, it prevents the combustion gas that has not been completely combusted from flowing to the exhaust port and prevents unburned oil droplets and oil droplets that are in the middle of combustion from reaching the exhaust-side water pipe.

また、火炎形成が火炉の片側に集中し、速い速度で炉床の耐火材に衝突するため、火炎流の反対側では高温の燃焼ガスが反転上昇し、この領域に噴霧される燃料の気化・燃焼を促進し、ススの発生を抑えるだけでなく、バーナ元に循環する燃焼排ガスの温度・量を増やし、結果として燃焼によるNOx生成の抑制を促進する。 In addition, since flame formation concentrates on one side of the furnace and collides with the refractory material on the hearth at a high speed, the high-temperature combustion gas reverses and rises on the opposite side of the flame flow, and the vaporized fuel In addition to promoting combustion and suppressing the generation of soot, the temperature and amount of combustion exhaust gas circulated to the burner source is increased, and as a result, suppression of NOx generation due to combustion is promoted.

また逆に、2次空気口を排気口と反対側に集中させると、火炎形成側と反対に出来る反転流れの燃焼ガスは途中で排気口に吸引されるため、バーナ元に戻る燃焼排ガスの速度は下がり、温度も下がるため、燃料の気化・着火が遅くなり、ススが出来易く、燃焼排ガス循環量も下がるためNOx生成の抑制効果も低下する。 Conversely, if the secondary air port is concentrated on the side opposite to the exhaust port, the reverse flow combustion gas that can be reversed to the flame forming side is sucked into the exhaust port on the way, so the speed of the combustion exhaust gas returning to the burner Since the temperature decreases and the temperature of the fuel decreases, the fuel vaporization / ignition becomes slow, soot is easily generated, and the amount of combustion exhaust gas circulated also decreases, so that the effect of suppressing NOx generation also decreases.

このことは、2次空気口のほとんどを排気口側に設け、1部を反対側につけた場合でも、ここから噴出する2次空気とこれによりできる火炎流が反転燃焼ガスの流れを妨害するため、結果としてNOx生成の抑制効果が低下する。 This is because even when most of the secondary air ports are provided on the exhaust port side and one part is mounted on the opposite side, the secondary air ejected from here and the resulting flame flow obstruct the flow of the inversion combustion gas. As a result, the effect of suppressing NOx generation decreases.

請求項2、及び請求項3は前記バーナにおいて、2次空気の噴流方向を火炉中心軸に向け、空気流を排気口に過度に近づけない工夫である。 In the burner, the jet direction of the secondary air is directed toward the furnace center axis, and the air flow is not excessively brought close to the exhaust port.

空気ノズルから噴出した2次空気はノズル口から遠ざかるにつれて流速が落ち、広がるので、この領域で排気口に近づくと燃焼に寄与しないまま吸引・排気され、燃焼性を悪くするだけでなく、熱効率も下げることとなる。市販燃焼器機では、3位置、4位置制御が一般的で、定格燃焼で設計されるため、低燃焼域では特にこの現象が出易くなる。 As the secondary air ejected from the air nozzle moves away from the nozzle port, the flow velocity decreases and widens, so when approaching the exhaust port in this area, it is sucked and exhausted without contributing to combustion, not only worsening combustibility but also thermal efficiency. Will be lowered. In a commercial combustor machine, three-position and four-position control is common and is designed with rated combustion, so this phenomenon is particularly likely to occur in a low combustion region.

また、円周方向に複数本の2次空気ノズルを設けるのは、これらのノズルから出る噴流空気により火炎を分割することによるNOx抑制を目的とするだけでなく、ノズル元まで還流した燃焼排ガスをノズルとノズルの間を流し、燃料ノズルから噴霧される油滴との混合を良くし、燃料の気化・着火を促進し、かつ、低酸素燃焼によるNOx抑制を図るためである。   In addition, the provision of a plurality of secondary air nozzles in the circumferential direction is not only for the purpose of suppressing NOx by dividing the flame by the jet air exiting from these nozzles, but also for the combustion exhaust gas recirculated to the nozzle origin. This is to improve the mixing of the oil droplets sprayed from the fuel nozzle, flowing between the nozzles, to promote the vaporization and ignition of the fuel, and to suppress the NOx by the low oxygen combustion.

請求項4の燃焼ガイドは、燃料ノズルから噴霧され運動量の大きい油滴が、気化が不十分のまま、空気噴流を通過し、水冷壁まで達するのを防ぐとともに、ガイド内で着火・形成される火炎の方向を制御し、火が火炉の半径方向に広がり、排気口に近づく抑制する。また、燃焼ガイドが赤熱することで、この輻射熱で燃料油滴の気化を促進さし、かつ、空気噴流・火炎流を燃焼ガスの流れと分離し、反転流としてバーナ元に還流する燃焼ガスの流れを促進するためである。   The combustion guide according to claim 4 prevents the oil droplets sprayed from the fuel nozzle and having a large momentum from passing through the air jet and reaching the water cooling wall with insufficient vaporization, and is ignited and formed in the guide. Control the direction of the flame and suppress the fire spreads in the radial direction of the furnace and approaches the exhaust port. In addition, the combustion guide is red-hot, which promotes the vaporization of fuel oil droplets by this radiant heat, separates the air jet and flame flow from the combustion gas flow, and returns the combustion gas to the burner as a reverse flow. This is to promote the flow.

このバーナに切り替えると、市販されている貫流ボイラの中で大部分を占めるΩフロー形式の貫流ボイラにおいて、CO、ススの生成を増加することなくNOxの大幅な抑制が期待できる。   Switching to this burner can be expected to significantly reduce NOx without increasing CO and soot generation in Ω flow type once-through boilers, which occupy most of the commercially available once-through boilers.

次に、本発明による液体燃料用低NOxバーナの具体的な実施の形態について、図面を参照しながら説明する。   Next, specific embodiments of the low-NOx burner for liquid fuel according to the present invention will be described with reference to the drawings.

図1には、本発明の第一実施形態に関わる液体燃料用低NOxバーナの縦断面図およびノズル側の側面図がそれぞれ示されている。   FIG. 1 shows a longitudinal sectional view and a side view on the nozzle side of a low-NOx burner for liquid fuel according to the first embodiment of the present invention.

図4には、図1の下流に取付ける燃焼ガイドの例を示している。   FIG. 4 shows an example of a combustion guide attached downstream of FIG.

図7は上記バーナと燃焼ガイドを取付けたΩ流型貫流ボイラ例100の縦断面図を示している。燃焼空気はこの図に示されていない送風機から風箱102に送気され、バーナ101で適切に分配され、火炉103に噴き出す。   FIG. 7 shows a longitudinal sectional view of an example of an Ω flow type once-through boiler 100 to which the burner and the combustion guide are attached. Combustion air is sent from an air blower (not shown) to the wind box 102, appropriately distributed by the burner 101, and jetted to the furnace 103.

図1の縦断面図では火炉に向かって燃料を噴霧する噴霧ノズル3と噴霧ノズルの先端側が収容される内筒部材2とこの内筒部材の外周側に配置された外筒部材1とを備え、前記外筒部材の下流端面には更に下流側へと延び出た空気ノズル5が設けられ、これら空気ノズル下流端面に火炉内に燃焼用主空気を噴出する噴出口が形成されているバーナであり、側面図に示すごとく火炉内を火炉の中心軸を通り、この軸と火炉排気口を通る線と±110°となる線からできる平面で2分割するとき、排気口側となる端面にのみ複数の空気ノズルをもつバーナであることを示す。   1 includes a spray nozzle 3 for spraying fuel toward the furnace, an inner cylindrical member 2 in which the tip end side of the spray nozzle is accommodated, and an outer cylindrical member 1 disposed on the outer peripheral side of the inner cylindrical member. A burner in which an air nozzle 5 extending further downstream is provided on the downstream end face of the outer cylinder member, and an outlet for ejecting combustion main air into the furnace is formed on the air nozzle downstream end face. Yes, as shown in the side view, when the inside of the furnace passes through the center axis of the furnace, and is divided into two planes made of a line passing through this axis and the furnace exhaust port and a line of ± 110 °, only the end surface on the exhaust port side Indicates a burner with multiple air nozzles.

風箱102に送られた燃焼空気は外筒1に入り、その10%以下の空気は1次空気口4から内筒2に送られるが、残りは全て噴流空気として空気ノズル5から火炉内の意図した方向に噴き出される。   Combustion air sent to the wind box 102 enters the outer cylinder 1, and 10% or less of the air is sent from the primary air port 4 to the inner cylinder 2, but all the remaining air is jetted air from the air nozzle 5 into the furnace. It is ejected in the intended direction.

図4の燃焼ガイド内で着火した火炎は火炉の排気口にカーテンとなる形で火炉下端の耐火材111まで強く延び、耐火材に当たって反転し、高温の燃焼排ガスとして焚口耐火材110のバーナ元に循環する。   The flame ignited in the combustion guide in FIG. 4 extends strongly to the refractory material 111 at the lower end of the furnace in the form of a curtain at the exhaust port of the furnace, reverses upon hitting the refractory material, and enters the burner base of the throat refractory material 110 as high-temperature combustion exhaust gas. Circulate.

この燃焼空気の噴出によるドラフト力でバーナ元まで還ってきた燃焼ガスをバーナ直下流に引き込み、燃料の気化・着火促進と燃焼空気の酸素濃度低下による燃焼時のNOx生成の抑制を図る。   The combustion gas that has been returned to the burner due to the draft force generated by the combustion air is drawn directly downstream of the burner to promote fuel vaporization and ignition, and to suppress NOx generation during combustion due to a decrease in the oxygen concentration of the combustion air.

火炉排気口側へ空気ノズルの集中は図7の模式図のごとく火炎が排気口に流れるのを押さえ、かつ燃焼ガスの循環を促進する。   Concentration of the air nozzle to the furnace exhaust port side suppresses the flow of the flame to the exhaust port as shown in the schematic diagram of FIG. 7 and promotes the circulation of the combustion gas.

図8は前記ごとく集中配列したときと、空気ノズルを外筒部材端面に均一に円周配列したときのA重油定格燃焼時のNOx値を示す。集中配置したものは均一配列したものに比べNOx抑制効果が大きいことがわかる。   FIG. 8 shows NOx values at the time of A heavy oil rated combustion when concentrated as described above and when air nozzles are uniformly arranged circumferentially on the end surface of the outer cylinder member. It can be seen that the concentrated arrangement has a greater NOx suppression effect than the uniform arrangement.

また、空気ノズルの位置を排気口側にしたときと、その反対側にしたときのA重油低燃焼時のススの生成を比較した例が図9である。空気ノズルを排気口側にした方がスス生成は明らか低く、図示していないがNOx濃度も低くなっている。この傾向は定格燃焼でも変らない。   Further, FIG. 9 shows an example in which the generation of soot at the time of low combustion of A heavy oil when the position of the air nozzle is on the exhaust port side and on the other side is compared. Soot generation is clearly lower when the air nozzle is on the exhaust side, and the NOx concentration is also lower, although not shown. This tendency does not change with rated combustion.

図2は火炎が排気口に近づかず、かつ循環流も妨げないよう空気ノズル6を火炉中心軸に向け角度θ°傾けたバーナの例である。この角度θは0〜15°で、望ましくは5〜10°である。   FIG. 2 shows an example of a burner in which the air nozzle 6 is inclined at an angle θ ° toward the furnace center axis so that the flame does not approach the exhaust port and the circulation flow is not obstructed. This angle θ is 0 to 15 °, preferably 5 to 10 °.

図3は循環流を維持したまま、火炎を排気口に近づけないよう、空気ノズル7の出口を構成する板で、最外側の板を角度η°傾けたノズルをもつバーナの例である。この角度ηは15〜40°で、望ましくは25〜35°である。   FIG. 3 is an example of a burner having a nozzle constituting the outlet of the air nozzle 7 and having a nozzle whose outermost plate is inclined at an angle η ° so that the flame does not approach the exhaust port while maintaining the circulation flow. This angle η is 15 to 40 °, preferably 25 to 35 °.

図4の燃焼ガイドは、燃料ノズルから噴霧され運動量の大きい油滴が、気化が不十分のまま、空気噴流を通過し、水冷壁まで達するのを防ぐとともに、ガイド内で着火・形成される火炎の方向を制御し、火が火炉の半径方向に広がり、排気口に近づく抑制するために必要な、適当な径Dと長さLをもつ円筒管である。また、この管は火炎や循環燃焼ガスで加熱されるため、この管から放射される熱で燃料油滴の気化が更に促進される。また、空気噴流・火炎流を燃焼ガスの流れと分離するため、反転流としてバーナ元に還流する燃焼ガスの流れが促進する働きもする。   The combustion guide of FIG. 4 prevents the oil droplets sprayed from the fuel nozzle and having a large momentum from passing through the air jet and reaching the water cooling wall while being insufficiently vaporized, and to be ignited and formed in the guide. This is a cylindrical tube with an appropriate diameter D and length L necessary to control the direction of the fire and to suppress the fire spreading in the radial direction of the furnace and approaching the exhaust port. In addition, since this pipe is heated by a flame or circulating combustion gas, the vaporization of the fuel oil droplets is further promoted by the heat radiated from this pipe. Further, since the air jet / flame flow is separated from the flow of the combustion gas, the flow of the combustion gas recirculated to the burner as an inverted flow is also promoted.

この燃焼ガイドは円周状に配列した空気ノズルの外側と火炉の中心軸との距離をRとするとその径Dは2.4R以上2.8R以下で、長さLは100mm以上500mm以下の寸法の耐熱性金属管である。   In this combustion guide, if the distance between the outside of the circumferentially arranged air nozzles and the central axis of the furnace is R, the diameter D is 2.4R or more and 2.8R or less, and the length L is 100mm or more and 500mm or less. Metal tube.

図10は請求項3のバーナと請求項4の燃焼ガイドを用い、最適化した状態でA重油定格燃焼を実施した例である。NOx、CO、ススの値は現在の環境規制値を十分満足していることがわかる。   FIG. 10 shows an example of carrying out A heavy oil rated combustion in an optimized state using the burner of claim 3 and the combustion guide of claim 4. It can be seen that the NOx, CO, and soot values sufficiently satisfy the current environmental regulations.

請求項1の実施形態のバーナの断面図・側面図である。It is sectional drawing and a side view of the burner of embodiment of Claim 1. 請求項2の実施形態のバーナの断面図・側面図である。It is sectional drawing and a side view of the burner of embodiment of Claim 2. 請求項3の実施形態のバーナの断面図・側面図である。It is sectional drawing and side view of the burner of embodiment of Claim 3. 請求項4の実施形態の燃焼ガイドの断面図・側面図である。It is sectional drawing and a side view of the combustion guide of embodiment of Claim 4. 参照特許第3527456号に示された実施形態のバーナの断面図・側面図である。It is sectional drawing and a side view of the burner of embodiment shown by the reference patent 3527456. Ω流形貫流ボイラにおける従来バーナの火炎断面模式図である。It is a flame cross-sectional schematic diagram of the conventional burner in an Ω flow type once-through boiler. Ω流形貫流ボイラにおける本発明バーナの火炎断面模式図である。It is a flame cross-sectional schematic diagram of the burner of the present invention in an Ω flow type once-through boiler. 空気ノズルを円周方向に均等配列したものと、排気口側に集中配列したバーナのA重油定格燃焼におけるNOxの比較図Comparison chart of NOx in A heavy oil rated combustion of burners with air nozzles arranged evenly in the circumferential direction and concentrated arrangement on the exhaust side 空気ノズルを排気口側に集中配列したものと反対に集中配置したバーナのA重油低燃焼におけるススの比較図Comparison chart of soot in A fuel oil low combustion of burner in which air nozzles are concentrated and arranged opposite to the exhaust nozzle side 本発明バーナを最適化したときのA重油定格燃焼における排ガス性状の図Figure of exhaust gas properties in A heavy oil rated combustion when the burner of the present invention is optimized

符号の説明Explanation of symbols

1 内筒
2 外筒
3 ノズルアセンブリー
4 1次空気口
5 請求項1形主空気ノズル
6 請求項2形主空気ノズル
7 請求項3形主空気ノズル
8 燃焼ガイド
100 Ω流型貫流ボイラ
101 従来バーナ
102 風箱
103 火炉(燃焼室)
104 水管
105 燃焼ガス室
106 煙室
107 排気ダクト
108 水室
109 蒸気室
110 焚口耐火材
111 火炉耐火材
112 提案バーナ
DESCRIPTION OF SYMBOLS 1 Inner cylinder 2 Outer cylinder 3 Nozzle assembly 4 Primary air port 5 Claim 1 type main air nozzle 6 Claim 2 type main air nozzle 7 Claim 3 type main air nozzle 8 Combustion guide
100 Ω flow once-through boiler
101 Conventional burner
102 wind box
103 Furnace (combustion chamber)
104 water pipe
105 Combustion gas chamber
106 Smoke chamber
107 Exhaust duct
108 water chamber
109 Steam room
110 Higuchi refractory material
111 Furnace refractory
112 Proposed burner

Claims (4)

火炉の中心軸に沿って細長く開口した排気口を有するボイラに取付けられるバーナで、火炉に向かって燃料を噴霧する噴霧ノズル(3)と噴霧ノズルの先端側が収容される内筒部材とこの内筒部材(2)の外周側に配置された外筒部材1とを備え、前記外筒部材(1)の下流端面には更に下流側へと延び出た空気ノズル(5)が設けられ、これら空気ノズル下流端面に火炉内に燃焼用主空気を噴出する噴出口が形成されているバーナにあって、火炉内を火炉の中心軸をとおり、この軸から火炉排気口を結ぶ線と±100°なる線でできる平面で2分割すると排気口側となる端面にのみ複数の空気ノズルをもつことを特徴とするバーナ。   A burner attached to a boiler having an exhaust port that is elongated along the central axis of the furnace, and a spray nozzle (3) that sprays fuel toward the furnace, an inner cylinder member that houses the tip side of the spray nozzle, and the inner cylinder An outer cylinder member 1 disposed on the outer peripheral side of the member (2), and an air nozzle (5) extending further downstream is provided on the downstream end face of the outer cylinder member (1). The burner has a jet outlet that ejects main combustion air into the furnace at the downstream end face of the nozzle. The burner passes through the central axis of the furnace, and the line connecting the furnace exhaust port with this axis is ± 100 ° A burner characterized by having a plurality of air nozzles only on the end surface on the exhaust port side when divided into two planes formed by lines. 前記外筒部材の下流端面に、前記のように偏って設けられた空気ノズル(6)が当該面の円周方向に間隔をあけて複数設けられ、それら空気ノズルの中心軸が火炉中心軸に向かって0〜10°の傾斜をもつことを特徴とする請求項1に記載するバーナ。   A plurality of air nozzles (6) provided in a biased manner as described above are provided on the downstream end face of the outer cylinder member at intervals in the circumferential direction of the face, and the central axis of these air nozzles is the furnace central axis. The burner according to claim 1, wherein the burner has an inclination of 0 to 10 °. 前記のごとく配列した複数の空気ノズル(7)において、ノズル噴出口の形状は問わないが、噴出口形状を形成する板で、火炉の中心軸より最外辺となる板が火炉の中心軸に向かって20〜40°の傾斜をもつことを特徴とする請求項1に記載するバーナ。   In the plurality of air nozzles (7) arranged as described above, the shape of the nozzle outlet is not limited, but the plate that forms the outlet shape, the plate that is the outermost side from the central axis of the furnace is the central axis of the furnace The burner according to claim 1, wherein the burner has an inclination of 20 ° to 40 °. 前記バーナにおいて、円周上に並んだ空気ノズルの外周と火炉中心軸との距離をRとすると、径が2.4R以上で2.8R以下で、長さは100mm以上500mm以下となる燃焼ガイド(8)を空気ノズル下流にノズルと重ならないように取付けられていることを特徴とする請求項1に記載するバーナ。
In the burner, if the distance between the outer circumference of the air nozzles arranged on the circumference and the furnace center axis is R, the combustion guide (8) having a diameter of 2.4R to 2.8R and a length of 100mm to 500mm. The burner according to claim 1, wherein the burner is attached downstream of the air nozzle so as not to overlap the nozzle.
JP2005289983A 2005-10-03 2005-10-03 Burner for liquid fuel of boiler with exhaustion port along center axis of furnace Pending JP2007101035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289983A JP2007101035A (en) 2005-10-03 2005-10-03 Burner for liquid fuel of boiler with exhaustion port along center axis of furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289983A JP2007101035A (en) 2005-10-03 2005-10-03 Burner for liquid fuel of boiler with exhaustion port along center axis of furnace

Publications (1)

Publication Number Publication Date
JP2007101035A true JP2007101035A (en) 2007-04-19

Family

ID=38028163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289983A Pending JP2007101035A (en) 2005-10-03 2005-10-03 Burner for liquid fuel of boiler with exhaustion port along center axis of furnace

Country Status (1)

Country Link
JP (1) JP2007101035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078191A1 (en) * 2007-12-17 2009-06-25 Mitsubishi Heavy Industries, Ltd. Boiler structure for vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078191A1 (en) * 2007-12-17 2009-06-25 Mitsubishi Heavy Industries, Ltd. Boiler structure for vessel
JP2009145013A (en) * 2007-12-17 2009-07-02 Mitsubishi Heavy Ind Ltd Marine boiler structure
CN101883951B (en) * 2007-12-17 2014-04-23 三菱重工业株式会社 Boiler structure for vessel

Similar Documents

Publication Publication Date Title
KR101254928B1 (en) Low nitrogen oxide burner
JP5794419B2 (en) Solid fuel burner
JP2004197970A (en) Low-nox combustion method, and device thereof
JP2004190981A (en) Combustion device and wind box
KR200448947Y1 (en) Low nitrogen oxide burner
JP2007101035A (en) Burner for liquid fuel of boiler with exhaustion port along center axis of furnace
JP4192167B2 (en) Burner and boiler
JP6071828B2 (en) Burner tip and combustion burner and boiler
JP2994382B1 (en) Exhaust gas self-circulating low NOx burner
JP3581385B2 (en) Exhaust gas reburning burner
WO2016104430A1 (en) Burner tip, combustion burner, and boiler
JP2000039108A (en) LOW NOx BURNER
JP2004077012A (en) Radiant tube type heating device
KR20040093272A (en) A burner system reducing air-polution material
JP6509625B2 (en) Furnace flue pipe boiler
JP2011080698A (en) Burner
JP2008281242A (en) OIL BURNING LOW NOx BURNER
JP2017062105A (en) Combustor
JP2017122540A (en) Burner
JP4190667B2 (en) Liquid fuel burner
JP4857025B2 (en) Multi-pipe once-through boiler
JP3004263B1 (en) Oil-fired low NOx burner
JP6054349B2 (en) Combustion device, boiler, and combustion method
JP2023007849A (en) Radiant tube type heater
JPH07217864A (en) After air supplier