JP2007095987A - Method of manufacturing semiconductor wafer and grinding apparatus - Google Patents

Method of manufacturing semiconductor wafer and grinding apparatus Download PDF

Info

Publication number
JP2007095987A
JP2007095987A JP2005283387A JP2005283387A JP2007095987A JP 2007095987 A JP2007095987 A JP 2007095987A JP 2005283387 A JP2005283387 A JP 2005283387A JP 2005283387 A JP2005283387 A JP 2005283387A JP 2007095987 A JP2007095987 A JP 2007095987A
Authority
JP
Japan
Prior art keywords
grinding
wafer
adjustment
semiconductor wafer
nanotopography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005283387A
Other languages
Japanese (ja)
Other versions
JP4764693B2 (en
JP2007095987A5 (en
Inventor
Hiroshi Oishi
弘 大石
Kenji Kobayashi
健司 小林
Jun Yoshii
純 吉井
Mitsuhiro Takechi
満博 武地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
JTEKT Machine Systems Corp
Original Assignee
Shin Etsu Handotai Co Ltd
Koyo Machine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd, Koyo Machine Industries Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2005283387A priority Critical patent/JP4764693B2/en
Publication of JP2007095987A publication Critical patent/JP2007095987A/en
Publication of JP2007095987A5 publication Critical patent/JP2007095987A5/ja
Application granted granted Critical
Publication of JP4764693B2 publication Critical patent/JP4764693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor wafer and a grinding apparatus which enable even an unskilled operator to easily and positively execute the quantitative tilting/shifting adjustment of grinding stone at the grinding process of a semiconductor wafer. <P>SOLUTION: The semiconductor wafer manufacturing method has a grinding process in which at least raw wafer W is ground with grinding stones 12, 22. The nanotopography of the wafer surface ground in the grinding process is measured, a plurality of nanotopography measurement values on the diameter or the radius of the wafer surface are averaged to obtain an average value components, the correspondence relation between the unevenness quantity of the average value components and tilt adjustment quantity the grinding stones for flattening the unevenness and/or shift quantity thereof is measured to obtain a relational formula, in advance, and tilt adjustment and/or shift adjustment of the grinding stones is executed in grinding processes thereafter based on the relational formula in advance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体ウェーハの製造方法及び研削装置に関し、特に研削工程後のウェーハ面のナノトポグラフィの測定値に基づいてチルト調整および/またはシフト調整を行う方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor wafer and a grinding apparatus, and more particularly to a method for performing tilt adjustment and / or shift adjustment based on a measured value of nanotopography of a wafer surface after a grinding process.

半導体シリコンウェーハ(以下, ウェーハと記す)においては、近年、ウェーハ形状精度のなかでも特に「ナノトポグラフィ」と呼ばれる表面うねり成分の大小が問題となっている。このナノトポグラフィは、ウェーハの表面形状の中から「そり」や「Warp」より波長が短く、「表面粗さ」よりは波長の長い、λ= 0.2〜20mmの波長成分を取り出したものであり、PV値は0.1〜0.2μm以下の極めて浅いうねりである。   In semiconductor silicon wafers (hereinafter referred to as “wafers”), the size of the surface waviness component called “nanotopography” has recently become a problem among the wafer shape accuracy. This nanotopography is obtained by extracting the wavelength component of λ = 0.2 to 20 mm from the surface shape of the wafer, which has a shorter wavelength than “sledge” or “Warp” and a longer wavelength than “surface roughness”. Yes, the PV value is an extremely shallow wave of 0.1 to 0.2 μm or less.

ナノトポグラフィは一般に「光学干渉式」の測定機(商標名 ; Nanomapper(ADE Corp.)やDynasearch((株)レイテックス))によって測定されており、図8に測定例を示す。図8(a) はナノトポグラフィ・マップであり、その濃淡でナノトポグラフィの強度を定性的に表している。一方, 図8(b) は45°おきに測定した4断面(直径)上のナノトポグラフィの形状と定量的な強度を表しており、グラフの山谷はナノトポグラフィ・マップの濃淡に対応している。なお、図9はナノトポグラフィ・マップとナノトポグラフィ断面形状の対応を模式的に説明したものである。   Nanotopography is generally measured by an “optical interference type” measuring instrument (trade name: Nanomapper (ADE Corp.) or Dynasearch (Raytex Co., Ltd.)). FIG. 8 shows an example of measurement. FIG. 8A is a nanotopography map, and the intensity of the nanotopography is qualitatively expressed by the shading. On the other hand, Fig. 8 (b) shows the shape and quantitative intensity of the nanotopography on four cross sections (diameters) measured every 45 °. The peaks and valleys in the graph correspond to the shading of the nanotopography map. . FIG. 9 schematically illustrates the correspondence between the nanotopography map and the nanotopography cross-sectional shape.

このナノトポグラフィはデバイス製造におけるSTI(Shallow Trench Isolation)工程の歩留まりに影響するといわれている。ナノトポグラフィはウェーハの加工工程(スライス〜研磨)中で作り込まれるものであり、研削加工、特に両頭研削の影響が強い。   This nanotopography is said to affect the yield of STI (Shallow Trench Isolation) process in device manufacturing. Nanotopography is created during the wafer processing process (slicing to polishing) and is strongly influenced by grinding, particularly double-headed grinding.

両頭研削の概略を図10に模式的に示す。原料ウェーハW(スライス・ウェーハ)は、ガラスエポキシ製薄板(不図示)に穿ったウェーハとほぼ同径の孔に挿入され、図10(a)に示すように、左右2枚の概略ウェーハ径の金属製の厚板である静圧パッド11、21の間に、静圧パッドとウェーハの間隙hを有するように保持される。図10(c)に示すように、静圧パッドは、その表面にランド13(土手部分)とポケット14(凹部)を有する。図10(d)に示すように、ポケット14には静圧水が供給され、これによってウェーハWを回転自在に保持している。図10(c)に示すように静圧パッドの一部は切り抜いてあり、ここに研削砥石12、22を挿入して、図10(b)に示すようにウェーハWおよび研削砥石12、22を回転させ、ウェーハWを左右両面から同時に研削する。研削中、ウェーハWは、例えばエッジ部分に駆動ローラを押し当てたり、ノッチ部にツメを引っかけて駆動することにより、回転する。   An outline of double-head grinding is schematically shown in FIG. The raw material wafer W (slice wafer) is inserted into a hole having the same diameter as that of a wafer formed in a glass epoxy thin plate (not shown). As shown in FIG. Between the static pressure pads 11 and 21 which are metal thick plates, it hold | maintains so that it may have the clearance gap h of a static pressure pad and a wafer. As shown in FIG. 10 (c), the static pressure pad has lands 13 (bank portions) and pockets 14 (concave portions) on the surface thereof. As shown in FIG. 10 (d), the hydrostatic pressure water is supplied to the pocket 14, thereby holding the wafer W rotatably. As shown in FIG. 10 (c), a part of the hydrostatic pad is cut out, and the grinding wheels 12 and 22 are inserted therein, and the wafer W and the grinding wheels 12 and 22 are inserted as shown in FIG. 10 (b). The wafer W is rotated to grind the wafer W from both the left and right sides simultaneously. During grinding, the wafer W rotates, for example, by pressing a driving roller against an edge portion or by driving a claw at a notch portion.

この両頭研削中にウェーハ両面の切削加重のアンバランス等により研削されたウェーハに反りが発生することがあり、この反りの発生を抑えるためにウェーハと砥石の相対位置の調整を行う両頭研削方法が提案されている(例えば、特許文献1参照)。このようなウェーハWと砥石12、22の位置関係の調整方法の具体例を図11に示す。ひとつは「シフト調整」と呼ばれ、ウェーハ面に対して垂直方向に砥石12、22を平行移動させる調整であり(図11(a))、もう一つは「チルト調整」と呼ばれ、ウェーハ面と砥石12、22の相対角度を変化させる調整である(図11(b))。   During this double-head grinding, warped wafers may be warped due to unbalanced cutting loads on both sides of the wafer. It has been proposed (see, for example, Patent Document 1). A specific example of the method for adjusting the positional relationship between the wafer W and the grindstones 12 and 22 is shown in FIG. One is called “shift adjustment” and is an adjustment for moving the grindstones 12 and 22 in a direction perpendicular to the wafer surface (FIG. 11A), and the other is called “tilt adjustment”. This adjustment is to change the relative angle between the surface and the grindstones 12 and 22 (FIG. 11 (b)).

現行の両頭研削において、作業者は研削したウェーハの条痕、厚さ形状、Warp形状、研削時の左右砥石の電流値、ナノトポグラフィ測定値などを基に、上記砥石のシフト調整・チルト調整を経験により行っている。下記表1に経験的に行われている調整法の一例を示す。

Figure 2007095987
In the current double-head grinding, the operator adjusts the shift and tilt of the grinding wheel based on the streaks, thickness shape, warp shape of the ground wafer, current values of the left and right grinding wheels during grinding, and measured values of the nanotopography. This is done through experience. Table 1 below shows an example of an adjustment method that is empirically performed.
Figure 2007095987

しかし、特にナノトポグラフィ測定値を基にウェーハと砥石の位置関係を調整するには、熟練した作業員の経験と勘を要し、研削装置の立ち上げや段取り替え時に長い調整時間と多数の調整用ダミー・ウェーハを消費するという問題があった。   However, adjusting the positional relationship between the wafer and the grindstone based on the measured nanotopography in particular requires the experience and intuition of skilled workers, and requires a long adjustment time and a large number of adjustments at the start-up and changeover of the grinding machine. There was a problem of consuming dummy wafers for use.

国際公開第00/67950号パンフレットInternational Publication No. 00/67950 Pamphlet

本発明は、このような問題点に鑑みてなされたもので、半導体ウェーハの研削工程時の砥石のチルト/シフト調整を、非熟練作業員でも定量的に簡便かつ確実に行うことができる半導体ウェーハの製造方法および研削装置を提供することを目的としたものである。   The present invention has been made in view of such problems, and a semiconductor wafer capable of quantitatively simply and reliably adjusting a tilt / shift of a grindstone during a grinding process of a semiconductor wafer quantitatively even by an unskilled worker. An object of the present invention is to provide a manufacturing method and a grinding apparatus.

本発明は、上記課題を解決するためになされたもので、半導体ウェーハの製造方法であって、少なくとも、原料ウェーハを砥石で研削する研削工程を有し、該研削工程により研削されたウェーハ面のナノトポグラフィを測定し、このウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して平均値成分を求め、該平均値成分の凹凸量と該凹凸を平坦化するための前記砥石のチルト調整量および/またはシフト調整量との相関関係を計測して関係式を予め求め、該予め求めた関係式に基づいて以後の研削工程において前記砥石のチルト調整および/またはシフト調整を行うことを特徴とする半導体ウェーハの製造方法を提供する(請求項1)。   The present invention has been made to solve the above-described problems, and is a method for manufacturing a semiconductor wafer, which includes at least a grinding step of grinding a raw material wafer with a grindstone, and a wafer surface ground by the grinding step. The nanotopography is measured, the average value component is obtained by averaging the nanotopography measurement values on a plurality of diameters or radii of the wafer surface, and the unevenness amount of the average value component and the whetstone for flattening the unevenness Measuring a correlation with the tilt adjustment amount and / or the shift adjustment amount to obtain a relational expression in advance, and performing tilt adjustment and / or shift adjustment of the grinding wheel in the subsequent grinding process based on the relational expression obtained in advance. A method of manufacturing a semiconductor wafer is provided (claim 1).

このようにして、ナノトポグラフィの平均値成分の凹凸量と該凹凸を平坦化するための砥石のチルト調整量および/またはシフト調整量との関係式を予め求めておけば、以後の研削工程においてその関係式に基づいて、非熟練作業員であってもチルト調整および/またはシフト調整を、調整時間や調整用ダミー・ウェーハを多大に消費することなく定量的に簡便かつ確実に行うことができる。   In this way, if a relational expression between the unevenness amount of the average value component of the nanotopography and the tilt adjustment amount and / or shift adjustment amount of the grindstone for flattening the unevenness is obtained in advance, in the subsequent grinding process Based on the relational expression, even an unskilled worker can quantitatively easily and reliably perform tilt adjustment and / or shift adjustment quantitatively without consuming a great deal of adjustment time and adjustment dummy wafers. .

この場合、前記研削工程を両頭研削工程とすることが好ましい(請求項2)。   In this case, it is preferable that the grinding step is a double-headed grinding step.

ナノトポグラフィはウェーハの加工工程(スライス〜研磨)中で作り込まれるものであり、特に両頭研削の影響が強いので、本発明により両頭研削工程を調整することで、ウェーハのナノトポグラフィをより改善することができる。   Nanotopography is created during the wafer processing process (slicing to polishing), and is particularly affected by double-headed grinding. By adjusting the double-headed grinding process according to the present invention, the nanotopography of the wafer is further improved. be able to.

また、前記ウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を、前記ウェーハ面の4本の直径または半径上あるいは8本の直径または半径上のナノトポグラフィ測定値とするのが好ましい(請求項3)。   The nanotopography measurement values on a plurality of diameters or radii of the wafer surface are preferably nanotopography measurement values on four diameters or radii of the wafer surface or on eight diameters or radii. Item 3).

このように、ウェーハ面の4本の直径または半径上あるいは8本の直径または半径上のナノトポグラフィ測定値を用いれば、簡単かつ正確にチルト調整および/またはシフト調整を行うことができる。   In this manner, tilt adjustment and / or shift adjustment can be easily and accurately performed using the nanotopography measurement values on the four diameters or radii of the wafer surface or on the eight diameters or radii.

また、砥石のチルト調整量および/またはシフト調整量との相関関係を計測して関係式を予め求める平均値成分の凹凸量を、ウェーハ面の中央部の凹凸量および外周リング部の凹凸量とすることが好ましい(請求項4)。   Further, by measuring the correlation with the tilt adjustment amount and / or the shift adjustment amount of the grindstone, the unevenness amount of the average value component obtained in advance by the relational expression is calculated as follows: (Claim 4).

このように前記平均値成分の凹凸量を、ウェーハ面の中央部の凹凸量および外周リング部の凹凸量とすれば、特にナノトポグラフィが悪化し易いウェーハ面の中央部および外周リング部のナノトポグラフィを改善することができる。   Thus, if the unevenness amount of the average value component is the unevenness amount in the central portion of the wafer surface and the unevenness amount in the outer peripheral ring portion, the nanotopography of the central portion and outer peripheral ring portion of the wafer surface that is particularly likely to deteriorate nanotopography. Can be improved.

また、前記チルト調整および/またはシフト調整を、前記関係式に基づいて前記砥石のチルト調整量および/またはシフト調整量を計算するプログラムを用いて自動的に行うことが好ましい(請求項5)。   Further, it is preferable that the tilt adjustment and / or shift adjustment is automatically performed using a program that calculates the tilt adjustment amount and / or shift adjustment amount of the grindstone based on the relational expression.

このようにチルト調整および/またはシフト調整が自動化されれば、より容易に短時間で調整を行うことができるし、作業員の熟練度の影響を排除できる。   If the tilt adjustment and / or shift adjustment is automated in this way, the adjustment can be performed more easily in a short time, and the influence of the skill level of the worker can be eliminated.

この場合、前記チルト調整および/またはシフト調整をモータ駆動により行うことが好ましい(請求項6)。   In this case, it is preferable that the tilt adjustment and / or the shift adjustment be performed by a motor drive.

このようにチルト調整および/またはシフト調整は、モータ駆動で行うことができる。   Thus, tilt adjustment and / or shift adjustment can be performed by motor drive.

また、前記平均値成分を、複数枚のウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して求めることが好ましい(請求項7)。   The average value component is preferably obtained by averaging nanotopography measurement values on a plurality of diameters or radii of a plurality of wafer surfaces.

このように、複数枚のウェーハの測定値を平均して平均値成分を求めれば、より正確に平均値成分を求めることができ、チルト調整および/またはシフト調整の精度を上げることができる。   Thus, if the average value component is obtained by averaging the measurement values of a plurality of wafers, the average value component can be obtained more accurately, and the accuracy of tilt adjustment and / or shift adjustment can be increased.

また、少なくとも砥石を具備し、該砥石によりウェーハを研削する半導体ウェーハの研削装置であって、前記砥石をチルト調整および/またはシフト調整する機構を具備し、該調整機構は、研削されたウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して得られた平均値成分の凹凸量と該凹凸を平坦化するための前記砥石のチルト調整量および/またはシフト調整量との相関関係を計測して求めた関係式に基づいて、前記砥石のチルト調整および/またはシフト調整を行うものである半導体ウェーハの研削装置が提供される(請求項8)。   Also, a semiconductor wafer grinding apparatus comprising at least a grindstone and grinding a wafer with the grindstone, comprising a mechanism for adjusting the tilt and / or shift of the grindstone, the adjusting mechanism comprising a ground wafer surface Correlation between the unevenness amount of the average value component obtained by averaging the nanotopography measurement values on a plurality of diameters or radii of the above and the tilt adjustment amount and / or shift adjustment amount of the grindstone for flattening the unevenness A semiconductor wafer grinding apparatus is provided that performs tilt adjustment and / or shift adjustment of the grindstone based on a relational expression obtained by measuring.

このような関係式に基づいた調整機構を有する研削装置であれば、非熟練作業員でも簡便かつ確実に調整を行い、ナノトポグラフィの改善をすることができる研削装置となる。   If it is a grinding device which has an adjustment mechanism based on such a relational expression, it will become a grinding device which can perform adjustment easily and reliably, and can improve nanotopography even by an unskilled worker.

この場合、前記ウェーハの両面を同時に研削する両頭研削を行う研削装置であることが好ましい(請求項9)。   In this case, it is preferable that the grinding apparatus performs double-head grinding for simultaneously grinding both surfaces of the wafer.

ナノトポグラフィはウェーハの加工工程(スライス〜研磨)中で作り込まれるものであり、特に両頭研削の影響が強いので、本発明のような両頭研削装置であれば、調整によりウェーハのナノトポグラフィを簡単に改善することができる装置となる。   Nanotopography is created during the wafer processing process (slicing to polishing) and is particularly affected by double-headed grinding. Therefore, with a double-headed grinding machine like the present invention, the nanotopography of the wafer can be easily adjusted by adjustment. The device can be improved.

また、この場合、前記関係式に基づいて前記砥石のチルト調整量および/またはシフト調整量を計算するプログラムを用いて自動的にチルト調整および/またはシフト調整を行う研削装置であることが好ましい(請求項10)。   In this case, it is preferable that the grinding apparatus automatically performs tilt adjustment and / or shift adjustment using a program for calculating the tilt adjustment amount and / or shift adjustment amount of the grindstone based on the relational expression ( Claim 10).

このようにチルト調整および/またはシフト調整が自動化された研削装置であれば、より容易に短時間で調整を行うことができる。   If the grinding apparatus is such that tilt adjustment and / or shift adjustment is automated, the adjustment can be performed more easily in a short time.

さらに、前記チルト調整および/またはシフト調整をモータ駆動により行う研削装置であることが好ましい(請求項11)。   Furthermore, it is preferable that the grinding apparatus performs the tilt adjustment and / or shift adjustment by driving a motor.

このようにチルト調整および/またはシフト調整を、モータ駆動で行う研削装置とすることができる。   In this manner, a grinding apparatus that performs tilt adjustment and / or shift adjustment by motor drive can be provided.

また、前記平均値成分が複数枚のウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して得られたものであることが好ましい(請求項12)。   Further, it is preferable that the average value component is obtained by averaging nanotopography measurement values on a plurality of diameters or radii of a plurality of wafer surfaces.

このように、前記平均値成分が複数枚のウェーハの測定値を平均して求められたものであれば、より正確な関係式に基づいて、精度の高いチルト調整および/またはシフト調整を行うことができる。   As described above, when the average value component is obtained by averaging the measurement values of a plurality of wafers, highly accurate tilt adjustment and / or shift adjustment is performed based on a more accurate relational expression. Can do.

以上説明したように、本発明によれば、ナノトポグラフィの平均値成分の凹凸量と該凹凸を平坦化するための砥石のチルト調整量および/またはシフト調整量との関係式を予め求めておき、該関係式に基づいて以後の研削工程における砥石のチルト調整および/またはシフト調整を行うことで、非熟練作業員でも調整時間や調整用ダミー・ウェーハの枚数を大幅に低減することができ、定量的に簡便かつ確実にウェーハのナノトポグラフィの改善を行うことができる。   As described above, according to the present invention, a relational expression between the unevenness amount of the average value component of nanotopography and the tilt adjustment amount and / or shift adjustment amount of the grindstone for flattening the unevenness is obtained in advance. By adjusting the tilt and / or shift of the grinding wheel in the subsequent grinding process based on this relational expression, even unskilled workers can greatly reduce the adjustment time and the number of dummy wafers for adjustment. The nanotopography of the wafer can be improved quantitatively simply and reliably.

以下、本発明についてより詳細に説明するが、本発明はこれらに限定されるものではない。
本発明者らは、上記課題を解決するために鋭意検討を行った結果、加工されたウェーハのナノトポグラフィ測定値を平均した平均値成分(リング状成分)が研削条件と関係することを見出した。さらに、平均値成分の凹凸量と該凹凸を平坦化するために必要とされた砥石のチルト調整量および/またはシフト調整量との相関関係を測定して関係式を求め、この関係式に従ってその後の研削においてチルト調整および/またはシフト調整を行えば、ナノトポグラフィの改善を容易に行うことができることに想到し、本発明を完成させた。
Hereinafter, although this invention is demonstrated in detail, this invention is not limited to these.
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that an average value component (ring-shaped component) obtained by averaging nanotopography measurement values of a processed wafer is related to grinding conditions. . Further, a correlation is obtained by measuring the correlation between the amount of unevenness of the average value component and the tilt adjustment amount and / or shift adjustment amount of the grindstone required for flattening the unevenness, The inventors have conceived that nanotopography can be easily improved by performing tilt adjustment and / or shift adjustment in grinding, and thus the present invention has been completed.

すなわち本発明の半導体ウェーハの製造方法は、少なくとも、原料ウェーハを砥石で研削する研削工程を有し、該研削工程により研削されたウェーハ面のナノトポグラフィを測定し、このウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して平均値成分を求め、該平均値成分の凹凸量と該凹凸を平坦化するための前記砥石のチルト調整量および/またはシフト調整量との相関関係を計測して関係式を予め求め、該予め求めた関係式に基づいて以後の研削工程において前記砥石のチルト調整および/またはシフト調整を行うものである。   That is, the semiconductor wafer manufacturing method of the present invention has at least a grinding step of grinding a raw material wafer with a grindstone, measures nanotopography of the wafer surface ground by the grinding step, and measures a plurality of diameters or The average value component is obtained by averaging the nanotopography measurement values on the radius, and the correlation between the unevenness amount of the average value component and the tilt adjustment amount and / or shift adjustment amount of the grindstone for flattening the unevenness is obtained. A relational expression is obtained in advance by measurement, and tilt adjustment and / or shift adjustment of the grindstone is performed in the subsequent grinding step based on the relational expression obtained in advance.

この場合、ナノトポグラフィはウェーハの加工工程(スライス〜研磨)中で作り込まれるものであり、特に両頭研削の影響が強いので、本発明により両頭研削工程を調整する場合を例として、ウェーハのナノトポグラフィを改善することができることを説明する。   In this case, the nanotopography is created during the wafer processing process (slicing to polishing), and the influence of double-headed grinding is particularly strong. Therefore, the case of adjusting the double-headed grinding process according to the present invention is taken as an example. Explain that topography can be improved.

(ナノトポグラフィの測定および測定値の処理)
上記のようにナノトポグラフィ測定値を平均値成分とする方法の一例を図6のフローチャートを参照して説明する。
まず、測定の対象となる、研削工程により研削されたウェーハを準備し、そのウェーハ面のナノトポグラフィを測定機により測定し、得られた数値データを直接または記録媒体を介して、演算プログラムへ入力する(図6(a))。
(Measurement of nanotopography and processing of measured values)
An example of the method of using the nanotopography measurement value as the average value component as described above will be described with reference to the flowchart of FIG.
First, a wafer that has been ground by the grinding process is prepared, the nanotopography of the wafer surface is measured with a measuring machine, and the obtained numerical data is input directly or via a recording medium into a calculation program. (FIG. 6 (a)).

ナノトポグラフィの測定機は特に限定されないが、たとえばNanomapper(ADE Corp.)やDynasearch((株)レイテックス))を用いることができる。これらの装置は光学式で、ウェーハの表面反射を利用してナノトポグラフィを測定する。Nanomapperはマイケルソン干渉計を用いており、この干渉計によって取り込まれたシリコンウェーハの面内データは、ノイズ除去等の処理が行われた後、設定によって決まるウィンドウサイズをウェーハ面内で移動させ、ウィンドウ内のPV値(最大値-最小値)をそのウィンドウの中心値に置き換えることで、ナノトポグラフィーのデータとなる。   The nanotopography measuring machine is not particularly limited, and for example, Nanomapper (ADE Corp.) or Dynasearch (Ratex Co., Ltd.) can be used. These devices are optical and measure nanotopography using wafer surface reflections. Nanomapper uses a Michelson interferometer, and the in-plane data of the silicon wafer captured by this interferometer is moved in the wafer plane by the window size determined by the setting after processing such as noise removal is performed, By replacing the PV value (maximum value-minimum value) in the window with the center value of the window, the data becomes nanotopography data.

演算プログラムにより、ウェーハ面の4本の直径上のナノトポグラフィ測定値、すなわち8本の半径上のナノトポグラフィ測定値を得る(図6(b))。   A nanotopography measurement value on four diameters on the wafer surface, that is, a nanotopography measurement value on eight radii is obtained by the arithmetic program (FIG. 6B).

次に、図6(b)で得られた8本の半径上のナノトポグラフィ測定値を、下記表2に示すように半径方向の各位置における8点で平均し、「平均値成分」とする(半径方向の位置は図12参照)。また、半径方向の平均値成分を反対方向へ折り返して、ウェーハ中心点に対して左右対称の波形としてもよい(図6(c))。   Next, the nanotopography measurement values on the eight radii obtained in FIG. 6B are averaged at eight points in each radial position as shown in Table 2 below to obtain an “average value component”. (See FIG. 12 for radial position). Alternatively, the average value component in the radial direction may be folded back in the opposite direction to form a waveform that is symmetrical with respect to the wafer center point (FIG. 6C).

Figure 2007095987
Figure 2007095987

このようにしてナノトポグラフィ測定値を平均値成分にすることができるが、ナノトポグラフィ測定値が平均される直径または半径の本数は特に限定されず、たとえば4本の直径または半径あるいは8本の直径または半径であってもよい。
また、上記平均値成分は複数枚のウェーハのナノトポグラフィ測定値を平均して求めてもよい。このように複数枚のウェーハを用いて平均値成分を求めることで、より正確な調整を行うことができる。
In this way, the nanotopography measurement value can be used as an average value component, but the number of diameters or radii at which the nanotopography measurement values are averaged is not particularly limited. For example, four diameters or radii or eight diameters are used. Or it may be a radius.
The average value component may be obtained by averaging nanotopography measurement values of a plurality of wafers. Thus, more accurate adjustment can be performed by calculating | requiring an average value component using several wafers.

上記方法で得られたナノトポグラフィ測定値の平均値成分を図7に示す。
ここで、平均値成分はウェーハ面にリング状に形成される表面うねり成分に対応し、すなわちリング状成分あるいは点対称成分と言うことができる。
The average value component of the nanotopography measurement values obtained by the above method is shown in FIG.
Here, the average value component corresponds to a surface waviness component formed in a ring shape on the wafer surface, that is, it can be said to be a ring-shaped component or a point-symmetric component.

このとき、図2に示すように、平均値成分の中央部の凹凸量をC、外周リング部の凹凸量をEと定義する。 At this time, as shown in FIG. 2, the unevenness amount of the central portion of the average value component is defined as C 0 , and the unevenness amount of the outer peripheral ring portion is defined as E 0 .

ここで、中央部の凹凸と外周リング部の凹凸を、図5に示すように模式化してその向きと符号の関係を定義する。図5は、研削装置にセットしたウェーハを研削装置の手前側から見たときの模式図である。   Here, the unevenness of the central portion and the unevenness of the outer peripheral ring portion are schematically illustrated as shown in FIG. FIG. 5 is a schematic diagram when the wafer set in the grinding apparatus is viewed from the front side of the grinding apparatus.

このような凹凸を平坦化するために、研削装置の砥石のチルト調整およびシフト調整を行う。以下の説明で使用するチルト調整およびシフト調整の向きと符号の関係を図4に定義する。   In order to flatten such unevenness, tilt adjustment and shift adjustment of the grindstone of the grinding apparatus are performed. The relationship between the direction of the tilt adjustment and shift adjustment used in the following description and the symbols is defined in FIG.

(凹凸量と調整量の関係式)
上記のように研削後のウェーハのナノトポグラフィを測定し、このナノトポグラフィ測定値を平均して得た平均値成分(リング状成分)から「中央部の凹凸量C」と「外周リング部の凹凸量E」を読み取る(図2参照)。そして、これらの凹凸をできるだけ零に近づけるために必要とされた、前記表1等に基づく経験的に行った研削装置の右砥石の垂直方向チルト調整量ΔX、右砥石のシフト調整量ΔYを求める。左砥石については、それぞれ逆符合となる。
(Relationship between unevenness and adjustment amount)
As described above, the nanotopography of the wafer after grinding is measured, and from the average value component (ring-shaped component) obtained by averaging the nanotopography measurement values, the “concavo-convex amount C 0 in the central portion” and “the outer ring portion The unevenness E 0 ”is read (see FIG. 2). Then, the vertical tilt adjustment amount ΔX of the right grindstone and the shift adjustment amount ΔY of the right grindstone of the grinding apparatus empirically performed based on the above-described Table 1 and the like, which are necessary to make these irregularities as close to zero as possible, are obtained. . The left whetstone has a reverse sign.

このような測定を繰り返して、ウェーハ研削に用いる研削装置におけるC、E とΔX、ΔY の相関データを求め、図1(a)と図1(b)に示すようなグラフを得る。なお図1の横軸は「移動量」であり, 絶対値ではない。図1から、「垂直チルト調整量ΔX」、「シフト調整量ΔY」のいずれによっても、ナノトポグラフィの「中央部の凹凸量C」と「外周リング部の凹凸量E」はどちらも変化するが、変化の傾きが異なっていることが分かる。 By repeating such measurement, correlation data of C 0 , E 0 and ΔX, ΔY in a grinding apparatus used for wafer grinding is obtained, and graphs as shown in FIGS. 1A and 1B are obtained. The horizontal axis in FIG. 1 is “movement amount”, not an absolute value. From FIG. 1, both of “the central unevenness amount C 0 ” and “the unevenness amount E 0 of the outer ring portion” of the nanotopography change depending on both “vertical tilt adjustment amount ΔX” and “shift adjustment amount ΔY”. However, it can be seen that the slope of the change is different.

図1のグラフから各回帰直線の傾きを求めると、以下のようになる。
「垂直チルト調整量ΔX」と「中央部の凹凸量C」の比例係数 : −0.0200
「垂直チルト調整量ΔX」と「外周リング部の凹凸量E」の比例係数 : −0.0161
「シフト調整量ΔY」と「中央部の凹凸量C」の比例係数 : −0.0190
「シフト調整量ΔY」と「外周リング部の凹凸量E」の比例係数 : −0.0087
The slope of each regression line is obtained from the graph of FIG. 1 as follows.
Proportional coefficient of “vertical tilt adjustment amount ΔX” and “concavo-convex amount C 0 at the center”: −0.0200
Proportional coefficient of “vertical tilt adjustment amount ΔX” and “outer ring unevenness E 0 ”: −0.0161
Proportional coefficient of “shift adjustment amount ΔY” and “concavo-convex amount C 0 at the center”: −0.0190
Proportional coefficient of “shift adjustment amount ΔY” and “unevenness amount E 0 of outer ring portion”: −0.0087

上記の比例係数は、垂直チルト調整量またはシフト調整量に対する凹凸量の変化量である。すなわち、ウェーハ中央部と外周リング部の凹凸変化量ΔC、ΔEそれぞれに及ぼす効果が、垂直チルト調整量ΔXとシフト調整量ΔYとでは異なることを利用して下記の連立方程式 (1a) および (1b) を解く。ここでは、凹凸変化量ΔC, ΔEに対してΔXとΔYはそれぞれ独立に効果を及ぼすと仮定している。
ΔC0 = −0.0200 ΔX −0.0190 ΔY 式(1a)
ΔE0 = −0.0161 ΔX −0.0087 ΔY 式(1b)
The proportional coefficient is the amount of change in the unevenness with respect to the vertical tilt adjustment amount or the shift adjustment amount. That is, the following simultaneous equations (1a) and (1) are obtained by using the fact that the effects on the unevenness change amounts ΔC 0 and ΔE 0 of the wafer central portion and the outer ring portion are different between the vertical tilt adjustment amount ΔX and the shift adjustment amount ΔY. Solve (1b). Here, it is assumed that ΔX and ΔY have an independent effect on the unevenness variation amounts ΔC 0 and ΔE 0 .
ΔC 0 = −0.0200 ΔX −0.0190 ΔY Equation (1a)
ΔE 0 = −0.0161 ΔX −0.0087 ΔY Equation (1b)

連立方程式(1a)、(1b)を解いて、下記の式(2a)(2b)の解を得る。
ΔX = (0.0087 ΔC0 − 0.0190 ΔE0 ) / 1.319×10−4 式(2a)
ΔY = ( −0.0161 ΔC0 + 0.0200 ΔE0 ) / 1.319×10−4 式(2b)
The simultaneous equations (1a) and (1b) are solved to obtain the following equations (2a) and (2b).
ΔX = (0.0087 ΔC 0 − 0.0190 ΔE 0 ) / 1.319 × 10 −4 (2a)
ΔY = (−0.0161 ΔC 0 + 0.0200 ΔE 0 ) / 1.319 × 10 −4 formula (2b)

上記式(2a)(2b)に、ウェーハ中央部および外周リング部の凹凸変化量ΔC、ΔEを目標値として入力することにより、(右砥石の)垂直チルトおよびシフト調整量ΔX、ΔYを求めることができる。 In the above formulas (2a) and (2b), by inputting the unevenness variation amounts ΔC 0 and ΔE 0 of the wafer central portion and outer peripheral ring portion as target values, the vertical tilt and shift adjustment amounts ΔX and ΔY (of the right grindstone) are obtained. Can be sought.

また、測定で得た凹凸量がC、Eである場合、これらを零とするために目標とする凹凸変化量ΔC、ΔEはそれぞれ−C、−Eである。従って、上記式(2a)(2b)から下記式(3a)(3b)を導くことができる。
ΔX = (−0.0087 C0 + 0.0190 E0 ) / 1.319×10−4 式(3a)
ΔY = (0.0161 C0 − 0.0200 E0 ) / 1.319×10−4 式(3b)
Further, when the unevenness amounts obtained by the measurement are C 0 and E 0 , the target unevenness change amounts ΔC 0 and ΔE 0 in order to make them zero are −C 0 and −E 0 , respectively. Therefore, the following formulas (3a) and (3b) can be derived from the above formulas (2a) and (2b).
ΔX = (−0.0087 C 0 + 0.0190 E 0 ) / 1.319 × 10 −4 formula (3a)
ΔY = (0.0161 C 0 − 0.0200 E 0 ) / 1.319 × 10 −4 (3b)

上記式(3a) および (3b) に基づいて垂直チルト調整量およびシフト調整量の表を作成する。作成した表(部分抜粋)を下記表3に示す。

Figure 2007095987
A table of vertical tilt adjustment amounts and shift adjustment amounts is created based on the above equations (3a) and (3b). The created table (partial extract) is shown in Table 3 below.
Figure 2007095987

(チルト調整およびシフト調整)
このように予め研削装置における凹凸量とチルト調整量/シフト調整量の関係式を求めておけば、以後チルト調整またはシフト調整を行う必要が生じたときに、迅速かつ的確に調整を行うことができる。
上記研削装置により試し研削したウェーハのナノトポグラフィを測定し、ナノトポグラフィ測定値から平均値成分を求め、「中央部」と「外周部リング」の凹凸の向きと大きさを得る。次に、上記表3でこれらの凹凸を零に近付けるための砥石のチルト調整量およびシフト調整量を得て、これに基づいて調整を行う。
(Tilt adjustment and shift adjustment)
As described above, if the relational expression between the unevenness amount and the tilt adjustment amount / shift adjustment amount in the grinding apparatus is obtained in advance, the adjustment can be performed quickly and accurately when it is necessary to perform the tilt adjustment or the shift adjustment thereafter. it can.
The nanotopography of the wafer that has been trial-ground by the above grinding apparatus is measured, the average value component is obtained from the nanotopography measurement value, and the direction and size of the unevenness of the “center portion” and the “outer peripheral ring” are obtained. Next, in Table 3 above, the tilt adjustment amount and shift adjustment amount of the grindstone for making these irregularities close to zero are obtained, and adjustment is performed based on this.

このように凹凸量C、Eと、調整量ΔX、ΔYの関係式に基づいて、チルト調整、シフト調整を行うことで、非熟練作業員でもナノトポグラフィの改善を的確かつ容易に行うことができる。たとえば、従来経験や勘に頼った調整で10〜20枚のウェーハを消費していたところが、非熟練作業員でも5枚以内の試し研削で調整が終了した。また、定量的に調整が行われるので、ばらつきも少ない。 As described above, by performing tilt adjustment and shift adjustment based on the relational expressions of the unevenness amounts C 0 and E 0 and the adjustment amounts ΔX and ΔY, even non-skilled workers can improve nanotopography accurately and easily. Can do. For example, 10 to 20 wafers were consumed by adjustment based on conventional experience and intuition, but even an unskilled worker completed the adjustment with 5 or less trial grindings. Further, since the adjustment is performed quantitatively, there is little variation.

なお、調整を自動化する場合には、前記関係式に基づいて前記砥石のチルト調整量および/またはシフト調整量を計算するプログラムを用いて行うことができる。たとえば、前記関係式に基づいた上記表3のようなデータベースを自動的に作成するプログラムとしてもよい。また、このようなプログラムを用いて調整を行う場合、チルト調整および/またはシフト調整はモータ駆動により行うことができる。   The adjustment can be automated using a program that calculates the tilt adjustment amount and / or shift adjustment amount of the grindstone based on the relational expression. For example, a program that automatically creates a database as shown in Table 3 based on the relational expression may be used. When adjustment is performed using such a program, tilt adjustment and / or shift adjustment can be performed by motor drive.

(研削装置)
さらに、本発明によれば、少なくとも砥石を具備し、該砥石によりウェーハを研削する半導体ウェーハの研削装置であって、前記砥石をチルト調整および/またはシフト調整する機構を具備し、該調整機構は、研削されたウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して得られた平均値成分の凹凸量と該凹凸を平坦化するための前記砥石のチルト調整量および/またはシフト調整量との相関関係を計測して求めた関係式に基づいて、前記砥石のチルト調整および/またはシフト調整を行うものである半導体ウェーハの研削装置あるいは両頭研削装置が提供される。
(Grinding device)
Further, according to the present invention, there is provided a semiconductor wafer grinding apparatus comprising at least a grindstone, and grinding a wafer with the grindstone, comprising a mechanism for tilt adjustment and / or shift adjustment of the grindstone, the adjustment mechanism comprising: The amount of unevenness of the average value component obtained by averaging the nanotopography measurement values on a plurality of diameters or radii of the ground wafer surface, and the tilt adjustment amount and / or shift of the grindstone for flattening the unevenness There is provided a semiconductor wafer grinding apparatus or double-head grinding apparatus that performs tilt adjustment and / or shift adjustment of the grindstone based on a relational expression obtained by measuring a correlation with an adjustment amount.

このような関係式に基づいた調整を行う調整機構を有する研削装置であれば、凹凸量をもとに、非熟練作業員でもナノトポグラフィの改善を的確かつ容易に行うことができる。   With a grinding apparatus having an adjustment mechanism that performs adjustment based on such a relational expression, even non-skilled workers can accurately and easily improve nanotopography based on the amount of unevenness.

また、上記研削装置が、前記関係式に基づいて前記砥石のチルト調整量および/またはシフト調整量を計算するプログラムを用いて自動的にチルト調整および/またはシフト調整を行うものであってもよい。たとえば、上記表3の作成をプログラムにより自動化し、またはこの表をデータベースとして装置内に保存し、必要に応じて随時呼び出してモータ駆動で自動的にチルト調整および/またはシフト調整することができる。   Further, the grinding apparatus may automatically perform tilt adjustment and / or shift adjustment using a program for calculating the tilt adjustment amount and / or shift adjustment amount of the grindstone based on the relational expression. . For example, the creation of Table 3 can be automated by a program, or the table can be stored in the apparatus as a database, and can be called as needed to automatically perform tilt adjustment and / or shift adjustment by motor drive.

また、上記研削装置において、平均値成分が複数枚のウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して得られたものであってもよい。このように、複数枚のウェーハを用いて平均値成分を求めることで、より精度の高い調整を行うことができる。   In the grinding apparatus, the average value component may be obtained by averaging nanotopography measurement values on a plurality of diameters or radii of a plurality of wafer surfaces. In this way, more accurate adjustment can be performed by obtaining the average value component using a plurality of wafers.

なお、上記の説明では「垂直方向チルト調整およびシフト調整」の方向・移動量と「中央部の凹凸量」と「外周リング部の凹凸量」の関係を一次の直線で近似したが、これを二次・三次のより高次の曲線で近似してもよい。また、上記ではこの一次直線の比例係数を示したが、これらの比例係数は研削装置によって異なるものであり、単なる例示にすぎない。   In the above description, the relationship between the direction / movement amount of “vertical tilt adjustment and shift adjustment” and “the unevenness of the central part” and “the unevenness of the outer ring part” is approximated by a linear line. Approximation may be performed using higher-order curves such as second-order and third-order. Moreover, although the proportionality coefficient of this linear was shown above, these proportionality coefficients differ with grinding apparatuses, and are only an illustration.

また、上記では中央部の凹凸量Cおよび外周リング部の凹凸量Eとチルト調整量およびシフト調整量との相関関係を求めたが、図2、7等に見られる中間リングその他のナノトポグラフィの値との関係を求めて、調整するようにしてもよい。また、目的に応じ、必ずしも、中央部の凹凸量Cおよび外周リング部の凹凸量Eの両方との関係を求めずとも、いずれか一方との関係から調整量を求めるようにしてもよい。さらに、チルト調整とシフト調整も、いずれか一方のみとすることも可能である。 Further, in the above it has been determined the correlation between the amount of unevenness C 0 and the irregularity of the outer peripheral ring portion E 0 and the tilt adjustment amount and the shift adjustment amount of the center portion, an intermediate ring other nano seen in FIG. 2, 7, etc. You may make it adjust by calculating | requiring the relationship with the value of topography. Further, according to the purpose, necessarily, without seeking the relationship between both the irregularity E 0 of the irregularity C 0 and the outer peripheral ring portion of the central portion, may be obtained an adjustment amount from the relationship between either . Furthermore, only one of the tilt adjustment and the shift adjustment can be performed.

以下、本発明を実施例を挙げて具体的に説明するが、本発明はこれに限定されるものではない。。
(実施例)
前述のように、あらかじめ、半導体ウェーハ製造の両頭研削工程で用いる両頭研削装置についてナノトポグラフィの測定を行った。すなわち、研削後のウェーハ面のナノトポグラフィ測定値から平均値成分の「中央部の凹凸量C」と「外周リング部の凹凸量E」を得た。そして、この凹凸量C、Eをできるだけ零に近づけるための右砥石の垂直方向チルト調整量ΔX、右砥石のシフト調整量ΔYを測定し、図1のグラフを得た。さらに、図1を元に下記式(3a)(3b)を得た。
ΔX = (−0.0087 C0 + 0.0190 E0 ) / 1.319×10−4 式(3a)
ΔY = (0.0161 C0 − 0.0200 E0 ) / 1.319×10−4 式(3b)
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. .
(Example)
As described above, nanotopography measurement was previously performed on a double-head grinding apparatus used in the double-head grinding process of semiconductor wafer manufacturing. That is, from the measured values of the nanotopography of the wafer surface after grinding, the average value components “concavo-convex amount C 0 ” and “protrusion amount E 0 of the outer peripheral ring portion” were obtained. Then, the vertical tilt adjustment amount ΔX of the right grindstone and the shift adjustment amount ΔY of the right grindstone for measuring the unevenness amounts C 0 and E 0 as close to zero as possible were measured, and the graph of FIG. 1 was obtained. Furthermore, the following formulas (3a) and (3b) were obtained based on FIG.
ΔX = (−0.0087 C 0 + 0.0190 E 0 ) / 1.319 × 10 −4 formula (3a)
ΔY = (0.0161 C 0 − 0.0200 E 0 ) / 1.319 × 10 −4 (3b)

ここで試料ウェーハとしてCZ法で製造された直径300mmの単結晶シリコンウェーハを前記両頭研削装置により研削した。研削後のウェーハについて光学式の測定装置Nanomapperでナノトポグラフィの測定を行い、ウェーハ面の4本の直径上のナノトポグラフィ測定値を平均して得られた平均値成分から、図3(a)に示すように「中央部の凹凸量C=+1.25」と「外周リング部の凹凸量E=+0.50」を読み取った。 Here, a single crystal silicon wafer having a diameter of 300 mm manufactured by the CZ method as a sample wafer was ground by the double-head grinding apparatus. Fig. 3 (a) shows the average value component obtained by measuring the nanotopography of the ground wafer with an optical measurement device Nanomapper and averaging the nanotopography measurement values on the four diameters of the wafer surface. As shown, “the unevenness amount C 0 = + 1.25 in the central portion” and “the unevenness amount E 0 = + 0.50 in the outer peripheral ring portion” were read.

得られた凹凸量C、Eを上記式(3a)(3b)に入力して、右砥石の垂直方向チルト調整量ΔX=−10、右砥石のシフト調整量ΔY=+77を得た。これらの調整量に基いて、両頭研削装置の砥石のチルト調整およびシフト調整を行った。調整後に、上記と同様の条件で試料ウェーハを研削し、研削後のウェーハのナノトポグラフィを測定し、平均値成分を得た。図3(b)に得られた平均値成分を示す。 The obtained concavo-convex amounts C 0 and E 0 were input to the above formulas (3a) and (3b) to obtain the right wheel vertical tilt adjustment amount ΔX = −10 and the right wheel shift adjustment amount ΔY = + 77. Based on these adjustment amounts, tilt adjustment and shift adjustment of the grindstone of the double-head grinding apparatus were performed. After the adjustment, the sample wafer was ground under the same conditions as described above, and the nanotopography of the ground wafer was measured to obtain an average value component. The average value component obtained is shown in FIG.

図3(a)(b)から、調整前後で明らかに中央部および外周リング部で凹凸量が減少し、ナノトポグラフィが改善されていることがわかる。   3 (a) and 3 (b), it can be seen that the unevenness is clearly reduced in the central portion and the outer peripheral ring portion before and after the adjustment, and the nanotopography is improved.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
たとえば、ナノトポグラフィの測定は、光学干渉式の測定機以外に、静電容量式測定機やレーザ式センサで行ってもよい。また、本発明により製造されるウェーハは半導体シリコンウェーハに限られず、化合物半導体ウェーハであってもよい。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
For example, measurement of nanotopography may be performed by a capacitance type measuring machine or a laser type sensor in addition to the optical interference type measuring machine. Moreover, the wafer manufactured by this invention is not restricted to a semiconductor silicon wafer, A compound semiconductor wafer may be sufficient.

(a)はナノトポグラフィの凹凸量C、Eと垂直チルト調整量ΔXの関係を示すグラフであり、(b)はナノトポグラフィの凹凸値C、Eとシフト調整量ΔYの関係を示すグラフである。(a) is a graph showing the relationship between the nanotopography unevenness amounts C 0 and E 0 and the vertical tilt adjustment amount ΔX, and (b) is the relationship between the nanotopography unevenness values C 0 and E 0 and the shift adjustment amount ΔY. It is a graph to show. ナノトポグラフィ測定値の平均値成分のグラフで、ウェーハ中央部の凹凸量Cおよび外周リング部の凹凸量Eを示す。In the graph of the mean components of the nanotopography measurement values, indicating the irregularity C 0 and irregularity E 0 of the outer peripheral ring portion of the wafer center. 実施例における(a)砥石調整前の平均値成分を示すグラフであり、(b)砥石調整後の平均値成分を示すグラフである。It is a graph which shows the average value component before grinding wheel adjustment in an Example, (b) It is a graph which shows the average value component after grinding wheel adjustment. シフト調整・チルト調整の方向と符号の定義を示す概略図である。It is the schematic which shows the definition of the direction of a shift adjustment and tilt adjustment, and a code | symbol. 平均値成分の中央部の凹凸と外周リング部の凹凸の向きと符号の関係を定義する概略図である。It is the schematic which defines the relationship of the unevenness | corrugation of the center part of an average value component, the unevenness | corrugation of an outer peripheral ring part, and a code | symbol. ナノトポグラフィ測定値を平均値成分とする方法の一例を示すフロー図である。It is a flowchart which shows an example of the method which uses a nanotopography measurement value as an average value component. ナノトポグラフィ測定値を平均値成分にしたグラフである。It is the graph which made the nanotopography measurement value the average value component. (a)は濃淡でナノトポグラフィの強度を定性的に表すナノトポグラフィ・マップであり、(b) は45°おきに測定した4断面(直径)上のナノトポグラフィの形状と定量的な強度を表すグラフである。(a) is a nanotopography map that qualitatively expresses the intensity of nanotopography in light and shade, and (b) shows the shape and quantitative intensity of nanotopography on four sections (diameters) measured every 45 °. It is a graph. ナノトポグラフィ・マップとナノトポグラフィ断面形状の対応を説明する概略図である。It is the schematic explaining the correspondence of a nanotopography map and nanotopography cross-sectional shape. (a)は両頭研削の概略図であり、 (b)はウェーハと砥石の回転方向を示す概略図であり、(c)は静圧パッドのランドパターンを示す写真であり、(d)は静圧パッドの断面図である。(a) is a schematic diagram of double-head grinding, (b) is a schematic diagram showing the rotation direction of the wafer and the grindstone, (c) is a photograph showing the land pattern of the hydrostatic pad, and (d) is a static diagram. It is sectional drawing of a pressure pad. (a)はシフト調整を説明する概略図であり、 (b)はチルト調整を説明する概略図である。(a) is a schematic diagram for explaining the shift adjustment, and (b) is a schematic diagram for explaining the tilt adjustment. ウェーハ面の8本の半径上のナノトポグラフィ測定値を用いる場合の、半径方向の位置を示す概略図である。It is the schematic which shows the position of a radial direction in the case of using the nanotopography measurement value on eight radiuses of a wafer surface.

符号の説明Explanation of symbols

11…左静圧パッド、 21…右静圧パッド、 12…左砥石、 22…右砥石、
13…ランド、 14…ポケット、 h…静圧パッドとウェーハの間隙、
…ウェーハ面の中央部の凹凸量、 E…ウェーハ面の外周リング部の凹凸量、
W…ウェーハ。
11 ... Left static pressure pad, 21 ... Right static pressure pad, 12 ... Left grindstone, 22 ... Right grindstone,
13 ... Land, 14 ... Pocket, h ... Gap between static pressure pad and wafer,
C 0 ... Unevenness amount at the center of the wafer surface, E 0 ... Unevenness amount at the outer peripheral ring portion of the wafer surface,
W: Wafer.

Claims (12)

半導体ウェーハの製造方法であって、少なくとも、原料ウェーハを砥石で研削する研削工程を有し、該研削工程により研削されたウェーハ面のナノトポグラフィを測定し、このウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して平均値成分を求め、該平均値成分の凹凸量と該凹凸を平坦化するための前記砥石のチルト調整量および/またはシフト調整量との相関関係を計測して関係式を予め求め、該予め求めた関係式に基づいて以後の研削工程において前記砥石のチルト調整および/またはシフト調整を行うことを特徴とする半導体ウェーハの製造方法。   A method of manufacturing a semiconductor wafer, comprising at least a grinding step of grinding a raw material wafer with a grindstone, measuring nanotopography of the wafer surface ground by the grinding step, and measuring a plurality of diameters or radii of the wafer surface An average value component is obtained by averaging the measured values of the nanotopography, and the correlation between the unevenness amount of the average value component and the tilt adjustment amount and / or shift adjustment amount of the grindstone for flattening the unevenness is measured. A method of manufacturing a semiconductor wafer comprising: obtaining a relational expression in advance, and performing tilt adjustment and / or shift adjustment of the grindstone in a subsequent grinding step based on the relational expression obtained in advance. 前記研削工程を両頭研削工程とすることを特徴とする請求項1に記載の半導体ウェーハの製造方法。   The method for manufacturing a semiconductor wafer according to claim 1, wherein the grinding step is a double-headed grinding step. 前記ウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を、前記ウェーハ面の4本の直径または半径上あるいは8本の直径または半径上のナノトポグラフィ測定値とすることを特徴とする請求項1または請求項2に記載の半導体ウェーハの製造方法。   The nanotopography measurement value on a plurality of diameters or radii of the wafer surface is a nanotopography measurement value on four diameters or radii of the wafer surface or on eight diameters or radii. A method for producing a semiconductor wafer according to claim 1. 前記砥石のチルト調整量および/またはシフト調整量との相関関係を計測して関係式を予め求める平均値成分の凹凸量を、ウェーハ面の中央部の凹凸量および外周リング部の凹凸量とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体ウェーハの製造方法。   The unevenness amount of the average value component obtained by measuring the correlation with the tilt adjustment amount and / or the shift adjustment amount of the grindstone and obtaining the relational expression in advance is set as the unevenness amount in the central portion of the wafer surface and the unevenness amount in the outer ring portion. The method for manufacturing a semiconductor wafer according to any one of claims 1 to 3, wherein: 前記チルト調整および/またはシフト調整を、前記関係式に基いて前記砥石のチルト調整量および/またはシフト調整量を計算するプログラムを用いて自動的に行うことを特徴とする請求項1乃至請求項4のいずれか1項に記載の半導体ウェーハの製造方法。   The tilt adjustment and / or shift adjustment is automatically performed using a program for calculating a tilt adjustment amount and / or a shift adjustment amount of the grindstone based on the relational expression. 5. The method for producing a semiconductor wafer according to claim 4. 前記チルト調整および/またはシフト調整をモータ駆動により行うことを特徴とする請求項1乃至請求項5のいずれか1項に記載の半導体ウェーハの製造方法。   6. The method of manufacturing a semiconductor wafer according to claim 1, wherein the tilt adjustment and / or the shift adjustment are performed by motor driving. 前記平均値成分を、複数枚のウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して求めることを特徴とする請求項1乃至請求項6のいずれか1項に記載の半導体ウェーハの製造方法。   7. The semiconductor wafer according to claim 1, wherein the average value component is obtained by averaging nanotopography measurement values on a plurality of diameters or radii of a plurality of wafer surfaces. Manufacturing method. 少なくとも砥石を具備し、該砥石によりウェーハを研削する半導体ウェーハの研削装置であって、前記砥石をチルト調整および/またはシフト調整する機構を具備し、該調整機構は、研削されたウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して得られた平均値成分の凹凸量と該凹凸を平坦化するための前記砥石のチルト調整量および/またはシフト調整量との相関関係を計測して求めた関係式に基いて、前記砥石のチルト調整および/またはシフト調整を行うものである半導体ウェーハの研削装置。   A semiconductor wafer grinding apparatus comprising at least a grindstone and grinding a wafer with the grindstone, comprising a mechanism for tilt adjustment and / or shift adjustment of the grindstone, the adjustment mechanism comprising a plurality of ground wafer surfaces. Measures the correlation between the unevenness amount of the average value component obtained by averaging the nanotopography measurement values on the diameter or radius of the wheel and the tilt adjustment amount and / or shift adjustment amount of the grindstone for flattening the unevenness A semiconductor wafer grinding apparatus for performing tilt adjustment and / or shift adjustment of the grindstone based on the relational expression obtained in the above. 前記半導体ウェーハの研削装置は、ウェーハの両面を同時に研削する両頭研削を行うものであることを特徴とする請求項8に記載の半導体ウェーハの研削装置。   9. The semiconductor wafer grinding apparatus according to claim 8, wherein the semiconductor wafer grinding apparatus performs double-head grinding for simultaneously grinding both surfaces of the wafer. 前記関係式に基づいて前記砥石のチルト調整量および/またはシフト調整量を計算するプログラムを用いて自動的にチルト調整および/またはシフト調整を行うものであることを特徴とする請求項8または請求項9に記載の半導体ウェーハの研削装置。   9. The tilt adjustment and / or shift adjustment is automatically performed using a program that calculates the tilt adjustment amount and / or shift adjustment amount of the grindstone based on the relational expression. Item 10. A semiconductor wafer grinding apparatus according to Item 9. 前記チルト調整および/またはシフト調整をモータ駆動により行うものであることを特徴とする請求項8乃至請求項10のいずれか1項に記載の半導体ウェーハの研削装置。   11. The semiconductor wafer grinding apparatus according to claim 8, wherein the tilt adjustment and / or the shift adjustment are performed by a motor drive. 11. 前記平均値成分が複数枚のウェーハ面の複数の直径または半径上のナノトポグラフィ測定値を平均して得られたものであることを特徴とする請求項8乃至請求項11のいずれか1項に記載の半導体ウェーハの研削装置。   The average value component is obtained by averaging nanotopography measurement values on a plurality of diameters or radii of a plurality of wafer surfaces, according to any one of claims 8 to 11. The semiconductor wafer grinding apparatus as described.
JP2005283387A 2005-09-29 2005-09-29 Semiconductor wafer manufacturing method and double-head grinding apparatus Active JP4764693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283387A JP4764693B2 (en) 2005-09-29 2005-09-29 Semiconductor wafer manufacturing method and double-head grinding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283387A JP4764693B2 (en) 2005-09-29 2005-09-29 Semiconductor wafer manufacturing method and double-head grinding apparatus

Publications (3)

Publication Number Publication Date
JP2007095987A true JP2007095987A (en) 2007-04-12
JP2007095987A5 JP2007095987A5 (en) 2008-10-09
JP4764693B2 JP4764693B2 (en) 2011-09-07

Family

ID=37981321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283387A Active JP4764693B2 (en) 2005-09-29 2005-09-29 Semiconductor wafer manufacturing method and double-head grinding apparatus

Country Status (1)

Country Link
JP (1) JP4764693B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067657A (en) 2015-11-26 2018-06-20 가부시키가이샤 사무코 Wafer polishing method
CN109429528B (en) * 2016-06-02 2023-07-07 环球仪器公司 Semiconductor die offset compensation variation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262747A (en) * 1996-03-27 1997-10-07 Nachi Fujikoshi Corp Double grinding device for high brittle material
JPH11254312A (en) * 1998-03-11 1999-09-21 Super Silicon Kenkyusho:Kk Wafer grinding method that entails shape control, and grinding device
JP2000263391A (en) * 1999-03-18 2000-09-26 Nikon Corp Surface shape evaluation method and high accuracy flatness polishing method using it
WO2000067950A1 (en) * 1999-05-07 2000-11-16 Shin-Etsu Handotai Co.,Ltd. Method and device for simultaneously grinding double surfaces, and method and device for simultaneously lapping double surfaces
JP2001246532A (en) * 2000-02-04 2001-09-11 Norton Co Method for determining optimum grinding condition
WO2002041380A1 (en) * 2000-11-16 2002-05-23 Shin-Etsu Handotai Co.,Ltd. Wafer shape evaluating method and device and device producing method, wafer and wafer selecting method
JP2004214505A (en) * 2003-01-07 2004-07-29 Sumitomo Heavy Ind Ltd Method and program for measuring surface configuration and recording medium
JP2005238444A (en) * 1999-05-07 2005-09-08 Shin Etsu Handotai Co Ltd Double-sided simultaneous grinding method, double-sided simultaneous grinding machine, double-sided simultaneous lapping method and double-sided simultaneous lapping machine
JP2007096015A (en) * 2005-09-29 2007-04-12 Shin Etsu Handotai Co Ltd Double-disk grinding apparatus for semiconductor wafer, static pressure pad and double-disk grinding method using the same
JP2007096000A (en) * 2005-09-29 2007-04-12 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer
JP4420023B2 (en) * 2004-08-17 2010-02-24 信越半導体株式会社 Semiconductor wafer measurement method, manufacturing process management method, and semiconductor wafer manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262747A (en) * 1996-03-27 1997-10-07 Nachi Fujikoshi Corp Double grinding device for high brittle material
JPH11254312A (en) * 1998-03-11 1999-09-21 Super Silicon Kenkyusho:Kk Wafer grinding method that entails shape control, and grinding device
JP2000263391A (en) * 1999-03-18 2000-09-26 Nikon Corp Surface shape evaluation method and high accuracy flatness polishing method using it
WO2000067950A1 (en) * 1999-05-07 2000-11-16 Shin-Etsu Handotai Co.,Ltd. Method and device for simultaneously grinding double surfaces, and method and device for simultaneously lapping double surfaces
JP2005238444A (en) * 1999-05-07 2005-09-08 Shin Etsu Handotai Co Ltd Double-sided simultaneous grinding method, double-sided simultaneous grinding machine, double-sided simultaneous lapping method and double-sided simultaneous lapping machine
JP2001246532A (en) * 2000-02-04 2001-09-11 Norton Co Method for determining optimum grinding condition
WO2002041380A1 (en) * 2000-11-16 2002-05-23 Shin-Etsu Handotai Co.,Ltd. Wafer shape evaluating method and device and device producing method, wafer and wafer selecting method
JP2004214505A (en) * 2003-01-07 2004-07-29 Sumitomo Heavy Ind Ltd Method and program for measuring surface configuration and recording medium
JP4420023B2 (en) * 2004-08-17 2010-02-24 信越半導体株式会社 Semiconductor wafer measurement method, manufacturing process management method, and semiconductor wafer manufacturing method
JP2007096015A (en) * 2005-09-29 2007-04-12 Shin Etsu Handotai Co Ltd Double-disk grinding apparatus for semiconductor wafer, static pressure pad and double-disk grinding method using the same
JP2007096000A (en) * 2005-09-29 2007-04-12 Shin Etsu Handotai Co Ltd Method of manufacturing semiconductor wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067657A (en) 2015-11-26 2018-06-20 가부시키가이샤 사무코 Wafer polishing method
DE112016005417T5 (en) 2015-11-26 2018-08-02 Sumco Corporation Wafer polishing process
US11075085B2 (en) 2015-11-26 2021-07-27 Sumco Corporation Wafer polishing method
CN109429528B (en) * 2016-06-02 2023-07-07 环球仪器公司 Semiconductor die offset compensation variation

Also Published As

Publication number Publication date
JP4764693B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4429995B2 (en) Manufacturing method of semiconductor wafer
US7930058B2 (en) Nanotopography control and optimization using feedback from warp data
JP4670566B2 (en) Semiconductor wafer double-head grinding apparatus, hydrostatic pad and double-head grinding method using the same
CN104428882B (en) Evaluation method and production method for semiconductor wafers
US8454852B2 (en) Chamfering apparatus for silicon wafer, method for producing silicon wafer, and etched silicon wafer
KR101704811B1 (en) Method of processing synthetic quartz glass substrate for semiconductor
KR101549055B1 (en) Work duplex-head grinding apparatus, and work duplex-head grinding method
JP4915146B2 (en) Wafer manufacturing method
Pilný et al. Development of on the machine process monitoring and control strategy in Robot Assisted Polishing
JP4752475B2 (en) Semiconductor wafer double-head grinding apparatus, hydrostatic pad and double-head grinding method using the same
JP2003086646A (en) Method for evaluating shape of wafer, wafer and method for selecting wafer
JP4764693B2 (en) Semiconductor wafer manufacturing method and double-head grinding apparatus
McDonald et al. Design and validation of a grinding wheel optical scanner system to repeatedly measure and characterize wheel surface topography
JP2010034462A (en) Double-side polishing device
Ismail et al. Surface Metrology for Process Diagnostic of Ultrasonic Vibration Assisted Grinding
McDonald Investigation of Grinding Wheel Wear Using a White Chromatic Sensor
Cui et al. Self-adaptive grain recognition of diamond grinding wheel and its grains assessment
JP2005297129A (en) Polishing amount measuring method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4764693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350