JP2007093495A - Imaging device and optical apparatus measuring device - Google Patents

Imaging device and optical apparatus measuring device Download PDF

Info

Publication number
JP2007093495A
JP2007093495A JP2005285807A JP2005285807A JP2007093495A JP 2007093495 A JP2007093495 A JP 2007093495A JP 2005285807 A JP2005285807 A JP 2005285807A JP 2005285807 A JP2005285807 A JP 2005285807A JP 2007093495 A JP2007093495 A JP 2007093495A
Authority
JP
Japan
Prior art keywords
light
optical
imaging
detection pixel
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005285807A
Other languages
Japanese (ja)
Inventor
Tatsuya Takei
達也 武井
Kiminari Tamiya
公成 田宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005285807A priority Critical patent/JP2007093495A/en
Publication of JP2007093495A publication Critical patent/JP2007093495A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging device capable of detecting mounting displacement and gradient and performing accurate positioning; and also to provide an optical apparatus measuring device used for mounting and positioning the imaging device. <P>SOLUTION: Four detecting pixels PD1-PD4 are disposed around an imaging area 12 of the imaging device 11, each detecting pixel is constituted by four light-receiving elements A1-D1, ... A4-D4 that are vertically and horizontally symmetrical with respect to the center, each detecting pixel is irradiated with a laser beam whose beam diameter is proportional to the distance, and based on the output value of each light-receiving element of each detecting pixel, mounting displacements Δx, Δy and Δz and gradients Δθ, Δϕ and Δψ in the vertical, horizontal, and optical axis directions of the imaging device with respect to the mounting position can be detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、撮像素子、及びその撮像素子の実装位置合わせに用いる光学機器測定装置に関する。   The present invention relates to an image sensor and an optical instrument measuring apparatus used for mounting position adjustment of the image sensor.

カメラなどの本体内にはCCDやCMOSセンサなど、被写体光を光電変換して画像を記録する撮像素子が組み込まれている。被写体画像を正確に撮像するためには、撮像素子の撮像エリアの中心と撮像レンズの光軸とが一致し、且つ、撮像素子の受光面が前記光軸と直交していなくてはならない。そのため撮像素子は、カメラ等の撮像装置への実装組み立ての際に、高精度に位置合わせをして取り付けられている。   An image sensor such as a CCD or CMOS sensor that records an image by photoelectrically converting subject light is incorporated in a main body of a camera or the like. In order to accurately capture a subject image, the center of the imaging area of the imaging device and the optical axis of the imaging lens must match, and the light receiving surface of the imaging device must be orthogonal to the optical axis. For this reason, the image pickup device is mounted with high precision alignment during mounting and assembly on an image pickup apparatus such as a camera.

例えば、特開2004−12960号公報の図5の(A)に示す撮像素子と撮像レンズの相対位置調整方法においては、図11に示すように、撮像レンズの光軸Aと撮像素子101 の受光面が直交するように配置し、光源から前記撮像レンズに入射させた光を、前記撮像素子101 の撮像エリア102 の周辺で且つ撮像エリア102 の中心Oから等距離にある少なくとも3つの位置(図示例では4つ)に配置された受光センサS1〜S4で受光し、その受光センサからの出力に基づいて、撮像レンズと撮像素子101 の位置を測定して、その測定データを基に撮像素子と撮像レンズの相対位置の調整を行っている。この手法によれば、複雑な測定治具を用いずに、垂直方向、水平方向及び光軸方向への相対位置測定を精度よく行うことができる。
特開2004−12960号公報
For example, in the method of adjusting the relative position between the imaging element and the imaging lens shown in FIG. 5A of Japanese Patent Application Laid-Open No. 2004-12960, as shown in FIG. 11, the optical axis A of the imaging lens and the light reception of the imaging element 101 Arranged so that the planes are orthogonal to each other, the light incident on the imaging lens from the light source is at least three positions around the imaging area 102 of the imaging element 101 and equidistant from the center O of the imaging area 102 (see FIG. The light receiving sensors S1 to S4 arranged in (4 in the illustrated example) receive light, and based on the output from the light receiving sensor, measure the positions of the image pickup lens and the image pickup device 101, and based on the measurement data, The relative position of the imaging lens is adjusted. According to this method, the relative position measurement in the vertical direction, the horizontal direction, and the optical axis direction can be accurately performed without using a complicated measurement jig.
Japanese Patent Laid-Open No. 2004-12960

しかしながら上記公報開示の手法では、撮像レンズの光軸と撮像素子の受光面が直交するように配置されていることが前提になっており、光軸に直交する面の光軸方向θの傾きΔθ,光軸に直交する面の垂直方向φの傾きΔφ,光軸に直交する面の水平方向ψの傾きΔψ(以下本文では、これらの傾きを単に傾きΔθ,Δφ,Δψと表現する)の測定を行うことができないという問題があった。   However, the technique disclosed in the above publication is based on the premise that the optical axis of the imaging lens and the light receiving surface of the imaging device are orthogonal to each other, and the inclination Δθ of the optical axis direction θ of the surface orthogonal to the optical axis. , Measurement of the inclination Δφ in the vertical direction φ of the surface orthogonal to the optical axis, and the inclination Δψ in the horizontal direction ψ of the surface orthogonal to the optical axis (hereinafter, these inclinations are simply expressed as inclinations Δθ, Δφ, Δψ) There was a problem that could not be done.

本発明は、上記従来の撮像素子の相対位置測定手法における上記課題を解決するためになされたもので、実装装置に対する軸周りの高精度の実装位置合わせを可能とする撮像素子、及びその撮像素子の実装位置合わせに用いる光学機器測定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems in the conventional relative position measurement method for an image sensor, and enables an image sensor capable of highly accurate mounting alignment around an axis with respect to a mounting apparatus, and the image sensor. It is an object of the present invention to provide an optical instrument measuring apparatus used for mounting position adjustment.

上記課題を解決するため、請求項1に係る発明は、撮像エリアと、第1の方向又は前記第1の方向に略直交する第2の方向の、少なくとも一方の方向において離れた位置に各々配置され、且つその受光面が2次元に分割された複数の検出画素とを備えて撮像素子を構成するものである。   In order to solve the above-described problem, the invention according to claim 1 is arranged at positions separated from each other in at least one of the imaging area and the second direction substantially orthogonal to the first direction or the first direction. In addition, the imaging device is configured to include a plurality of detection pixels whose light-receiving surfaces are two-dimensionally divided.

請求項2に係る発明は、撮像撮像エリアと、第1の方向又は前記第1の方向に略直交する第2の方向の、少なくとも一方の方向において離れた位置に各々配置され、且つその受光面が2次元に分割された複数の検出画素とを有する撮像素子が実装された被測定光学機器を保持する保持部と、前記撮像素子の各検出画素に対し、距離に応じてその照射面積が異なる光束を照射する光源装置と、各検出画素の、各分割受光面からの光出力に基づき、前記被測定光学機器に対する、前記撮像素子の、所定の軸方向の誤差量を演算する第1の演算回路と、及び異なる検出画素間における、各検出画素に係る演算量に基づき、前記被測定光学機器に対する、前記撮像素子の、前記所定の軸方向周りの回転量を演算する第2の演算回路とを備えて光学機器測定装置を構成するものである。   According to a second aspect of the present invention, the light-receiving surface is disposed at a position separated in at least one direction of the imaging imaging area and the first direction or the second direction substantially orthogonal to the first direction. A holding unit that holds an optical device to be measured on which an imaging device having a plurality of detection pixels divided in two dimensions is mounted, and the irradiation area of each detection pixel of the imaging device varies depending on the distance A first calculation that calculates an error amount in a predetermined axial direction of the imaging element with respect to the optical device under measurement based on a light source that irradiates a light beam and a light output from each divided light receiving surface of each detection pixel A second arithmetic circuit for calculating a rotation amount of the imaging device around the predetermined axial direction with respect to the optical device under measurement based on a calculation amount relating to each detection pixel between the circuit and different detection pixels; With optical equipment It constitutes a constant device.

請求項3に係る発明は、請求項2に係る光学機器測定装置において、前記検出画素は、前記第1及び第2の方向に各々配置され、且つ検出画素は4つの受光素子が正方に配列されて構成されており、前記第1の演算回路は、前記第2の方向に配列する2列の2つの前記受光素子の光出力の和をそれぞれ求め、前記第2の方向の2列の各受光素子の光出力の各和の差から前記第1の方向における第1の誤差量を演算し、前記第1の方向に配列する2列の2つの前記受光素子の光出力の和をそれぞれ求め、前記第1の方向の2列の各受光素子の光出力の各和の差から第2の方向における第2の誤差量を演算し、前記各検出画素を構成する4つの前記受光素子の光出力の総和と所定値との差から前記第1及び第2の方向と直交する前記光学機器の光軸方向における第3の誤差量を演算することを特徴とするものである。   According to a third aspect of the present invention, in the optical instrument measuring apparatus according to the second aspect, the detection pixels are arranged in the first and second directions, respectively, and the detection pixels have four light receiving elements arranged in a square. The first arithmetic circuit obtains the sum of the optical outputs of the two light receiving elements in two rows arranged in the second direction, and receives each light in the two rows in the second direction. Calculating the first error amount in the first direction from the difference between the sums of the light outputs of the elements, and obtaining the sum of the light outputs of the two light receiving elements in two rows arranged in the first direction; The second error amount in the second direction is calculated from the difference between the sums of the light outputs of the two light receiving elements in the two rows in the first direction, and the light outputs of the four light receiving elements constituting each detection pixel are calculated. The light of the optical device orthogonal to the first and second directions from the difference between the sum of the values and a predetermined value It is characterized in that for calculating a third error amount in the direction.

請求項4に係る発明は、請求項3に係る光学機器測定装置において、前記第2の演算回路は、前記第1の方向に離れて位置する前記検出画素間における前記第2の誤差量の差、又は前記第2の方向に離れて位置する前記検出画素間における前記第1の誤差量の差に基づき、前記光軸方向周りの傾きΔθを演算し、前記第2の方向に離れて位置する前記検出画素間における前記第3の誤差量の差に基づき、前記第1の方向に係る軸方向周りの傾きΔφを演算し、前記第1の方向に離れて位置する前記検出画素間における前記第3の誤差量の差に基づき、前記第2の方向に係る軸方向周りの傾きΔψを演算することを特徴とするものである。   According to a fourth aspect of the present invention, in the optical instrument measuring apparatus according to the third aspect, the second arithmetic circuit includes a difference in the second error amount between the detection pixels located apart in the first direction. Or, based on the difference in the first error amount between the detection pixels located apart in the second direction, the inclination Δθ around the optical axis direction is calculated and located away in the second direction. On the basis of the difference in the third error amount between the detection pixels, an inclination Δφ around the axial direction in the first direction is calculated, and the first difference between the detection pixels located apart in the first direction is calculated. On the basis of the difference between the three error amounts, an inclination Δψ around the axial direction related to the second direction is calculated.

請求項5に係る発明は、撮像エリアと、第1の方向又は前記第1の方向に略直交する第2の方向の、少なくとも一方の方向において離れた位置に各々配置され、且つその受光面が2次元に分割された複数の検出画素とを有する撮像素子が実装された被測定光学機器を保持する保持部と、前記撮像素子の各検出画素に対し平行光束を照射する光源装置と、各検出画素の、各分割受光面からの光出力に基づき、前記被測定光学機器に対する、前記撮像素子の、所定の軸方向の誤差量を演算する第1の演算回路と、及び異なる検出画素間における、各検出画素に係る演算量に基づき、前記被測定光学機器に対する、前記撮像素子の、前記所定の軸方向周りの回転量を演算する第2の演算回路とを備えて光学機器測定装置を構成するものである。   According to a fifth aspect of the present invention, the imaging area and the first direction or the second direction substantially orthogonal to the first direction are arranged at positions separated in at least one direction, and the light receiving surface thereof is arranged. A holding unit that holds an optical device to be measured on which an image sensor having a plurality of detection pixels divided in two dimensions is mounted, a light source device that irradiates each detection pixel of the image sensor with a parallel light beam, and each detection Based on the light output from each divided light receiving surface of the pixel, a first arithmetic circuit that calculates an error amount in a predetermined axial direction of the imaging element for the optical device under measurement, and between different detection pixels, An optical instrument measuring apparatus is provided that includes a second arithmetic circuit that calculates the amount of rotation of the imaging device around the predetermined axial direction with respect to the optical instrument under measurement based on the amount of calculation related to each detection pixel. Is.

請求項6に係る発明は、撮像エリアと、第1の方向又は前記第1の方向に略直交する第2の方向の、少なくとも一方の方向において離れた位置に各々配置され、且つその受光面が2次元に分割された複数の検出画素とを有する撮像素子と、該撮像素子の前記撮像エリアに被写体像を結像する撮影レンズとを有する被測定光学機器を保持する保持部と、前記撮影レンズを介して、前記撮像素子の各検出画素に対し、平行光束を出射する光源装置と、各検出画素の、各分割受光面からの光出力に基づき、所定の軸方向における、前記撮像素子と前記撮影レンズとの誤差量を演算する第1の演算回路と、及び異なる検出画素間における、各検出画素に係る演算量に基づき、前記所定の軸方向周りにおける、前記撮像素子と前記撮影レンズとの回転量を演算する第2の演算回路とを備えて光学機器測定装置を構成するものである。   According to a sixth aspect of the present invention, the imaging area and the first direction or the second direction substantially orthogonal to the first direction are respectively arranged at positions separated in at least one direction, and the light receiving surface thereof is A holding unit that holds an optical device to be measured, which includes an imaging element having a plurality of detection pixels divided in two dimensions, and a photographing lens that forms a subject image in the imaging area of the imaging element; and the photographing lens A light source device that emits a parallel light beam to each detection pixel of the image sensor, and the image sensor in the predetermined axial direction based on the light output from each divided light receiving surface of each detection pixel A first arithmetic circuit that calculates an error amount with the photographic lens, and a calculation amount relating to each detection pixel between different detection pixels, and the imaging element and the photographic lens around the predetermined axis direction Rotation amount And it constitutes an optical apparatus measuring device and a second arithmetic circuit for calculating.

請求項7に係る発明は、請求項2〜6のいずれか1項に係る光学機器測定装置において、前記光源装置は、前記撮像素子の各検出画素毎に、照射する光束を生成する光源を有していることを特徴とするものである。   According to a seventh aspect of the present invention, in the optical instrument measuring apparatus according to any one of the second to sixth aspects, the light source device includes a light source that generates a light beam to be irradiated for each detection pixel of the imaging element. It is characterized by that.

請求項8に係る発明は、請求項2〜6のいずれか1項に係る光学機器測定装置において、前記光源装置は、光束を生成する光源と、前記光束が、選択された前記撮像素子の検出画素に照射される位置に前記光源を移動する移動手段とを有することを特徴とするものである。   According to an eighth aspect of the present invention, in the optical instrument measuring apparatus according to any one of the second to sixth aspects, the light source device includes a light source that generates a light beam, and detection of the imaging element in which the light beam is selected. And moving means for moving the light source to a position where the pixel is irradiated.

請求項1に係る発明によれば、撮像素子上に形成され受光面が2次元に分割された検出画素に、光束を照射することで、検出画素からの出力により、撮像素子の垂直方向、水平方向、及び光軸方向の誤差量(実装位置ずれ)並びに軸周りの回転量の測定を行うことが可能な撮像素子を実現できる。また、請求項2に係る発明によれば、撮像素子上に形成された検出画素に、照射面積が距離によって広がるあるいは狭まる光を照射することで、検出画素からの出力により、撮像素子の所定の軸方向(垂直方向、水平方向、光軸方向)の誤差量及び所定の軸方向周りの回転量(傾き)Δθ,Δφ,Δψの測定を行うことができる光学機器測定装置を実現できる。また、請求項3に係る発明によれば、撮像素子の垂直方向、水平方向、及び光軸方向の誤差量の測定を高精度で行うことができる。また、請求項4に係る発明によれば、撮像素子の垂直方向、水平方向、光軸方向に係る軸方向周りの回転量(傾き)Δθ,Δφ,Δψの測定を高精度で行うことができる。また、請求項5に係る発明によれば、撮像素子上に形成された検出画素に平行光束を照射することで、検出画素からの出力により、撮像素子の垂直方向、水平方向の誤差量及び光軸方向の回転量(傾き)Δθの測定を行うことができる。また、請求項6に係る発明によれば、撮像素子上に形成された検出画素に、撮影レンズの中心を通り、照射位置が距離によって検出画素中心から移動するレーザ光を照射することで、検出画素からの出力により、撮像素子と撮像レンズとの相対的な垂直方向、水平方向、光軸方向の誤差量及び各方向に係る軸方向周りの回転量(傾き)Δθ,Δφ,Δψの測定を行うことができる。また、請求項7に係る発明によれば、光源装置により一度に複数の光束が照射可能となるので、測定時間を短縮することが可能となる。また、請求項8に係る発明によれば、少ない光源での誤差量及び回転量の測定が可能となる。   According to the first aspect of the present invention, the detection pixel formed on the image pickup device and having the light receiving surface divided in two dimensions is irradiated with a light beam, so that the output from the detection pixel causes the image pickup device in the vertical direction and the horizontal direction. It is possible to realize an imaging device capable of measuring the amount of error in the direction and optical axis direction (mounting position deviation) and the amount of rotation around the axis. According to the second aspect of the present invention, the detection pixel formed on the image sensor is irradiated with light whose irradiation area expands or narrows depending on the distance, so that the output from the detection pixel can generate a predetermined value of the image sensor. It is possible to realize an optical instrument measuring apparatus that can measure an error amount in the axial direction (vertical direction, horizontal direction, optical axis direction) and rotation amounts (tilts) Δθ, Δφ, Δψ around a predetermined axial direction. According to the invention of claim 3, it is possible to measure the error amount of the image sensor in the vertical direction, the horizontal direction, and the optical axis direction with high accuracy. According to the invention of claim 4, it is possible to measure the rotation amounts (inclinations) Δθ, Δφ, Δψ around the axial direction of the imaging device in the vertical direction, horizontal direction, and optical axis direction with high accuracy. . According to the invention of claim 5, by irradiating the detection pixel formed on the image sensor with a parallel light beam, the error amount and the light in the vertical direction and the horizontal direction of the image sensor are determined by the output from the detection pixel. It is possible to measure the amount of rotation (tilt) Δθ in the axial direction. According to the invention of claim 6, detection is performed by irradiating the detection pixel formed on the image sensor with laser light that passes through the center of the imaging lens and whose irradiation position moves from the detection pixel center depending on the distance. Measurement of relative vertical, horizontal, and optical axis direction error amounts and rotation amounts (tilts) Δθ, Δφ, and Δψ in the axial direction in each direction based on the output from the pixel. It can be carried out. According to the seventh aspect of the present invention, the light source device can irradiate a plurality of light beams at a time, so that the measurement time can be shortened. Moreover, according to the invention which concerns on Claim 8, the measurement of the error amount and rotation amount with few light sources is attained.

次に、本発明を実施するための最良の形態について説明する。   Next, the best mode for carrying out the present invention will be described.

(実施例1)
まず、本発明に係る撮像素子の実施例を実施例1として、図面を参照しながら説明する。図1は、本実施例に係る撮像素子の構成を示す平面図である。なお、この実施例は請求項1に係る発明の実施例に対応するもので、請求項1における第1の方向は水平方向に、第2の方向は垂直方向に、それぞれ対応する。図1に示すように、この実施例に係る撮像素子11においては、撮像に使用される撮像エリア12の周辺に、4つの検出画素PD1〜PD4が設けられている。これらの各検出画素PD1〜PD4は、各検出画素PD1〜PD4の中心に対して、略垂直方向及び略水平方向に対称で等面積の4つの受光素子A1〜D1,・・,A4〜D4によってそれぞれ構成されており、各検出画素PD1〜PD4は互いに離れた位置に、図示例では4隅に配置されている。
Example 1
First, an embodiment of an image sensor according to the present invention will be described as a first embodiment with reference to the drawings. FIG. 1 is a plan view showing the configuration of the image sensor according to the present embodiment. This embodiment corresponds to the embodiment of the invention according to claim 1, and the first direction in claim 1 corresponds to the horizontal direction, and the second direction corresponds to the vertical direction. As shown in FIG. 1, in the image sensor 11 according to this embodiment, four detection pixels PD1 to PD4 are provided around an imaging area 12 used for imaging. Each of these detection pixels PD1 to PD4 is symmetric with respect to the center of each of the detection pixels PD1 to PD4 in the substantially vertical direction and the substantially horizontal direction and has four light receiving elements A1 to D1,..., A4 to D4. Each of the detection pixels PD1 to PD4 is arranged at positions separated from each other, in the illustrated example, at four corners.

このように構成されている撮像素子11に対して、図2に示すように、レーザ光源21から各検出画素PD1〜PD4に、ビーム径が照射距離に比例するレーザ光22を照射する。これにより、各検出画素PD1〜PD4の各受光素子A1〜D1,・・,A4〜D4が、受光した光量に応じた信号を出力する。実装位置ずれ測定は、各検出画素PD1〜PD4の各受光素子A1〜D1,・・,A4〜D4の出力値に基づいて行われる。   As shown in FIG. 2, the image sensor 11 configured in this manner is irradiated with laser light 22 having a beam diameter proportional to the irradiation distance from the laser light source 21 to each of the detection pixels PD1 to PD4. Thereby, each light receiving element A1 to D1,..., A4 to D4 of each detection pixel PD1 to PD4 outputs a signal corresponding to the amount of received light. Mounting position deviation measurement is performed based on the output values of the light receiving elements A1 to D1,..., A4 to D4 of the detection pixels PD1 to PD4.

各検出画素PD1〜PD4を構成する受光素子としては、例えば、フォトダイオードが使用される。出力値は、フォトダイオード(受光素子)が接続された回路の電圧や電流を測定することで検出される。勿論、フォトダイオードの代わりに、フォトトランジスタなどを受光素子として用いてもよい。図2では、測定に用いるレーザ光22のビーム径が距離に比例して拡がるようにしたものを示したが、距離に比例してビーム径が狭まるレーザ光22を用いてもよい。   For example, a photodiode is used as the light receiving element constituting each of the detection pixels PD1 to PD4. The output value is detected by measuring the voltage and current of the circuit to which the photodiode (light receiving element) is connected. Of course, a phototransistor or the like may be used as the light receiving element instead of the photodiode. Although FIG. 2 shows the beam diameter of the laser beam 22 used for measurement expanding in proportion to the distance, the laser beam 22 whose beam diameter is narrowed in proportion to the distance may be used.

図3の(A)〜(H)は、撮像素子11の実装位置ずれ及び傾きの態様を示す説明図である。すなわち、図3の(A)は、レーザ光が検出画素(図示例ではPD1)の4つの分割受光素子に均等に照射されていて、実装位置ずれがなく撮像素子11が適正位置に配置されている態様を示している。図3の(B)は、撮像素子11が水平方向にずれている(Δx移動)態様を示しており、図3の(C)は、撮像素子11が垂直方向にずれている(Δy移動)態様を示しており、図3の(D)は、レーザ光のビーム径が小さくなっていて、撮像素子11が光軸方向にずれている(Δz移動)態様を示している。   FIGS. 3A to 3H are explanatory diagrams illustrating aspects of mounting position shift and inclination of the image sensor 11. That is, in FIG. 3A, the laser light is evenly applied to the four divided light receiving elements of the detection pixel (PD1 in the illustrated example), and there is no mounting position shift, and the image pickup element 11 is arranged at an appropriate position. The aspect which is shown is shown. 3B shows a mode in which the image sensor 11 is displaced in the horizontal direction (Δx movement), and FIG. 3C is a diagram in which the image sensor 11 is displaced in the vertical direction (Δy movement). FIG. 3D shows a mode in which the beam diameter of the laser light is small and the image sensor 11 is displaced in the optical axis direction (Δz movement).

また、図3の(E)は、撮像素子11が実装位置ずれ及び傾きもなく適正位置に配置されている態様を示している。図3の(F)は、レーザ光が4つの検出画素のいずれにおいてもずれていて、撮像素子11が光軸方向に係る軸方向周りに傾いている(θ方向に回転)態様を示している。図3の(G)は、検出画素PD3及びPD4に照射されるレーザ光のビーム径が、検出画素PD1及びPD2に照射されるレーザ光のビーム径より小さくなっていて、撮像素子11が垂直方向に係る軸方向周りに傾いている(ψ方向に回転)態様を示している。図3の(H)は、検出画素PD1及びPD3に照射されるレーザ光のビーム径が、検出画素PD2及びPD4に照射されるレーザ光のビーム径より小さくなっていて、撮像素子11が水平方向に係る軸方向周りに傾いている(φ方向に回転)態様を示している。   FIG. 3E shows a mode in which the image sensor 11 is arranged at an appropriate position without mounting position deviation and inclination. FIG. 3F shows a mode in which the laser beam is deviated in any of the four detection pixels, and the imaging element 11 is tilted around the axial direction in the optical axis direction (rotated in the θ direction). . In FIG. 3G, the beam diameter of the laser light irradiated to the detection pixels PD3 and PD4 is smaller than the beam diameter of the laser light irradiated to the detection pixels PD1 and PD2, and the imaging element 11 is in the vertical direction. The aspect which inclines around the axial direction which concerns on (rotation to a (psi) direction) is shown. In FIG. 3H, the beam diameters of the laser beams irradiated to the detection pixels PD1 and PD3 are smaller than the beam diameters of the laser beams irradiated to the detection pixels PD2 and PD4, and the image sensor 11 is in the horizontal direction. The aspect which inclines around the axial direction which concerns on (rotation to (phi) direction) is shown.

垂直方向及び水平方向の位置ずれは、各検出画素PD1〜PD4毎の各受光素子A1〜D1,・・,A4〜D4の出力により求められ、傾きθ,φ,ψは少なくとも2つの各検出画素PD1〜PD4の各受光素子A〜Dの出力により求められる。光軸方向の位置ずれは、基準とする出力と各検出画素PD1〜PD4の出力の総和の差から求められる。以下に、その演算式(1)式〜(8)式を示す。   The positional deviations in the vertical direction and the horizontal direction are obtained from the outputs of the light receiving elements A1 to D1,..., A4 to D4 for the detection pixels PD1 to PD4, and the inclinations θ, φ, and ψ are at least two of the detection pixels. It is obtained from the outputs of the light receiving elements A to D of PD1 to PD4. The positional deviation in the optical axis direction is obtained from the difference between the reference output and the sum of the outputs of the detection pixels PD1 to PD4. The arithmetic expressions (1) to (8) are shown below.

水平方向の実装位置ずれΔx(PDn ):
Δx(PDn )=k1 {(PDn n +PDn n )−(PDn n +PDn n )}
・・・・・・・(1)
垂直方向の実装位置ずれΔy(PDn ):
Δy(PDn )=k2 {(PDn n +PDn n )−(PDn n +PDn n )}
・・・・・・・(2)
光軸方向の実装位置ずれΔz(PDn ):
Δz(PDn )=PZ −k3 (PDn sum ) ・・・・・・・・・・・(3)
PDn sum =PDn n +PDn n +PDn n +PDn n ・・・・・・(4)
θ方向の傾きΔθ: (垂直方向へ離れた検出画素を用いる場合)
Δθ=k4 {ΔxU ( PDn )−ΔxD ( PDm ) } ・・・・・・・(5)
(水平方向へ離れた検出画素を用いる場合)
Δθ=k5 {ΔyR ( PDn )−ΔyL ( PDm )} ・・・・・・・(6)
φ方向の傾きΔφ:
(垂直方向へ離れた検出画素を用いる)
Δφ=k6 {PDn sum U −PDm sum D } ・・・・・・・・・・・(7)
ψ方向の傾きΔψ:
(水平方向へ離れた検出画素を用いる)
Δψ=k7 {PDn sum R −PDm sum L } ・・・・・・・・・・・(8)
n,m:1,2,3,4
U,D,R,L:上、下、右、左を表す添字
Z :基準とする受光素子A1〜D1,・・,A4〜D4の出力の総和の値
1 〜K7 :レーザ光の広がり角とレーザ光源21と撮像素子間距離で決まる係数
Horizontal mounting position deviation Δx (PD n ):
Δx (PD n ) = k 1 {(PD n A n + PD n B n ) − (PD n C n + PD n D n )}
・ ・ ・ ・ ・ ・ ・ (1)
Vertical mounting position deviation Δy (PD n ):
Δy (PD n ) = k 2 {(PD n A n + PD n C n ) − (PD n B n + PD n D n )}
(2)
Mounting position deviation Δz (PD n ) in the optical axis direction:
Δz (PD n ) = P Z −k 3 (PD n sum) (3)
PD n sum = PD n A n + PD n B n + PD n C n + PD n D n ······ (4)
Inclination Δθ in the θ direction: (When using detection pixels separated in the vertical direction)
Δθ = k 4 {Δx U (PD n ) −Δx D (PD m )} (5)
(When using detection pixels separated in the horizontal direction)
Δθ = k 5 {Δy R (PD n ) −Δy L (PD m )} (6)
Inclination Δφ in φ direction:
(Use detection pixels separated vertically)
Δφ = k 6 {PD n sum U− PD m sum D } (7)
ψ direction inclination Δψ:
(Use detection pixels separated horizontally)
Δψ = k 7 {PD n sum R −PD m sum L } (8)
n, m: 1, 2, 3, 4
U, D, R, L: top, subscript P Z represents lower, right, left: receiving element A1~D1 as a reference, ..., the value K 1 of the sum of the output of A4~D4 ~K 7: laser beam Coefficient determined by the spread angle and the distance between the laser light source 21 and the image sensor

以上の各式により、撮像素子11の実装位置ずれ及び傾きが検出でき、カメラの組み立てにおいて、撮像素子11の実装位置ずれ及び傾きの確認を行うことができる。   By each of the above equations, the mounting position shift and inclination of the image sensor 11 can be detected, and the mounting position shift and tilt of the image sensor 11 can be confirmed in the assembly of the camera.

図4は、レーザ光のビーム径と検出画素を構成するフォトダイオード(受光素子)の光出力の総和PDn sum の関係を示している。縦軸は、(4)式に示される光出力の総和の値PDn sum である。横軸は、検出画素PD1〜PD4とレーザ光源21との距離によって決定されるビーム径である。PDn sum の変化は、図4に示すように領域1と領域2に分かれる。領域1と領域2の間には、第3の領域が存在するが、領域2に含めてもかまわない。領域2では、PDn sum は、k8 /r2 に従って変化する。ここで、k8 はレーザ光の広がり角とレーザ光源21と撮像素子間距離及び検出画素面積で決まる係数であり、rはレーザビームの半径である。この領域2に撮像素子を置くと、傾きΔφ及びΔψが求められる。領域1でも、同様に傾きΔφ及びΔψを求めることができる。 FIG. 4 shows the relationship between the beam diameter of the laser light and the total PD n sum of the light outputs of the photodiodes (light receiving elements) constituting the detection pixels. The vertical axis represents the total value PD n sum of the optical outputs shown in equation (4). The horizontal axis represents the beam diameter determined by the distance between the detection pixels PD1 to PD4 and the laser light source 21. The change in PD n sum is divided into region 1 and region 2 as shown in FIG. A third region exists between the region 1 and the region 2, but may be included in the region 2. In region 2, PD n sum varies according to k 8 / r 2 . Here, k 8 is a coefficient determined by the spread angle of the laser light, the distance between the laser light source 21 and the imaging element, and the detection pixel area, and r is the radius of the laser beam. When an image sensor is placed in this area 2, the inclinations Δφ and Δψ are obtained. In the region 1, the slopes Δφ and Δψ can be obtained similarly.

図5は、実装位置合わせ測定時の本発明に係る光学機器測定装置の構成を示している。この光学機器測定装置においては、カメラ本体31の保持部45と光源装置25は、相対位置関係がずれないように基台35にしっかりと固定されている。この保持部45には、カメラ本体31を置くためのガイドが設けられており、カメラ本体31と光源装置25の位置関係は、常に一定に保たれるようになっている。なお、図5において、24はレーザ光源21を駆動する光源用ドライバである。   FIG. 5 shows a configuration of an optical instrument measuring apparatus according to the present invention at the time of mounting alignment measurement. In this optical instrument measuring apparatus, the holding part 45 of the camera body 31 and the light source device 25 are firmly fixed to the base 35 so that the relative positional relationship does not shift. The holding portion 45 is provided with a guide for placing the camera body 31 so that the positional relationship between the camera body 31 and the light source device 25 is always kept constant. In FIG. 5, reference numeral 24 denotes a light source driver for driving the laser light source 21.

撮像素子11の検出画素PD1〜PD4にレーザ光22が照射されることによって生成された信号は、カメラ本体31の出力端子44から取り出され、信号線43を介して第1の演算回路41及び第2の演算回路42を有する演算回路部40に入力される。ここで、第1の演算回路41は、上記(1)式〜(4)式の演算を行い、一方、第2の演算回路42は、(5)式〜(8)式の演算を行うものである。演算回路部40で演算された結果は、CPU50に入力され、CPU50によって光源装置25と同期を取った状態の測定結果(撮像素子11の実装位置ずれ及び傾き)を得る。   A signal generated by irradiating the detection pixels PD <b> 1 to PD <b> 4 of the image sensor 11 with the laser light 22 is taken out from the output terminal 44 of the camera body 31, and is connected to the first arithmetic circuit 41 and the first through the signal line 43. It is input to an arithmetic circuit unit 40 having two arithmetic circuits 42. Here, the first arithmetic circuit 41 performs the calculations of the above formulas (1) to (4), while the second arithmetic circuit 42 performs the calculations of the formulas (5) to (8). It is. The result calculated by the arithmetic circuit unit 40 is input to the CPU 50, and the CPU 50 obtains measurement results (mounting position deviation and inclination of the image sensor 11) in a state synchronized with the light source device 25.

(実施例2)
図6は、本発明に係る光学機器測定装置の実施例2を示す概略図である。測定対象となる撮像素子の構成及び測定動作原理は、実施例1に示したものと同様である。実施例2に係る光学機器測定装置では、撮像素子11の検出画素PD1〜PD4にビーム径が照射距離によらずほぼ一定であるレーザ光22aを照射しており、水平方向及び垂直方向の実装位置ずれ及びθ方向の傾きΔθを測定することができる。この場合の実装位置ずれ及びθ方向の傾きΔθを求める演算式は、上記演算式(1)式、(2)式、(5)式、(6)式によって求めることができる。ビーム径を一定としたレーザ光以外の光学機器測定装置の構成は、実施例1と同様である。
(Example 2)
FIG. 6 is a schematic view showing Example 2 of the optical instrument measuring apparatus according to the present invention. The configuration of the image sensor to be measured and the measurement operation principle are the same as those shown in the first embodiment. In the optical apparatus measuring apparatus according to the second embodiment, the detection pixels PD1 to PD4 of the image sensor 11 are irradiated with the laser beam 22a whose beam diameter is substantially constant regardless of the irradiation distance, and the horizontal and vertical mounting positions The deviation and the inclination Δθ in the θ direction can be measured. In this case, the arithmetic expressions for obtaining the mounting position deviation and the inclination Δθ in the θ direction can be obtained by the above arithmetic expressions (1), (2), (5), and (6). The configuration of the optical instrument measuring apparatus other than the laser beam with a constant beam diameter is the same as that of the first embodiment.

(実施例3)
図7は、本発明に係る光学機器測定装置の実施例3を示す概略図である。測定対象となる撮像素子の構成及び測定動作原理は、実施例1並びに実施例2と同様である。実施例3に係る光学機器測定装置では、撮像素子11を実装したカメラ本体31に撮像レンズ34を設けたレンズ鏡筒32が取り付けられてカメラ30が構成されていて、このカメラ30の撮像レンズ34を通過したレーザ光22bを撮像素子11の検出画素PD1〜PD4に照射するようにしており、撮像素子11と撮像レンズ34との相対位置ずれ及び傾きを測定することができるようになっている。この場合の位置ずれ及び傾きは、上記演算式(1)式〜(8)式による演算よって求めることができる。
(Example 3)
FIG. 7 is a schematic view showing Example 3 of the optical instrument measuring apparatus according to the present invention. The configuration of the image sensor to be measured and the measurement operation principle are the same as those in the first and second embodiments. In the optical apparatus measuring apparatus according to the third embodiment, a camera body 31 is provided by attaching a lens barrel 32 provided with an imaging lens 34 to a camera body 31 on which the imaging element 11 is mounted. The detection pixels PD1 to PD4 of the image pickup device 11 are irradiated with the laser light 22b that has passed through the image pickup device 11, and the relative positional deviation and inclination between the image pickup device 11 and the image pickup lens 34 can be measured. In this case, the positional deviation and the inclination can be obtained by the calculations according to the above formulas (1) to (8).

撮像素子11の各検出画素PD1〜PD4は、それぞれの位置における水平方向、垂直方向及び光軸方向の位置ずれを検出することができる。したがって、水平方向、垂直方向及び光軸方向の位置ずれのみの測定を行う場合には、図3の(A)〜(D)に示したように、検出画素PD1〜PD4のうち一つだけで行うことができる。なお、この実施例の光学機器測定装置の構成は、図7に示した上記構成以外の構成は、実施例1及び実施例2に示したものと同様である。   The detection pixels PD1 to PD4 of the image sensor 11 can detect a positional shift in the horizontal direction, the vertical direction, and the optical axis direction at each position. Therefore, when measuring only the positional deviation in the horizontal direction, vertical direction, and optical axis direction, as shown in FIGS. 3A to 3D, only one of the detection pixels PD1 to PD4 is used. It can be carried out. The configuration of the optical instrument measuring apparatus of this example is the same as that shown in Example 1 and Example 2 except for the above configuration shown in FIG.

(実施例4)
本発明に係る光学機器測定装置の実施例4について説明する。この実施例は、レーザ光源21の配置構成に係るものである。レーザ光源21の配置としては、図8に示すように同一平面上に複数個(図示例では4個)配置してもよいし、図9に示すように一つのレーザ光源21を用い、同一平面上を移動するように構成してもよい。レーザ光源21を複数個用いた場合には、光学機器測定装置の全体構成は図5に示したような構成となり、一度に複数の光束が照射可能となるので、測定時間を短縮することが可能となる。
Example 4
Example 4 of the optical instrument measuring apparatus according to the present invention will be described. This embodiment relates to the arrangement configuration of the laser light source 21. FIG. As for the arrangement of the laser light sources 21, a plurality (four in the illustrated example) may be arranged on the same plane as shown in FIG. 8, or one laser light source 21 is used as shown in FIG. You may comprise so that it may move on. When a plurality of laser light sources 21 are used, the entire configuration of the optical instrument measuring apparatus is as shown in FIG. 5, and a plurality of light beams can be irradiated at one time, so that the measurement time can be shortened. It becomes.

単一のレーザ光源21を用い同一平面上を移動させる場合には、光学機器測定装置の全体構成は例えば図10に示すような構成となり、少ない光源での測定が可能となる。この場合には、光源装置25は、可動ステージ46に固定されており、レーザ光源21の位置は、可動ステージ46によって移動される。CPU50は、可動ステージ46,光源用ドライバ24及び演算回路部40の制御をしており、CPU50の制御に基づいて同期を取った状態の測定結果が得られる。なお、上記各実施例では、光ビームとしてレーザ光を用いたものを示したが、光ビームとしては、それに準ずるもの、例えば発光ダイオード等の光を用いてもよい。   When the single laser light source 21 is used to move on the same plane, the entire configuration of the optical instrument measuring apparatus is as shown in FIG. 10, for example, and measurement with a small number of light sources is possible. In this case, the light source device 25 is fixed to the movable stage 46, and the position of the laser light source 21 is moved by the movable stage 46. The CPU 50 controls the movable stage 46, the light source driver 24, and the arithmetic circuit unit 40, and a measurement result in a synchronized state is obtained based on the control of the CPU 50. In each of the above embodiments, the laser beam is used as the light beam. However, the light beam may be a light beam such as a light emitting diode.

本発明に係る撮像素子の実施例の構成を示す平面図である。It is a top view which shows the structure of the Example of the image pick-up element based on this invention. 図1に示した撮像素子の実装位置ずれ等の測定態様を示す図である。It is a figure which shows the measurement aspects, such as mounting position shift of the image pick-up element shown in FIG. 図1に示した撮像素子の実装位置ずれ及び傾き態様を示す説明図である。It is explanatory drawing which shows the mounting position shift and inclination aspect of the image pick-up element shown in FIG. 図1に示した撮像素子におけるレーザ光のビーム径と検出素子を構成する受光素子の光出力の総和PDn sum との関係を示す図である。FIG. 2 is a diagram showing a relationship between a beam diameter of laser light in the image pickup device shown in FIG. 1 and a total PD n sum of light outputs of light receiving elements constituting a detection element. 本発明に係る光学機器測定装置の実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of the optical instrument measuring apparatus which concerns on this invention. 本発明に係る光学機器測定装置の実施例2の主要部の概略構成を示す図である。It is a figure which shows schematic structure of the principal part of Example 2 of the optical equipment measuring apparatus which concerns on this invention. 本発明に係る光学機器測定装置の実施例3の主要部の概略構成を示す図である。It is a figure which shows schematic structure of the principal part of Example 3 of the optical equipment measuring apparatus which concerns on this invention. 本発明に係る光学機器測定装置の実施例4におけるレーザ光源の配置構成を示す概略図である。It is the schematic which shows the arrangement configuration of the laser light source in Example 4 of the optical equipment measuring apparatus based on this invention. 本発明に係る光学機器測定装置の実施例4におけるレーザ光源の他の配置構成を示す概略図である。It is the schematic which shows the other arrangement configuration of the laser light source in Example 4 of the optical equipment measuring apparatus based on this invention. 図9に示す光源の配置構成を用いた場合における光学機器測定装置の構成を示す図である。It is a figure which shows the structure of the optical instrument measuring device at the time of using the arrangement configuration of the light source shown in FIG. 従来の相対位置ずれ測定用の撮像素子の構成例を示す平面図である。It is a top view which shows the structural example of the image pick-up element for the conventional relative position shift measurement.

符号の説明Explanation of symbols

11 撮像素子
12 撮像エリア
21 レーザ光源
22 レーザ光
24 光源用ドライバ
25 光源装置
30 カメラ
31 カメラ本体
32 レンズ鏡筒
34 撮像レンズ
35 基台
40 演算回路部
41 第1の演算回路
42 第2の演算回路
43 信号線
44 出力端子
45 保持部
46 可動ステージ
50 CPU
PD1,・・,PD4 検出画素
A1〜D1,・・,A4〜D4 受光素子
11 Image sensor
12 Imaging area
21 Laser light source
22 Laser light
24 Light source driver
25 Light source device
30 cameras
31 Camera body
32 Lens barrel
34 Imaging lens
35 base
40 Arithmetic circuit
41 First arithmetic circuit
42 Second arithmetic circuit
43 Signal line
44 Output terminal
45 Holding part
46 Movable stage
50 CPU
PD1,..., PD4 detection pixels A1 to D1,.

Claims (8)

撮像エリアと、第1の方向又は前記第1の方向に略直交する第2の方向の、少なくとも一方の方向において離れた位置に各々配置され、且つその受光面が2次元に分割された複数の検出画素とを有する撮像素子。   A plurality of imaging areas and a first direction or a second direction that is substantially orthogonal to the first direction are disposed at positions separated from each other in at least one direction, and the light receiving surface is divided in two dimensions. An image sensor having detection pixels. 撮像エリアと、第1の方向又は前記第1の方向に略直交する第2の方向の、少なくとも一方の方向において離れた位置に各々配置され、且つその受光面が2次元に分割された複数の検出画素とを有する撮像素子が実装された被測定光学機器を保持する保持部と、前記撮像素子の各検出画素に対し、距離に応じてその照射面積が異なる光束を照射する光源装置と、各検出画素の、各分割受光面からの光出力に基づき、前記被測定光学機器に対する、前記撮像素子の、所定の軸方向の誤差量を演算する第1の演算回路と、及び異なる検出画素間における、各検出画素に係る演算量に基づき、前記被測定光学機器に対する、前記撮像素子の、前記所定の軸方向周りの回転量を演算する第2の演算回路とを有する光学機器測定装置。   A plurality of imaging areas and a first direction or a second direction that is substantially orthogonal to the first direction are disposed at positions separated from each other in at least one direction, and the light receiving surface is divided in two dimensions. A holding unit that holds an optical device to be measured on which an imaging element having a detection pixel is mounted; a light source device that irradiates each detection pixel of the imaging element with a light flux having a different irradiation area depending on a distance; and Based on the light output from each divided light-receiving surface of the detection pixel, a first arithmetic circuit that calculates an error amount in the predetermined axial direction of the imaging element for the optical device under measurement, and between different detection pixels An optical instrument measuring apparatus comprising: a second arithmetic circuit that calculates the amount of rotation of the imaging device around the predetermined axial direction with respect to the optical instrument to be measured based on an arithmetic amount relating to each detection pixel. 前記検出画素は、前記第1及び第2の方向に各々配置され、且つ各検出画素は4つの受光素子が正方に配列されて構成されており、前記第1の演算回路は、前記第2の方向に配列する2列の2つの前記受光素子の光出力の和をそれぞれ求め、前記第2の方向の2列の各受光素子の光出力の各和の差から前記第1の方向における第1の誤差量を演算し、前記第1の方向に配列する2列の2つの前記受光素子の光出力の和をそれぞれ求め、前記第1の方向の2列の各受光素子の光出力の各和の差から第2の方向における第2の誤差量を演算し、前記各検出画素を構成する4つの前記受光素子の光出力の総和と所定値との差から前記第1及び第2の方向と直交する前記光学機器の光軸方向における第3の誤差量を演算することを特徴とする請求項2に係る光学機器測定装置。   The detection pixels are arranged in the first and second directions, respectively, and each detection pixel is configured by four light receiving elements arranged in a square, and the first arithmetic circuit includes the second arithmetic circuit. The sum of the optical outputs of the two light receiving elements in the two rows arranged in the direction is obtained, and the first in the first direction is determined from the difference in the sum of the optical outputs of the light receiving elements in the two rows in the second direction. Is calculated, the sum of the light outputs of the two light receiving elements in two rows arranged in the first direction is obtained, and the sum of the light output of each light receiving element in the two rows in the first direction is calculated. The second error amount in the second direction is calculated from the difference between the first and second directions from the difference between the total light output of the four light receiving elements constituting each detection pixel and a predetermined value. The third error amount in the optical axis direction of the optical apparatus orthogonal to each other is calculated. Optics measuring device according. 前記第2の演算回路は、前記第1の方向に離れて位置する前記検出画素間における前記第2の誤差量の差、又は前記第2の方向に離れて位置する前記検出画素間における前記第1の誤差量の差に基づき、前記光軸方向周りの傾きΔθを演算し、前記第2の方向に離れて位置する前記検出画素間における前記第3の誤差量の差に基づき、前記第1の方向に係る軸方向周りの傾きΔφを演算し、前記第1の方向に離れて位置する前記検出画素間における前記第3の誤差量の差に基づき、前記第2の方向に係る軸方向周りの傾きΔψを演算することを特徴とする請求項3に係る光学機器測定装置。   The second arithmetic circuit includes the difference in the second error amount between the detection pixels located apart in the first direction or the second difference between the detection pixels located apart in the second direction. The inclination Δθ around the optical axis direction is calculated based on the difference in the error amount of 1, and the first error amount is calculated based on the difference in the third error amount between the detection pixels located apart in the second direction. An inclination Δφ around the axial direction according to the direction of the first direction is calculated, and based on the difference between the third error amounts between the detection pixels located away from the first direction, around the axial direction according to the second direction The optical instrument measuring apparatus according to claim 3, wherein an inclination Δψ of the optical device is calculated. 撮像エリアと、第1の方向又は前記第1の方向に略直交する第2の方向の、少なくとも一方の方向において離れた位置に各々配置され、且つその受光面が2次元に分割された複数の検出画素とを有する撮像素子が実装された被測定光学機器を保持する保持部と、前記撮像素子の各検出画素に対し平行光束を照射する光源装置と、各検出画素の、各分割受光面からの光出力に基づき、前記被測定光学機器に対する、前記撮像素子の、所定の軸方向の誤差量を演算する第1の演算回路と、及び異なる検出画素間における、各検出画素に係る演算量に基づき、前記被測定光学機器に対する、前記撮像素子の、前記所定の軸方向周りの回転量を演算する第2の演算回路とを有する光学機器測定装置。   A plurality of imaging areas and a first direction or a second direction that is substantially orthogonal to the first direction are disposed at positions separated from each other in at least one direction, and the light receiving surface is divided in two dimensions. From a divided light receiving surface of each detection pixel, a holding unit that holds an optical device to be measured in which an imaging device having a detection pixel is mounted, a light source device that irradiates each detection pixel of the imaging device with a parallel light beam, A first arithmetic circuit for calculating an error amount in a predetermined axial direction of the imaging device with respect to the optical device to be measured, and a calculation amount relating to each detection pixel between different detection pixels based on the optical output of And a second arithmetic circuit that calculates a rotation amount of the imaging device around the predetermined axial direction with respect to the optical device under measurement. 撮像エリアと、第1の方向又は前記第1の方向に略直交する第2の方向の、少なくとも一方の方向において離れた位置に各々配置され、且つその受光面が2次元に分割された複数の検出画素とを有する撮像素子と、該撮像素子の前記撮像エリアに被写体像を結像する撮影レンズとを有する被測定光学機器を保持する保持部と、前記撮影レンズを介して、前記撮像素子の各検出画素に対し、平行光束を出射する光源装置と、各検出画素の、各分割受光面からの光出力に基づき、所定の軸方向における、前記撮像素子と前記撮影レンズとの誤差量を演算する第1の演算回路と、及び異なる検出画素間における、各検出画素に係る演算量に基づき、前記所定の軸方向周りにおける、前記撮像素子と前記撮影レンズとの回転量を演算する第2の演算回路とを有する光学機器測定装置。   A plurality of imaging areas and a first direction or a second direction that is substantially orthogonal to the first direction are disposed at positions separated from each other in at least one direction, and the light receiving surface is divided in two dimensions. A holding unit that holds an optical device to be measured that includes an imaging element having a detection pixel, and a photographing lens that forms a subject image in the imaging area of the imaging element, and the imaging element via the photographing lens. Based on the light source device that emits a parallel light flux for each detection pixel and the light output from each divided light receiving surface of each detection pixel, the amount of error between the imaging element and the photographing lens in a predetermined axial direction is calculated. And a second calculation unit that calculates a rotation amount of the imaging element and the photographing lens around the predetermined axis direction based on a calculation amount relating to each detection pixel between the first detection circuit and the different detection pixels. Arithmetic times Optics measuring device with and. 前記光源装置は、前記撮像素子の各検出画素毎に、照射する光束を生成する光源を有していることを特徴とする請求項2〜6のいずれか1項に係る光学機器測定装置。   The optical apparatus measuring apparatus according to claim 2, wherein the light source device includes a light source that generates a light beam to be irradiated for each detection pixel of the imaging element. 前記光源装置は、光束を生成する光源と、前記光束が、選択された前記撮像素子の検出画素に照射される位置に前記光源を移動する移動手段とを有することを特徴とする請求項2〜6のいずれか1項に係る光学機器測定装置。   The said light source device has a light source which produces | generates a light beam, and a moving means to move the said light source to the position where the said light beam is irradiated to the detection pixel of the selected said image pick-up element. The optical instrument measuring device according to any one of 6.
JP2005285807A 2005-09-30 2005-09-30 Imaging device and optical apparatus measuring device Withdrawn JP2007093495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285807A JP2007093495A (en) 2005-09-30 2005-09-30 Imaging device and optical apparatus measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285807A JP2007093495A (en) 2005-09-30 2005-09-30 Imaging device and optical apparatus measuring device

Publications (1)

Publication Number Publication Date
JP2007093495A true JP2007093495A (en) 2007-04-12

Family

ID=37979385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285807A Withdrawn JP2007093495A (en) 2005-09-30 2005-09-30 Imaging device and optical apparatus measuring device

Country Status (1)

Country Link
JP (1) JP2007093495A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055514A (en) * 2007-08-29 2009-03-12 Nikon Corp Imaging element, imaging apparatus, and position adjusting method for imaging element
JP2009141791A (en) * 2007-12-07 2009-06-25 Nikon Corp Method of manufacturing imaging apparatus
JP2010098365A (en) * 2008-10-14 2010-04-30 Hitachi Kokusai Electric Inc Television camera device
JP2010161633A (en) * 2009-01-08 2010-07-22 Tokyo Electric Power Co Inc:The Device and method for horizontal setting of a plurality of cameras and stereoscopic photographing device
JP2013125048A (en) * 2011-12-13 2013-06-24 Semiconductor Components Industries Llc Lens position detection circuit
JP2015097306A (en) * 2013-11-15 2015-05-21 富士通株式会社 Manufacturing method of information processing unit and optical component fitting device
CN105280842A (en) * 2014-07-25 2016-01-27 上海和辉光电有限公司 Method used for measuring sub-pixel offset in OLED manufacturing process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055514A (en) * 2007-08-29 2009-03-12 Nikon Corp Imaging element, imaging apparatus, and position adjusting method for imaging element
JP2009141791A (en) * 2007-12-07 2009-06-25 Nikon Corp Method of manufacturing imaging apparatus
JP2010098365A (en) * 2008-10-14 2010-04-30 Hitachi Kokusai Electric Inc Television camera device
JP2010161633A (en) * 2009-01-08 2010-07-22 Tokyo Electric Power Co Inc:The Device and method for horizontal setting of a plurality of cameras and stereoscopic photographing device
JP2013125048A (en) * 2011-12-13 2013-06-24 Semiconductor Components Industries Llc Lens position detection circuit
US9389066B2 (en) 2011-12-13 2016-07-12 Semiconductor Components Industries, Llc Lens position detecting circuit and method
JP2015097306A (en) * 2013-11-15 2015-05-21 富士通株式会社 Manufacturing method of information processing unit and optical component fitting device
CN105280842A (en) * 2014-07-25 2016-01-27 上海和辉光电有限公司 Method used for measuring sub-pixel offset in OLED manufacturing process

Similar Documents

Publication Publication Date Title
JP5145013B2 (en) Surveying instrument
JP5584140B2 (en) Non-contact surface shape measuring method and apparatus
JP2007093495A (en) Imaging device and optical apparatus measuring device
JP2011145115A (en) Distance measuring device, distance measuring module, and imaging device using this
KR20060097668A (en) Apparatus and method for beam drift compensation
JP2006319544A (en) Device and method for measuring inclination of image sensor
JP5951793B2 (en) Image sensor position detector
KR20190001545A (en) Imaging device and calibration method thereof
JP2012512426A (en) Scanning microscope
JP2009068957A (en) Straightness measuring apparatus, thickness fluctuation measuring apparatus, and orthogonality measuring apparatus
WO2016031935A1 (en) Surface shape measuring device
KR100532672B1 (en) Offset Measurement Mechanism and Method for Bonding Apparatus
JP2010014656A (en) Noncontact side-surface shape measuring apparatus
JP2007305696A (en) Accuracy measuring method of positioning apparatus
JP2008102014A (en) Apparatus and method for measuring surface profile
JP4197340B2 (en) 3D shape measuring device
JP4467599B2 (en) Bonding equipment
JP2007064670A (en) Device for measuring surface shape
JP2005136743A (en) Position adjusting instrument and position adjusting method for image pickup device
JP7198731B2 (en) Imaging device and focus adjustment method
WO2023182095A1 (en) Surface shape measurement device and surface shape measurement method
JP2010256178A (en) Noncontact surface shape measuring device
JP2010169634A (en) Working device
JP2008283117A (en) Method and device for adjusting laser diode
JP3745056B2 (en) Ranging position adjustment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090918