JP2007093215A - Probe pin, monitor electrode pad, package for surface mounting, and piezoelectric oscillator for surface mounting - Google Patents

Probe pin, monitor electrode pad, package for surface mounting, and piezoelectric oscillator for surface mounting Download PDF

Info

Publication number
JP2007093215A
JP2007093215A JP2005278934A JP2005278934A JP2007093215A JP 2007093215 A JP2007093215 A JP 2007093215A JP 2005278934 A JP2005278934 A JP 2005278934A JP 2005278934 A JP2005278934 A JP 2005278934A JP 2007093215 A JP2007093215 A JP 2007093215A
Authority
JP
Japan
Prior art keywords
electrode pad
monitor electrode
vibration element
probe pin
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005278934A
Other languages
Japanese (ja)
Inventor
Shoichi Nagamatsu
昌一 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005278934A priority Critical patent/JP2007093215A/en
Publication of JP2007093215A publication Critical patent/JP2007093215A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe pin, capable of frequency measurement by ensuring ample contact area and contacting the monitor electrode pad arranged in an insulation package for surface mounting. <P>SOLUTION: In the probe pin 40 for measuring the frequency by contacting the tip end with respect to a monitor electrode pad 30 for a piezoelectric vibration element conducting the piezoelectric vibration element, which is arranged on the inner surface of a cavity 3 for an IC component of the package, provided with a cavity 2 containing the piezoelectric vibration element 12 and the cavity 3 containing the IC component 20 constituting an oscillation circuit, a recess part dented in a concave is provided to the tip end of the probe pin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面実装型圧電発振器に装備される周波数測定用のモニター電極パッドに当接されるプローブピンの改良に関する。
更に本発明は、表面実装型圧電発振器に装備される圧電振動素子の周波数調整用のモニター電極パッドの改良に関し、特に周波数測定作業を行うためのプローブピンの先端面形状に適合したパターンを備えたモニター電極パッド、表面実装用のパッケージ、及び表面実装用圧電発振器に関する。
The present invention relates to an improvement of a probe pin that comes into contact with a monitor electrode pad for frequency measurement provided in a surface-mount piezoelectric oscillator.
Furthermore, the present invention relates to an improvement of a monitor electrode pad for adjusting a frequency of a piezoelectric vibration element provided in a surface mount type piezoelectric oscillator, and more particularly, a pattern adapted to a shape of a tip surface of a probe pin for performing frequency measurement work. The present invention relates to a monitor electrode pad, a package for surface mounting, and a piezoelectric oscillator for surface mounting.

移動体通信市場においては、各種電装部品の実装性、保守・取扱性、装置間での部品の共通性等を考慮して、各機能毎に部品群のモジュール化を推進するメーカーが増えている。また、モジュール化に伴って、小型化、低コスト化も強く求められている。
特に、基準発振回路、PLL回路、及びシンセサイザー回路等、機能及びハード構成が確立し、且つ高安定性、高性能化が要求される回路部品に関してモジュール化への傾向が強まっている。更に、これらの部品群をモジュールとしてパッケージ化することによりシールド構造を確立しやすくなるという利点がある。
複数の関連部品をモジュール化、パッケージ化することにより構築される表面実装用の電子部品としては、例えば圧電振動子、圧電発振器、SAWデバイス等を例示することができるが、これらの機能を高く維持しつつ、更なる小型化を図るために、例えば特許文献1には二階建てモジュール構造を備えた水晶発振器が提案されている。この水晶発振器は、水晶振動素子とその他の発振回路素子とを一つの絶縁パッケージ内に組み込んだものである。
この水晶発振器は、縦断面形状がH型のセラミック回路基板(セラミック容器)の表裏面夫々に独立して設けたキャビティのうちの一方のキャビティ内に水晶振動素子を収容し、他方のキャビティ内に発振回路素子としてICチップ(IC部品)を収容し、水晶振動素子とICチップとをボンディングやパッケージに設けた回路配線によって導通接続した構成を有する。
In the mobile communications market, an increasing number of manufacturers are promoting modularization of parts groups for each function, taking into account the mounting properties, maintenance and handling characteristics of various electrical components, and the commonality of parts between devices. . Further, along with modularization, there is a strong demand for downsizing and cost reduction.
In particular, there is an increasing tendency toward modularization of circuit components that have established functions and hardware configurations, such as a reference oscillation circuit, a PLL circuit, and a synthesizer circuit, and that require high stability and high performance. Furthermore, there is an advantage that a shield structure can be easily established by packaging these parts as a module.
Examples of surface mounting electronic components constructed by modularizing and packaging a plurality of related components include piezoelectric vibrators, piezoelectric oscillators, SAW devices, etc., but these functions are maintained at a high level. However, in order to achieve further miniaturization, for example, Patent Document 1 proposes a crystal oscillator having a two-story module structure. This crystal oscillator is one in which a crystal resonator element and other oscillation circuit elements are incorporated in one insulating package.
In this crystal oscillator, a crystal resonator element is accommodated in one of the cavities provided independently on the front and back surfaces of a ceramic circuit board (ceramic container) having an H-shaped longitudinal section, and the other cavity is accommodated. An IC chip (IC component) is accommodated as the oscillation circuit element, and the crystal vibration element and the IC chip are connected in conduction by circuit wiring provided in bonding or a package.

このような構成の水晶発振器を組み立てる場合、最初に一方のキャビティ内に水晶振動素子を搭載して水晶振動子を完成させた後、他方のキャビティ内にICチップを搭載する組立工程が行われる。
従って、完成された水晶振動子の機能(周波数)をチェックするためには水晶振動素子の励振電極と導通した水晶振動素子用モニター電極パッドを絶縁パッケージの外表面に設け、このモニター電極パッドに周波数測定装置のプローブピン先端を当接し得るように構成する必要がある。即ち、周波数調整作業においては、周波数測定装置のプローブピンをモニター電極パッドに当接させて通電することにより水晶振動素子を励振させて出力される周波数を確認し、狙いの周波数と実際の周波数との間に誤差がある場合には水晶振動素子上の励振電極膜厚を増減させる等の手法によって調整する。
水晶振動素子用モニター電極パッドを設ける位置としては、パッケージ外表面の側面部分に設けることも可能であるが、この場合にはパッケージの外部からの電磁波等の影響を受けやすいという問題がある。その為、一般的にはICチップが収納される側のキャビティ内の底面部であって、ICチップにて覆われる位置に水晶振動素子用モニター電極を設ける。この場合には、モニター電極パッドを利用した周波数測定終了後にICチップをキャビティ内に搭載する工程が実施される。
これにより、水晶振動素子用モニター電極パッドは、ICチップにて水晶振動素子用モニター電極パッドを覆い隠すと共に、水晶振動素子を覆うシールド用の金属製蓋にて電磁波的にシールドされる。
When assembling a crystal oscillator having such a configuration, an assembly process is performed in which a crystal resonator element is first mounted in one cavity to complete a crystal resonator, and then an IC chip is mounted in the other cavity.
Therefore, in order to check the function (frequency) of the completed crystal resonator, a monitor electrode pad for the crystal resonator element that is electrically connected to the excitation electrode of the crystal resonator element is provided on the outer surface of the insulating package, and the frequency is applied to the monitor electrode pad. It is necessary to configure so that the probe pin tip of the measuring device can be brought into contact. That is, in the frequency adjustment work, the frequency that is output by exciting the crystal resonator element by energizing the probe pin of the frequency measuring device in contact with the monitor electrode pad, and checking the target frequency and the actual frequency. If there is an error between the two, the adjustment is made by a method such as increasing or decreasing the thickness of the excitation electrode film on the crystal resonator element.
The position of the crystal vibration element monitor electrode pad can be provided on the side surface portion of the outer surface of the package, but in this case, there is a problem that it is easily affected by electromagnetic waves from the outside of the package. Therefore, in general, a monitor electrode for a crystal resonator element is provided at a position on the bottom surface in the cavity on the side where the IC chip is accommodated and covered with the IC chip. In this case, the step of mounting the IC chip in the cavity is performed after the frequency measurement using the monitor electrode pad is completed.
As a result, the monitor electrode pad for the crystal resonator element is shielded electromagnetically by the shielding metal lid for covering the crystal resonator element while concealing the monitor electrode pad for the crystal resonator element with the IC chip.

ところで、水晶振動素子用モニター電極パッドの構造は通常矩形状であり、このモニター電極パッドの表面部分にプローブピン等の先端が鋭利な測定用端子の先端を接触させる。
しかし、プローブピンの先端が鋭利な針のような形状を有する場合、プローブピンが水晶振動素子用モニター電極パッドと接触する部分は針の先端の僅かな点でしかなく、このような小さい先端部を小面積化した水晶振動素子用モニター電極パッドに対して適切に当接することは容易でなく、十分に接触できないことも多々ある。
またプローブを四角柱形としてその先端を平坦とした場合では、一見してプローブの接触面積が広く感じられるが、図6に示すようにパッケージ100面に設けた水晶振動素子用モニター電極パッド101の形状は、中央部が厚く、外周に従って薄くなる構造であるので、プローブピン102はモニター電極パッド101の中央部分にしか接触できず、その接触面積は僅かである。このため、接触不良が発生し易い。モニター電極パッド101は、タングステン等の導電性材料をスクリーン印刷法を用いて塗布することにより形成されるものであり、塗布直後の流体状態において表面張力の影響を受けて丸くなってしまい、パッド電極が小さければより球(半球)に近づくこととなる。このため、先端面が平坦なプローブピン102との接触面積が更に狭くなり、これによりパッド電極とプローブピン102との間の接触抵抗によるインピーダンスの値が大きくなるので、正しく周波数を測定することが更に困難になり、これは特に高い周波数精度を要求される水晶振動子又は水晶発振器にとっては大きな問題である。
なお、発振動作入出力信号以外の信号、例えばIC調整用のディジタル信号を入出力する場合においては、プローブピンとの接触抵抗が増加してもディジタル信号のデータが0/1情報であるからさほど問題とはならない。
次に、水晶発振器の小型化が進むと、ICチップをパッケージの接続パッド上に接続固定する為の金バンプの径も小さくなり、これによりICチップの回路面とモニター電極パッドとの距離が近づくこととなり、両者間に発生する寄生容量が増加してしまう傾向にある。寄生容量は水晶発振器の発振動作にとって不安定な動作を起こす要因となる為、当該寄生容量が増加すると水晶発振器の動作が安定しない等の問題が発生する。
特許第3398331号
By the way, the structure of the monitor electrode pad for a crystal resonator element is usually rectangular, and the tip of a measurement terminal having a sharp tip such as a probe pin is brought into contact with the surface portion of the monitor electrode pad.
However, when the tip of the probe pin has a shape like a sharp needle, the portion where the probe pin comes into contact with the monitor electrode pad for the crystal resonator element is only a small point on the tip of the needle, and such a small tip It is not easy to properly abut the monitor electrode pad for a crystal resonator element with a small area, and there are many cases where it cannot be sufficiently contacted.
In addition, when the probe is a quadrangular prism and its tip is flat, the contact area of the probe seems to be wide at first glance, but the crystal vibrating element monitor electrode pad 101 provided on the surface of the package 100 as shown in FIG. Since the shape is a structure in which the central portion is thick and becomes thin according to the outer periphery, the probe pin 102 can contact only the central portion of the monitor electrode pad 101, and the contact area is small. For this reason, poor contact is likely to occur. The monitor electrode pad 101 is formed by applying a conductive material such as tungsten using a screen printing method. The monitor electrode pad 101 is rounded under the influence of surface tension in the fluid state immediately after application, and the pad electrode If is small, it will be closer to a sphere (hemisphere). For this reason, the contact area with the probe pin 102 having a flat tip surface is further narrowed, thereby increasing the impedance value due to the contact resistance between the pad electrode and the probe pin 102, so that the frequency can be measured correctly. It becomes even more difficult, and this is a big problem for crystal resonators or crystal oscillators that require particularly high frequency accuracy.
In the case of inputting / outputting signals other than the oscillation operation input / output signal, for example, a digital signal for IC adjustment, even if the contact resistance with the probe pin increases, the digital signal data is 0/1 information. It will not be.
Next, when the crystal oscillator is further downsized, the diameter of the gold bump for connecting and fixing the IC chip on the connection pad of the package is also reduced, thereby reducing the distance between the circuit surface of the IC chip and the monitor electrode pad. As a result, the parasitic capacitance generated between the two tends to increase. Since the parasitic capacitance causes an unstable operation for the oscillation operation of the crystal oscillator, problems such as an unstable operation of the crystal oscillator occur when the parasitic capacitance increases.
Japanese Patent No. 3398331

本発明は上記に鑑みてなされたものであり、表面実装用の絶縁パッケージ内に配置されたモニター電極パッドに対して十分な接触面積を確保しつつ当接して周波数測定を行うことができるプローブピンを提供することを一つの目的としている。
また、本発明は、プローブピンの先端面形状と関係なく、十分な接触面積を確保することができるモニター電極パッド、それを備えた絶縁パッケージ、及び表面実装型圧電発振器を提供することを他の目的としている。
The present invention has been made in view of the above, and a probe pin capable of performing frequency measurement by making contact with a monitor electrode pad disposed in an insulating package for surface mounting while ensuring a sufficient contact area. One purpose is to provide
In addition, the present invention provides a monitor electrode pad that can ensure a sufficient contact area regardless of the shape of the tip surface of the probe pin, an insulating package including the same, and a surface mount piezoelectric oscillator. It is aimed.

上記課題を解決するため、請求項1の発明に係るプローブピンは、圧電振動素子を収容する凹所、及び発振回路を構成するIC部品を収容する凹所を備えたパッケージの前記IC部品用凹所内面に配置されて前記圧電振動素子と導通する圧電振動素子用のモニター電極パッドに対して先端部を当接させることにより周波数を測定するためのプローブピンにおいて、前記プローブピンの先端面に凹状に陥没した凹陥部を設けたことを特徴とする。
請求項2の発明に係る表面実装用パッケージは、圧電振動素子を収容する凹所と、発振回路を構成するIC部品を収容する凹所と、該IC部品用凹所内面に配置されて前記圧電振動素子と導通する圧電振動素子用のモニター電極パッドと、を備えた表面実装用のパッケージにおいて、前記モニター電極パッドは、中心部から複数の帯状部が放射状に延びた構成を有していることを特徴とする。
請求項3の発明は、請求項2において、モニター電極パッドは、十字状の構成を有していることを特徴とする。
請求項4の発明は、請求項2において、モニター電極パッドは、Y字状の構成を有していることを特徴とする。
請求項5の発明は、圧電振動素子を収容する凹所と、発振回路を構成するIC部品を収容する凹所と、該IC部品用凹所内面に配置されて前記圧電振動素子と導通する圧電振動素子用のモニター電極パッドと、を備えた表面実装用のパッケージにおいて、前記モニター電極パッドは、環状に構成されていることを特徴とする。
請求項6の発明は、請求項2乃至5の何れか一項に記載のモニター電極パッドを備えたことを特徴とする。
請求項7の発明は、請求項6に記載の表面実装用のパッケージの前記各凹所内に前記圧電振動素子と前記IC部品を夫々収容したことを特徴とする。
In order to solve the above-mentioned problems, a probe pin according to the invention of claim 1 includes a recess for accommodating a piezoelectric vibration element and a recess for the IC component of a package including a recess for accommodating an IC component constituting an oscillation circuit. In a probe pin for measuring the frequency by bringing the tip portion into contact with the monitor electrode pad for the piezoelectric vibration element that is disposed on the inner surface and is electrically connected to the piezoelectric vibration element, the tip surface of the probe pin has a concave shape. It is characterized by providing a recessed portion which is depressed in the.
According to a second aspect of the present invention, there is provided a surface mounting package including a recess for accommodating a piezoelectric vibration element, a recess for accommodating an IC component constituting an oscillation circuit, and an inner surface of the recess for the IC component. In a surface-mount package comprising a monitor electrode pad for a piezoelectric vibration element that is electrically connected to the vibration element, the monitor electrode pad has a configuration in which a plurality of strip-shaped portions extend radially from a central portion. It is characterized by.
The invention of claim 3 is characterized in that, in claim 2, the monitor electrode pad has a cross-shaped configuration.
According to a fourth aspect of the present invention, in the second aspect, the monitor electrode pad has a Y-shaped configuration.
According to a fifth aspect of the present invention, there is provided a recess for accommodating a piezoelectric vibration element, a recess for accommodating an IC component constituting an oscillation circuit, and a piezoelectric element disposed on the inner surface of the recess for the IC component and electrically connected to the piezoelectric vibration element. In a surface mounting package including a monitor electrode pad for a vibration element, the monitor electrode pad is formed in an annular shape.
A sixth aspect of the invention is characterized in that the monitor electrode pad according to any one of the second to fifth aspects is provided.
The invention according to claim 7 is characterized in that the piezoelectric vibration element and the IC component are accommodated in the respective recesses of the package for surface mounting according to claim 6.

本発明に係るプローブピンは、プローブピンの先端面に凹状に陥没した凹陥部を設けたので、表面実装用の絶縁パッケージ内に配置されたモニター電極パッドに対して十分な接触面積を確保しつつ当接して周波数測定を行うことができる。
また、本発明にかかるモニター電極パッド(調整用端子)は、プローブピンの先端面形状と関係なく、十分な接触面積を確保することができるが、特に本発明のプローブピンを用いることにより、更にモニター電極パッドとの接続安定性を確保できる。
また、モニター電極パッドを環状に構成することにより、その面積が従来の矩形の調整用端子よりも格段に狭くなるため、寄生容量を小さく抑えることができる。
In the probe pin according to the present invention, since the concave portion is provided in the tip end surface of the probe pin, a sufficient contact area is ensured with respect to the monitor electrode pad disposed in the surface mount insulating package. The frequency measurement can be performed by contact.
The monitor electrode pad (adjustment terminal) according to the present invention can ensure a sufficient contact area regardless of the shape of the tip surface of the probe pin. Connection stability with the monitor electrode pad can be secured.
Further, by forming the monitor electrode pad in an annular shape, the area thereof is markedly narrower than that of the conventional rectangular adjustment terminal, so that the parasitic capacitance can be kept small.

以下、本発明を図面に示した実施の形態により詳細に説明する。
図1(a)及び(b)は本発明の一実施形態に係るプローブピン先端を当接させて周波数測定を行うための調整用端子(モニター電極パッド)を有したパッケージ構造を備えた表面実装型圧電発振器の一例としての水晶発振器の縦断面図、及び底面図である。
この水晶発振器は、上面と下面に夫々凹所(キャビティ)2、3を備えると共に環状の底面4に駆動電源用実装端子(Vcc端子)、制御電圧印加用実装端子(Vcon端子)、信号出力用実装端子(Out端子)、接地用実装端子(Gnd端子)の4つの実装端子5を備えた縦断面形状が略H型の絶縁容器1と、上面側凹所2内に設けた2つの上面側内部パッド11に水晶振動素子(圧電振動素子)12上の2つの励振電極を夫々電気的に接続した状態で該上面側凹所2を気密封止する金属リッド15と、下面側凹所3の天井面3aに配置され各上面側内部パッド11、及び各実装端子5と導通した下面側内部パッド6と、下面側内部パッド6に実装される発振回路を構成するIC部品20と、を備える。なお、この実施形態では、4つの実装端子5のうちのVcc端子とVcon端子が、夫々上面側内部パッド11の一方と電気的に接続されている場合を一例として説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
FIGS. 1A and 1B are surface mounts having a package structure having an adjustment terminal (monitor electrode pad) for performing frequency measurement by contacting the tip of a probe pin according to an embodiment of the present invention. It is the longitudinal cross-sectional view and bottom view of the crystal oscillator as an example of a type piezoelectric oscillator.
This crystal oscillator has recesses (cavities) 2 and 3 on the upper surface and the lower surface, respectively, and on the annular bottom surface 4 a drive power supply mounting terminal (Vcc terminal), a control voltage application mounting terminal (Vcon terminal), and a signal output An insulating container 1 having a vertical cross-sectional shape having four mounting terminals 5 including a mounting terminal (Out terminal) and a grounding mounting terminal (Gnd terminal), and two upper surface sides provided in the upper surface side recess 2 A metal lid 15 that hermetically seals the upper surface side recess 2 in a state where the two excitation electrodes on the crystal vibration element (piezoelectric vibration element) 12 are electrically connected to the internal pad 11, and the lower surface side recess 3. The upper surface side internal pads 11 disposed on the ceiling surface 3 a and the lower surface side internal pads 6 that are electrically connected to the mounting terminals 5, and the IC component 20 that constitutes an oscillation circuit mounted on the lower surface side internal pads 6 are provided. In this embodiment, the case where the Vcc terminal and the Vcon terminal of the four mounting terminals 5 are electrically connected to one of the upper surface side internal pads 11 will be described as an example.

絶縁容器1、下面側内部パッド6、上面側内部パッド11、金属リッド15は、表面実装型圧電発振器用パッケージ(パッケージ)を構成している。
上面側凹所(IC部品用凹所)2を備えた絶縁容器1の上部と、上面側内部パッド11と、水晶振動素子12と、金属リッド15は、水晶振動子(圧電振動子)を構成している。即ち、水晶振動子はセラミック等の絶縁材料からなる絶縁容器1の上面側凹所3内の上面側内部パッド11上に水晶振動素子12を導電性接着剤(導電性ペースト)13を用いて電気的・機械的に接続し、絶縁容器1の外璧上面の導体リングに金属リッド15を溶接等によって電気的・機械的に接続して上面側凹所2内を気密封止したものである。
このパッケージにおいては、水晶振動素子12の周波数特性を測定し、測定された実際の周波数と狙いの周波数との間に誤差がある場合にそれを調整するために使用する調整用端子(モニター電極パッド)30を下面側凹所3の天井面3a、その他の適所に配置している。
調整用端子30は、周波数測定装置を構成するプローブピンを当接させた状態でプローブピンから通電することによって水晶振動素子12を励振させて出力される周波数を図示しない測定器に出力するための手段である。
図2(a)(b)は本発明の実施形態に係るプローブピン40の構成、及び測定状態の説明図であり、このプローブピン40は調整用端子30と接する先端面に、凹状に陥没した凹陥部41を備えた構成が特徴的である。
この発明では、プローブピン40の先端面に凹状の凹陥部41を設けることにより、プローブピンの凹陥部の外周縁部41aにより、中央部が膨出した形状の調整用端子30の中央部を避けた外周面に接触することができることとなり、従来の先端面が平坦なプローブピンよりも接触面積、接触安定性を増やして測定精度を高めることができる。
The insulating container 1, the lower surface side internal pad 6, the upper surface side internal pad 11, and the metal lid 15 constitute a surface mount type piezoelectric oscillator package (package).
The upper portion of the insulating container 1 having the upper surface side recess (IC component recess) 2, the upper surface side internal pad 11, the crystal resonator element 12, and the metal lid 15 constitute a crystal resonator (piezoelectric resonator). is doing. That is, the crystal resonator is electrically connected to the crystal resonator element 12 on the upper surface side internal pad 11 in the upper surface side recess 3 of the insulating container 1 made of an insulating material such as ceramic by using a conductive adhesive (conductive paste) 13. The metal lid 15 is electrically and mechanically connected to the conductor ring on the upper surface of the outer wall of the insulating container 1 by welding or the like, and the inside of the upper side recess 2 is hermetically sealed.
In this package, the frequency characteristic of the crystal resonator element 12 is measured, and if there is an error between the measured actual frequency and the target frequency, an adjustment terminal (monitor electrode pad) used for adjusting the error is measured. ) 30 is arranged in the ceiling surface 3a of the lower surface side recess 3 and other appropriate positions.
The adjustment terminal 30 is used to output a frequency output by exciting the crystal resonator element 12 by energizing the probe pin while the probe pin constituting the frequency measuring device is in contact with the measuring device (not shown). Means.
FIGS. 2A and 2B are explanatory views of the configuration and measurement state of the probe pin 40 according to the embodiment of the present invention, and the probe pin 40 is recessed in a distal end surface in contact with the adjustment terminal 30. FIG. The structure provided with the recessed part 41 is characteristic.
In the present invention, by providing a concave recess 41 on the tip surface of the probe pin 40, the outer peripheral edge 41a of the probe pin recess avoids the central portion of the adjustment terminal 30 having a shape in which the central portion bulges. Therefore, it is possible to increase the measurement accuracy by increasing the contact area and the contact stability as compared with the conventional probe pin having a flat tip surface.

次に、図3は2個で一つの対をなす調整用端子に係る実施形態を示す図である。
まず、図3(a)及び(b)の各調整用端子30に共通する特徴は、中心部Cから複数の帯状部31が放射状に延びた構成にある。換言すれば、調整用端子30は、複数の帯状部31を交差させた構成を備えている。
図3(a)の調整用端子30は、十字状の構成を有している。調整用端子30は2個で一対をなしているため、2つの十字状の調整用端子を図示している。
図3(b)の調整用端子30は、Y字状の構成を有している。
これらの調整用端子30は、タングステン等の導電性材料をスクリーン印刷法を用いてパッケージ面に塗布することにより形成されるため、塗布直後の流体状態において表面張力の影響を受けて丸くなってしまう。
例えば、図4(a)(b)は図3(a)の十字形の調整用端子の縦断面図であり、調整用端子30の縦断面形状はより半球状に近いものとなっているが、図2に示した本発明のプローブピン40を使用すれば、先端面が凹陥部41となっているため、例えば図3(a)においてはプローブピン先端面の外周縁部41aは図示した4本の帯状部31との間で計4箇所で密着して接触することが可能であるので、確実に電気的導通を確保することができる。また、図3(b)の調整用端子30に対して、プローブピン40の外周縁部41aは三箇所で密着して接触できる。
Next, FIG. 3 is a diagram showing an embodiment according to two adjustment terminals that form a pair.
First, a feature common to each of the adjustment terminals 30 in FIGS. 3A and 3B is a configuration in which a plurality of strip portions 31 extend radially from the center portion C. In other words, the adjustment terminal 30 has a configuration in which a plurality of strip portions 31 are crossed.
The adjustment terminal 30 in FIG. 3A has a cross-shaped configuration. Since the two adjustment terminals 30 form a pair, two cross-shaped adjustment terminals are illustrated.
The adjustment terminal 30 in FIG. 3B has a Y-shaped configuration.
Since these adjustment terminals 30 are formed by applying a conductive material such as tungsten to the package surface using a screen printing method, the adjustment terminals 30 are rounded under the influence of surface tension in the fluid state immediately after application. .
For example, FIGS. 4A and 4B are vertical cross-sectional views of the cross-shaped adjustment terminal of FIG. 3A, and the vertical cross-sectional shape of the adjustment terminal 30 is closer to a hemispherical shape. If the probe pin 40 of the present invention shown in FIG. 2 is used, the distal end surface becomes a recessed portion 41. For example, in FIG. 3A, the outer peripheral edge 41a of the distal end surface of the probe pin is shown in FIG. Since it is possible to make close contact with the belt-like portion 31 of the book at a total of four locations, electrical continuity can be reliably ensured. Further, the outer peripheral edge portion 41a of the probe pin 40 can be brought into close contact with the adjustment terminal 30 in FIG.

次に、図5(a)及び(b)は本発明の他の実施形態に係る調整用端子の構成例を示しており、両調整用端子30に共通する特徴は、中央部に空所33を備えた環状に構成されている点にある。この調整用端子30に本発明のプローブピン40の先端面を当接させる場合も、先端面が凹状に陥没しているため、プローブピン先端面の外周縁部41aは環状の導体部分32と全体的に密着状態で接触することができ、確実に電気的導通を確保することができる。
また、図5に示した調整用端子は、その面積が従来の矩形の調整用端子よりも格段に狭くなるため、寄生容量を小さく抑えることができる。
なお、上記実施形態では、圧電発振器の代表例として水晶発振器を例示したが、本発明は他の圧電材料から成る圧電振動素子を使用した発振器全てに適用することができる。
Next, FIGS. 5A and 5B show a configuration example of an adjustment terminal according to another embodiment of the present invention. The common feature of both the adjustment terminals 30 is a space 33 at the center. It is in the point comprised by the cyclic | annular form provided with. Even when the tip end surface of the probe pin 40 of the present invention is brought into contact with the adjusting terminal 30, the outer peripheral edge portion 41a of the tip end surface of the probe pin is formed with the annular conductor portion 32 and the whole because the tip end surface is recessed. Therefore, it is possible to make contact in a close contact state, and to ensure electrical continuity reliably.
Further, since the area of the adjustment terminal shown in FIG. 5 is much narrower than that of the conventional rectangular adjustment terminal, the parasitic capacitance can be reduced.
In the above-described embodiment, a crystal oscillator is illustrated as a typical example of a piezoelectric oscillator. However, the present invention can be applied to all oscillators using piezoelectric vibration elements made of other piezoelectric materials.

(a)及び(b)は本発明の一実施形態に係るプローブピン先端を当接させて周波数測定を行うための調整用端子(モニター電極パッド)を有したパッケージ構造を備えた表面実装型圧電発振器の一例としての水晶発振器の縦断面図、及び底面図。(A) And (b) is a surface mount type piezoelectric device having a package structure having an adjustment terminal (monitor electrode pad) for making a frequency measurement by contacting the tip of a probe pin according to an embodiment of the present invention. The longitudinal cross-sectional view and bottom view of the crystal oscillator as an example of an oscillator. (a)(b)は本発明の実施形態に係るプローブピンの構成、及び測定状態の説明図。(A) and (b) are explanatory drawing of the structure of the probe pin which concerns on embodiment of this invention, and a measurement state. (a)及び(b)は夫々2個で一つの対をなす調整用端子の実施形態を示す図。(A) And (b) is a figure which shows embodiment of the terminal for adjustment which makes a pair by two each. (a)及び(b)は2個で一つの対をなす調整用端子に係る実施形態を示す図。(A) And (b) is a figure which shows embodiment which concerns on the terminal for adjustment which makes a pair by two. (a)及び(b)は本発明の他の実施形態に係る調整用端子の構成例を示す図。(A) And (b) is a figure which shows the structural example of the terminal for adjustment which concerns on other embodiment of this invention. 従来のプローブの欠点を説明する図。The figure explaining the fault of the conventional probe.

符号の説明Explanation of symbols

1…絶縁容器、2…上面側凹所、3…下面側凹所、3a…天井面4…底面、5…各実装端子、6…下面側内部パッド、11…上面側内部パッド、12…水晶振動素子、15…金属リッド、20…IC部品、30…各調整用端子、31…帯状部、32…導体部分、33…空所、40…プローブピン、41…凹陥部、41…凹陥部、41a…外周縁部   DESCRIPTION OF SYMBOLS 1 ... Insulation container, 2 ... Upper surface side recess, 3 ... Lower surface side recess, 3a ... Ceiling surface 4 ... Bottom surface, 5 ... Each mounting terminal, 6 ... Lower surface side internal pad, 11 ... Upper surface side internal pad, 12 ... Crystal Vibrating element, 15 ... Metal lid, 20 ... IC component, 30 ... Each adjustment terminal, 31 ... Band-shaped part, 32 ... Conductor part, 33 ... Space, 40 ... Probe pin, 41 ... Recessed part, 41 ... Recessed part, 41a ... outer peripheral edge

Claims (7)

圧電振動素子を収容する凹所、及び発振回路を構成するIC部品を収容する凹所を備えたパッケージの前記IC部品用凹所内面に配置されて前記圧電振動素子と導通する圧電振動素子用のモニター電極パッドに対して先端部を当接させることにより周波数を測定するためのプローブピンにおいて、
前記プローブピンの先端面に凹状に陥没した凹陥部を設けたことを特徴とするプローブピン。
For a piezoelectric vibration element that is disposed on the inner surface of the recess for the IC component of a package having a recess for accommodating the piezoelectric vibration element and a recess for accommodating an IC component that constitutes an oscillation circuit, and is electrically connected to the piezoelectric vibration element. In the probe pin for measuring the frequency by bringing the tip part into contact with the monitor electrode pad,
A probe pin characterized in that a concave portion recessed in a concave shape is provided on a tip surface of the probe pin.
圧電振動素子を収容する凹所と、発振回路を構成するIC部品を収容する凹所と、該IC部品用凹所内面に配置されて前記圧電振動素子と導通する圧電振動素子用のモニター電極パッドと、を備えた表面実装用のパッケージにおいて、
前記モニター電極パッドは、中心部から複数の帯状部が放射状に延びた構成を有していることを特徴とするモニター電極パッド。
A recess for housing the piezoelectric vibration element, a recess for housing an IC component constituting the oscillation circuit, and a monitor electrode pad for the piezoelectric vibration element disposed on the inner surface of the recess for the IC component and conducting with the piezoelectric vibration element In a surface mounting package comprising:
The monitor electrode pad has a configuration in which a plurality of band-like portions extend radially from a central portion.
モニター電極パッドは、十字状の構成を有していることを特徴とする請求項2に記載のモニター電極パッド。   The monitor electrode pad according to claim 2, wherein the monitor electrode pad has a cross-shaped configuration. モニター電極パッドは、Y字状の構成を有していることを特徴とする請求項2に記載のモニター電極パッド。   The monitor electrode pad according to claim 2, wherein the monitor electrode pad has a Y-shaped configuration. 圧電振動素子を収容する凹所と、発振回路を構成するIC部品を収容する凹所と、該IC部品用凹所内面に配置されて前記圧電振動素子と導通する圧電振動素子用のモニター電極パッドと、を備えた表面実装用のパッケージにおいて、
前記モニター電極パッドは、環状に構成されていることを特徴とするモニター電極パッド。
A recess for housing the piezoelectric vibration element, a recess for housing an IC component constituting the oscillation circuit, and a monitor electrode pad for the piezoelectric vibration element disposed on the inner surface of the recess for the IC component and conducting with the piezoelectric vibration element In a surface mounting package comprising:
The monitor electrode pad is configured to have an annular shape.
請求項2乃至5の何れか一項に記載のモニター電極パッドを備えたことを特徴とする表面実装用のパッケージ。   A package for surface mounting, comprising the monitor electrode pad according to claim 2. 請求項6に記載の表面実装用のパッケージの前記各凹所内に前記圧電振動素子と前記IC部品を夫々収容したことを特徴とする表面実装用圧電発振器。   The surface-mount piezoelectric oscillator, wherein the piezoelectric vibration element and the IC component are accommodated in the respective recesses of the surface-mount package according to claim 6.
JP2005278934A 2005-09-26 2005-09-26 Probe pin, monitor electrode pad, package for surface mounting, and piezoelectric oscillator for surface mounting Pending JP2007093215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005278934A JP2007093215A (en) 2005-09-26 2005-09-26 Probe pin, monitor electrode pad, package for surface mounting, and piezoelectric oscillator for surface mounting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005278934A JP2007093215A (en) 2005-09-26 2005-09-26 Probe pin, monitor electrode pad, package for surface mounting, and piezoelectric oscillator for surface mounting

Publications (1)

Publication Number Publication Date
JP2007093215A true JP2007093215A (en) 2007-04-12

Family

ID=37979133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005278934A Pending JP2007093215A (en) 2005-09-26 2005-09-26 Probe pin, monitor electrode pad, package for surface mounting, and piezoelectric oscillator for surface mounting

Country Status (1)

Country Link
JP (1) JP2007093215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094656A (en) * 2007-10-05 2009-04-30 Kyocera Kinseki Corp Piezoelectric oscillator
JP2010124165A (en) * 2008-11-19 2010-06-03 Nippon Dempa Kogyo Co Ltd Surface mounted crystal oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094656A (en) * 2007-10-05 2009-04-30 Kyocera Kinseki Corp Piezoelectric oscillator
JP2010124165A (en) * 2008-11-19 2010-06-03 Nippon Dempa Kogyo Co Ltd Surface mounted crystal oscillator

Similar Documents

Publication Publication Date Title
JP4773175B2 (en) Crystal oscillator for surface mounting
EP2034610A1 (en) Quartz crystal device including monitor electrode
JP2006165759A (en) Temperature compensating crystal oscillator and manufacturing method thereof
JP4654837B2 (en) Package for surface mount piezoelectric oscillator, surface mount piezoelectric oscillator
JP2007235544A (en) Piezoelectric vibration device and its manufacturing method
JP2005244639A (en) Temperature compensated crystal oscillator
JP2007093215A (en) Probe pin, monitor electrode pad, package for surface mounting, and piezoelectric oscillator for surface mounting
JP2005223640A (en) Package, surface mounted piezoelectric oscillator using the same, and frequency adjusting method therefor
JP2010103749A (en) Crystal oscillator for surface mounting
JP2003318653A (en) Piezoelectric vibrating device
JP2006060281A (en) Piezoelectric oscillator
JP4484545B2 (en) Piezoelectric oscillator
JP2008235451A (en) Package for storing electronic components, electronic device, and method for manufacturing the device
JP4817929B2 (en) Support structure of quartz crystal resonator element
JP4376148B2 (en) Piezoelectric oscillator
JP2005244641A (en) Temperature compensated crystal oscillator
JP4429034B2 (en) Piezoelectric oscillator
JP2010068061A (en) Surface-mounted crystal oscillator
JP2005253007A (en) Temperature compensated crystal oscillator
JP2007189285A (en) Package for surface mount piezoelectric oscillator, frequency adjustment method, and surface mount piezoelectric oscillator
JP4328226B2 (en) Piezoelectric oscillator
JP2005244922A (en) Piezoelectric oscillator
JP2005244671A (en) Temperature compensated crystal oscillator
JP2009065471A (en) Surface mounting crystal oscillator
JP2005244925A (en) Piezoelectric oscillator