JP2007093121A - 冷凍サイクル用気液分離器 - Google Patents
冷凍サイクル用気液分離器 Download PDFInfo
- Publication number
- JP2007093121A JP2007093121A JP2005283652A JP2005283652A JP2007093121A JP 2007093121 A JP2007093121 A JP 2007093121A JP 2005283652 A JP2005283652 A JP 2005283652A JP 2005283652 A JP2005283652 A JP 2005283652A JP 2007093121 A JP2007093121 A JP 2007093121A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- tank body
- phase refrigerant
- refrigerant
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Abstract
【課題】冷媒入口管を含む気液分離器全体の必要搭載スペースを縮小する。
【解決手段】円筒形状のタンク本体16の上面部16bに、タンク本体16内部へ気液2相冷媒を円筒形状の軸方向から流入させる冷媒入口管17を配置し、タンク本体16の円筒形状の軸方向から流入する気液2相冷媒をタンク本体16の内壁面に沿って旋回させる螺旋流路16gをタンク本体16の円筒壁面に沿って形成し、螺旋流路16gにより冷媒の旋回流を形成して気相冷媒と液相冷媒とを遠心分離し、遠心分離された気相冷媒を気相冷媒出口管18によりタンク本体16の外部へ取り出す。
【選択図】図2
【解決手段】円筒形状のタンク本体16の上面部16bに、タンク本体16内部へ気液2相冷媒を円筒形状の軸方向から流入させる冷媒入口管17を配置し、タンク本体16の円筒形状の軸方向から流入する気液2相冷媒をタンク本体16の内壁面に沿って旋回させる螺旋流路16gをタンク本体16の円筒壁面に沿って形成し、螺旋流路16gにより冷媒の旋回流を形成して気相冷媒と液相冷媒とを遠心分離し、遠心分離された気相冷媒を気相冷媒出口管18によりタンク本体16の外部へ取り出す。
【選択図】図2
Description
本発明は、冷凍サイクルの冷媒の気液を分離する気液分離器に関する。
従来、冷凍サイクル用気液分離器は一般に縦長の円筒形状のタンク部を有し、このタンク部の円筒軸方向(上下方向)に対して垂直な方向(水平方向)に冷媒入口管を配置し、この冷媒入口管から気液2相冷媒をタンク部の内壁に沿わせるように噴出させ、これにより、タンク部内に内壁に沿った旋回流を形成し、この旋回流により気相冷媒と液相冷媒とをその密度差に基づいて遠心分離するようにしている(例えば、特許文献1参照)。
特開2003−222445号公報
しかし、上記の従来技術では、冷媒入口管をタンク部の円筒軸方向に対して垂直な方向に配置するので、冷媒入口管がタンク部の外周面から直交上に突き出す形態となる。この結果、冷媒入口管を含む気液分離器全体の必要搭載スペースが大きくなり、気液分離器の搭載性が悪化する。特に、車両用の冷凍サイクルでは、搭載スペースに関する制約が強いので、搭載性悪化は実用上大きな問題となる。
本発明は、上記点に鑑み、冷媒入口管を含む気液分離器全体の必要搭載スペースを縮小することを目的とする。
上記目的を達成するため、本発明では、円筒形状のタンク本体(16)の上面部(16b)に、タンク本体(16)内部へ気液2相冷媒を前記円筒形状の軸方向から流入させる冷媒入口管(17)を配置し、
タンク本体(16)の円筒形状の軸方向から流入する気液2相冷媒をタンク本体(16)の内壁面に沿って旋回させる旋回流形成手段(16f、16g)を備え、
旋回流形成手段(16f、16g)による冷媒旋回流により気相冷媒と液相冷媒とを遠心分離し、
更に、遠心分離された気相冷媒をタンク本体(16)の外部へ取り出す気相冷媒出口管(18)を備えることを特徴としている。
タンク本体(16)の円筒形状の軸方向から流入する気液2相冷媒をタンク本体(16)の内壁面に沿って旋回させる旋回流形成手段(16f、16g)を備え、
旋回流形成手段(16f、16g)による冷媒旋回流により気相冷媒と液相冷媒とを遠心分離し、
更に、遠心分離された気相冷媒をタンク本体(16)の外部へ取り出す気相冷媒出口管(18)を備えることを特徴としている。
これによると、旋回流形成手段(16f、16g)により高速の冷媒旋回流をタンク本体(16)内部に形成して、気相冷媒と液相冷媒とを良好に遠心分離することができる。
そして、冷媒入口管(17)はタンク本体(16)の円筒形状の軸方向からタンク本体(16)内部へ気液2相冷媒を流入させるから、冷媒入口管(17)をタンク本体(16)の円筒形状の軸方向(上下方向)に向くように配置できる。
従って、冷媒入口管(17)がタンク本体(16)の円筒形状の径方向の外方へ突出することがない。その結果、冷媒入口管(17)を含む気液分離器全体の形状を縦長のスマートな円筒形状にまとめることができ、気液分離器全体としての必要搭載スペースを大幅に縮小できる。
従って、遠心分離方式の良好な気液分離性能を確保しつつ、気液分離器の必要搭載スペースを縮小できるという実用上の効果が大である。
本発明では、旋回流形成手段は、具体的にはタンク本体(16)の円筒壁面に沿って形成された螺旋流路(16g)を有している。
本発明では、より具体的には、螺旋流路(16g)は、タンク本体(16)の円筒壁面に一体成形された螺旋形状部(16f)により形成される。
これによれば、タンク本体(16)の円筒壁面自体に螺旋流路(16g)を直接、形成できるから、部品点数が増加せず、タンク構成が簡潔である。
なお、本発明では、螺旋流路(16g)を、タンク本体(16)の円筒内壁面に配置される別体部材により形成してもよい。
また、本発明では、気相冷媒出口管(18)は、具体的にはタンク本体(16)内部の上方領域に開口する上端開口部(18a)を有しており、
気相冷媒出口管(18)はタンク本体(16)内部の上方領域から下方へ向かって配置され、タンク本体(16)の底面部(16c)から外部へ取り出されるようになっている。
気相冷媒出口管(18)はタンク本体(16)内部の上方領域から下方へ向かって配置され、タンク本体(16)の底面部(16c)から外部へ取り出されるようになっている。
また、本発明では、具体的には減圧手段としてエジェクタ(130)を用い、エジェクタ(130)の冷媒吸引口(130b)に蒸発器(14)を接続するエジェクタ式冷凍サイクルに用いられる気液分離器であって、
冷媒入口管(17)はエジェクタ(130)の出口側の気液2相冷媒をタンク本体(16)内部に流入させるように構成され、
タンク本体(16)に遠心分離された液相冷媒を取り出す液相冷媒出口管(19)が設けられ、この液相冷媒出口管(19)は、エジェクタ(130)吸引側の蒸発器(14)の入口側に接続される。
冷媒入口管(17)はエジェクタ(130)の出口側の気液2相冷媒をタンク本体(16)内部に流入させるように構成され、
タンク本体(16)に遠心分離された液相冷媒を取り出す液相冷媒出口管(19)が設けられ、この液相冷媒出口管(19)は、エジェクタ(130)吸引側の蒸発器(14)の入口側に接続される。
これにより、エジェクタ式冷凍サイクルに用いられる気液分離器の気液分離性能の確保と必要搭載スペースの縮小とを両立できる。
なお、上記各手段および特許請求の範囲の各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
図1は本発明の第1実施形態による気液分離器を適用した車両用冷凍サイクル10を示すものである。本実施形態の冷凍サイクル10は圧縮機11の吸入側に一般にアキュムレータと称される気液分離器15を配置するアキュムレータサイクルである。
図1は本発明の第1実施形態による気液分離器を適用した車両用冷凍サイクル10を示すものである。本実施形態の冷凍サイクル10は圧縮機11の吸入側に一般にアキュムレータと称される気液分離器15を配置するアキュムレータサイクルである。
圧縮機11は冷媒を吸入圧縮するもので、プーリ11a、図示しないベルト等を介して車両走行用エンジンにより回転駆動される。この圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。
この圧縮機11の冷媒吐出側には放熱器12が接続されている。放熱器12は圧縮機11から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
ここで、冷凍サイクル10の冷媒として、高圧圧力が臨界圧力を超えない通常のフロン系等の冷媒を用いる場合は冷凍サイクル10が蒸気圧縮式の亜臨界サイクルを構成するので、放熱器12は圧縮機11の吐出冷媒を冷却し凝縮させる凝縮器として作用する。また、冷凍サイクル10の冷媒として、高圧圧力が臨界圧力を超える冷媒、具体的にはCO2(二酸化炭素)を用いる場合は、冷凍サイクル10が蒸気圧縮式の超臨界サイクルを構成するので、放熱器12では冷媒(CO2)が凝縮せず、超臨界状態のまま放熱することになる。
放熱器12の下流側には冷媒を減圧する減圧手段を構成する絞り機構13が接続される。本実施形態の冷凍サイクル10はアキュムレータサイクルであるので、この絞り機構13として、具体的にはキャピラリチューブ、オリフィス等の固定絞りを用いることができる。絞り機構13として放熱器12の出口側冷媒の過冷却度制御弁を用いてもよい。この過冷却度制御弁は周知のように、放熱器12の出口側冷媒の過冷却度(サブクール)を予め定められた所定範囲内となるように制御する。
また、冷凍サイクルが超臨界サイクルである場合は、絞り機構13として、放熱器12の出口側冷媒温度に応じて決まる目標高圧となるように高圧を制御する高圧制御弁を用いることが好ましい。
絞り機構13の下流側には蒸発器14が接続される。この蒸発器14には図示しない電動送風機により空気が送風され、この送風空気が蒸発器14で冷却され、その冷却空気が冷却対象空間に吹出して、冷却対象空間を冷却する。蒸発器14を例えば、車室内空調用として用いる場合には蒸発器14の冷却空気が車室内に吹出して車室内を冷房する。
蒸発器14の下流側には気液分離器15が接続される。この気液分離器15は、蒸発器14の出口側冷媒の気液を分離して気相冷媒を圧縮機11の吸入側に向けて流出するものである。
この気液分離器15は、タンク本体16と、蒸発器14の出口側の気液2相冷媒をタンク本体16内部に流入させる冷媒入口管17と、タンク本体16内部の上側に溜まる気相冷媒を取り出す気相冷媒出口管18とが設けられる。
次に、本実施形態よる気液分離器15の具体的構成を図2、図3により詳述する。図2は気液分離器15の縦断面図で、図3は気液分離器15の平面図である。気液分離器15のタンク本体16は図2に示すように縦長の円筒形状に形成される。ここで、縦長の円筒形状とは、タンク本体16の径寸法よりも軸方向(上下方向)寸法の方が大きい形状のことである。
タンク本体16は具体的には、円筒部16aと、この円筒部16aの軸方向の一端部(上面部)を閉じる円板状の上面蓋部16bと、円筒部16aの軸方向の他端部(底面部)を閉じる円板状の底面蓋部16cとから構成される。これらの各部16a〜16c、冷媒入口管17および気相冷媒出口管18は通常、アルミニウムのような金属材料で形成され、各部接合箇所はろう付けにより一体に接合される。
上面蓋部16bには、その中心部よりも外周側へ偏心した位置にフランジ付きの貫通孔(バーリング孔)16dを形成し、この貫通孔16dに冷媒入口管17の下端部を挿入し、冷媒入口管17の下端部を上面蓋部16bに接合するようになっている。ここで、冷媒入口管17はタンク本体16の軸方向(上下方向)に向くように配置されている。
底面蓋部16cの中心部にフランジ付きの貫通孔(バーリング孔)16eを形成し、この貫通孔16eに気相冷媒出口管18を挿入し接合するようになっている。この気相冷媒出口管18の上端開口部18aをタンク本体16内にて上面蓋部16bの下面部付近の位置まで挿入し、気相冷媒出口管18の上端開口部18aからタンク本体16内上部の気相冷媒を吸入するようになっている。
気相冷媒出口管18は、タンク本体16の軸方向(上下方向)に向くようにしてタンク本体16内部の上下方向高さの略全域にわたって配置され、タンク本体16の底面蓋部16cから外部へ取り出される。そして、気相冷媒出口管18はタンク本体16の外部にて圧縮機11の吸入側に接続される。
タンク本体16の円筒部16aの円筒壁面には螺旋形状部16fを一体成形している。この螺旋形状部16fは円筒内周側へ螺旋状に突き出すものであって、この螺旋形状部16fによって円筒部16aの円筒内壁面に螺旋流路16gが直接形成される。
なお、図2では、螺旋形状部16fの内周先端部を気相冷媒出口管18の外周面に接触させる例を図示している。冷媒入口管17の下端部は図2に示すように螺旋流路16gの上端部付近に対向するように配置してある。
螺旋形状部16fは、具体的には、アルミニウムのような金属材料で形成された円筒状金属素材の円筒壁面を冷間鍛造等の方法で塑性変形させることにより、螺旋状の突出形状を形成すればよい。
円筒部16aに螺旋形状部16fを成形した後に、この円筒部16aの軸方向の両端部に上面蓋部16bおよび底面蓋部16cを嵌合し、円筒部16aの軸方向の両端部に上面蓋部16bおよび底面蓋部16cをそれぞれろう付けにより接合する。また、冷媒入口管17および気相冷媒出口管18も上面蓋部16bおよび底面蓋部16cに対してそれぞれろう付けにより接合される。
気相冷媒出口管18のうち、タンク本体16の内側に位置する部分の最下部付近に油戻し孔18bが形成されている。この油戻し孔18bは、タンク本体16内の下部に溜まる液相冷媒中に含まれる潤滑油を圧縮機11の吸入側に戻すためのものである。
次に、本実施形態による気液分離器15の作用を説明する。蒸発器14の出口側の気液2相冷媒が冷媒入口管17からタンク本体16内に流入する。ここで、冷媒入口管17はタンク本体16の上面蓋部16bにおいてタンク本体16の軸方向(上下方向)に向くように配置されているので、冷媒入口管17から冷媒はタンク本体16の軸方向下方へ向かって流入する。
そして、冷媒入口管17の下端部は螺旋流路16gの上端部付近に対向配置されているので、冷媒入口管17からの流入冷媒はこの螺旋流路16gの形状に沿って矢印aのように高速の旋回流を形成する。
この高速の旋回流aによって冷媒流れに遠心力が作用して、螺旋流路16gの外周側に密度の大きい液相冷媒が集まり、この液相冷媒は重力により下方へ落下してタンク本体16内の下側領域に液相冷媒の溜まり部bを形成する。
一方、密度の小さい気相冷媒は螺旋流路16gの内周側に集まり、液相冷媒溜まり部bの上方側に気相冷媒溜まり部cを形成する。気相冷媒出口管18の上端開口部18aは、タンク本体16内にて上面蓋部16bの下面部付近に配置されているので、気相冷媒溜まり部cの最上部付近に開口している。
これにより、気相冷媒が気相冷媒出口管18の上端開口部18aから吸入され、この気相冷媒は気相冷媒出口管18から圧縮機11の吸入側に吸入され、圧縮機11により圧縮される。
ところで、本実施形態によると、気液分離器15のタンク本体16の円筒壁面に螺旋流路16gを形成しているから、冷媒入口管17がタンク本体16の円筒軸方向(上下方向)に向くように配置されていても、換言すると、冷媒入口管17から冷媒がタンク本体16の軸方向下方へ向かうように流入しても、タンク本体16内の冷媒流れに旋回流を形成でき、気相冷媒と液相冷媒とを良好に遠心分離することができる。
そして、冷媒入口管17をタンク本体16の円筒軸方向(上下方向)に向くように配置しているから、冷媒入口管17がタンク本体16の円筒形状の径方向の外方へ突出することがない。その結果、冷媒入口管17を含む気液分離器15全体の形状を縦長のスマートな円筒形状にまとめることができ、気液分離器15全体としての必要搭載スペースを大幅に縮小できる。
従って、遠心分離方式の良好な気液分離性能を確保しつつ、気液分離器15の必要搭載スペースの縮小を達成できる。
また、タンク本体16の円筒壁面自体に螺旋形状部16fを一体成形して、タンク本体16の円筒壁に螺旋流路16gを直接、形成しているから、部品点数が増加せず、タンク構成が簡潔である。
(第2実施形態)
第1実施形態では、円筒部16aの軸方向の両端部に円板状の上面蓋部16bおよび底面蓋部16cを接合して、縦長円筒形状のタンク本体16を形成しているが、第2実施形態では、図4に示すように上面蓋部16bのみを別体で成形して円筒部16aの軸方向上端部に接合し、底面蓋部16cは円筒部16aの軸方向下端部に一体成形している。
第1実施形態では、円筒部16aの軸方向の両端部に円板状の上面蓋部16bおよび底面蓋部16cを接合して、縦長円筒形状のタンク本体16を形成しているが、第2実施形態では、図4に示すように上面蓋部16bのみを別体で成形して円筒部16aの軸方向上端部に接合し、底面蓋部16cは円筒部16aの軸方向下端部に一体成形している。
底面蓋部16cはその中心部にフランジ付きの貫通孔16eを有する円板形状であるから、底面蓋部16cと円筒部16aとの一体成形の方が上面蓋部16bと円筒部16aとの一体成形よりも容易である。
第2実施形態では、円筒状の金属素材の円筒壁面に螺旋形状部16fを成形するとともに、この円筒状金属素材の軸方向一端部に底面蓋部16cを一体成形する工程を実施した後に、円筒状金属素材の内側に挿入された成形型を円筒状金属素材の軸方向他端部の開口部から取り出す。その後に、この円筒状金属素材の軸方向他端部に上面蓋部16bを接合すればよい。
(第3実施形態)
第1、第2実施形態では、減圧手段として、固定絞り、過冷却度制御弁、あるいは高圧制御弁により構成される一般的な絞り機構13を用いる冷凍サイクルに適用される気液分離器15について述べたが、第3実施形は、図5に示すように減圧手段として、エジェクタ130を用いるエジェクタ式冷凍サイクルに用いられる気液分離器15に関する。
第1、第2実施形態では、減圧手段として、固定絞り、過冷却度制御弁、あるいは高圧制御弁により構成される一般的な絞り機構13を用いる冷凍サイクルに適用される気液分離器15について述べたが、第3実施形は、図5に示すように減圧手段として、エジェクタ130を用いるエジェクタ式冷凍サイクルに用いられる気液分離器15に関する。
エジェクタ130は冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行う冷媒循環手段(運動量輸送式ポンプ)でもある。
エジェクタ130には、放熱器12の出口側から流入する高圧冷媒の通路面積を小さく絞って、高圧冷媒を等エントロピ的に減圧膨張させるノズル部130aと、ノズル部130aの冷媒噴出口と連通するように構成され、蒸発器14からの気相冷媒を吸引する冷媒吸引口130bが備えられている。
さらに、ノズル部130aおよび冷媒吸引口130bの冷媒流れ下流側部位には、ノズル部130aからの高速度の冷媒流と冷媒吸引口130bからの吸引冷媒とを混合する混合部130cが設けられている。そして、混合部130cの冷媒流れ下流側に昇圧部をなすディフューザ部130dが配置されている。
このディフューザ部130dは冷媒の通路面積を徐々に大きくする形状に形成され、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。エジェクタ130のディフューザ部130dの出口側に気液分離器15が接続される。
この気液分離器15は、図6に示すように、基本的には、第1、第2実施形態と同様に、タンク本体16と、ディフューザ部130dの出口側の気液2相冷媒をタンク本体16内部に流入させる冷媒入口管17と、タンク本体16内部の上側領域cに溜まる気相冷媒を取り出す気相冷媒出口管18とを有している。
これに加え、第3実施形態では、タンク本体16内部の下側領域bに溜まる液相冷媒を取り出す液相冷媒出口管19を設けている。より、具体的には、タンク本体16の最下部付近にフランジ付きの貫通孔(バーリング孔)16hを設け、この貫通孔16hに液相冷媒出口管19を挿入して接合している。この液相冷媒出口管19の下流側は図5に示すように、固定絞り等の絞り機構20を介して蒸発器14の入口側に接続される。
タンク本体16の円筒壁面に螺旋流路16gを形成する螺旋形状部16fを一体成形する点は第1、第2実施形態と同じである。なお、図6のタンク構造では、上下の蓋部16b、16cを図2のように円筒部16aと別体で構成しているが、底面蓋部16cを図4のように円筒部16aと一体成形してもよい。
(他の実施形態)
本発明は上述の実施形態に限定されることなく以下述べるごとく種々変形可能である。
本発明は上述の実施形態に限定されることなく以下述べるごとく種々変形可能である。
(1)上述の実施形態では、冷媒入口管17をタンク本体16の軸方向(上下方向)に向くように配置しているが、冷媒入口管17をタンク本体16の軸方向(上下方向)に対して多少の角度θ(図2、図4、図6参照)だけ傾斜して配置してもよい。つまり、冷媒入口管17を多少の角度θだけ傾斜配置しても、冷媒入口管17がタンク本体16の径外方側へ突き出すことがないので、気液分離器15全体の必要搭載スペースが増大せず、実用上、支障はない。
(2)上述の実施形態では、タンク本体16の円筒壁面自体に螺旋流路16gを直接一体形成しているが、タンク本体16の円筒内壁面に別体の螺旋状板部材を配置し、この別体の螺旋状板部材によってタンク本体16の内周面に螺旋流路16gを形成してもよい。
(3)上述の実施形態では、螺旋形状部16fの内周先端部を気相冷媒出口管18の外周面に接触させる構成にしているが、螺旋形状部16fの内周先端部と、気相冷媒出口管18の外周面との間に隙間が形成される構成にしてもよい。
(4)上述の実施形態では、気相冷媒出口管18をタンク本体16の底面蓋部16cからタンク外部へ取りだす構成にしているが、気相冷媒出口管18をタンク本体16の上面蓋部16bからタンク外部へ取りだす構成にしてもよい。
(5)第3実施形態では、減圧手段としてエジェクタ130を用いるエジェクタ式冷凍サイクル10に用いられる気液分離器15において、エジェクタ130のディフューザ部130dの出口側に接続される冷媒入口管17をタンク本体16の上面蓋部16bにタンク軸方向(上下方向)に向くように配置しているが、エジェクタ130のディフューザ部130dの出口側に冷媒入口管17をエジェクタ130の長手方向(図5の左右方向)に向くように一体に設け、このエジェクタ130と冷媒入口管17とを一体化した部品をエジェクタ130の長手方向がタンク軸方向(上下方向)に向くようにしてタンク本体16の上面蓋部16bに配置してもよい。
これによると、エジェクタ130付きの気液分離器15全体の必要搭載スペースを効果的に縮小できる。
(6)第3実施形態のエジェクタ式冷凍サイクル10では、エジェクタ130のディフューザ部130dの出口側を気液分離器15の冷媒入口管17に直接接続しているが、エジェクタ130のディフューザ部130dの出口側と、気液分離器15の冷媒入口管17との間に第2の蒸発器を接続して、この第2の蒸発器でも冷却機能を発揮するようにしてもよい。
15…気液分離器、16…タンク本体、16a…円筒部、16b…上面蓋部(上面部)、
16c…底面蓋部(底面部)、16f…螺旋形状部、16g…螺旋流路、
17…冷媒入口管、18…気相冷媒出口管。
16c…底面蓋部(底面部)、16f…螺旋形状部、16g…螺旋流路、
17…冷媒入口管、18…気相冷媒出口管。
Claims (6)
- 円筒形状のタンク本体(16)と、
前記タンク本体(16)の上面部(16b)に配置され、前記タンク本体(16)内部へ気液2相冷媒を前記円筒形状の軸方向から流入させる冷媒入口管(17)と、
前記円筒形状の軸方向から流入する気液2相冷媒を前記タンク本体(16)の内壁面に沿って旋回させる旋回流形成手段(16f、16g)とを備え、
前記旋回流形成手段(16f、16g)による冷媒旋回流により気相冷媒と液相冷媒とを遠心分離し、
更に、前記遠心分離された気相冷媒を前記タンク本体(16)の外部へ取り出す気相冷媒出口管(18)を備えることを特徴とする冷凍サイクル用気液分離器。 - 前記旋回流形成手段は、前記タンク本体(16)の円筒壁面に沿って形成された螺旋流路(16g)を有していることを特徴とする請求項1に記載の冷凍サイクル用気液分離器。
- 前記螺旋流路(16g)は、前記タンク本体(16)の円筒壁面に一体成形された螺旋形状部(16f)により形成されることを特徴とする請求項2に記載の冷凍サイクル用気液分離器。
- 前記螺旋流路(16g)は、前記タンク本体(16)の円筒内壁面に配置される別体部材により形成されることを特徴とする請求項2に記載の冷凍サイクル用気液分離器。
- 前記気相冷媒出口管(18)は、前記タンク本体(16)内部の上方領域に開口する上端開口部(18a)を有しており、
前記気相冷媒出口管(18)は前記タンク本体(16)内部の上方領域から下方へ向かって配置され、前記タンク本体(16)の底面部(16c)から外部へ取り出されることを特徴とする請求項1ないし4のいずれか1つに記載の冷凍サイクル用気液分離器。 - 減圧手段としてエジェクタ(130)を用い、前記エジェクタ(130)の冷媒吸引口(130b)に蒸発器(14)を接続するエジェクタ式冷凍サイクルに用いられる気液分離器であって、
前記冷媒入口管(17)は前記エジェクタ(130)の出口側の気液2相冷媒を前記タンク本体(16)内部に流入させるように構成され、
前記タンク本体(16)に前記遠心分離された液相冷媒を取り出す液相冷媒出口管(19)が設けられ、
前記液相冷媒出口管(19)は、前記蒸発器(14)の入口側に接続されることを特徴とする請求項1ないし5のいずれか1つに記載の冷凍サイクル用気液分離器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283652A JP2007093121A (ja) | 2005-09-29 | 2005-09-29 | 冷凍サイクル用気液分離器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283652A JP2007093121A (ja) | 2005-09-29 | 2005-09-29 | 冷凍サイクル用気液分離器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007093121A true JP2007093121A (ja) | 2007-04-12 |
Family
ID=37979053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005283652A Withdrawn JP2007093121A (ja) | 2005-09-29 | 2005-09-29 | 冷凍サイクル用気液分離器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007093121A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102679607A (zh) * | 2012-06-07 | 2012-09-19 | 中山市隐福电器有限公司 | 一种利用余热制冷的方法及其制冷系统 |
WO2013099574A1 (ja) * | 2011-12-26 | 2013-07-04 | 株式会社未来技術研究所 | 気泡除去装置、室外熱交換装置及び冷凍空調システム |
CN106225348A (zh) * | 2016-08-24 | 2016-12-14 | 常州市江浪铸造有限公司 | 缓冲型铁铸金属液储液器 |
JPWO2021229649A1 (ja) * | 2020-05-11 | 2021-11-18 |
-
2005
- 2005-09-29 JP JP2005283652A patent/JP2007093121A/ja not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099574A1 (ja) * | 2011-12-26 | 2013-07-04 | 株式会社未来技術研究所 | 気泡除去装置、室外熱交換装置及び冷凍空調システム |
WO2013099972A1 (ja) * | 2011-12-26 | 2013-07-04 | 株式会社未来技術研究所 | 気泡除去装置、室外熱交換装置及び冷凍空調システム |
WO2013099309A1 (ja) * | 2011-12-26 | 2013-07-04 | 株式会社未来技術研究所 | 気泡除去装置、室外熱交換装置及び冷凍空調システム |
CN104040271A (zh) * | 2011-12-26 | 2014-09-10 | 岩附直 | 气泡去除装置、室外热交换装置以及冷冻空调系统 |
EP2806235A4 (en) * | 2011-12-26 | 2015-10-14 | Tadashi Iwatsuki | BUBBLE REMOVAL DEVICE, EXTERNAL HEAT EXCHANGE DEVICE, AND AIR REFRIGERATION / CONDITIONING SYSTEM |
CN102679607A (zh) * | 2012-06-07 | 2012-09-19 | 中山市隐福电器有限公司 | 一种利用余热制冷的方法及其制冷系统 |
CN106225348A (zh) * | 2016-08-24 | 2016-12-14 | 常州市江浪铸造有限公司 | 缓冲型铁铸金属液储液器 |
JPWO2021229649A1 (ja) * | 2020-05-11 | 2021-11-18 | ||
WO2021229649A1 (ja) * | 2020-05-11 | 2021-11-18 | 三菱電機株式会社 | アキュムレータおよび冷凍サイクル装置 |
EP4151928A4 (en) * | 2020-05-11 | 2023-06-14 | Mitsubishi Electric Corporation | ACCUMULATOR AND REFRIGERATION DEVICE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5482767B2 (ja) | エジェクタ式冷凍サイクル | |
JP4760843B2 (ja) | エジェクタ装置およびエジェクタ装置を用いた蒸気圧縮式冷凍サイクル | |
JP5493769B2 (ja) | 蒸発器ユニット | |
US10465957B2 (en) | Ejector-type refrigeration cycle, and ejector | |
US9618245B2 (en) | Ejector | |
US10029538B2 (en) | Refrigeration cycle | |
US20140020424A1 (en) | Decompression device and refrigeration cycle device | |
CN107407507A (zh) | 喷射器式制冷循环 | |
US9328742B2 (en) | Ejector | |
JP6610313B2 (ja) | エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル | |
JP5083106B2 (ja) | 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル | |
JP2014055765A (ja) | 蒸発器ユニット | |
JP2007093121A (ja) | 冷凍サイクル用気液分離器 | |
JP2008275211A (ja) | 蒸気圧縮式冷凍サイクル | |
US20040237577A1 (en) | Gas-liquid separator for refrigerant cycle system | |
US10767905B2 (en) | Ejector | |
JP6780567B2 (ja) | 気液分離器、および冷凍サイクル装置 | |
JP6327088B2 (ja) | エジェクタ式冷凍サイクル | |
JP6380122B2 (ja) | エジェクタ | |
US11053956B2 (en) | Ejector | |
JP2017075724A (ja) | エジェクタ式冷凍サイクル | |
JP6717252B2 (ja) | 気液分離器、および冷凍サイクル装置 | |
JP6032122B2 (ja) | エジェクタ | |
JP2019203462A (ja) | エジェクタ | |
JP2004232996A (ja) | 冷凍サイクル装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071207 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090306 |