JP2007093082A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2007093082A
JP2007093082A JP2005281788A JP2005281788A JP2007093082A JP 2007093082 A JP2007093082 A JP 2007093082A JP 2005281788 A JP2005281788 A JP 2005281788A JP 2005281788 A JP2005281788 A JP 2005281788A JP 2007093082 A JP2007093082 A JP 2007093082A
Authority
JP
Japan
Prior art keywords
heat exchanger
fluid
drive unit
tube
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005281788A
Other languages
Japanese (ja)
Inventor
朋子 ▲はま▼川
Tomoko Hamakawa
Takumi Kida
琢己 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005281788A priority Critical patent/JP2007093082A/en
Publication of JP2007093082A publication Critical patent/JP2007093082A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger having improved long-time reliability by suppressing choke of scales in an arbitrary section without lowering its performance. <P>SOLUTION: In the heat exchanger, water flows in an inner tube 2 and carbon dioxide flows in opposition thereto in an annular portion between the inner tube 2 and an outer tube 4, and a safe double-wall is provided for securing a sufficient contact area to produce high heat exchanging efficiency. When scales are deposited on a wall face 2a of the inner tube 2, a bias coil 9 is slid almost parallel to the wall face 2a in linkage with the elongation of a spiral wire rod 8 of a shape memorizing alloy having a deforming temperature or higher to scrape off the scales. The bias coil 9 can be slid to an arbitrary section with its selective movable width set by adjusting the length of the spiral wire rod 8 in the direction of the tube axis. This simple construction improves long-time reliability of the heat exchanger while automatically suppressing the lowering of the performance of the heat exchanger due to choke of the scales in the arbitrary section with the arbitrary movable width and the closure of a water flow path. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプ式の給湯機や家庭用、業務用の空気調和機などにおいて、水と冷媒との熱交換を行う熱交換器に関するものである。   The present invention relates to a heat exchanger that performs heat exchange between water and a refrigerant in a heat pump type hot water heater, an air conditioner for home use, and for business use.

従来、この種の熱交換器としては、使用していくと次第に水中のカルシウム、マグネシウム等の硬度成分がスケール(例えば炭酸カルシウム)として水側流路に析出、付着、堆積していく。スケールが熱交換する壁面に堆積すると、熱抵抗となって熱交換性能を低下させたり、流路抵抗を増加させて水を流すための加圧ポンプの水の流量を減少させたり、水側流路を閉塞して製品として機能しなくなってしまうという課題がある。水が高温になると、特に炭酸カルシウムの析出が極端に増加するので、熱交換器の高温側はスケールが堆積し易い。そのため、スケールが付き易い高温の下流側の水側流路の断面積を大きくしたもの(例えば、特許文献1参照)がある。   Conventionally, when this type of heat exchanger is used, hardness components such as calcium and magnesium in water gradually deposit, adhere and accumulate in the water-side flow path as a scale (for example, calcium carbonate). When the scale accumulates on the wall where heat is exchanged, it becomes a thermal resistance, reducing the heat exchange performance, increasing the flow path resistance, decreasing the flow rate of the pressure pump water for flowing water, There is a problem that the road is blocked and the product does not function. Since the precipitation of calcium carbonate increases extremely when water becomes hot, scale tends to deposit on the high temperature side of the heat exchanger. For this reason, there is one in which the cross-sectional area of the water-side channel on the downstream side of the high temperature that is easily scaled is increased (see, for example, Patent Document 1).

また、パイプ内のスケールの付着防止として、スケール除去手段を備えたもの(例えば、特許文献2参照)がある。   Moreover, there exists what was equipped with the scale removal means (for example, refer patent document 2) as scale adhesion prevention in a pipe.

特許文献2には、パイプ内のスケール付着防止手段を備えた液体加熱装置に関して記載されている。スケール付着防止方法として、形状記憶コイルとバイアスばねを組み合わせた可動手段によりパイプ内の温度変化に合わせて可動手段が摺動し、スケールを除去することが開示されている。しかし、水と冷媒が熱交換する熱交換器とは、基本構成とが異なり、水を加熱する熱源について限定された構成の説明はなされていなかった。   Patent Document 2 describes a liquid heating apparatus provided with a scale adhesion preventing means in a pipe. As a scale adhesion preventing method, it is disclosed that the movable means slides in accordance with the temperature change in the pipe by the movable means combining the shape memory coil and the bias spring, and the scale is removed. However, the heat exchanger that exchanges heat between water and the refrigerant is different from the basic structure, and a description of a limited structure for a heat source that heats water has not been made.

また、図6は、特許文献1に記載された従来の熱交換器の部分断面図である。   FIG. 6 is a partial cross-sectional view of a conventional heat exchanger described in Patent Document 1.

熱交換器100は、水管101と、冷媒管102と、水連結管103、冷媒連結管104とから構成され、水管101は、下流側に上流側より大きな直径の管を用いている。   The heat exchanger 100 includes a water pipe 101, a refrigerant pipe 102, a water connection pipe 103, and a refrigerant connection pipe 104, and the water pipe 101 uses a pipe having a diameter larger than that of the upstream side on the downstream side.

以上のように構成された上記の熱交換器100について、以下その動作を説明する。   The operation of the heat exchanger 100 configured as described above will be described below.

通常、水管101と冷媒管102は、熱の授受を行い、高温の冷媒からの熱で低温の水を加温する。水管101内にスケールが析出しても下流側は流路が大きいため、円滑に流れていく。また、付着してもつまるまでに時間がかかり、熱交換器の寿命を延命できた。
特開2004−093037号公報 特開平8−185961号公報
Usually, the water pipe 101 and the refrigerant pipe 102 exchange heat and warm low-temperature water with heat from the high-temperature refrigerant. Even if scale is deposited in the water pipe 101, the downstream side has a large flow path, so that it flows smoothly. In addition, it took time to adhere and become tangled, extending the life of the heat exchanger.
JP 2004-093037 A JP-A-8-185961

しかしながら、上記従来の特許文献1に記載の熱交換器100の構成では、水側流路を大きくすると、水の流速が低下するので、熱交換性能が低下するという課題を有していた。   However, in the configuration of the heat exchanger 100 described in the above-described conventional Patent Document 1, when the water-side flow path is increased, the flow rate of water is reduced, so that the heat exchange performance is deteriorated.

本発明は、上記従来の課題を解決するもので、熱交換器性能を低下させることなく、任意の区間のスケールつまりを抑制し、熱交換器の長期信頼性を高めることを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to suppress the scale clogging of an arbitrary section without lowering the heat exchanger performance and to improve the long-term reliability of the heat exchanger.

上記従来の課題を解決するために、本発明の熱交換器は、管状体または筐体の内部に第一の流体と第二の流体とが互いに熱交換可能に流動する第一の流路および第二の流路と、前記第一の流路内を移動する可動手段と、を有し、前記可動手段は、第一の駆動部と第二の駆動部と、で構成され、前記第一の駆動部に連動して前記第二の駆動部が移動するものであり、かつ、前記第二の駆動部が前記第一の流路の壁面の近傍を前記壁面に略平行に移動するものである。   In order to solve the above-described conventional problems, a heat exchanger according to the present invention includes a first flow path in which a first fluid and a second fluid flow in a tubular body or a housing so as to allow heat exchange with each other, and A second flow path; and a movable means that moves in the first flow path. The movable means includes a first drive section and a second drive section. The second drive unit moves in conjunction with the drive unit, and the second drive unit moves in the vicinity of the wall surface of the first flow path substantially parallel to the wall surface. is there.

これによって、第一の流体を水とした場合、第一の流路内を可動手段の第二の駆動部が略平行に移動することで第一の流路の壁面に付着したスケールを第二の駆動部の摺動にて剥がし取り、第一の流路の壁面へのスケールの付着を防止する。また、第一の駆動部を動作させることで第二の駆動部が移動するので、第一の駆動部の管軸方向の長さを調節して任意の可動幅を設定して、スケールを除去したい任意の区間にまで第二の駆動部を移動させることができる。   As a result, when the first fluid is water, the scale attached to the wall surface of the first flow path is moved by the second drive unit of the movable means moving substantially parallel in the first flow path. This is peeled off by sliding of the driving portion to prevent the scale from adhering to the wall surface of the first flow path. Also, since the second drive unit is moved by operating the first drive unit, the length of the first drive unit in the tube axis direction is adjusted to set an arbitrary movable width and remove the scale The second drive unit can be moved to any desired section.

本発明の熱交換器は、任意の可動幅で任意の区間のスケールつまりによる熱交換器性能の低下、水流路の閉塞を抑制し、熱交換器の長期信頼性を高めることができる。   The heat exchanger of the present invention can suppress deterioration of heat exchanger performance and blockage of the water flow path due to the scale of an arbitrary section with an arbitrary movable width, and can improve the long-term reliability of the heat exchanger.

請求項1に記載の発明は、管状体または筐体の内部に第一の流体と第二の流体とが互いに熱交換可能に流動する第一の流路および第二の流路と、前記第一の流路内を移動する可動手段と、を有し、前記可動手段は、第一の駆動部と第二の駆動部と、で構成され、前記第一の駆動部に連動して前記第二の駆動部が移動するものであり、かつ、前記第二の駆動部が前記第一の流路の壁面の近傍を前記壁面に略平行に移動するものである。   The invention according to claim 1 includes a first flow path and a second flow path in which a first fluid and a second fluid flow in a tubular body or a housing so as to exchange heat with each other; Movable means that moves in one flow path, and the movable means includes a first drive unit and a second drive unit, and the first drive unit interlocks with the first drive unit. The second drive unit moves, and the second drive unit moves in the vicinity of the wall surface of the first flow path substantially parallel to the wall surface.

これによって、第一の流体を水とした場合、第一の流路内を可動手段の第二の駆動部が略平行に移動することで第一の流路の壁面に付着したスケールを第二の駆動部の摺動にて剥がし取り、第一の流路の壁面へのスケールの付着を防止する。また、第一の駆動部を動作させることで第二の駆動部が移動するので、第一の駆動部の管軸方向の長さを調節して任意の可動幅を設定し、スケールを除去したい任意の区間にまで第二の駆動部を移動させて、任意の可動幅で任意の区間のスケールつまりによる熱交換器性能の低下、水流路の閉塞を抑制し、熱交換器の長期信頼性を高めることができる。   As a result, when the first fluid is water, the scale attached to the wall surface of the first flow path is moved by the second drive unit of the movable means moving substantially parallel in the first flow path. This is peeled off by sliding of the driving portion to prevent the scale from adhering to the wall surface of the first flow path. In addition, since the second drive unit is moved by operating the first drive unit, it is desired to adjust the length of the first drive unit in the tube axis direction to set an arbitrary movable width and remove the scale. Move the second drive part to an arbitrary section, suppress the deterioration of the heat exchanger performance due to the scale of the arbitrary section with an arbitrary movable width, blockage of the water flow path, and improve the long-term reliability of the heat exchanger Can be increased.

請求項2に記載の発明は、請求項1に記載の発明において、前記第一の駆動部の管軸方向の長さを前記第二の駆動部より短くしたことを特徴としたものである。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, the length of the first drive unit in the tube axis direction is shorter than that of the second drive unit.

これによって、特に第一の流路内中心部に第一の駆動部が位置する場合、第一の流体の流速分布では流路壁面が最も遅く中心部が最も早いので、中心部に位置する駆動手段を短くすることによって、第一の駆動部による流動抵抗の増加を効果的に抑えて、可動手段の挿入による流動抵抗の増加を抑制することができる。   As a result, especially when the first drive unit is located at the center of the first flow path, the flow path wall surface is the slowest and the center is the fastest in the first fluid flow rate distribution. By shortening the means, it is possible to effectively suppress an increase in flow resistance due to the first drive unit and to suppress an increase in flow resistance due to insertion of the movable means.

請求項3に記載の発明は、請求項1に記載の発明において、前記第一の駆動部の管軸方向の長さを前記第二の駆動部より長くしたことを特徴としたものである。   According to a third aspect of the present invention, in the first aspect of the present invention, the length of the first drive unit in the tube axis direction is longer than that of the second drive unit.

これによって、第二の駆動部と壁面との摩擦抵抗による移動時の第一の駆動部の負荷を小さく抑えて、可動手段の可動寿命をより長いものにすることができる。   As a result, the load on the first drive unit during movement due to the frictional resistance between the second drive unit and the wall surface can be kept small, and the movable life of the movable means can be extended.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、前記第一の駆動部は、前記第一の流体の温度検知手段を備えて、前記温度検知手段の検知に基づいて動作するものであり、前記第一の流路の管軸に垂直な方向の最大寸法を、前記第二の駆動部より小さくしたことを特徴としたものである。   According to a fourth aspect of the present invention, in the first aspect of the invention according to any one of the first to third aspects, the first driving unit includes a temperature detection unit of the first fluid, and the temperature detection unit. The maximum dimension in the direction perpendicular to the tube axis of the first flow path is made smaller than that of the second drive unit.

これによって、第一の流路内では、管軸に垂直な方向の第一の流体の温度分布が伝熱面である壁面近傍よりも、流路内中心部で低くなってスケールがつきにくいので、流路内中心部に温度検知手段を備えた第一の駆動部を配することで、熱抵抗となるスケールの、温度検知手段への付着を抑制して、温度検知手段の温度応答性の劣化を防止して、熱交換器の長期信頼性を高めることができる。   As a result, in the first flow path, the temperature distribution of the first fluid in the direction perpendicular to the tube axis is lower in the center of the flow path than the vicinity of the wall surface, which is the heat transfer surface, and is difficult to scale. By arranging the first drive unit having the temperature detection means in the center of the flow path, the adhesion of the scale that becomes the thermal resistance to the temperature detection means is suppressed, and the temperature responsiveness of the temperature detection means is reduced. Deterioration can be prevented and the long-term reliability of the heat exchanger can be enhanced.

請求項5に記載の発明は、請求項4に記載の発明において、前記温度検知手段は、熱交換された前記第一の流体の高温側に挿入されたことを特徴としたものである。   The invention according to claim 5 is the invention according to claim 4, wherein the temperature detecting means is inserted on a high temperature side of the first fluid subjected to heat exchange.

これによって、熱交換された前記第一の流体の高温側は、製品運転時と運転停止時の第一の流体の温度変化が大きく、温度検知手段の温度応答をより確実に得るので、スケールの自動除去を確実に行って、熱交換器の長期信頼性を高めることができる。   Thereby, the temperature change of the first fluid during the product operation and the operation stop is large on the high temperature side of the heat exchanged first fluid, and the temperature response of the temperature detection means is more reliably obtained. Automatic removal can be reliably performed to increase the long-term reliability of the heat exchanger.

請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明において、前記第一の流路を内管とし、前記内管の外周を覆って前記内管に密着する中管と、前記中管の外周を覆うように設置し、前記中管との間に、前記第二の流路として環状部を有し、前記環状部内を第二の流体が第一の流体と対向して流動する外管と、からなる多重管で構成したことを特徴としたものである。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the first flow path is an inner tube, and an outer periphery of the inner tube is covered and is in close contact with the inner tube. It is installed so as to cover the outer periphery of the intermediate tube and the intermediate tube, and has an annular portion as the second flow path between the intermediate tube and the second fluid is the first fluid in the annular portion And an outer tube that flows in opposition to each other, and is constituted by a multiple tube.

これによって、第一の流体と第二の流体の間に安全性を確保する二重壁を備えた非常に簡易な構成で、第一の流路と第二の流路の間で十分な接触面積を確保して、環状部で第二の流体の流体直径を小さくして熱伝達を促進し、熱交換器として高い熱交換効率を得ることができる。   This provides a very simple configuration with a double wall that ensures safety between the first fluid and the second fluid, with sufficient contact between the first and second channels. It is possible to secure an area, reduce the fluid diameter of the second fluid at the annular portion, promote heat transfer, and obtain high heat exchange efficiency as a heat exchanger.

請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明において、前記第二の駆動部と、前記第一の流路とを同じ材質にしたことを特徴としたものである。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the second drive unit and the first flow path are made of the same material. Is.

これによって、第二の駆動部と前記第一の流路とが接した場合でも、同じ材質なので電食を防止して、熱交換器の長期信頼性を高めることができる。   Thereby, even when the second drive unit and the first flow path are in contact with each other, since the same material is used, electrolytic corrosion can be prevented and the long-term reliability of the heat exchanger can be improved.

請求項8に記載の発明は、請求項1から7のいずれか一項に記載の発明において、前記第一の駆動部は、温度依存性のある伸縮性部材で形成したことを特徴としたものである。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the first driving section is formed of a temperature-dependent elastic member. It is.

これによって、温度検知手段と第一の駆動部を一体とすることができ、簡素な構造で自動的に一定量以下にスケール付着を抑制し、熱交換器の長期信頼性を高めることができる。   As a result, the temperature detection means and the first drive unit can be integrated, and scale adhesion can be automatically suppressed to a certain amount or less with a simple structure, and the long-term reliability of the heat exchanger can be improved.

請求項9に記載の発明は、請求項1から8のいずれか一項に記載の発明において、前記第一の流体は水、前記第二の流体は二酸化炭素としたものである。   The invention according to claim 9 is the invention according to any one of claims 1 to 8, wherein the first fluid is water and the second fluid is carbon dioxide.

これによって、熱交換器として高い熱交換効率を得て、特にヒートポンプ式給湯機に用いると、製品として高い熱交換効率を得ることができる。   As a result, high heat exchange efficiency can be obtained as a heat exchanger, and high heat exchange efficiency can be obtained as a product, particularly when used in a heat pump type water heater.

以下、本発明の実施の形態について、図面を参照しながら説明する。ここで、先に説明した実施の形態と同一の構成については同一の符号を付して、その詳細な説明は省略する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the same reference numerals are given to the same components as those of the above-described embodiment, and the detailed description thereof is omitted. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の管軸方向の断面図である。図2は、図1のA−A線断面図である。図3は、同実施の形態におけるスケール付着状態を示す状態図であり、図4は、同実施の形態におけるスケール除去作用を示す状態図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view in the tube axis direction of the heat exchanger according to Embodiment 1 of the present invention. 2 is a cross-sectional view taken along line AA in FIG. FIG. 3 is a state diagram showing a scale adhering state in the embodiment, and FIG. 4 is a state diagram showing a scale removing action in the embodiment.

図1、図2において、熱交換器本体1Xは、内部に水が流動する内管2と、内管2の外周を覆って内管2に部分的に密着する中管3と、中管3の外周を覆って局部的に密着し、中管3との間に二酸化炭素が内管2内を流動する水と対向して流動する環状部4aを形成する外管4とから構成された三重管1である。中管3は、内壁に内管2に部分的に密着する溝5を有する。外管4は、内壁に中管3に密着するリブ6を有する。三重管1の管端には分岐管7を取付ける。分岐管7内部に外管4の管端を設け、内管2と中管3は貫通させることで、水と二酸化炭素の出入口を分ける。分岐管7を貫通させた中管3の管端は、内管2よりも短くして、溝5を大気に連通させている。内管2、中管3、外管4は耐食性、熱伝導性の良い銅製である。   1 and 2, the heat exchanger main body 1X includes an inner tube 2 in which water flows, an inner tube 3 that covers the outer periphery of the inner tube 2 and is partially adhered to the inner tube 2, and an inner tube 3 The outer tube 4 that forms an annular portion 4a that flows in opposition to the water that flows through the inner tube 2 between the inner tube 2 and the inner tube 3 that is locally in close contact with the outer tube. Tube 1. The middle tube 3 has a groove 5 that is partially adhered to the inner tube 2 on the inner wall. The outer tube 4 has a rib 6 that is in close contact with the middle tube 3 on the inner wall. A branch pipe 7 is attached to the pipe end of the triple pipe 1. The pipe end of the outer pipe 4 is provided inside the branch pipe 7 and the inner pipe 2 and the middle pipe 3 are penetrated to separate the water and carbon dioxide outlets. The tube end of the intermediate tube 3 penetrating the branch tube 7 is shorter than the inner tube 2 to allow the groove 5 to communicate with the atmosphere. The inner tube 2, the middle tube 3, and the outer tube 4 are made of copper having good corrosion resistance and thermal conductivity.

内管2の内部には、可動手段として、第一の駆動部である温度に依存して伸縮する形状記憶合金製の螺旋線材8と、螺旋線材8に連結してその一端に対向し相互に応力関係をもつ第二の駆動部である銅製のバイアスコイル9を有する。螺旋線材8とバイアスコイル9とは相互に押し合うように作用する。螺旋線材8は、内管2の、熱交換されて高温となる水の流出側2bの内部に挿入されて、バイアスコイル9より管軸方向の長さが短く、かつ、管軸方向に垂直な方向の螺旋巻きの径も小さく、流路内中心部に位置する。バイアスコイル9は、内管2の壁面2a近傍に位置する。ここで、形状記憶合金は塑性変形させた合金をある変形温度以上にすると変形以前の形状に戻る性質を持つ耐熱性、耐食性に優れたTi−Ni合金である。   Inside the inner tube 2, as a movable means, a spiral wire 8 made of a shape memory alloy that expands and contracts depending on the temperature as the first drive unit, and is connected to the spiral wire 8 and faces one end of the spiral wire 8. It has a copper bias coil 9 which is a second drive unit having a stress relationship. The spiral wire 8 and the bias coil 9 act so as to press each other. The spiral wire 8 is inserted into the water outflow side 2b of the inner tube 2 where heat is exchanged and becomes hot, and the length in the tube axis direction is shorter than that of the bias coil 9 and is perpendicular to the tube axis direction. The diameter of the spiral winding in the direction is also small and located in the center of the flow path. The bias coil 9 is located near the wall surface 2 a of the inner tube 2. Here, the shape memory alloy is a Ti-Ni alloy having excellent heat resistance and corrosion resistance, and has a property of returning to a shape before deformation when the plastically deformed alloy is heated to a certain deformation temperature or higher.

以上のように構成された熱交換器1Xについて、以下その動作、作用を説明する。   About the heat exchanger 1X comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、内管2の内部を水が流動し、中管3と外管4との間の環状部4aを二酸化炭素が対向して流れ、内管2と中管3の間の二重壁を介して水と二酸化炭素が熱交換する。   First, water flows inside the inner tube 2, carbon dioxide flows through the annular portion 4 a between the inner tube 3 and the outer tube 4, and a double wall between the inner tube 2 and the inner tube 3 is formed. Through this, water and carbon dioxide exchange heat.

ここで、環状部4aにより二酸化炭素の流体直径を小さくして内管2と中管3の間を二重壁とすることで、水と二酸化炭素との間の熱抵抗も低く、十分な接触面積を確保する。また、水と二酸化炭素との間に溝5を持つ二重壁構造とすることで、一方の管が腐食した場合、大気と連通する中管3の溝5で内部流体の漏洩を検知する。   Here, the fluid diameter of the carbon dioxide is reduced by the annular portion 4a so that a double wall is formed between the inner tube 2 and the middle tube 3, so that the thermal resistance between water and carbon dioxide is low and sufficient contact is achieved. Secure the area. Further, by adopting a double wall structure having a groove 5 between water and carbon dioxide, when one pipe corrodes, leakage of the internal fluid is detected by the groove 5 of the middle pipe 3 communicating with the atmosphere.

また、図3、図4で示すように、環状部4aの二酸化炭素との熱交換で水の温度が上昇し、水(特に水道水)に含まれるカルシウムが析出して内管2の壁面2aにスケールが付着しても、水温が上昇して螺旋線材8が変形温度以上となることで、バイアスコイル9の応力に勝って伸び、螺旋線材8に連動してバイアスコイル9が縮められて壁面2aに略平行に摺動してスケールを剥がし取るので、螺旋線材8の管軸方向の長さを調節することで任意の可動幅を設定し、バイアスコイル9を任意の区間にまで摺動させることができて、さらに温度検知手段と可動手段を一体とすることができる。従って、任意の区間において任意の可動幅で自動的に一定量以下にスケール付着を抑制し、内管2の閉塞を防止する。   Further, as shown in FIGS. 3 and 4, the temperature of the water rises due to heat exchange with the carbon dioxide in the annular portion 4 a, and calcium contained in the water (particularly tap water) precipitates to cause the wall surface 2 a of the inner tube 2. Even if the scale adheres, the water temperature rises and the helical wire 8 becomes higher than the deformation temperature, so that the stress of the bias coil 9 is extended and the bias coil 9 is contracted in conjunction with the helical wire 8 and the wall surface Since the scale is peeled off by sliding substantially parallel to 2a, an arbitrary movable width is set by adjusting the length of the spiral wire 8 in the tube axis direction, and the bias coil 9 is slid to an arbitrary section. In addition, the temperature detecting means and the movable means can be integrated. Therefore, scale adhesion is automatically suppressed to a certain amount or less with an arbitrary movable width in an arbitrary section, and the blockage of the inner tube 2 is prevented.

また、螺旋線材8を、バイアスコイル9より管軸方向の長さが短く、螺旋巻きの径も小さくすることで、水の流速が最も早くて最も多くの流量が流れる流路内中心部の螺旋線材8による流動抵抗の増加を効果的に抑える。さらに、螺旋線材8を、螺旋巻きの径を小さくして流路内中心部に配することで、内管2内では、管軸に垂直な方向の水の温度分布が伝熱面である壁面2a近傍よりも、流路内中心部で低くなってスケールがつきにくいので、熱抵抗となるスケールの、螺旋線材8への付着を抑制して、形状記憶合金の温度応答性の劣化を防止する。加えて、一般的に単価の高い形状記憶合金の構成量を少なくして、材料コストを抑える。   Further, the spiral wire 8 has a shorter length in the tube axis direction than the bias coil 9 and a smaller spiral winding diameter, so that the spiral in the central portion of the flow path where the flow rate of water is the fastest and the most flow rate flows. An increase in flow resistance due to the wire 8 is effectively suppressed. Furthermore, by arranging the spiral wire 8 in the center of the flow path with a reduced spiral winding diameter, a wall surface in which the temperature distribution of water in the direction perpendicular to the tube axis is the heat transfer surface in the inner tube 2 Since it is lower than the vicinity of 2a in the center of the flow path and is difficult to scale, adhesion of the scale that becomes thermal resistance to the spiral wire 8 is suppressed, and deterioration of the temperature responsiveness of the shape memory alloy is prevented. . In addition, the amount of the shape memory alloy, which is generally expensive, is reduced to reduce the material cost.

また、螺旋線材8を、内管2の、熱交換されて高温となる水の流出側2bの内部に挿入することにより、流出側2bは製品運転時と運転停止時の水の温度変化が大きいので、螺旋線材8の温度応答をより確実に得る。   Further, by inserting the spiral wire 8 into the outflow side 2b of the inner pipe 2 where the heat is exchanged and becomes high temperature, the outflow side 2b has a large water temperature change during product operation and operation stop. Therefore, the temperature response of the helical wire 8 can be obtained more reliably.

また、内管2の壁面2aと第二の駆動部であるバイアスコイル9の材質を同じ銅製にすることで、異種金属の接触による電食を防止する。   In addition, by making the wall surface 2a of the inner tube 2 and the material of the bias coil 9 which is the second drive unit made of the same copper, electrolytic corrosion due to contact of different metals is prevented.

また、第一の流体を水、第二の流体を二酸化炭素とすることで、熱交換器1Xとして高い熱交換効率を得る。   Moreover, high heat exchange efficiency is obtained as the heat exchanger 1X by using water as the first fluid and carbon dioxide as the second fluid.

以上のように本実施の形態においては、内管2の内部を水が流動し、中管3と外管4との間の環状部4aを二酸化炭素が対向して流れる三重管1としたことにより、環状部4aにより二酸化炭素の流体直径を小さくして内管2と中管3の間の二重壁とすることで、水と二酸化炭素との間の熱抵抗も低く、十分な接触面積を確保して高い熱交換効率を得ることができる。また、水と二酸化炭素との間に溝5を持つ二重壁構造とすることで、一方の管が腐食した場合、大気と連通する中管3の溝5で内部流体の漏洩を検知する構造となっており、水と二酸化炭素の間に安全性を確保することができる。   As described above, in the present embodiment, the triple pipe 1 in which the water flows inside the inner pipe 2 and the annular portion 4a between the middle pipe 3 and the outer pipe 4 flows in a manner that the carbon dioxide is opposed to each other. By reducing the fluid diameter of carbon dioxide by the annular portion 4a and forming a double wall between the inner tube 2 and the middle tube 3, the thermal resistance between water and carbon dioxide is low, and a sufficient contact area And high heat exchange efficiency can be obtained. Further, by adopting a double wall structure having a groove 5 between water and carbon dioxide, when one of the pipes corrodes, a structure for detecting leakage of the internal fluid at the groove 5 of the middle pipe 3 communicating with the atmosphere. Therefore, safety can be ensured between water and carbon dioxide.

また、水の温度が上昇し、内管2の壁面2aにスケールが付着しても、螺旋線材8が変形温度以上となることで伸び、螺旋線材8に連動してバイアスコイル9が縮められて壁面2aに略平行に摺動してスケールを剥がし取るので、螺旋線材8の管軸方向の長さを調節することで任意の可動幅を設定し、バイアスコイル9を任意の区間にまで摺動させることができて、さらに温度検知手段と可動手段を一体とすることができる。従って、簡素な構造で、任意の可動幅で任意の区間のスケールつまりによる熱交換器性能の低下、水流路の閉塞を自動的に抑制し、熱交換器の長期信頼性を高めることができる。   Even if the temperature of the water rises and the scale adheres to the wall surface 2 a of the inner tube 2, the spiral wire 8 becomes longer than the deformation temperature, and the bias coil 9 is contracted in conjunction with the spiral wire 8. Since the scale is peeled off by sliding substantially parallel to the wall surface 2a, an arbitrary movable width is set by adjusting the length of the spiral wire 8 in the tube axis direction, and the bias coil 9 is slid to an arbitrary section. Further, the temperature detecting means and the movable means can be integrated. Therefore, it is possible to improve the long-term reliability of the heat exchanger with a simple structure by automatically suppressing the deterioration of the heat exchanger performance and the blockage of the water flow path due to the scale of an arbitrary section with an arbitrary movable width.

また、螺旋線材8を、バイアスコイル9より管軸方向の長さが短く、螺旋巻きの径も小さくすることで、水の流速が最も早くて最も多くの流量が流れる流路内中心部の螺旋線材8による流動抵抗の増加を効果的に抑えて、可動手段の挿入による流動抵抗の増加を抑制することができる。さらに、螺旋線材8を、螺旋巻きの径を小さくして流路内中心部に配することで、内管2内では、管軸に垂直な方向の水の温度分布が伝熱面である壁面2a近傍よりも、流路内中心部で低くなってスケールがつきにくいので、熱抵抗となるスケールの、螺旋線材8への付着を抑制して、形状記憶合金の温度応答性の劣化を防止して、熱交換器1Xの長期信頼性を高めることができる。加えて、一般的に単価の高い形状記憶合金の構成量を少なくして、材料コストを抑え、可動手段をより安価に製作することができる。   Further, the spiral wire 8 has a shorter length in the tube axis direction than the bias coil 9 and a smaller spiral winding diameter, so that the spiral in the central portion of the flow path where the flow rate of water is the fastest and the most flow rate flows. An increase in flow resistance due to the wire 8 can be effectively suppressed, and an increase in flow resistance due to insertion of the movable means can be suppressed. Furthermore, by arranging the spiral wire 8 in the center of the flow path with a reduced spiral winding diameter, a wall surface in which the temperature distribution of water in the direction perpendicular to the tube axis is the heat transfer surface in the inner tube 2 Since it is lower in the central part of the flow path than the vicinity of 2a and is difficult to scale, adhesion of the scale that becomes thermal resistance to the spiral wire 8 is suppressed, and deterioration of the temperature responsiveness of the shape memory alloy is prevented. Thus, the long-term reliability of the heat exchanger 1X can be improved. In addition, the amount of the shape memory alloy, which is generally expensive, can be reduced, the material cost can be reduced, and the movable means can be manufactured at a lower cost.

また、螺旋線材8を、内管2の、熱交換されて高温となる水の流出側2bの内部に挿入することにより、流出側2bは製品運転時と運転停止時の水の温度変化が大きいので、螺旋線材8の温度応答をより確実に得て、スケールの自動除去を確実に行うことができて、熱交換器の長期信頼性を高めることができる。   Further, by inserting the spiral wire 8 into the outflow side 2b of the inner pipe 2 where the heat is exchanged and becomes high temperature, the outflow side 2b has a large water temperature change during product operation and operation stop. Therefore, the temperature response of the spiral wire 8 can be more reliably obtained, the scale can be automatically removed, and the long-term reliability of the heat exchanger can be improved.

さらに、内管2の壁面2aと第二の駆動部であるバイアスコイル9の材質を同じ銅製にすることで、異種金属の接触による電食の心配がなく、熱交換器1Xの長期信頼性を高めることができる。   Furthermore, the wall surface 2a of the inner tube 2 and the material of the bias coil 9 that is the second drive unit are made of the same copper, so that there is no fear of galvanic corrosion due to contact of different metals, and the long-term reliability of the heat exchanger 1X Can be increased.

また、第一の流体を水、第二の流体を二酸化炭素として、当該熱交換器1Xをヒートポンプ式給湯機用水冷媒熱交換器として使用することで、高いヒートポンプ効率を得ることができる。   Further, high heat pump efficiency can be obtained by using water as the first fluid, carbon dioxide as the second fluid, and using the heat exchanger 1X as a water-refrigerant heat exchanger for heat pump hot water heaters.

尚、本実施の形態では、熱交換器1X全体を直線状としたが、湾曲及びコイルの形態でも同様な効果を得られる。また、内管2、中管3、外管4は一体に形成して構成したものでもよい。   In addition, in this Embodiment, although heat exchanger 1X whole was made into linear form, the same effect is acquired also in the form of a curve and a coil. Further, the inner tube 2, the middle tube 3, and the outer tube 4 may be formed integrally.

また、熱交換器1Xの本体を構成する管状体は三重管1としたが、これに限らず、内部に第一の流体と第二の流体とが互いに熱交換可能に流動する第一の流路および第二の流路を有し、剛的に一体または密着しているものであればよく、たとえば単に丸管を水管、冷媒管として重ね合せたもの(図示せず)等種々の形態でも、同様の効果を得られる。また、熱交換器1Xの本体を構成するのは、筺体でもよく、たとえば、第一の流体としての水側流路を箱状の筺体とし、筺体の外側壁面または内側壁面に第二の流体として冷媒通路となる管、多孔体を密着または一体に形成して構成したもの(図示せず)でもよい。   In addition, the tubular body constituting the main body of the heat exchanger 1X is the triple pipe 1, but the present invention is not limited to this, and the first flow in which the first fluid and the second fluid flow inside each other so as to be able to exchange heat with each other. It is sufficient if it has a channel and a second channel and is rigidly integrated or in close contact. For example, various shapes such as a simple round tube overlapped as a water tube or a refrigerant tube (not shown) may be used. A similar effect can be obtained. The main body of the heat exchanger 1X may be a casing. For example, the water-side flow path as the first fluid is a box-shaped casing, and the second fluid is placed on the outer wall surface or the inner wall surface of the casing. It may be a tube (not shown) constituted by closely or integrally forming a pipe serving as a refrigerant passage or a porous body.

尚、本実施の形態では、第二の駆動部として銅製のバイアスコイル9を示したが、それに限らず、他の金属製のバネや樹脂製のバネ等でもよい。   In the present embodiment, the copper bias coil 9 is shown as the second drive unit. However, the present invention is not limited to this, and other metal springs, resin springs, or the like may be used.

尚、本実施の形態では、内管2、中管3、外管4の材料は、通常は銅製だが、真ちゅう、SUS、耐食性を持った鉄、アルミ合金等でも同様な効果を得られる。   In the present embodiment, the material of the inner tube 2, the intermediate tube 3, and the outer tube 4 is usually made of copper, but the same effect can be obtained by using brass, SUS, corrosion-resistant iron, aluminum alloy, or the like.

尚、本実施の形態では、環状部4aを流通する冷媒を二酸化炭素としたが、R410A等の高圧で作動する冷媒でも同様な効果を得られる。   In the present embodiment, carbon dioxide is used as the refrigerant flowing through the annular portion 4a. However, similar effects can be obtained with a refrigerant that operates at a high pressure such as R410A.

尚、本実施の形態では、螺旋状材8を形状記憶合金のTi−Ni合金としたがCu−Zn、In−Tiなどの合金でも同様の効果を奏する。   In the present embodiment, the spiral material 8 is a Ti—Ni alloy that is a shape memory alloy, but an alloy such as Cu—Zn or In—Ti has the same effect.

(実施の形態2)
図5は、本発明の実施の形態2における熱交換器の管軸方向の断面図である。
(Embodiment 2)
FIG. 5 is a cross-sectional view in the tube axis direction of the heat exchanger according to Embodiment 2 of the present invention.

図5において、可動手段の螺旋線材8は、バイアスコイル9より管軸方向の長さを長くしたものである。   In FIG. 5, the spiral wire 8 of the movable means has a longer length in the tube axis direction than the bias coil 9.

これによって、バイアスコイル9と壁面2aとの摩擦抵抗による摺動時の螺旋線材8の負荷を小さく抑える。   As a result, the load on the spiral wire 8 during sliding due to the frictional resistance between the bias coil 9 and the wall surface 2a is kept small.

従って、可動手段の可動寿命をより長いものにすることができる。   Therefore, the movable life of the movable means can be made longer.

以上のように、本発明にかかる熱交換器は、非常に簡易な構造で同時に高い熱交換効率を実現できると共に、水が流動する流出側の内管の管壁にカルシウムが析出し付着しても、簡素な構造で、任意の可動幅で任意の区間のスケール付着を自動的に一定量以下に抑制して、流路の閉塞を防止でき、熱交換器の長期信頼性を高めることが可能となるので、ヒートポンプ給湯器や家庭用、業務用の空気調和機、燃料電池等の用途にも適用できる。   As described above, the heat exchanger according to the present invention can achieve high heat exchange efficiency at the same time with a very simple structure, and calcium is deposited and adhered to the inner wall of the outflow side where water flows. However, with a simple structure, scale adherence in any section with any movable width can be automatically suppressed to a certain amount or less, and blockage of the flow path can be prevented, improving the long-term reliability of the heat exchanger Therefore, it can be applied to uses such as heat pump water heaters, home and commercial air conditioners, and fuel cells.

本発明の実施の形態1における熱交換器の管軸方向の断面図Sectional drawing of the pipe-axis direction of the heat exchanger in Embodiment 1 of this invention 図1のA−A線断面図AA line sectional view of FIG. 同実施の形態におけるスケール付着状態を示す状態図State diagram showing scale adhesion state in the same embodiment 同実施の形態におけるスケール除去作用を示す状態図State diagram showing scale removal effect in the same embodiment 本発明の実施の形態2における熱交換器の管軸方向の断面図Sectional drawing of the pipe-axis direction of the heat exchanger in Embodiment 2 of this invention 従来の熱交換器の部分断面図Partial sectional view of a conventional heat exchanger

符号の説明Explanation of symbols

1X 熱交換器本体
1 三重管
2 内管
2a 壁面
2b 流出側
3 中管
4 外管
4a 環状部
8 螺旋線材
9 バイアスコイル
1X heat exchanger body 1 triple tube 2 inner tube 2a wall surface 2b outflow side 3 middle tube 4 outer tube 4a annular portion 8 spiral wire 9 bias coil

Claims (9)

管状体または筐体の内部に第一の流体と第二の流体とが互いに熱交換可能に流動する第一の流路および第二の流路と、前記第一の流路内を移動する可動手段と、を有し、前記可動手段は、第一の駆動部と第二の駆動部と、で構成され、前記第一の駆動部に連動して前記第二の駆動部が移動するものであり、かつ、前記第二の駆動部が前記第一の流路の壁面の近傍を前記壁面に略平行に移動することを特徴とした熱交換器。   A first fluid channel and a second fluid channel in which a first fluid and a second fluid flow in a tubular body or a housing so as to be capable of exchanging heat with each other, and a movable fluid moving in the first fluid channel And the movable means is composed of a first drive unit and a second drive unit, and the second drive unit moves in conjunction with the first drive unit. The heat exchanger is characterized in that the second drive unit moves in the vicinity of the wall surface of the first flow path substantially parallel to the wall surface. 前記第一の駆動部の管軸方向の長さを前記第二の駆動部より短くしたことを特徴とした請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein a length of the first drive unit in a tube axis direction is shorter than that of the second drive unit. 前記第一の駆動部の管軸方向の長さを前記第二の駆動部より長くしたことを特徴とした請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein a length of the first driving unit in a tube axis direction is longer than that of the second driving unit. 前記第一の駆動部は、前記第一の流体の温度検知手段を備えて、前記温度検知手段の検知に基づいて動作するものであり、前記第一の流路の管軸に垂直な方向の最大寸法を、前記第二の駆動部より小さくしたことを特徴とした請求項1から3のいずれか一項に記載の熱交換器。   The first drive unit includes a temperature detection unit of the first fluid, and operates based on detection of the temperature detection unit, and is in a direction perpendicular to the tube axis of the first flow path. 4. The heat exchanger according to claim 1, wherein the maximum dimension is smaller than that of the second drive unit. 5. 前記温度検知手段は、熱交換された前記第一の流体の高温側に挿入されたことを特徴とした請求項4に記載の熱交換器。   The heat exchanger according to claim 4, wherein the temperature detection means is inserted on a high temperature side of the heat-exchanged first fluid. 前記第一の流路を内管とし、前記内管の外周を覆って前記内管に密着する中管と、前記中管の外周を覆うように設置し、前記中管との間に、前記第二の流路として環状部を有し、前記環状部内を第二の流体が第一の流体と対向して流動する外管と、からなる多重管で構成したことを特徴とした請求項1から5のいずれか一項に記載の熱交換器。   The first flow path is an inner tube, an inner tube that covers the outer periphery of the inner tube and is in close contact with the inner tube, and is installed so as to cover an outer periphery of the intermediate tube. 2. An annular portion as a second flow path, and a multiple tube comprising an outer tube in which the second fluid flows in opposition to the first fluid in the annular portion. To 5. The heat exchanger according to any one of 5 to 5. 前記第二の駆動部と、前記第一の流路とを同じ材質にしたことを特徴とした請求項1から6のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 6, wherein the second drive unit and the first flow path are made of the same material. 前記第一の駆動部は、温度依存性のある伸縮性部材で形成したことを特徴とした請求項1から7のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 7, wherein the first driving unit is formed of a temperature-dependent elastic member. 前記第一の流体は水、前記第二の流体は二酸化炭素であることを特徴とした請求項1から8のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein the first fluid is water, and the second fluid is carbon dioxide.
JP2005281788A 2005-09-28 2005-09-28 Heat exchanger Pending JP2007093082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281788A JP2007093082A (en) 2005-09-28 2005-09-28 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281788A JP2007093082A (en) 2005-09-28 2005-09-28 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2007093082A true JP2007093082A (en) 2007-04-12

Family

ID=37979014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281788A Pending JP2007093082A (en) 2005-09-28 2005-09-28 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2007093082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138960A (en) * 2007-12-04 2009-06-25 Matsumoto Giken Kk Spiral type heat exchanger
JP2011226697A (en) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Water heater
WO2013094410A1 (en) * 2011-12-20 2013-06-27 三菱電機株式会社 Hot-water supply device
WO2013150818A1 (en) * 2012-04-05 2013-10-10 シーアイ化成株式会社 Heat transfer tube, and heat exchanger using same
CN110530173A (en) * 2019-09-09 2019-12-03 汤鹏飞 A kind of heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138960A (en) * 2007-12-04 2009-06-25 Matsumoto Giken Kk Spiral type heat exchanger
JP2011226697A (en) * 2010-04-19 2011-11-10 Mitsubishi Electric Corp Water heater
WO2013094410A1 (en) * 2011-12-20 2013-06-27 三菱電機株式会社 Hot-water supply device
JPWO2013094410A1 (en) * 2011-12-20 2015-04-27 三菱電機株式会社 Water heater
WO2013150818A1 (en) * 2012-04-05 2013-10-10 シーアイ化成株式会社 Heat transfer tube, and heat exchanger using same
JPWO2013150818A1 (en) * 2012-04-05 2015-12-17 シーアイ化成株式会社 Heat transfer tube and heat exchanger using it
CN110530173A (en) * 2019-09-09 2019-12-03 汤鹏飞 A kind of heat exchanger
CN110530173B (en) * 2019-09-09 2020-05-05 安徽嘉乐斯乐净化工程有限公司 Heat exchanger

Similar Documents

Publication Publication Date Title
JP4736533B2 (en) Heat exchanger
JP2007093082A (en) Heat exchanger
JP2006266514A (en) Heat exchanger
US8887795B2 (en) Heat exchanger and water heater including the same
JP2009041880A (en) Water heat exchanger for water heater
JP4572662B2 (en) Heat exchanger
JP2009216309A (en) Heat exchanger
JP2011226697A (en) Water heater
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP4563068B2 (en) Temperature indicator
JP2005069620A (en) Heat exchanger
JP2006162165A (en) Heat exchanger
JP2006207936A (en) Heat exchanger
JP2008281249A (en) Heat exchanger
JP2006317069A (en) Heat exchanger
JP4207895B2 (en) Heater
JP2009241145A (en) Method of manufacturing double pipe having bent part and double pipe having bent part
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
JP2006234355A (en) Heat exchanger
JP2018066482A (en) Heat exchanger and water heater including the same
JP2009180452A (en) Water heat exchanger for water heater
JP2006317094A (en) Heat exchanger
JP2004340455A (en) Heat exchanger
JP2009236374A (en) Heat transfer tube for hot water supply
JP2005227149A (en) Temperature indicator