JP2007092126A - High-strength steel sheet having excellent bending rigidity and its production method - Google Patents

High-strength steel sheet having excellent bending rigidity and its production method Download PDF

Info

Publication number
JP2007092126A
JP2007092126A JP2005283411A JP2005283411A JP2007092126A JP 2007092126 A JP2007092126 A JP 2007092126A JP 2005283411 A JP2005283411 A JP 2005283411A JP 2005283411 A JP2005283411 A JP 2005283411A JP 2007092126 A JP2007092126 A JP 2007092126A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
bending rigidity
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005283411A
Other languages
Japanese (ja)
Other versions
JP4665692B2 (en
Inventor
Taro Kizu
太郎 木津
Isato Saito
勇人 齋藤
Toshiaki Urabe
俊明 占部
Yoshihiro Hosoya
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005283411A priority Critical patent/JP4665692B2/en
Publication of JP2007092126A publication Critical patent/JP2007092126A/en
Application granted granted Critical
Publication of JP4665692B2 publication Critical patent/JP4665692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel sheet in which tensile strength TS in the 90° direction to the rolling direction is ≥590 MPa and bending rigidity in the 0°, 45° and 90° directions to the rolling direction is excellent, and to provide its production method. <P>SOLUTION: The high-strength thin steel sheet having excellent bending rigidity has a microstructure having a ferrite phase of, by area, 60 to 90% and a martensite phase of 10 to 40%, and, in which the total area ratio of the ferrite phase and the martensite phase is ≥95%, also, the average grain diameter (d)<SB>α</SB>of the ferrite grains is 1.0 to 6.0 μm, the average grain diameter d<SB>M</SB>of the martensite grains is 0.5 to 3.0 μm, and d<SB>α</SB>/d<SB>M</SB>≥1.5 is satisfied. In the high strength steel sheet, TS in the 90° direction to the rolling direction is ≥590 MPa, also, when, from each curve of stress σ-strain ε on the outside of each bent part obtained by performing a three point bending test regarding the 0°, 45° and 90° directions to the rolling direction, the gradient (Δσ/Δε) of each curve in the case σis 200 MPa is calculated, the (Δσ/Δε)c in the 90° direction to the rolling direction is ≥230 GPa, and the (Δσ/Δε) on the average in the above three directions is ≥200 GPa. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として自動車のサイドシル、センターピラー、サイドフレーム、クロスメンバーなど、剛性の板厚感受性指数が1に近いコラム状の構造部材に好適な、590MPa以上の引張強度(TS)を有し、曲げ剛性に優れた高強度薄鋼板およびその製造方法に関する。   The present invention mainly has a tensile strength (TS) of 590 MPa or more, which is suitable for a columnar structural member having a plate thickness sensitivity index of rigidity close to 1, such as an automobile side sill, center pillar, side frame, cross member, etc. The present invention relates to a high-strength thin steel sheet excellent in bending rigidity and a method for producing the same.

近年、地球環境問題への関心の高まりを受けて、自動車の排ガス規制が行われるなど、自動車における車体の軽量化は極めて重要な課題となっている。車体の軽量化には、鋼板の高強度化により板厚を減少させること(薄肉化)が有効な方法であるが、最近では、鋼板の高強度化が顕著に進んだ結果、板厚2.0mmを下回るような薄鋼板の使用が増加してきている。   In recent years, the weight reduction of automobile bodies in automobiles has become an extremely important issue, such as the exhaust gas regulations of automobiles being implemented in response to increasing interest in global environmental problems. In order to reduce the weight of the car body, it is an effective method to reduce the plate thickness by increasing the strength of the steel plate (thinning), but recently, as a result of remarkable progress in increasing the strength of the steel plate, the plate thickness is 2.0 mm. The use of thin steel sheets that are below the limit is increasing.

しかし、さらなる高強度化によって軽量化を図るためには、薄肉化による車体剛性の低下を同時に抑制することが不可欠になってきている。剛性には車体構造が最も大きな影響を与えるので、構造上剛性の低下を抑制することが効果的であるが、基本的な構造を変更することは容易ではない。また、スポット溶接がなされる部材に対しては、溶接点の増加や、ウエルドボンドによる接合あるいはレーザ溶接への切り替えなど溶接条件を変更することも有効であるが、コストが増加するという問題を伴う。さらに、剛性が必要な部分に樹脂などを貼り付けるなどの方法もあるがコスト増を招く。さらにまた、部材の断面などの形状を変えることも有効ではあるが、設計上の問題やプレス上の問題などがある。   However, in order to reduce the weight by further increasing the strength, it has become indispensable to simultaneously suppress the decrease in the vehicle body rigidity due to the thinning. Since the vehicle body structure has the greatest influence on the rigidity, it is effective to suppress the decrease in rigidity structurally, but it is not easy to change the basic structure. In addition, it is effective to change the welding conditions, such as increasing the number of welding points, switching to weld bonding, or switching to laser welding, for members that are spot-welded, but this involves the problem of increased costs. . Furthermore, there is a method of attaching a resin or the like to a portion where rigidity is required, but this increases the cost. Furthermore, although it is effective to change the shape of the cross section of the member, there are design problems and pressing problems.

そこで、部材に使用される鋼板の剛性を高めれば、部材形状や溶接条件を変更することなく、部材の剛性を高めることができることになる。特に、自動車のコラム状の構造部材に対しては、自動車の走行中に曲げ荷重がかかることから、曲げ剛性を高めることが必要であり、それには鋼板のヤング率を高めることが有効である。   Therefore, if the rigidity of the steel plate used for the member is increased, the rigidity of the member can be increased without changing the member shape or welding conditions. In particular, for columnar structural members of automobiles, a bending load is applied while the automobile is running, so it is necessary to increase the bending rigidity. For this purpose, it is effective to increase the Young's modulus of the steel sheet.

ヤング率は、集合組織に大きく支配され、体心立方格子である鋼の場合は、原子の稠密方向である<111>方向に高く、逆に原子密度の小さい<100>方向に小さいことが知られている。結晶方位に異方性のない通常の鉄のヤング率はおよそ210GPa程度であることが知られているが、結晶方位に異方性を持たせ、特定方向の原子密度を高めることで、その方向のヤング率を高めることができる。しかし、自動車車体の曲げ剛性を考える場合には、様々な方向から荷重が加わるため、特定方向のみでなく、各方向に高いヤング率を有する鋼板が求められる。   The Young's modulus is largely governed by the texture, and in the case of steel with a body-centered cubic lattice, it is known that the Young's modulus is high in the <111> direction, which is the atomic dense direction, and conversely small in the <100> direction where the atomic density is low. It has been. It is known that the Young's modulus of normal iron with no crystal orientation anisotropy is about 210 GPa, but by adding anisotropy to the crystal orientation and increasing the atomic density in a specific direction, that direction Can increase the Young's modulus. However, when considering the bending rigidity of an automobile body, since a load is applied from various directions, a steel sheet having a high Young's modulus in each direction is required in addition to a specific direction.

鋼板のヤング率に関しては、これまで、集合組織を制御することで特定方向のヤング率を高めた鋼板の検討が種々なされてきている。例えば、特許文献1には、NbあるいはTiを添加した極低炭素鋼を用い、熱間圧延時にAr3変態点〜(Ar3変態点+150℃)での圧下率を85%以上とし、未再結晶オーステナイトからのフェライト変態を促進することで、熱間圧延後に{311}<011>および{332}<113>を発達させ、その後の冷間圧延、再結晶焼鈍により{211}<011>を発達させて、圧延方向に対して直角方向のヤング率を高める技術が開示されている。特許文献2には、Nbが添加されたC量が0.05質量%以下の低炭素鋼を、950℃以下の仕上圧延開始温度、(Ar3変態点-50℃)〜(Ar3変態点+100℃)の仕上圧延終了温度で熱間圧延し、オーステナイトの再結晶を抑制することで、ヤング率を低下させる{100}の発達を抑制し、圧延方向に対して直角方向のヤング率を高めた熱延鋼板の製造方法が開示されている。特許文献3には、SiとAlを添加してAr3変態点を高めたC量が0.05質量%以下の低炭素鋼を、Ar3変態点以下での圧下率を60%以上として熱間圧延し、{211}<110>を発達させることで、圧延方向に対して直角方向のヤング率を高めた熱延鋼板の製造方法が開示されている。特許文献4には、固溶(C+N)が10ppm以上の鋼を、200〜500℃の温度域で20%以上の圧下率で圧延し、再結晶焼鈍を行うことで、(110)[001]方位を発達させ、圧延方向に対して45〜67.5°の方向でのヤング率を高める方法が開示されている。特許文献5には、実部材の剛性を議論するにあたっては、応力が負荷された状態での変形量を考慮する必要があり、素材の物理定数であるヤング率では剛性を評価できないとして、加工・焼付後の引張試験による応力-歪み曲線における歪み量が0.06%のときの傾きとヤング率の比を0.8以上とした張り剛性に優れた鋼板が提案されている。 Regarding the Young's modulus of a steel sheet, various studies have been made on steel sheets that have a higher Young's modulus in a specific direction by controlling the texture. For example, Patent Document 1 uses ultra-low carbon steel to which Nb or Ti is added, and the rolling rate from Ar 3 transformation point to (Ar 3 transformation point + 150 ° C.) during hot rolling is 85% or more. By promoting ferrite transformation from recrystallized austenite, {311} <011> and {332} <113> were developed after hot rolling, and then {211} <011> by cold rolling and recrystallization annealing Has been developed to increase the Young's modulus in a direction perpendicular to the rolling direction. In Patent Document 2, low carbon steel with Nb added and having a C content of 0.05% by mass or less, finish rolling start temperature of 950 ° C. or less, (Ar 3 transformation point −50 ° C.) to (Ar 3 transformation point +100) (° C) finish rolling at the finishing finish temperature, suppressing the recrystallization of austenite, suppressing the development of {100}, which reduces the Young's modulus, and increasing the Young's modulus in the direction perpendicular to the rolling direction. A method for producing a hot-rolled steel sheet is disclosed. Patent Document 3, hot rolling the C content with enhanced Ar 3 transformation point by adding Si and Al 0.05 wt% or less of low-carbon steel, the rolling reduction below Ar 3 transformation point is 60% or more And the manufacturing method of the hot-rolled steel plate which raised the Young's modulus of the direction orthogonal to a rolling direction by developing {211} <110> is disclosed. In Patent Document 4, steel having a solid solution (C + N) of 10 ppm or more is rolled at a reduction rate of 20% or more in a temperature range of 200 to 500 ° C., and subjected to recrystallization annealing, (110) [ 001] orientation is developed to increase the Young's modulus in the direction of 45-67.5 ° with respect to the rolling direction. In Patent Document 5, when discussing the rigidity of an actual member, it is necessary to consider the amount of deformation in a state where stress is applied, and the Young's modulus that is the physical constant of the material cannot be used to evaluate the rigidity. There has been proposed a steel sheet excellent in tensile rigidity in which the ratio of the slope and Young's modulus when the strain amount in the stress-strain curve by the tensile test after baking is 0.06% is 0.8 or more.

なお、下記の非特許文献1は、後述の[発明を実施するための最良の形態]で述べるODF解析のためのADC法に関する。
特開平5-255804号公報 特開平5-247530号公報 特開平9-53118号公報 特開昭58-9932号公報 特開2001‐348644号公報 Phys. Status Solid (b), 134 (1986) 447
Non-Patent Document 1 below relates to an ADC method for ODF analysis described in [Best Mode for Carrying Out the Invention] described later.
Japanese Patent Laid-Open No. 5-255804 Japanese Patent Laid-Open No. 5-27530 JP-A-9-53118 JP 58-9932 A Japanese Patent Laid-Open No. 2001-348644 Phys. Status Solid (b), 134 (1986) 447

しかしながら、上記の従来技術には、次のような問題がある。すなわち、特許文献1〜4の技術では、鋼板の一方向のみのヤング率を高めることには有効であるが、各方向に高いヤング率を有する鋼板が必要な自動車の構造部材の剛性向上には適用できない。また、上述のように、自動車のコラム状の構造用部材に対しては、良好な曲げ剛性が要求されるが、こうした従来技術では、曲げ剛性に関してなんら考慮されていない。特許文献5の技術も、パネル部品のような張り剛性を対象にしたものであり、ヤング率や応力-歪み曲線から求めた傾きの値自体が低く、自動車の構造部材の剛性向上には適用できない。   However, the above prior art has the following problems. That is, in the techniques of Patent Documents 1 to 4, it is effective to increase the Young's modulus in only one direction of the steel sheet, but to improve the rigidity of the structural member of an automobile that requires a steel sheet having a high Young's modulus in each direction. Not applicable. Further, as described above, good bending rigidity is required for a columnar structural member of an automobile, but such conventional technology does not consider bending rigidity at all. The technique of Patent Document 5 is also intended for tension stiffness such as panel parts, and the inclination value itself obtained from Young's modulus and stress-strain curve is low, so it cannot be applied to improve the rigidity of structural members of automobiles. .

その他、特許文献1では、C量が0.01%以下の極低炭素鋼を用いるためTSがせいぜい450MPa程度と低く、TSが590MPa以上の高強度化を図るのが困難である、特許文献3では、フェライト域での圧延を行うため結晶粒が粗大化してしまい、加工性が著しく低下する、特許文献4では、200〜500℃で温間圧延を行う必要があり、また、通常の熱間圧延に比べて圧延荷重が非常に高くなることから、製造コストが増大する、などの問題もある。   In addition, Patent Document 1 uses an extremely low carbon steel having a C content of 0.01% or less, so TS is as low as about 450 MPa, and it is difficult to achieve high strength of TS of 590 MPa or more. In order to perform rolling in the ferrite region, the crystal grains become coarse and the workability is remarkably reduced. In Patent Document 4, it is necessary to perform warm rolling at 200 to 500 ° C. In comparison, the rolling load becomes very high, and there is a problem that the manufacturing cost increases.

本発明は、圧延方向に対して90°方向のTSが590MPa以上、好ましくは780MPa以上で、圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向の曲げ剛性に優れた高強度薄鋼板およびその製造方法を提供することを目的とする。   The present invention has a TS of 590 MPa or more, preferably 780 MPa or more in the 90 ° direction with respect to the rolling direction, and excellent bending rigidity in the rolling direction, 45 ° direction with respect to the rolling direction, and 90 ° direction with respect to the rolling direction. Another object is to provide a high-strength thin steel sheet and a method for producing the same.

本発明者らが、圧延方向に対して90°方向のTSが590MPa以上である高強度薄鋼板の圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向における曲げ剛性について検討したところ、それぞれの方向に平行に切り出した短冊状の試験片に3点曲げ試験を行い、曲げ部外側の応力(σ)-歪(ε)曲線からσが200MPaのときの曲線の傾き(Δσ/Δε)を求めたとき、圧延方向に対して90°方向の(Δσ/Δε)cが230GPa以上であり、かつ上記3方向の平均の(Δσ/Δε)が200GPa以上であれば、鋼板を薄肉化しても自動車の構造部材の剛性を十分に確保できることを見出した。   The bending stiffness in the rolling direction of the high-strength thin steel sheet in which the TS in the 90 ° direction is 590 MPa or more with respect to the rolling direction, the 45 ° direction with respect to the rolling direction, and the 90 ° direction with respect to the rolling direction. As a result, a three-point bending test was performed on a strip-shaped test piece cut out parallel to each direction, and the slope of the curve when σ was 200 MPa from the stress (σ) -strain (ε) curve outside the bent part When (Δσ / Δε) was determined, if (Δσ / Δε) c in the 90 ° direction with respect to the rolling direction is 230 GPa or more, and the average (Δσ / Δε) in the three directions is 200 GPa or more, It has been found that even when the steel sheet is thinned, the rigidity of the structural member of the automobile can be sufficiently secured.

本発明は、こうした知見に基づいてなされたものであり、面積率で60〜90%のフェライト相と10〜40%のマルテンサイト相を有し、前記フェライト相と前記マルテンサイト相の面積率の合計が95%以上であり、かつフェライト粒の平均粒径(dα)が1.0〜6.0μm、マルテンサイト粒の平均粒径(dM)が0.5〜3.0μmであり、dα/dM≧1.5を満たすミクロ組織を有し、圧延方向に対して90°方向の引張強度TSが590MPa以上であり、かつ圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向について3点曲げ試験を行って得た曲げ部外側の応力(σ)-歪(ε)曲線から、σが200MPaのときの曲線の傾き(Δσ/Δε)を求めたとき、圧延方向に対して90°方向の(Δσ/Δε)cが230GPa以上であり、前記3方向の平均の(Δσ/Δε)が200GPa以上であることを特徴とする曲げ剛性に優れた高強度薄鋼板を提供する。ここで、平均の(Δσ/Δε)とは、圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向について求めた(Δσ/Δε)を、それぞれ(Δσ/Δε)l、(Δσ/Δε)d、(Δσ/Δε)cとしたとき、{(Δσ/Δε)l+2×(Δσ/Δε)d+(Δσ/Δε)c}/4で計算した値である。 The present invention has been made on the basis of such findings, and has an area ratio of 60 to 90% ferrite phase and 10 to 40% martensite phase, the area ratio of the ferrite phase and the martensite phase. The total is 95% or more, and the average grain diameter (d α ) of the ferrite grains is 1.0 to 6.0 μm, the average grain diameter (d M ) of the martensite grains is 0.5 to 3.0 μm, and d α / d M ≧ Has a microstructure satisfying 1.5, has a tensile strength TS in the 90 ° direction with respect to the rolling direction of 590 MPa or more, and in the rolling direction, the 45 ° direction with respect to the rolling direction, and the 90 ° direction with respect to the rolling direction. When the slope (Δσ / Δε) of the curve when σ is 200 MPa is determined from the stress (σ) -strain (ε) curve outside the bending part obtained by performing the three-point bending test, it is 90 with respect to the rolling direction. (Δσ / Δε) c in the ° direction is 230 GPa or more, and the average (Δσ / Δε) in the three directions is 200 GPa or more. To provide a thin steel plate. Here, the average (Δσ / Δε) means (Δσ / Δε) obtained in the rolling direction, the 45 ° direction with respect to the rolling direction, and the 90 ° direction with respect to the rolling direction, respectively (Δσ / Δε) l, (Δσ / Δε) d, and (Δσ / Δε) c are values calculated by {(Δσ / Δε) l + 2 × (Δσ / Δε) d + (Δσ / Δε) c} / 4. .

本発明の高強度薄鋼板では、個々のフェライト粒径に関し、その自然対数を採った値の標準偏差をσAとしたとき、σA<0.7を満たすことが好ましい。 In the high-strength thin steel sheet of the present invention, it is preferable that σ A <0.7 is satisfied, where σ A is the standard deviation of the value obtained by taking the natural logarithm of each ferrite grain size.

また、鋼板の1/4板厚における板面の(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度が6以上であることが好ましい。ここで、[1-10]は(1,-1,0)の方向を表す。   Further, it is preferable that the average ODF analysis strength in the (113) [1-10] to (223) [1-10] orientations of the plate surface at a 1/4 plate thickness of the steel plate is 6 or more. Here, [1-10] represents the direction of (1, -1,0).

本発明の高強度薄鋼板は、例えば、質量%で、C:0.05〜0.15%、Si:0.3%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.01%以下、Al:1.0%以下、N:0.01%以下、Nb:0.02〜0.1%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、かつC、N、Nbの含有量が下記の(1)、(2)式を満たす薄鋼板である。
Nb-(92.9/14)×N≧0.02・・・・・(1)
C-(12/92.9)×Nb-1≧0.01・・・・ (2)
ここで、Nb-1=Nb-(92.9/14)×Nであり、式中の各元素記号は各元素の含有量(質量%)を表す。
The high-strength thin steel sheet of the present invention is, for example, in mass%, C: 0.05 to 0.15%, Si: 0.3% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.01% or less, Al: 1.0 % Or less, N: 0.01% or less, Nb: 0.02 to 0.1%, the balance is composed of Fe and inevitable impurities, and the contents of C, N, Nb are the following (1), ( It is a thin steel plate that satisfies the formula (2).
Nb- (92.9 / 14) × N ≧ 0.02 (1)
C- (12 / 92.9) × Nb -1 ≧ 0.01 ・ ・ ・ ・ (2)
Here, Nb −1 = Nb− (92.9 / 14) × N, and each element symbol in the formula represents the content (% by mass) of each element.

また、質量%で、C:0.05〜0.15%、Si:0.3%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.01%以下、Al:1.0%以下、N:0.01%以下、Nb:0.02〜0.1%を含有し、さらにTi:0.01〜0.2%およびV:0.01〜0.2%から選ばれた少なくとも1種の元素を含有し、残部が鉄および不可避的不純物からなる組成を有し、かつC、N、S、Nb、Ti、Vの含有量が下記の(3)、(4)式を満たす薄鋼板とすることもできる。
Nb-(92.9/14)×N-2≧0.02・・・・・・・・・・・・・・・・ (3)
C-(12/92.9)×Nb-2-(12/47.9)×Ti-2-(12/50.9)×V≧0.01・・・ (4)
ここで、N-2=N-(14/47.9)×Ti(ただし、N-2≦0のときは、N-2=0)、Nb-2=Nb-(92.9/14)×N-2、Ti-2=Ti-(47.9/14)×N-(47.9/32.1)×S(ただし、Ti-2≦0のときは、Ti=0)であり、式中の各元素記号は各元素の含有量(質量%)を表す。
Further, in mass%, C: 0.05 to 0.15%, Si: 0.3% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.01% or less, Al: 1.0% or less, N: 0.01% or less, It contains Nb: 0.02 to 0.1%, further contains at least one element selected from Ti: 0.01 to 0.2% and V: 0.01 to 0.2%, and the balance is composed of iron and inevitable impurities. In addition, a thin steel sheet in which the contents of C, N, S, Nb, Ti, and V satisfy the following expressions (3) and (4) can also be obtained.
Nb- (92.9 / 14) × N -2 ≧ 0.02 ... (3)
C- (12 / 92.9) × Nb -2- (12 / 47.9) × Ti -2- (12 / 50.9) × V ≧ 0.01 ... (4)
Here, N -2 = (the proviso that when the N -2 ≦ 0, N -2 = 0) N- (14 / 47.9) × Ti, Nb -2 = Nb- (92.9 / 14) × N -2 , Ti -2 = Ti- (47.9 / 14) × N- (47.9 / 32.1) × S (However, Ti = 0 when Ti -2 ≦ 0), and each element symbol in the formula is each element The content (% by mass) of

本発明の高強度薄鋼板は、さらに、質量%で、Cr:0.05〜1.0%、Ni:0.05〜1.0%、Mo:0.05〜1.0%、B:0.0005〜0.0030%、Cu:0.1〜2.0%、W:0.1〜2.0%から選ばれた少なくとも1種の元素を含有することができる。   The high-strength thin steel sheet of the present invention is further in mass%, Cr: 0.05-1.0%, Ni: 0.05-1.0%, Mo: 0.05-1.0%, B: 0.0005-0.0030%, Cu: 0.1-2.0%, W: At least one element selected from 0.1 to 2.0% can be contained.

本発明の高強度薄鋼板は、上記のような成分組成からなる鋼を、鋳造し、そのまま、あるいは一旦冷却し再加熱した後、粗圧延し、Ar3変態点以上の仕上圧延終了温度で仕上圧延し、500℃以上の巻取温度で巻取った後、酸洗を行い、45〜85%の範囲の圧下率Rで冷間圧延を行った後、焼鈍を行うに際し、室温から下記の(5)式に定義する温度Ta℃までを平均1℃/s以上の昇温速度で加熱し、Ta〜(Ta+10+R0.9)℃の温度範囲に下記の(6)式を満たすような時間v(s)滞留させた後、Ta〜600℃の温度範囲を3〜30℃/sの平均冷却速度で冷却することを特徴とする曲げ剛性に優れた高強度薄鋼板の製造方法により製造できる。
Ta=930-200×C0.5+40×Si-30×Mn+40×Al-10×Cr+30×Mo-15×Ni-20×Cu+10×W
・ ・・(5)
ここで、式中の各元素記号は各元素の含有量(質量%)を表す。
The high-strength thin steel sheet of the present invention is obtained by casting a steel having the above-described composition, as it is, or after cooling and reheating, rough rolling, and finishing at a finish rolling finish temperature not lower than the Ar 3 transformation point. After rolling and winding at a coiling temperature of 500 ° C. or higher, pickling, performing cold rolling at a rolling reduction R in the range of 45 to 85%, and performing annealing, from room temperature to the following ( 5) Heat up to the temperature Ta ° C defined in the equation at an average rate of 1 ° C / s or more, and satisfy the following equation (6) in the temperature range of Ta to (Ta + 10 + R 0.9 ) ° C. Manufactured by a method for producing a high strength thin steel sheet with excellent bending rigidity, characterized in that the temperature range of Ta to 600 ° C is cooled at an average cooling rate of 3 to 30 ° C / s after dwelling for time v (s). it can.
Ta = 930-200 × C 0.5 + 40 × Si-30 × Mn + 40 × Al-10 × Cr + 30 × Mo-15 × Ni-20 × Cu + 10 × W
· ··(Five)
Here, each element symbol in the formula represents the content (% by mass) of each element.

Figure 2007092126
Figure 2007092126

ここで、F(w)は、鋼板が温度TaになってからTa〜(Ta+10+R0.9)℃の温度範囲内に滞留する時間v(s)内の任意の時間w(s)のときの温度(℃)を表す。 Here, F (w) is an arbitrary time w (s) within the time v (s) in which the steel sheet stays within the temperature range of Ta to (Ta + 10 + R 0.9 ) ° C. after the temperature reaches Ta. Represents the temperature (° C).

本発明の製造方法では、鋼を鋳造し、一旦冷却したのち再加熱を行う際の加熱温度Th℃を、((-7020/(log(Nb・C0.87)-2.81))-273)〜1300℃[ただし、Nb、Cは、各元素の含有量(質量%)を表す。]の温度範囲とし、かつ加熱温度Th℃と加熱時間t(s)が下記の(7)式を満たすように再加熱を行うことが好ましい。
10-6≦((5.6×10-4×exp((-3.44×10)/(Th+273)))×t)0.5≦3×10-5・・・・・(7)
また、粗圧延を行うに際し、(Ar3変態点+100)℃以下における合計圧下率を20%以上とし、前記粗圧延後、Ar3変態点以上の仕上圧延終了温度を確保できるように(Ar3変態点+150)℃以下に再加熱して仕上圧延を行うことが好ましい。
In the production method of the present invention, the heating temperature Th ° C. when steel is cast, cooled once, and then reheated is ((-7020 / (log (Nb · C 0.87 ) -2.81))-273) to 1300. ° C. [However, Nb and C represent the content (% by mass) of each element. It is preferable to perform reheating so that the heating temperature Th ° C. and the heating time t (s) satisfy the following formula (7).
10 -6 ≦ ((5.6 × 10 -4 × exp ((-3.44 × 10 4 ) / (Th + 273))) × t) 0.5 ≦ 3 × 10 -5 (7)
Further, when performing rough rolling, the total rolling reduction at (Ar 3 transformation point +100) ° C. or less is set to 20% or more, and after the rough rolling, the finish rolling finish temperature above the Ar 3 transformation point can be secured (Ar It is preferable to perform finish rolling by reheating to 3 transformation point + 150) ° C. or lower.

さらに、仕上圧延を行うに際し、(Ar3変態点+100)℃以下における合計圧下率を50%以上とし、かつ仕上圧延終了温度をAr3変態点〜(Ar3変態点+50)℃の温度範囲とすることが好ましい。 Further, when performing finish rolling, the total rolling reduction at (Ar 3 transformation point +100) ° C. or less is 50% or more, and the finish rolling end temperature is a temperature from Ar 3 transformation point to (Ar 3 transformation point +50) ° C. It is preferable to be in the range.

さらにまた、仕上圧延を行うに際し、潤滑圧延を行ったり、仕上圧延後、3s以内に50℃/s以上の平均冷却速度で700℃以下まで冷却することが好ましい。   Furthermore, when performing finish rolling, it is preferable to perform lubrication rolling or to cool to 700 ° C. or less at an average cooling rate of 50 ° C./s or more within 3 s after finish rolling.

なお、焼鈍後に0.3〜10%の伸び率で調質圧延を行うことも可能である。   It is also possible to perform temper rolling at an elongation of 0.3 to 10% after annealing.

本発明により、曲げ剛性、すなわち3点曲げ試験による(Δσ/Δε)を高めることができるメカニズムは、本発明を規定するものではないが、次のように考えられる。すなわち、熱間圧延において、仕上圧延をAr3変態点以上で終了し、500℃以上で巻取ることで、熱延鋼板のフェライト相を増加させた上で、冷間圧延での圧下率の適正化を行うことにより(113)[1-10]〜(223)[1-10]の集合組織を発達させ、さらに、その後の焼鈍時の昇温過程における再結晶をNbで抑制することで、未再結晶フェライトからのオーステナイト変態を促進するとともに、オーステナイト相中の変態に起因する歪みの回復を抑制することで、その後の冷却で(113)[1-10]〜(223)[1-10]の集合組織をもつフェライトへの再変態を促進し、さらにその際、変態前のオーステナイト相の粒成長も抑制することで(113)[1-10]〜(223)[1-10]の集合組織をもつフェライト変態における核発生頻度を大きくし、また、鋼組成の最適化によりこの(113)[1-10]〜(223)[1-10]の集合組織をもつフェライトの粒成長も促進することで、フェライト粒径の分散を小さくし、かつ微細なオーステナイト中にCを濃化させ、その後の冷却で生成するマルテンサイトを微細に生成させることで、高強度化と全方向の曲げ剛性と、特に圧延方向に対して90°方向の曲げ剛性を向上させることができる。このように、特定方向の曲げ剛性を向上させつつ、全方向の曲げ剛性を向上させることで、自動車部品としての剛性を大きく向上させることができる。 The mechanism that can increase the bending rigidity, that is, (Δσ / Δε) according to the three-point bending test according to the present invention does not define the present invention, but is considered as follows. In other words, in hot rolling, finish rolling is finished at the Ar 3 transformation point or higher, and is rolled up at 500 ° C. or higher to increase the ferrite phase of the hot-rolled steel sheet. By developing the texture of (113) [1-10] to (223) [1-10], and further suppressing the recrystallization in the temperature rising process during the subsequent annealing, By promoting the austenite transformation from unrecrystallized ferrite and suppressing the recovery of strain caused by transformation in the austenite phase, (113) [1-10] to (223) [1-10 ] To promote the retransformation to ferrite with the texture of (113) [1-10] to (223) [1-10] by suppressing the grain growth of the austenite phase before transformation By increasing the frequency of nucleation in the ferrite transformation with texture, and by optimizing the steel composition, this (113) [1-10]-(223) [1-10] By facilitating the grain growth of ferrite with weaving, by reducing the dispersion of the ferrite particle size, concentrating C in the fine austenite, and finely generating martensite generated by subsequent cooling, It is possible to improve the strength and the bending rigidity in all directions, and in particular, the bending rigidity in the 90 ° direction with respect to the rolling direction. Thus, the rigidity as an automobile part can be greatly improved by improving the bending rigidity in all directions while improving the bending rigidity in a specific direction.

本発明により、自動車のサイドシル、センターピラー、サイドフレーム、クロスメンバーなど、剛性の板厚感受性指数が1に近いコラム状の構造部材に好適な、圧延方向に対して90°方向のTSが590MPa以上で、かつ各方向の曲げ剛性に優れた高強度薄鋼板を製造できるようになった。   According to the present invention, the TS in the 90 ° direction with respect to the rolling direction is more than 590 MPa, which is suitable for column-like structural members with rigidity thickness sensitivity index close to 1, such as automobile side sill, center pillar, side frame, cross member, etc. In addition, it has become possible to produce a high-strength thin steel sheet having excellent bending rigidity in each direction.

以下に、本発明である高強度薄鋼板およびその製造方法について詳細に説明する。   Below, the high-strength thin steel sheet and its manufacturing method which are this invention are demonstrated in detail.

1)ミクロ組織
フェライト相は、その集合組織を制御することで曲げ剛性を高めることができるため、面積率で60%以上とする必要がある。一方、面積率で90%を越えると590MPa以上のTSを確保することが困難になることから、フェライト相は面積率60〜90%とする。マルテンサイト相は、高強度化に有効であるが、590MPa以上のTSを確保するには、面積率で10%以上とする必要がある。一方、集合組織の制御が困難なマルテンサイト相が40%を越えると曲げ剛性が低下することから、マルテンサイト相は面積率で10〜40%以下とする。なお、フェライト相とマルテンサイト相以外のその他の相は極力少ないことが望ましいが、面積率で5%程度までは許容でき、本願発明の効果を阻害することはない。したがって、フェライト相とマルテンサイト相の面積率の合計は95%以上とする。
1) Microstructure Since the ferrite phase can increase the bending rigidity by controlling its texture, the area ratio needs to be 60% or more. On the other hand, if the area ratio exceeds 90%, it becomes difficult to secure a TS of 590 MPa or more. Therefore, the ferrite phase is set to 60 to 90%. The martensite phase is effective for increasing the strength, but in order to secure a TS of 590 MPa or more, the area ratio needs to be 10% or more. On the other hand, if the martensite phase, whose texture is difficult to control, exceeds 40%, the flexural rigidity decreases. Therefore, the martensite phase is 10 to 40% or less in terms of area ratio. Although it is desirable that the other phases other than the ferrite phase and the martensite phase be as small as possible, an area ratio of up to about 5% is acceptable and does not hinder the effects of the present invention. Therefore, the total area ratio of the ferrite phase and the martensite phase is 95% or more.

フェライト粒の平均粒径dαが1.0μm未満、あるいはマルテンサイト粒の平均粒径dMが0.5μm未満では、単位体積あたりの粒界面積が大きくなることから、荷重負荷時の曲げ剛性が低下する。一方、フェライト粒のdαが6.0μm超え、あるいはマルテンサイト粒のdMが3.0μm超えると、荷重負荷時の応力分配が不均一となることから、平均の曲げ剛性が低下してしまう。また、dα/dM<1.5となり、マルテンサイト粒径に対しフェライト粒径が細かくなり過ぎる、すなわちフェライト粒径に対してマルテンサイト粒径がある程度大きくなり過ぎると、荷重負荷時のマルテンサイト粒への応力分配が大きくなることから、曲げ剛性が低下してしまう。したがって、フェライト粒のdαは1.0〜6.0μm、マルテンサイト粒のdMは0.5〜3.0μm、かつdα/dM≧1.5とする必要がある。 When the average grain diameter d α of ferrite grains is less than 1.0 μm, or when the average grain diameter d M of martensite grains is less than 0.5 μm, the grain interface area per unit volume increases, so the bending stiffness under load decreases. To do. On the other hand, beyond ferrite grains d alpha is 6.0 .mu.m, or when the martensite grain of d M exceeds 3.0 [mu] m, the stress distribution under a load from becoming uneven, the bending rigidity of the average decreases. D α / d M <1.5, and if the ferrite grain size becomes too fine with respect to the martensite grain size, that is, if the martensite grain size becomes too large with respect to the ferrite grain size, the martensite grain under load is applied. Since the stress distribution to is increased, the bending rigidity is lowered. Accordingly, it is necessary that d α of ferrite grains is 1.0 to 6.0 μm, d M of martensite grains is 0.5 to 3.0 μm, and d α / d M ≧ 1.5.

なお、フェライト粒径分布が大きい場合、荷重負荷時の応力分配が大きくなることから、平均の曲げ剛性が低下し易くなる。そのため、個々のフェライト粒径に関し、その自然対数を採った値の標準偏差をσAとしたとき、σA<0.7となるようにすることが好ましい。 When the ferrite particle size distribution is large, the stress distribution at the time of loading is increased, so that the average bending rigidity is likely to be lowered. Therefore, it is preferable that σ A <0.7 when the standard deviation of the value obtained by taking the natural logarithm of each ferrite grain size is σ A.

ここで、上記のフェライト相、マルテンサイト相、その他の相の面積率、フェライト粒とマルテンサイト粒の平均粒径、フェライト粒径分布は、鋼板断面をナイタール腐食した後、SEM観察を行い、30×30μm域の写真を3枚とって画像処理して測定した。   Here, the ferrite phase, the martensite phase, the area ratio of the other phases, the average grain size of ferrite grains and martensite grains, and ferrite grain size distribution were subjected to SEM observation after corroding the steel sheet cross section, 30 The measurement was performed by taking three images of a × 30 μm region image.

2)3点曲げ試験から求めた(Δσ/Δε)
上述したように、圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向について3点曲げ試験を行って得た曲げ部外側の応力(σ)-歪(ε)曲線から、σが200MPaのときの曲線の傾き(Δσ/Δε)を求めたとき、圧延方向に対して90°方向の(Δσ/Δε)90が230GPa以上であり、かつ上記3方向の平均の(Δσ/Δε)が200GPa以上であれば、鋼板を薄肉化しても自動車の構造部材の剛性を大きく向上できる。ここで、(Δσ/Δε)を求めるにあたり、σが200MPaでの(Δσ/Δε)を求めたのは、自動車の走行において部材にかかる応力は、多くの場合、200MPaを超えないと考えられるためである。また、圧延方向に対して90°方向の(Δσ/Δε)cを230GPa以上とし、3方向の平均の(Δσ/Δε)を200GPa以上とすることにより、優れた曲げ剛性が得られるのは実際の自動車に応力が作用した場合の変形量が小さくなるためである。
2) (Δσ / Δε) obtained from a three-point bending test
As described above, the stress (σ) -strain (ε) curve outside the bending part obtained by performing a three-point bending test in the rolling direction, 45 ° direction with respect to the rolling direction, and 90 ° direction with respect to the rolling direction. Thus, when the slope of the curve when σ is 200 MPa (Δσ / Δε), 90 ° direction (Δσ / Δε) 90 with respect to the rolling direction is 230 GPa or more, and the average of the above three directions ( If [Delta] [sigma] / [Delta] [epsilon] is 200 GPa or more, the rigidity of the structural member of the automobile can be greatly improved even if the steel plate is thinned. Here, in obtaining (Δσ / Δε), the reason why (Δσ / Δε) was obtained when σ was 200 MPa is that the stress applied to the member in the running of an automobile is often considered not to exceed 200 MPa. It is. In addition, it is actually possible to obtain excellent bending rigidity by setting (Δσ / Δε) c in the 90 ° direction relative to the rolling direction to 230 GPa or more and the average (Δσ / Δε) in the three directions to 200 GPa or more. This is because the amount of deformation is reduced when stress is applied to the automobile.

ここで、圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向の(Δσ/Δε)は、各方向と平行に切り出した短冊状の試験片に3点曲げ試験を次の条件で行って求めた。板厚t(mm)の試験片は端面研削加工により幅Wを10mmに仕上げ、曲げ試験における支点間距離Lを100mmとし、直径10mmφのポンチにより、押し込み速度1mm/分で3点曲げ試験を行った。そして、押し込み荷重Pと押し込み量Xを測定し、曲げ外径部での応力σと歪みεを次式より計算して応力-歪み曲線を作成し、σが200MPaのときの応力-歪み曲線の傾きを(Δσ/Δε)とした。
σ=(3LP)/(2Wt2)
ε=(6tX)/L2
平均の(Δσ/Δε)=(Δσ/Δε)avは、圧延方向(l方向)、圧延方向に対して45°方向(d方向)、および圧延方向に対して90°方向(c方向)で測定された(Δσ/Δε)l、(Δσ/Δε)d、および(Δσ/Δε)cを用い、次の式で求めた。
(Δσ/Δε)av=((Δσ/Δε)l+2×(Δσ/Δε)d+(Δσ/Δε)c)/4
3)集合組織
(113)[1-10]〜(223)[1-10]方位の集合組織を発達させることで、特に圧延方向に対して90°方向の曲げ剛性を向上させることができることから、鋼板の1/4板厚における板面の(113)[1-10]〜(223)[1-10]方位における平均のODF(Orientation Distribution Function)解析強度fを6以上とすることが好ましい。
Here, the rolling direction, 45 ° direction with respect to the rolling direction, and (Δσ / Δε) in the direction of 90 ° with respect to the rolling direction are obtained by performing a three-point bending test on a strip-shaped test piece cut in parallel with each direction. The measurement was performed under the following conditions. The test piece with a thickness of t (mm) is finished by grinding the end face to a width W of 10 mm, the distance L between the fulcrums in the bending test is 100 mm, and a punch with a diameter of 10 mmφ is subjected to a three-point bending test at an indentation speed of 1 mm / min. It was. Then, the indentation load P and the indentation amount X are measured, and the stress σ and strain ε at the bending outer diameter portion are calculated from the following equations to create a stress-strain curve. The stress-strain curve when σ is 200 MPa The slope was (Δσ / Δε).
σ = (3LP) / (2Wt 2 )
ε = (6tX) / L 2
Average (Δσ / Δε) = (Δσ / Δε) av is the rolling direction (l direction), 45 ° direction (d direction) with respect to the rolling direction, and 90 ° direction (c direction) with respect to the rolling direction. Using the measured (Δσ / Δε) l, (Δσ / Δε) d, and (Δσ / Δε) c, the following equation was used.
(Δσ / Δε) av = ((Δσ / Δε) l + 2 × (Δσ / Δε) d + (Δσ / Δε) c) / 4
3) Texture
By developing a texture in the (113) [1-10] to (223) [1-10] orientation, it is possible to improve the bending rigidity, particularly in the 90 ° direction with respect to the rolling direction. The average ODF (Orientation Distribution Function) analysis strength f in the (113) [1-10] to (223) [1-10] orientations of the plate surface at / 4 plate thickness is preferably 6 or more.

ここで、(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度fは、加工歪みの影響を除去するため化学研磨により1/4板厚まで減厚したのち、シュルツ法により(110)、(200)、(211)極点図を求め、非特許文献1に記載されたADC法によりODF解析を行い、φ1=0°、φ2=45°において、Φが25°、30°、35°、45°のときの解析強度の平均値である。 Here, the average ODF analysis strength f in the (113) [1-10] to (223) [1-10] orientations was reduced to 1/4 plate thickness by chemical polishing in order to remove the influence of processing strain. After that, (110), (200), (211) pole figure is obtained by Schulz method, ODF analysis is performed by ADC method described in Non-Patent Document 1, and at φ 1 = 0 °, φ 2 = 45 °, It is the average value of analysis intensity when Φ is 25 °, 30 °, 35 °, 45 °.

4)成分(以下の「%」は、「質量%」を表す。)
C:Cは、オーステナイト安定化元素なので、冷間圧延後の焼鈍時の冷却過程において焼入れ性を高め、低温変態相の生成を促進して高強度化に大きく寄与する。また、Ar3変態点を低下させるので、Ar3変態点直上で圧延を行うに際して、より低温域での熱間圧延を可能にし、未再結晶オーステナイトからのフェライト変態を促進して{113}<110>方位を発達させることができ、冷間圧延、焼鈍後の曲げ剛性を向上させることができる。このような効果を得るためには、C量を0.05%以上とし、さらに、Nb炭化物として固定されない量として上記(2)式で計算される固溶Cを0.01%以上とする必要がある。一方、C量が0.15%を超えると、硬質な低温変態相が増加して鋼板が極端に高強度化し、その加工性が劣化するとともに、冷間圧延および焼鈍時に曲げ剛性向上に有利な集合組織の発達を抑制したり、溶接性の劣化を招く。したがって、C量は0.05〜0.15%、好ましくは0.05〜0.11%とする。
4) Component (“%” below represents “% by mass”.)
Since C: C is an austenite stabilizing element, it enhances hardenability in the cooling process during annealing after cold rolling, promotes the formation of a low-temperature transformation phase, and greatly contributes to high strength. In addition, since the Ar 3 transformation point is lowered, when rolling just above the Ar 3 transformation point, hot rolling at a lower temperature is possible, and ferrite transformation from unrecrystallized austenite is promoted {113} <110> orientation can be developed, and the bending rigidity after cold rolling and annealing can be improved. In order to obtain such an effect, the C content must be 0.05% or more, and the solid solution C calculated by the above formula (2) as an amount that is not fixed as Nb carbide needs to be 0.01% or more. On the other hand, if the C content exceeds 0.15%, the hard low-temperature transformation phase increases, the steel sheet becomes extremely strong, its workability deteriorates, and the texture is advantageous for improving bending rigidity during cold rolling and annealing. It suppresses the development of the steel and causes deterioration of weldability. Therefore, the C content is 0.05 to 0.15%, preferably 0.05 to 0.11%.

Si:Siは、Ar3変態点を上昇させので、Ar3変態点直上で圧延を行うに際して、熱間圧延中における加工オーステナイトの再結晶を促進するため、0.3%を超えて多量に含有されると曲げ剛性を向上させるために必要な結晶方位を発達させることができなくなり、また、鋼板の溶接性を劣化させたり、熱延加熱時にスラブ表面でファイヤライトの生成を促進し、いわゆる赤スケールと呼ばれる熱延鋼板の表面欠陥の発生を助長させる。さらに、冷延鋼板として使用される場合には、表面に生成するSi酸化物が化成処理性を劣化させ、溶融亜鉛めっき鋼板として使用される場合には、表面に生成するSi酸化物が不めっきを誘発する。したがって、Si量は0.3%以下とする。なお、Siはフェライト安定化元素であり、焼鈍時の冷却過程においてフェライト変態を促進して曲げ剛性を向上させるとともに、オーステナイト中にCを濃化させてオーステナイトを安定化させ、低温変態相の生成を促進する効果を有する。このような効果を得るためには、Si量を0.1%以上とすることが望ましい。 Si: Si is than increasing the Ar 3 transformation point, when performing rolling just above Ar 3 transformation point, in order to promote the recrystallization of worked austenite in the hot during rolling, is contained in a large amount exceeding 0.3% It becomes impossible to develop the crystal orientation necessary to improve the bending rigidity, deteriorate the weldability of the steel sheet, promote the formation of firelite on the surface of the slab during hot rolling, so-called red scale It promotes the occurrence of surface defects in hot-rolled steel sheets. Furthermore, when used as a cold-rolled steel sheet, the Si oxide produced on the surface deteriorates the chemical conversion property, and when used as a hot-dip galvanized steel sheet, the Si oxide produced on the surface is not plated. To trigger. Therefore, the Si content is 0.3% or less. Si is a ferrite stabilizing element that promotes ferrite transformation and improves bending rigidity during the cooling process during annealing, and also stabilizes austenite by concentrating C in austenite to generate a low-temperature transformation phase. Has the effect of promoting In order to obtain such an effect, the Si content is preferably 0.1% or more.

Mn:Mnは、本発明において重要な元素の1つであり、熱間圧延時に加工オーステナイトの再結晶を抑制するとともに、オーステナイトを安定化させる元素である。また、Ar3変態点を低下させるので、Ar3変態点直上で圧延を行うに際して、より低温域での熱間圧延を可能にし、加工オーステナイトの再結晶をさらに抑制し、未再結晶オーステナイトからのフェライト変態を促進して{113}<110>方位を発達させて、冷間圧延、焼鈍後の曲げ剛性を向上させることができる。さらに、Mnは、オーステナイト安定化元素でもあるので、焼鈍時の昇温過程においてAc1変態点を低下させ、未再結晶フェライトからのオーステナイト変態を促進することができる。さらにまた、オーステナイトの粒成長とともに、変態にともなって発生した歪みの回復を抑制することもできる。Mnは、焼鈍時の冷却過程において焼入れ性を高め、低温変態相の生成を大きく促進するので、高強度化に大きく寄与する。このような効果を得るためには、Mn量を1.5%以上とする必要がある。一方、Mn量が2.5%を超えると、焼鈍時の冷却過程においてフェライト変態を抑制し、曲げ剛性の向上に有利な集合組織の発達を妨げる。また、熱間圧延や冷間圧延時の圧延荷重を増加させたり、鋼板の溶接性を劣化させる。したがって、Mn量は1.5〜2.5%、好ましくは1.5〜2.2%とする。 Mn: Mn is an important element in the present invention, and is an element that suppresses recrystallization of processed austenite and stabilizes austenite during hot rolling. In addition, since the Ar 3 transformation point is lowered, when rolling immediately above the Ar 3 transformation point, it is possible to perform hot rolling at a lower temperature range, further suppressing recrystallization of the processed austenite, and from unrecrystallized austenite. The ferrite transformation is promoted to develop the {113} <110> orientation, and the bending rigidity after cold rolling and annealing can be improved. Furthermore, since Mn is also an austenite stabilizing element, it can lower the Ac 1 transformation point in the temperature rising process during annealing and promote austenite transformation from unrecrystallized ferrite. Furthermore, along with the austenite grain growth, it is possible to suppress the recovery of strain generated with the transformation. Mn greatly enhances the hardenability in the cooling process during annealing and greatly promotes the formation of a low-temperature transformation phase, and thus greatly contributes to an increase in strength. In order to obtain such an effect, the Mn content needs to be 1.5% or more. On the other hand, if the Mn content exceeds 2.5%, ferrite transformation is suppressed in the cooling process during annealing, and the development of a texture that is advantageous for improving bending rigidity is hindered. Moreover, the rolling load at the time of hot rolling or cold rolling is increased, or the weldability of the steel sheet is deteriorated. Therefore, the Mn content is 1.5 to 2.5%, preferably 1.5 to 2.2%.

P:Pは、0.05%を超えて含有されると粒界に偏析して鋼板の延性や靭性を低下させるとともに、溶接性を劣化させる。また、本発明の鋼板に合金化溶融亜鉛めっきを施す場合には、Pは合金化速度を遅滞させる。したがって、P量は0.05%以下とする。なお、Pは固溶強化元素であり、フェライトを安定化してオーステナイト中へのC濃化を促進する作用や、Siを添加した鋼において赤スケールの発生を抑制する作用も有する。そのため、P量は0.01%以上とすることが好ましい。   When P: P is contained in an amount exceeding 0.05%, it segregates at the grain boundaries to lower the ductility and toughness of the steel sheet and deteriorate the weldability. Moreover, when alloying hot dip galvanizing to the steel plate of this invention, P delays alloying speed | rate. Therefore, the P content is 0.05% or less. P is a solid solution strengthening element, and has the effect of stabilizing ferrite and promoting C concentration in austenite, and the effect of suppressing the generation of red scale in steel to which Si is added. Therefore, the P content is preferably 0.01% or more.

S:Sは、0.01%を超えて多量に含有されると熱間での延性を著しく低下させて熱間割れを誘起し、鋼板の表面性状を著しく劣化させる。また、強度にほとんど寄与しないばかりか、粗大なMnSとして析出し、穴広げ性などの延性を低下させる。したがって、S量は0.01%以下とする。なお、S量は少ないほど好ましいが、穴広げ性をより向上させる観点からは0.005%以下とすることがより好ましい。   When S: S is contained in a large amount exceeding 0.01%, the hot ductility is remarkably lowered to induce hot cracking, and the surface properties of the steel sheet are remarkably deteriorated. Moreover, it not only contributes to the strength, but also precipitates as coarse MnS, reducing the ductility such as hole expandability. Therefore, the S content is 0.01% or less. Note that the smaller the amount of S, the better, but 0.005% or less is more preferable from the viewpoint of further improving the hole expandability.

Al:Alは、フェライト安定化元素であり、鋼のAr3変態点を大きく上昇させるため、Ar3変態点直上で圧延を行うに際して、加工オーステナイトの再結晶を促進して、曲げ剛性向上に有利な結晶方位の発達を抑制する。また、1.0%を超えて含有されるとオーステナイト単相域が消失し、熱間圧延時にオーステナイト域で圧延を終了させることが困難となる。したがって、Al量は1.0%以下とする。なお、Alは、焼鈍時の冷却過程においてフェライト生成を促進し、オーステナイト中にCを濃化させてオーステナイトを安定化させ、低温変態相の生成を促進し、高強度化に寄与するので、Al量は0.2%以上とすることが望ましい。 Al: Al is a ferrite stabilizing element and greatly increases the Ar 3 transformation point of steel, so when rolling just above the Ar 3 transformation point, it promotes recrystallization of processed austenite and is advantageous for improving bending rigidity. Suppresses the development of crystal orientation. On the other hand, if the content exceeds 1.0%, the austenite single phase region disappears, and it is difficult to finish rolling in the austenite region during hot rolling. Therefore, the Al content is 1.0% or less. In addition, Al promotes ferrite formation in the cooling process during annealing, concentrates C in austenite to stabilize austenite, promotes the formation of low-temperature transformation phase, and contributes to high strength. The amount is desirably 0.2% or more.

N:Nは、0.01%を超えて多量に含有されると熱間圧延中にスラブ割れを誘起し、鋼板の表面性状を劣化させる恐れがある。さらに、高温でNbやTiと粗大な窒化物を形成し、NbやTiの添加効果を減少させて製造コストの増大を招く。したがって、N量は0.01%以下、好ましくは0.005%以下とする。   If N: N is contained in a large amount exceeding 0.01%, slab cracking may be induced during hot rolling, and the surface properties of the steel sheet may be deteriorated. Further, coarse nitrides are formed with Nb and Ti at high temperatures, and the effect of adding Nb and Ti is reduced, resulting in an increase in manufacturing cost. Therefore, the N content is 0.01% or less, preferably 0.005% or less.

Nb:Nbは、本発明における最も重要な元素である。すなわち、Nbは熱間圧延時に加工オーステナイトの再結晶を抑制し、未再結晶オーステナイトからのフェライト変態を促進し、微細な{113}<110>方位のフェライトを発達させることにより、冷間圧延、焼鈍後の曲げ剛性を向上させる。さらに、冷間圧延後の焼鈍時における昇温過程において、加工フェライトの再結晶を抑制し、未再結晶フェライトからのオーステナイト変態を促進するとともに、オーステナイト粒を微細化し、さらにオーステナイトの粒成長や変態歪みの回復を抑制して、曲げ剛性を向上させる。このような作用を有するために、Nb量は0.02%以上とするとともに、上記(1)式の左辺で計算される窒化物として固定されないNb量を0.02%以上とする必要がある。一方、0.1%を超えるNbを添加しても、熱間圧延時のオーステナイトや冷間圧延後の焼鈍時におけるフェライトの再結晶抑制効果は飽和するとともに、熱間圧延、冷間圧延における圧延荷重の増大も招く。しがたって、Nb量は0.02〜0.1%とする。   Nb: Nb is the most important element in the present invention. In other words, Nb suppresses recrystallization of processed austenite during hot rolling, promotes ferrite transformation from unrecrystallized austenite, and develops fine {113} <110> -oriented ferrite, Improves bending stiffness after annealing. Furthermore, in the temperature rise process during annealing after cold rolling, recrystallization of processed ferrite is suppressed, austenite transformation from unrecrystallized ferrite is promoted, austenite grains are refined, and austenite grain growth and transformation Suppresses strain recovery and improves bending stiffness. In order to have such an effect, the Nb amount must be 0.02% or more, and the Nb amount that is not fixed as a nitride calculated on the left side of the equation (1) needs to be 0.02% or more. On the other hand, even if adding Nb exceeding 0.1%, the effect of suppressing recrystallization of ferrite during austenite during hot rolling and annealing after cold rolling is saturated, and the rolling load in hot rolling and cold rolling is saturated. It will also increase. Therefore, the Nb content is 0.02 to 0.1%.

上記(1)式について:Nbは高温でNと結合して粗大な窒化物を形成するが、このようなNbは剛性向上に寄与しないことから、Nと結合しないNb量であるNb-(92.9/14)×Nを0.02%以上とする必要がある。   Regarding the above formula (1): Nb combines with N at high temperature to form coarse nitrides, but since such Nb does not contribute to the improvement of rigidity, Nb— (92.9 / 14) × N needs to be 0.02% or more.

上記(2)について:CはNbと結合して炭化物を形成するが、このようなCはマルテンサイトの生成には寄与せず、高強度が得られないことから、Nb-1=Nb-(92.9/14)×NとしたときのC-(12/92.9)×Nb-1を0.01%以上とする必要がある。なお、ここで、Nb-1はNと結合しないNb量を表し、(12/92.9)×Nb-1はCと結合するNb量を表す。 Regarding (2) above, C combines with Nb to form carbides, but such C does not contribute to the formation of martensite and high strength cannot be obtained, so Nb −1 = Nb− ( 92.9 / 14) × N, C− (12 / 92.9) × Nb −1 needs to be 0.01% or more. Here, Nb −1 represents the amount of Nb that does not bind to N, and (12 / 92.9) × Nb −1 represents the amount of Nb that binds to C.

残部は、Feおよび不可避的不純物とすることが好ましいが、他の微量元素を含有しても、本願発明の効果を損なうものではない。他の微量元素としては、例えばCa、REM等が挙げられ、これらの元素は、硫化物系介在物の形態を制御することで鋼板の伸びフランジ性向上に寄与する。したがって、特に限定はしないが、この効果を得るためには、Ca、REMのうち1種以上を含み、これらの含有量の合計を0.001%以上とすることが好ましい。また、Ca、REMの含有量の合計が0.01%を超えると効果が飽和することから、これらの含有量の合計は0.01%以下とするのが好ましく、より好ましくは、0.005%以下である。また、不純物元素としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下である。   The balance is preferably Fe and inevitable impurities, but even if it contains other trace elements, the effect of the present invention is not impaired. Examples of other trace elements include Ca and REM, and these elements contribute to improving the stretch flangeability of the steel sheet by controlling the form of sulfide inclusions. Therefore, although not particularly limited, in order to obtain this effect, it is preferable to include one or more of Ca and REM and to make the total of these contents 0.001% or more. Further, since the effect is saturated when the total content of Ca and REM exceeds 0.01%, the total of these contents is preferably 0.01% or less, and more preferably 0.005% or less. Examples of the impurity element include Sb, Sn, Zn, Co, etc., and the allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: 0.1% or less.

上記成分元素に加え、下記の元素のうちから選ばれた少なくとも1つの元素を含有させることが好ましい。   In addition to the above component elements, it is preferable to contain at least one element selected from the following elements.

Ti:Tiは、微細な炭窒化物として析出し、強度上昇に寄与する。また、熱間圧延時に加工オーステナイトの再結晶を抑制し、未再結晶オーステナイトからのフェライト変態を促進して曲げ剛性の向上に寄与する。さらに、焼鈍時の昇温過程において加工フェライトの再結晶を抑制することで、未再結晶フェライトからのオーステナイト変態を促進するとともに、オーステナイト粒を微細化し、オーステナイトの粒成長や変態歪みの回復を抑制することで、曲げ剛性を向上させる。さらにまた、Nを窒化物として固定することで、Nbが窒化物として固定されるのを抑制することができる。このような作用を有するためには、Ti量を0.01%以上とする必要がある。一方、Ti量が0.2%を超えると、熱間圧延時のオーステナイトや冷間圧延後の焼鈍時のフェライトの再結晶抑制効果が飽和し、合金コストの増加を招く。したがって、Ti量は0.01〜0.2%とすることが好ましい。   Ti: Ti precipitates as fine carbonitrides and contributes to an increase in strength. In addition, recrystallization of the processed austenite during hot rolling is suppressed, and ferrite transformation from unrecrystallized austenite is promoted, thereby contributing to improvement in bending rigidity. Furthermore, by suppressing recrystallization of processed ferrite during the temperature rise process during annealing, it promotes austenite transformation from unrecrystallized ferrite, refines austenite grains, and suppresses austenite grain growth and recovery of transformation strain. By doing so, the bending rigidity is improved. Furthermore, by fixing N as a nitride, it is possible to suppress Nb from being fixed as a nitride. In order to have such an action, the Ti content needs to be 0.01% or more. On the other hand, if the Ti content exceeds 0.2%, the effect of suppressing recrystallization of austenite during hot rolling or ferrite during annealing after cold rolling is saturated, leading to an increase in alloy costs. Therefore, the Ti content is preferably 0.01 to 0.2%.

V:Vは、微細な炭窒化物として析出し、強度上昇に寄与する。そのためには、V量を0.01%以上とする必要がある。一方、V量が0.2%を超えても強度上昇効果は小さく、合金コストの増加を招く。したがって、V量は0.01〜0.2%とすることが好ましい。   V: V precipitates as fine carbonitride and contributes to an increase in strength. For that purpose, the V amount needs to be 0.01% or more. On the other hand, even if the amount of V exceeds 0.2%, the effect of increasing the strength is small and the alloy cost is increased. Therefore, the V amount is preferably 0.01 to 0.2%.

TiやVを添加する場合は、C、N、S、Nb、Ti、Vの含有量が上記(3)式と上記(4)式を満足するようにする必要がある。   When Ti or V is added, it is necessary that the contents of C, N, S, Nb, Ti, and V satisfy the above formulas (3) and (4).

上記(3)式について:TiはNbに優先して窒化物を生成することから、N-2=N-(14/47.9)×Ti(ただし、N-2≦0のときは、N-2=0)としたときの(Nb-(92.9/14)×N-2)を0.02%以上とする必要がある。 Equation (3) for: Ti from generating nitrides in preference to Nb, N -2 = N- (14 / 47.9) × Ti ( provided that when the N -2 ≦ 0 is, N -2 = 0), (Nb− (92.9 / 14) × N −2 ) needs to be 0.02% or more.

上記(4)式について:Ti、Vは炭窒化物を形成することで、炭窒化物として固定されないC量を減少させる。さらに、Tiは硫化物を形成により固定されるので、炭窒化物として固定されないC量を0.01%以上とするため、(C-(12/92.9)×Nb-2-(12/47.9)×Ti-2-(12/50.9)×V)を0.01%以上とする必要がある。ただし、Nb-2=Nb-(92.9/14)×N-2、Ti-2=Ti-(47.9/14)×N-(47.9/32.1)×S(ただし、Ti-2≦0のときは、Ti-2=0)
Cr:Crは、セメンタイトの生成を抑制して焼入れ性を高める元素であり、焼鈍時の冷却過程において低温変態相の生成を促進して高強度化に大きく寄与する。また、熱間圧延時に加工オーステナイトの再結晶を抑制し、未再結晶オーステナイトからのフェライト変態を促進して{113}<110>方位を発達させ、焼鈍後の曲げ剛性を向上させる。このような効果を得るには、Cr量を0.05%以上とする必要がある。一方、Cr量が1.0%を超えると、その効果が飽和するだけでなく、合金コストの増加を招く。したがって、Cr量は0.05〜1.0%とすることがこのましい。なお、本発明の鋼板に溶融亜鉛めっきを施す場合には、表面に生成するCrの酸化物が不めっきを誘発するので、Cr量は0.5%以下とすることがより好ましい。
Regarding the above formula (4): Ti and V form carbonitride, thereby reducing the amount of C not fixed as carbonitride. Furthermore, since Ti is fixed by formation of sulfide, in order to make the amount of C not fixed as carbonitride 0.01% or more, (C− (12 / 92.9) × Nb −2 − (12 / 47.9) × Ti -2- (12 / 50.9) × V) needs to be 0.01% or more. However, Nb -2 = Nb- (92.9 / 14) × N -2 , Ti -2 = Ti- (47.9 / 14) × N- (47.9 / 32.1) × S (However, when Ti -2 ≦ 0 , Ti -2 = 0)
Cr: Cr is an element that suppresses the formation of cementite and enhances hardenability, and promotes the formation of a low-temperature transformation phase in the cooling process during annealing, and greatly contributes to an increase in strength. It also suppresses recrystallization of processed austenite during hot rolling, promotes ferrite transformation from unrecrystallized austenite, develops the {113} <110> orientation, and improves bending rigidity after annealing. In order to obtain such an effect, the Cr amount needs to be 0.05% or more. On the other hand, if the Cr content exceeds 1.0%, the effect is not only saturated but also the alloy cost is increased. Therefore, the Cr content is preferably 0.05 to 1.0%. When hot dip galvanizing is applied to the steel sheet of the present invention, the Cr oxide produced on the surface induces non-plating, so the Cr content is more preferably 0.5% or less.

Ni:Niは、オーステナイトを安定化することで焼入れ性を高める元素であり、焼鈍時の冷却過程において低温変態相の生成を促進して高強度化に大きく寄与する。また、焼鈍時の昇温過程においてAc1変態点を低下させ、未再結晶フェライトからのオーステナイト変態を促進し、冷却過程において曲げ剛性に有利な低温変態相の方位を発達させる。さらに、熱間圧延時に加工オーステナイトの再結晶を抑制するとともに、Ar3変態点を低下させ、Ar3変態点直上で圧延をおこなうに際し、より低温域での熱間圧延を可能にすることで、未再結晶オーステナイトからのフェライト変態を促進して{113}<110>方位を発達させ、焼鈍後の曲げ剛性を向上させる。さらにまた、Cu添加の場合に起こり易い熱間圧延時の割れを防止する。このような作用を得るためには、Ni量を0.05%以上とする必要がある。一方、Ni量が1.0%を超えると、焼鈍時の冷却過程でフェライト変態を抑制し、曲げ剛性の向上に有利な集合組織を発達させることができなくなったり、合金コストの増加を招く。したがって、Ni量は0.05〜1.0%とすることが好ましい。 Ni: Ni is an element that enhances hardenability by stabilizing austenite, and promotes the formation of a low-temperature transformation phase in the cooling process during annealing and greatly contributes to high strength. It also lowers the Ac 1 transformation point during the temperature rise process during annealing, promotes austenite transformation from unrecrystallized ferrite, and develops the orientation of the low temperature transformation phase that is advantageous for bending rigidity during the cooling process. Furthermore, it is possible to suppress the recrystallization of worked austenite in the hot rolling reduces the Ar 3 transformation point, when performing a rolling just above Ar 3 transformation point, to allow a more hot rolling at a low temperature range, Promote ferrite transformation from unrecrystallized austenite to develop {113} <110> orientation and improve bending stiffness after annealing. Furthermore, it prevents cracks during hot rolling that are likely to occur when Cu is added. In order to obtain such an action, the Ni content needs to be 0.05% or more. On the other hand, if the Ni content exceeds 1.0%, the ferrite transformation is suppressed during the cooling process during annealing, and it becomes impossible to develop a texture that is advantageous for improving the bending rigidity, or the alloy cost is increased. Therefore, the Ni content is preferably 0.05 to 1.0%.

Mo:Moは、界面の移動度を小さくすることにより焼入れ性を高める元素であり、焼鈍時の冷却過程において低温変態相の生成を促進して高強度化に大きく寄与する。また、熱間圧延時に加工オーステナイトの再結晶を抑制し、未再結晶オーステナイトからのフェライト変態を促進して{113}<110>方位を発達させ、焼鈍後の曲げ剛性を向上させる。このような作用を得るためには、Mo量を0.05%以上とする必要がある。一方、Mo量が1.0%を超えると、その効果が飽和するだけでなく、合金コスト増を招く。したがって、Mo量は0.05〜1.0%とすることが好ましい。   Mo: Mo is an element that increases the hardenability by reducing the mobility of the interface, and promotes the formation of a low-temperature transformation phase in the cooling process during annealing, and greatly contributes to an increase in strength. It also suppresses recrystallization of processed austenite during hot rolling, promotes ferrite transformation from unrecrystallized austenite, develops the {113} <110> orientation, and improves bending rigidity after annealing. In order to obtain such an action, the Mo amount needs to be 0.05% or more. On the other hand, if the amount of Mo exceeds 1.0%, not only the effect is saturated, but also the alloy cost increases. Therefore, the Mo amount is preferably 0.05 to 1.0%.

B:Bは、オーステナイトからフェライトへの変態を抑制し、焼入れ性を高める元素であり、焼鈍時の冷却過程において低温変態相の生成を促進して高強度化に大きく寄与する。また、熱間圧延時に加工オーステナイトの再結晶を抑制し、未再結晶オーステナイトからのフェライト変態を促進して{113}<110>方位を発達させ、焼鈍後の曲げ剛性を向上させる。こうした効果を得るためには、B量を0.0005%以上とする必要がある。一方、B量が0.0030%を超えると、焼鈍時の冷却過程でフェライトの変態を抑制して曲げ剛性の向上に寄与しなくなる。したがって、B量は0.0005〜0.0030%とすることが好ましい。   B: B is an element that suppresses the transformation from austenite to ferrite and improves the hardenability, and promotes the formation of a low-temperature transformation phase in the cooling process during annealing, and greatly contributes to an increase in strength. It also suppresses recrystallization of processed austenite during hot rolling, promotes ferrite transformation from unrecrystallized austenite, develops the {113} <110> orientation, and improves bending rigidity after annealing. In order to obtain such an effect, the B content needs to be 0.0005% or more. On the other hand, if the amount of B exceeds 0.0030%, the transformation of ferrite is suppressed during the cooling process during annealing, and it does not contribute to the improvement of bending rigidity. Therefore, the B content is preferably 0.0005 to 0.0030%.

Cu:Cuは、焼入れ性を高める元素であり、焼鈍時の冷却過程において低温変態相の生成を促進して高強度化に大きく寄与する。この効果を得るためには、Cu量を0.1%以上とする必要がある。一方、Cu量が2.0%を超えると熱間での延性を低下させて、熱間圧延時の割れにともなう表面欠陥を誘発するとともに、焼入れ性の効果も飽和する。したがって、Cu量は0.1〜2.0%とすることが好ましい。なお、Cuを添加する場合、前述のように熱間圧延時の割れを防止するため、Niも添加することが好ましい。   Cu: Cu is an element that enhances hardenability, and promotes the formation of a low-temperature transformation phase in the cooling process during annealing, and greatly contributes to high strength. In order to obtain this effect, the Cu content needs to be 0.1% or more. On the other hand, if the amount of Cu exceeds 2.0%, the hot ductility is lowered, surface defects accompanying cracks during hot rolling are induced, and the effect of hardenability is saturated. Therefore, the Cu content is preferably 0.1 to 2.0%. In addition, when adding Cu, in order to prevent the crack at the time of hot rolling as mentioned above, it is preferable to also add Ni.

W:Wは、固溶元素や炭化物として存在することで、曲げ剛性を向上させる。この効果を得るためには、W量を0.1%以上とする必要がある。一方、W量が2.0%を超えると合金コストが増加することから、W量は0.1〜2.0%とすることが好ましい。   W: W is present as a solid solution element or carbide, thereby improving the bending rigidity. In order to obtain this effect, the W amount needs to be 0.1% or more. On the other hand, if the amount of W exceeds 2.0%, the alloy cost increases, so the amount of W is preferably 0.1 to 2.0%.

なお、本発明の高強度薄鋼板には、熱延鋼板、冷延鋼板の他に、電気めっき法あるいは合金化を含む溶融めっき法などにより、純亜鉛、亜鉛系合金、純Al、Al系合金などのめっき層を表面に設けた薄鋼板も含まれる。   The high-strength thin steel sheet of the present invention includes pure zinc, zinc-based alloy, pure Al, Al-based alloy by electroplating or hot dipping including alloying in addition to hot-rolled steel and cold-rolled steel. A thin steel plate provided with a plating layer such as is also included.

5)製造方法
本発明の高強度薄鋼板は、例えば、上記のような成分組成からなる鋼を、スラブ鋳造し、そのまま、あるいは一旦冷却し再加熱した後、粗圧延と仕上圧延からなる熱間圧延を行い熱延鋼板とし、巻取った後、酸洗し、冷間圧延を行って冷延鋼板とし、焼鈍を行って製造されるが、以下にその詳細を説明する。
5) Manufacturing method The high-strength thin steel sheet of the present invention is, for example, a slab casted steel having the above-described composition, as it is, or after being cooled and reheated once, and then hot between rough rolling and finish rolling. It is rolled into a hot-rolled steel sheet, wound up, pickled, cold-rolled into a cold-rolled steel sheet, and annealed. The details will be described below.

5-1)熱間圧延前の再加熱
鋳造後のスラブは、そのまま、あるいは一旦冷却したのち再加熱を行って熱間圧延されるが、再加熱を行う場合は、加熱温度Th℃を、((-7020/(log(Nb・C0.87)-2.81))-273)〜1300℃の温度範囲とし、かつThと加熱時間t(s)が上記の(7)式を満たすように再加熱を行うことが好ましい。なお、該式中、Nb、Cは各々の元素の含有量(質量%)である。一旦冷却したのち再加熱を行うと、オーステナイト→フェライト→オーステナイト変態が起こるので、オーステナイト粒を細粒化でき、曲げ剛性をより向上させることができるが、そのときThとtを上記の(7)式のように制御する必要がある。特に、Thとtを確保することで、炭化物として析出しているNbを再固溶させ、Nbの効果を大きくするには、((5.6×10-4×exp((-3.44×10)/(Th+273)))×t)0.5を10-6以上とすることが好ましい。一方、Thとtが大きくなると、オーステナイトが粗大化し、曲げ剛性が低下することから、((5.6×10-4×exp((-3.44×10)/(Th+273)))×t)0.5を3×10-5以下とすることが好ましい。
5-1) Reheating before hot rolling The slab after casting is hot-rolled as it is or after being cooled and then reheated. When reheating is performed, the heating temperature Th ° C (-7020 / (log (Nb · C 0.87 ) -2.81))-273) to 1300 ° C, and reheat so that Th and heating time t (s) satisfy the above formula (7) Preferably it is done. In the formula, Nb and C are the contents (% by mass) of the respective elements. Once cooled and reheated, the austenite → ferrite → austenite transformation occurs, so the austenite grains can be made finer and the bending rigidity can be further improved. It needs to be controlled as shown in the equation. In particular, in order to increase the effect of Nb by re-dissolving Nb precipitated as carbide by securing Th and t, ((5.6 × 10 −4 × exp ((− 3.44 × 10 4 ) / (Th + 273))) × t) 0.5 is preferably 10 −6 or more. On the other hand, as Th and t increase, austenite coarsens and bending rigidity decreases, so ((5.6 × 10 -4 × exp ((-3.44 × 10 4 ) / (Th + 273))) × t) 0.5 is preferably 3 × 10 −5 or less.

なお、ここで、上記(7)式はオーステナイト中のNbの拡散距離を表す指標であり、また((-7020/(log(Nb・C0.87)-2.81))-273)はNbの溶解限温度を表す。 Here, the above equation (7) is an index representing the diffusion distance of Nb in austenite, and ((-7020 / (log (Nb · C 0.87 ) -2.81))-273) is the solubility limit of Nb. Represents temperature.

5-2)熱間圧延
熱間圧延時の粗圧延を低温で行うと、オーステナイト域で圧延するときは、加工歪みによりオーステナイト粒を細粒化でき、また、フェライト域やフェライト+オーステナイト域で圧延するときは、その後の再加熱時の再変態でオーステナイト粒を細粒化できるので、曲げ剛性をより向上させることができる。したがって、特に限定しないが、(Ar3変態点+100)℃以下における合計圧下率を20%以上として粗圧延を行うことが好ましく、この場合は、その後、Ar3変態点以上の仕上圧延終了温度を確保できるように、粗圧延した鋼を再加熱することが好ましい。なお、再加熱するにあたり、オーステナイト粒が粗大化しないように(Ar3変態点+150)℃以下に再加熱して仕上圧延を行うことが好ましい。
5-2) Hot rolling When rough rolling during hot rolling is performed at a low temperature, when rolling in the austenite region, austenite grains can be refined due to processing strain, and rolling in the ferrite region or ferrite + austenite region When doing, since the austenite grain can be refined by the retransformation at the time of subsequent reheating, the bending rigidity can be further improved. Accordingly, although not particularly limited, it is preferable to perform rough rolling at a total rolling reduction at (Ar 3 transformation point +100) ° C. or less of 20% or more, and in this case, finish rolling finish temperature at or above Ar 3 transformation point It is preferable to reheat the rough-rolled steel so as to ensure the following. In reheating, it is preferable to perform finish rolling by reheating to (Ar 3 transformation point +150) ° C. or less so that the austenite grains do not become coarse.

熱間圧延時の仕上圧延の圧延終了温度がAr3変態点を下回ると、フェライト粒が粗大化したり、巻取温度が低い場合には未再結晶の組織となって、曲げ剛性を向上させる集合組織を発達させることができない。したがって、仕上圧延終了温度はAr3変態点以上とする必要がある。なお、仕上圧延の圧延終了温度は仕上圧延終了直後の温度である。また、仕上圧延を行うに際し、Ar3変態点直上での圧延を行うと{112}<111>の結晶方位からなる未再結晶のオーステナイト組織を発達させ、その後の冷却過程において{112}<111>未再結晶オーステナイトからフェライト変態させることで{113}<110>のフェライト方位を発達させることができ、冷間圧延、焼鈍後に(113)[1-10]〜(223)[1-10]方位を高めることができ、曲げ剛性をより向上させることができる。それには、(Ar3変態点+100)℃以下における合計圧下率を50%以上で仕上圧延を行い、かつ仕上圧延終了温度をAr3変態点〜(Ar3変態点+50)℃の温度範囲とすることが好ましい。 When the rolling finish temperature of finish rolling during hot rolling falls below the Ar 3 transformation point, the ferrite grains become coarse, or when the coiling temperature is low, it becomes an unrecrystallized structure and improves the bending rigidity. The organization cannot be developed. Therefore, the finish rolling finish temperature needs to be higher than the Ar 3 transformation point. Note that the finish rolling temperature of finish rolling is the temperature immediately after finish rolling. In addition, when finishing rolling is performed immediately above the Ar 3 transformation point, an unrecrystallized austenitic structure consisting of {112} <111> crystallographic orientation develops, and in the subsequent cooling process, {112} <111 > By transforming ferrite from unrecrystallized austenite, the ferrite orientation of {113} <110> can be developed, and after cold rolling and annealing, (113) [1-10] to (223) [1-10] The orientation can be increased, and the bending rigidity can be further improved. For this purpose, finish rolling is performed at a total reduction ratio of 50% or more at (Ar 3 transformation point +100) ° C. or less, and the finish rolling finish temperature ranges from Ar 3 transformation point to (Ar 3 transformation point +50) ° C. It is preferable that

また、仕上圧延を行うに際し、潤滑圧延を行うと剪断歪みを抑制することができる。特に、未再結晶オーステナイト域で圧延する場合には、{112}<111>方位からなる未再結晶のオーステナイト組織を発達させることができ、曲げ剛性の向上に効果的である。したがって、仕上圧延を行うとき、潤滑を施すことが好ましい。ここで、潤滑は熱間圧延機の全スタンドで行うことが好ましい。なお、潤滑圧延では、例えば、油系潤滑剤等を用いてロールと鋼板との摩擦係数を0.2以下とすることが好ましい。   Moreover, when performing finish rolling, if shear rolling is performed, shear strain can be suppressed. In particular, when rolling in an unrecrystallized austenite region, an unrecrystallized austenite structure consisting of {112} <111> orientations can be developed, which is effective in improving bending rigidity. Therefore, it is preferable to lubricate when finishing rolling. Here, the lubrication is preferably performed in all the stands of the hot rolling mill. In the lubrication rolling, for example, it is preferable that the friction coefficient between the roll and the steel sheet is 0.2 or less using an oil-based lubricant or the like.

5-3)熱間圧延後の冷却
仕上圧延後の冷却速度を高めると、フェライト粒を細粒化し、冷間圧延、焼鈍後に(113)[1-10]〜(223)[1-10]方位を高めることができたり、また未再結晶オーステナイト域で圧延を終了する場合には、オーステナイトの再結晶を抑制し、未再結晶オーステナイトからのフェライト変態を進行させることができ、曲げ剛性をより向上させることができる。そのためには、仕上圧延後、3s以内に50℃/s以上の平均冷却速度で700℃以下まで冷却することがより好ましい。仕上圧延終了後冷却開始までの時間を3s以下とすることは、オーステナイトの再結晶を抑制する上で効果的であり、また、平均冷却速度を50℃/s以上とすることは、フェライト粒の粗大化を抑制する上で効果的であり、さらに、700℃以下まで冷却することは、加工オーステナイトの再結晶の進行やフェライト粒の粗大化を防止する上で効果的である。
5-3) Cooling after hot rolling When the cooling rate after finish rolling is increased, ferrite grains are refined, and after cold rolling and annealing, (113) [1-10] to (223) [1-10] When the orientation can be increased, or when rolling is finished in the non-recrystallized austenite region, recrystallization of austenite can be suppressed, and ferrite transformation from unrecrystallized austenite can proceed, and bending rigidity can be further increased. Can be improved. For that purpose, it is more preferable to cool to 700 ° C. or less at an average cooling rate of 50 ° C./s or more within 3 s after finish rolling. It is effective to suppress the recrystallization of austenite to 3 s or less after finishing rolling is finished, and it is effective to suppress the recrystallization of austenite, and the average cooling rate is 50 ° C./s or more. It is effective in suppressing the coarsening, and further cooling to 700 ° C. or lower is effective in preventing the progress of recrystallization of the processed austenite and the coarsening of the ferrite grains.

5-4)巻取温度
熱間圧延後の鋼板を巻取るにあたり、巻取温度が500℃を下回ると低温変態相が生成して、その後の冷間圧延において、曲げ剛性を向上させる集合組織を発達させることができない。したがって、巻取温度は500℃以上とする必要がある。一方、巻取温度が高いと、冷間圧延前のフェライト粒が粗大化し、曲げ剛性を向上させる集合組織の発達を抑制することから、巻取温度は650℃以下とすることが好ましい。
5-4) Winding temperature When winding the steel sheet after hot rolling, if the winding temperature falls below 500 ° C, a low-temperature transformation phase is generated. It cannot be developed. Therefore, the coiling temperature needs to be 500 ° C. or higher. On the other hand, if the coiling temperature is high, the ferrite grains before cold rolling are coarsened, and the development of the texture that improves the bending rigidity is suppressed. Therefore, the coiling temperature is preferably 650 ° C. or less.

巻取り後の熱延鋼板は、スケールを除去するため冷間圧延前に酸洗を行う必要がある。なお、酸洗条件は通常の条件で行えばよい。   The hot-rolled steel sheet after winding needs to be pickled before cold rolling in order to remove scale. In addition, what is necessary is just to perform pickling conditions on normal conditions.

5-5)冷間圧延時の圧下率
酸洗後の熱延鋼板を冷間圧延する際に、その圧下率を最適化することで、曲げ剛性の向上に有効な(113)[1-10]〜(223)[1-10]方位に回転させることができる。このような方位を発達させるには圧下率を45〜85%とする必要がある。圧下率が45%未満あるいは85%を超えると(113)[1-10]〜(223)[1-10]方位への回転が不十分となり、曲げ剛性を向上させることが困難となる。
5-5) Reduction ratio during cold rolling When cold rolling a hot-rolled steel sheet after pickling, optimizing the reduction ratio is effective in improving bending rigidity (113) [1-10 ] To (223) [1-10] direction. In order to develop such an orientation, the rolling reduction needs to be 45 to 85%. If the rolling reduction is less than 45% or more than 85%, the rotation in the (113) [1-10] to (223) [1-10] directions becomes insufficient, and it becomes difficult to improve the bending rigidity.

5-6)焼鈍
焼鈍時の昇温速度が極端に遅いと、昇温途中でフェライトの再結晶が進行することから、焼鈍時の昇温速度は、室温から後述するTaまで平均で1℃/s以上とする必要がある。なお、昇温速度は、特に上限を設けるものではないが、大きな昇温速度を得るには急速加熱設備等が必要となり製造コストが上昇するため、平均で30℃/s未満とすることが好ましい。
5-6) Annealing When the rate of temperature rise during annealing is extremely slow, the recrystallization of ferrite proceeds during the temperature rise, so the rate of temperature rise during annealing is 1 ° C / average on average from room temperature to Ta described later. It needs to be s or more. The heating rate is not particularly set as an upper limit, but in order to obtain a large heating rate, a rapid heating facility or the like is required and the manufacturing cost is increased. Therefore, the heating rate is preferably less than 30 ° C./s on average. .

焼鈍時の加熱温度は、未再結晶フェライトからのオーステナイト変態を進行させる必要があることから、Ac3変態点に影響を及ぼすC、Si、Mn、Al、Cr、Mo、Ni、Cu、Wの含有量から求まる上記(5)式のTa=930-200×C0.5+40×Si-30×Mn+40×Al-10×Cr+30×Mo-15×Ni-20×Cu+10×W(℃)以上の温度とする必要がある。なお、Taは、昇温時のオーステナイト変態の完了の目安となる温度であり、発明者らの求めた回帰式である。一方、加熱温度が高い場合には、オーステナイトが粗大化し、曲げ剛性を高めることができなくなり、また、この傾向は圧下率が低いほど顕著であることから、加熱温度は(Ta+10+R0.9)℃以下とする必要がある。 Since the heating temperature during annealing needs to advance the austenite transformation from unrecrystallized ferrite, it affects the Ac 3 transformation point of C, Si, Mn, Al, Cr, Mo, Ni, Cu, W Ta = 930-200 × C 0.5 + 40 × Si-30 × Mn + 40 × Al-10 × Cr + 30 × Mo-15 × Ni-20 × Cu + 10 × W It is necessary to set the temperature to (° C) or higher. Note that Ta is a temperature that is a standard for completing the austenite transformation at the time of temperature increase, and is a regression equation obtained by the inventors. On the other hand, when the heating temperature is high, austenite becomes coarse and the bending rigidity cannot be increased, and this tendency becomes more prominent as the rolling reduction is lower, so the heating temperature is (Ta + 10 + R 0.9 ) Must be below ° C.

焼鈍時の加熱温度が高いところで、長時間滞留させるとオーステナイトが粗大化し、曲げ剛性を高めることができなることから、焼鈍加熱時に鋼板をTa〜(Ta+10+R0.9)℃の温度範囲に上記(6)式を満たすような時間v(s)滞留させる必要がある。なお、Ta〜(Ta+10+R0.9)℃の温度範囲では、上記滞留時間v(s)を満足しさえすればよく、この温度範囲における熱履歴は、特に規定する必要はなく、製造設備に合わせ設定すればよい。ここで、上記(6)式は、オーステナイトが粗大化し過ぎず曲げ剛性を確保することができるための滞留時間を求めた実験式である。 When the annealing temperature is high, austenite coarsens and the bending rigidity can be increased if it is retained for a long time, so the steel sheet is brought to a temperature range of Ta to (Ta + 10 + R 0.9 ) ° C during annealing. It is necessary to hold for a time v (s) that satisfies the above equation (6). In the temperature range of Ta to (Ta + 10 + R 0.9 ) ° C., it is only necessary to satisfy the above residence time v (s), and the heat history in this temperature range does not need to be specified in particular. You may set according to. Here, the above equation (6) is an empirical equation for obtaining the residence time for ensuring the bending rigidity without austenite becoming too coarse.

焼鈍時に加熱後の冷却は、(113)[1-10]〜(223)[1-10]方位をもつフェライトを生成、成長させる必要があることから、Ta〜600℃の温度範囲を30℃/s以下の平均冷却速度で冷却する必要がある。一方、平均冷却速度が3℃/sを下回る場合には、フェライト粒が大きくなるとともに、粒径分布の分散も大きくなり、優れた曲げ剛性が得られない。したがって、加熱後は、Ta〜600℃の温度範囲を3〜30℃/sの平均冷却速度で冷却する必要がある。なお、600℃未満の冷却は、特に規定する必要はなく、製造設備に合わせ設定すればよい。   Cooling after heating during annealing requires the generation and growth of ferrite with (113) [1-10] to (223) [1-10] orientation, so the temperature range from Ta to 600 ° C is 30 ° C. It is necessary to cool at an average cooling rate of less than / s. On the other hand, when the average cooling rate is less than 3 ° C./s, the ferrite grains increase and the dispersion of the particle size distribution also increases, so that excellent bending rigidity cannot be obtained. Therefore, after heating, it is necessary to cool the temperature range of Ta to 600 ° C. at an average cooling rate of 3 to 30 ° C./s. The cooling below 600 ° C. does not need to be specified in particular and may be set according to the manufacturing equipment.

焼鈍後は、形状を矯正するとともに、加工により結晶が回転することでさらに剛性を向上させることができるので、0.3%以上の伸び率で調質圧延を行うことが望ましい。一方、伸び率が10%を越えると加工性が低下するため、伸び率は0.3〜10%であることが好ましい。   After annealing, the shape is corrected, and the rigidity can be further improved by rotating the crystal by processing. Therefore, it is desirable to perform temper rolling with an elongation of 0.3% or more. On the other hand, if the elongation exceeds 10%, the workability deteriorates. Therefore, the elongation is preferably 0.3 to 10%.

発明の実施に当たっては、目的とする強度レベルに応じた化学成分の鋼を、通常の転炉法、電炉法などで溶製する。また、焼鈍時には、冷却途中で過時効処理を行ってもよいし、一旦冷却した後、再加熱して過時効処理を行ってもよい。溶融亜鉛めっき鋼板を製造する場合には、溶融亜鉛中に浸漬させることでめっきすることもできるし、浸漬後、めっき層の合金化処理のため500℃以上の加熱を行うこともできる。   In carrying out the invention, steel having a chemical composition corresponding to the intended strength level is melted by a normal converter method, electric furnace method, or the like. Moreover, at the time of annealing, you may perform an overaging process in the middle of cooling, and after cooling once, you may reheat and perform an overaging process. In the case of producing a hot dip galvanized steel sheet, it can be plated by immersing it in hot dip zinc, and after immersing, heating at 500 ° C. or higher can be performed for alloying treatment of the plating layer.

表1〜2に示す成分組成とAr3変態点を有する鋼A〜AJを溶製し、スラブに鋳造した。ここで、表中のAr3変態点は、発明者らが求めた実験式である900-200×C0.5+40×Si-30×Mn+40×Al-10×Cr+30×Mo-15×Ni-20×Cu+10×Wより求めた(ただし、各元素記号は各元素の含有量を表す。)。このスラブは、その後、表3〜5に示す熱間圧延条件で、直接、あるいは一旦室温まで冷却した後再加熱し、粗圧延し、そのまま仕上圧延、あるいは再加熱を行った後に仕上圧延を行い、巻取って熱延鋼板を作製した。ここで、仕上圧延を潤滑した場合は、全スタンドで潤滑圧延(摩擦係数≦0.2)を行った。その後、酸洗し、表6〜8に示す冷間圧延、焼鈍、調質圧延の各条件で、冷間圧延し、焼鈍、調質圧延を行って板厚1.4mmの鋼板1〜87を作製した。なお、焼鈍では、冷却途中で350℃で150sの時効処理を行って冷延鋼板を、あるいは冷却途中の470℃で溶融亜鉛めっきし、500〜550℃に再加熱して合金化処理を行い合金化溶融亜鉛めっき鋼板を作製した。 Steels A to AJ having the composition shown in Tables 1 and 2 and Ar 3 transformation points were melted and cast into slabs. Here, the Ar 3 transformation point in the table is the empirical formula obtained by the inventors 900-200 × C 0.5 + 40 × Si-30 × Mn + 40 × Al-10 × Cr + 30 × Mo-15 × Ni-20 × Cu + 10 × W (However, each element symbol represents the content of each element.) This slab is then subjected to hot rolling conditions shown in Tables 3 to 5 directly or once after cooling to room temperature and then reheated, roughly rolled, and then finish rolled or reheated and then finish rolled. Then, it was wound up to produce a hot rolled steel sheet. Here, when finish rolling was lubricated, lubrication rolling (friction coefficient ≦ 0.2) was performed on all stands. Thereafter, pickling and cold rolling, annealing and temper rolling conditions shown in Tables 6 to 8 were performed to produce steel plates 1 to 87 having a thickness of 1.4 mm. did. In annealing, aging treatment is performed at 350 ° C. for 150 s during cooling, and the cold-rolled steel sheet is hot-dip galvanized at 470 ° C. during cooling, and reheated to 500 to 550 ° C. and alloyed for alloying. A galvannealed steel sheet was prepared.

そして、上記した方法で、ミクロ組織、集合組織、3点曲げ試験によるσが200MPaのときの圧延方向に対して0°、45°、90°方向の(Δσ/Δε)を求め、また、圧延方向に対して90°方向の引張特性値(降伏強度YP、引張強度TS、伸びEl)を、JIS 5 号引張試験片を用い、引張速度1mm/分で求めた。   Then, by the above-described method, the microstructure, texture, and (Δσ / Δε) in the direction of 0 °, 45 °, and 90 ° with respect to the rolling direction when σ by the three-point bending test is 200 MPa, and rolling Tensile property values (yield strength YP, tensile strength TS, elongation El) in the 90 ° direction with respect to the direction were determined using a JIS No. 5 tensile test piece at a tensile speed of 1 mm / min.

結果を表9〜11および図1〜5に示す。本発明例では、圧延方向に対して90°方向の(Δσ/Δε)が230GPa以上であり、かつ3方向の平均の(Δσ/Δε)が200GPa以上であり、優れた曲げ剛性が得られることがわかる。   The results are shown in Tables 9 to 11 and FIGS. In the example of the present invention, the (Δσ / Δε) in the 90 ° direction with respect to the rolling direction is 230 GPa or more, and the average (Δσ / Δε) in the three directions is 200 GPa or more, and an excellent bending rigidity can be obtained. I understand.

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

Figure 2007092126
Figure 2007092126

圧延方向に対して90°方向の(Δσ/Δε)とフェライト相の面積率との関係を示す図である。FIG. 5 is a diagram showing a relationship between (Δσ / Δε) in a 90 ° direction with respect to a rolling direction and an area ratio of a ferrite phase. 圧延方向に対して90°方向の(Δσ/Δε)とフェライト平均粒径との関係を示す図である。FIG. 5 is a diagram showing the relationship between (Δσ / Δε) in the 90 ° direction with respect to the rolling direction and the average ferrite grain size. 圧延方向に対して90°方向の(Δσ/Δε)と(フェライト平均粒径dα/マルテンサイト平均粒径dM)との関係を示す図である。FIG. 5 is a diagram showing the relationship between (Δσ / Δε) and (ferrite average particle diameter d α / martensite average particle diameter d M ) in the 90 ° direction with respect to the rolling direction. 圧延方向に対して90°方向の(Δσ/Δε)とフェライト粒径の標準偏差σAとの関係を示す図である。FIG. 5 is a diagram showing a relationship between (Δσ / Δε) in a 90 ° direction with respect to a rolling direction and standard deviation σ A of ferrite grain size. 圧延方向に対して90°方向の(Δσ/Δε)とODF解析強度fとの関係を示す図である。FIG. 5 is a diagram showing the relationship between (Δσ / Δε) in the 90 ° direction with respect to the rolling direction and the ODF analysis strength f.

Claims (15)

面積率で60〜90%のフェライト相と10〜40%のマルテンサイト相を有し、前記フェライト相と前記マルテンサイト相の面積率の合計が95%以上であり、かつフェライト粒の平均粒径(dα)が1.0〜6.0μm、マルテンサイト粒の平均粒径(dM)が0.5〜3.0μmであり、dα/dM≧1.5を満たすミクロ組織を有し、圧延方向に対して90°方向の引張強度TSが590MPa以上であり、かつ圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向について3点曲げ試験を行って得た曲げ部外側の応力(σ)-歪(ε)曲線から、σが200MPaのときの曲線の傾き(Δσ/Δε)を求めたとき、圧延方向に対して90°方向の(Δσ/Δε)cが230GPa以上であり、前記3方向の平均の(Δσ/Δε)が200GPa以上であることを特徴とする曲げ剛性に優れた高強度薄鋼板;ここで、平均の(Δσ/Δε)とは、圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向について求めた(Δσ/Δε)を、それぞれ(Δσ/Δε)l、(Δσ/Δε)d、(Δσ/Δε)cとしたとき、{(Δσ/Δε)l+2×(Δσ/Δε)d+(Δσ/Δε)c}/4で計算した値である。 It has a ferrite phase of 60 to 90% and a martensite phase of 10 to 40% by area ratio, the total area ratio of the ferrite phase and the martensite phase is 95% or more, and the average particle diameter of the ferrite grains (d α ) is 1.0 to 6.0 μm, the average particle size (d M ) of martensite grains is 0.5 to 3.0 μm, has a microstructure satisfying d α / d M ≧ 1.5, and is 90 to the rolling direction. The tensile strength TS in the ° direction is 590 MPa or more, and the stress outside the bending part obtained by performing a three-point bending test in the rolling direction, 45 ° direction with respect to the rolling direction, and 90 ° direction with respect to the rolling direction ( From the (σ) -strain (ε) curve, when the slope of the curve when σ is 200 MPa (Δσ / Δε), (Δσ / Δε) c in the 90 ° direction with respect to the rolling direction is 230 GPa or more, A high-strength thin steel sheet having excellent bending rigidity, characterized in that the average (Δσ / Δε) in the three directions is 200 GPa or more; Here, the average (Δσ / Δε) is the rolling direction, the rolling method (Δσ / Δε) obtained for the 45 ° direction with respect to the direction and 90 ° direction with respect to the rolling direction are (Δσ / Δε) l, (Δσ / Δε) d, and (Δσ / Δε) c, respectively. Then, {(Δσ / Δε) l + 2 × (Δσ / Δε) d + (Δσ / Δε) c} / 4. 個々のフェライト粒径に関し、その自然対数を採った値の標準偏差をσAとしたとき、σA<0.7を満たすことを特徴とする請求項1に記載の曲げ剛性に優れた高強度薄鋼板。 2. The high strength thin steel sheet having excellent bending rigidity according to claim 1, wherein σ A <0.7 is satisfied, where σ A is a standard deviation of a value obtained by taking a natural logarithm of each ferrite grain size . 鋼板の1/4板厚における板面の(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度fが6以上であることを特徴とする請求項1または請求項2に記載の曲げ剛性に優れた高強度薄鋼板;ここで、[1-10]は(1,-1,0)の方向を表す。   The average ODF analysis strength f in the (113) [1-10] to (223) [1-10] orientation of the plate surface at a 1/4 plate thickness of the steel plate is 6 or more, or The high-strength thin steel sheet having excellent bending rigidity according to claim 2, wherein [1-10] represents the direction of (1, -1,0). 質量%で、C:0.05〜0.15%、Si:0.3%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.01%以下、Al:1.0%以下、N:0.01%以下、Nb:0.02〜0.1%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、かつC、N、Nbの含有量が下記の(1)、(2)式を満たすことを特徴とする請求項1から請求項3のいずれか1項に記載の曲げ剛性に優れた高強度薄鋼板;
Nb-(92.9/14)×N≧0.02・・・・・(1)
C-(12/92.9)×Nb-1≧0.01・・・・ (2)
ここで、Nb-1=Nb-(92.9/14)×Nであり、式中の各元素記号は各元素の含有量(質量%)を表す。
In mass%, C: 0.05 to 0.15%, Si: 0.3% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.01% or less, Al: 1.0% or less, N: 0.01% or less, Nb: Claims characterized in that it contains 0.02 to 0.1%, the balance is composed of Fe and inevitable impurities, and the contents of C, N, and Nb satisfy the following formulas (1) and (2) The high-strength thin steel sheet having excellent bending rigidity according to any one of claims 1 to 3;
Nb- (92.9 / 14) × N ≧ 0.02 (1)
C- (12 / 92.9) × Nb -1 ≧ 0.01 ・ ・ ・ ・ (2)
Here, Nb −1 = Nb− (92.9 / 14) × N, and each element symbol in the formula represents the content (% by mass) of each element.
質量%で、C:0.05〜0.15%、Si:0.3%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.01%以下、Al:1.0%以下、N:0.01%以下、Nb:0.02〜0.1%を含有し、さらにTi:0.01〜0.2%およびV:0.01〜0.2%から選ばれた少なくとも1種の元素を含有し、残部が鉄および不可避的不純物からなる組成を有し、かつC、N、S、Nb、Ti、Vの含有量が下記の(3)、(4)式を満たすことを特徴とする請求項1から請求項3のいずれか1項に記載の曲げ剛性に優れた高強度薄鋼板;
Nb-(92.9/14)×N-2≧0.02・・・・・・・・・・・・・・・・ (3)
C-(12/92.9)×Nb-2-(12/47.9)×Ti-2-(12/50.9)×V≧0.01・・・ (4)
ここで、N-2=N-(14/47.9)×Ti(ただし、N-2≦0のときは、N-2=0)、Nb-2=Nb-(92.9/14)×N-2、Ti-2=Ti-(47.9/14)×N-(47.9/32.1)×S(ただし、Ti-2≦0のときは、Ti=0)であり、式中の各元素記号は各元素の含有量(質量%)を表す。
In mass%, C: 0.05 to 0.15%, Si: 0.3% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.01% or less, Al: 1.0% or less, N: 0.01% or less, Nb: Containing 0.02 to 0.1%, further containing at least one element selected from Ti: 0.01 to 0.2% and V: 0.01 to 0.2%, with the balance consisting of iron and inevitable impurities, and The bending rigidity according to any one of claims 1 to 3, wherein the contents of C, N, S, Nb, Ti, and V satisfy the following formulas (3) and (4): Excellent high strength steel sheet;
Nb- (92.9 / 14) × N -2 ≧ 0.02 ... (3)
C- (12 / 92.9) × Nb -2- (12 / 47.9) × Ti -2- (12 / 50.9) × V ≧ 0.01 ... (4)
Here, N -2 = (the proviso that when the N -2 ≦ 0, N -2 = 0) N- (14 / 47.9) × Ti, Nb -2 = Nb- (92.9 / 14) × N -2 , Ti -2 = Ti- (47.9 / 14) × N- (47.9 / 32.1) × S (However, Ti = 0 when Ti -2 ≦ 0), and each element symbol in the formula is each element The content (% by mass) of
さらに、質量%で、Cr:0.05〜1.0%、Ni:0.05〜1.0%、Mo:0.05〜1.0%、B:0.0005〜0.0030%から選ばれた少なくとも1種の元素を含有することを特徴とする請求項4または請求項5に記載の曲げ剛性に優れた高強度薄鋼板。   Furthermore, it is characterized by containing at least one element selected from Cr: 0.05-1.0%, Ni: 0.05-1.0%, Mo: 0.05-1.0%, B: 0.0005-0.0030% by mass%. 6. A high-strength thin steel sheet having excellent bending rigidity according to claim 4 or 5. さらに、質量%で、Cu:0.1〜2.0%を含有することを特徴とする請求項4から請求項6のいずれか1項に記載の曲げ剛性に優れた高強度薄鋼板。   7. The high-strength thin steel sheet having excellent bending rigidity according to any one of claims 4 to 6, further comprising Cu: 0.1 to 2.0% by mass. さらに、質量%で、W:0.1〜2.0%を含有することを特徴とする請求項4から請求項7のいずれか1項に記載の曲げ剛性に優れた高強度薄鋼板。   8. The high-strength thin steel sheet having excellent bending rigidity according to any one of claims 4 to 7, further comprising W: 0.1 to 2.0% by mass%. 請求項4から請求項8のいずれか1項に記載の組成からなる鋼を、鋳造し、そのまま、あるいは一旦冷却し再加熱した後、粗圧延し、Ar3変態点以上の仕上圧延終了温度で仕上圧延し、500℃以上の巻取温度で巻取った後、酸洗を行い、45〜85%の範囲の圧下率Rで冷間圧延を行った後、焼鈍を行うに際し、室温から下記の(5)式に定義する温度Ta℃までを平均1℃/s以上の昇温速度で加熱し、Ta〜(Ta+10+R0.9)℃の温度範囲に下記の(6)式を満たすような時間v(s)滞留させた後、Ta〜600℃の温度範囲を3〜30℃/sの平均冷却速度で冷却することを特徴とする曲げ剛性に優れた高強度薄鋼板の製造方法。
Ta=930-200×C0.5+40×Si-30×Mn+40×Al-10×Cr+30×Mo-15×Ni-20×Cu+10×W
・ ・・・(5)
ここで、式中の各元素記号は各元素の含有量(質量%)を表す。
Figure 2007092126
ここで、上記(6)式のF(w)は、鋼板が温度TaになってからTa〜(Ta+10+R0.9)℃の温度範囲内に滞留する時間v(s)内の任意の時間w(s)のときの温度(℃)を表す。
The steel having the composition according to any one of claims 4 to 8, which is cast, directly or after cooling and reheating, rough rolling, and at a finish rolling finish temperature not lower than the Ar 3 transformation point. After finish rolling and winding at a coiling temperature of 500 ° C. or higher, pickling, cold rolling at a rolling reduction R in the range of 45 to 85%, and performing annealing, from room temperature to the following Heat up to the temperature Ta ° C defined in equation (5) at an average rate of 1 ° C / s or higher so that the following equation (6) is satisfied within the temperature range of Ta to (Ta + 10 + R 0.9 ) ° C. A method for producing a high-strength thin steel sheet excellent in bending rigidity, characterized in that the temperature range of Ta to 600 ° C. is cooled at an average cooling rate of 3 to 30 ° C./s after being held for v (s) for a long time.
Ta = 930-200 × C 0.5 + 40 × Si-30 × Mn + 40 × Al-10 × Cr + 30 × Mo-15 × Ni-20 × Cu + 10 × W
· ···(Five)
Here, each element symbol in the formula represents the content (% by mass) of each element.
Figure 2007092126
Here, F (w) in the above equation (6) is an arbitrary value within the time v (s) in which the steel sheet stays within the temperature range of Ta to (Ta + 10 + R 0.9 ) ° C. after the temperature reaches Ta. It represents the temperature (° C) at time w (s).
鋼を鋳造し、一旦冷却したのち再加熱を行う際の加熱温度Th℃を、((-7020/(log(Nb・C0.87)-2.81))-273)〜1300℃[ただし、Nb、Cは、各元素の含有量(質量%)を表す。]の温度範囲とし、かつ加熱温度Th℃と加熱時間t(s)が下記の(7)式を満たすように再加熱を行うことを特徴とする請求項9に記載の曲げ剛性に優れた高強度薄鋼板の製造方法。
10-6≦((5.6×10-4×exp((-3.44×10)/(Th+273)))×t)0.5≦3×10-5・・・・・(7)
Casting steel, once cooled, and then reheated, the heating temperature Th ° C is ((-7020 / (log (Nb · C 0.87 ) -2.81))-273) to 1300 ° C [However, Nb, C Represents the content (% by mass) of each element. And reheating so that the heating temperature Th ° C. and the heating time t (s) satisfy the following formula (7): A manufacturing method of high strength steel sheet.
10 -6 ≦ ((5.6 × 10 -4 × exp ((-3.44 × 10 4 ) / (Th + 273))) × t) 0.5 ≦ 3 × 10 -5 (7)
粗圧延を行うに際し、(Ar3変態点+100)℃以下における合計圧下率を20%以上とし、前記粗圧延後、Ar3変態点以上の仕上圧延終了温度を確保できるように(Ar3変態点+150)℃以下に再加熱して仕上圧延を行うことを特徴とする請求項9または請求項10に記載の曲げ剛性に優れた高強度薄鋼板の製造方法。 When performing the rough rolling, the total rolling reduction at (Ar 3 transformation point +100) ° C. or less is 20% or more, and after the rough rolling, it is possible to ensure the finish rolling finish temperature above the Ar 3 transformation point (Ar 3 transformation). 11. The method for producing a high strength thin steel sheet having excellent bending rigidity according to claim 9 or 10, wherein finish rolling is performed by reheating to a point +150) ° C. or lower. 仕上圧延を行うに際し、(Ar3変態点+100)℃以下における合計圧下率を50%以上とし、かつ仕上圧延終了温度をAr3変態点〜(Ar3変態点+50)℃の温度範囲とすることを特徴とする請求項9から請求項11のいずれか1項に記載の曲げ剛性に優れた高強度薄鋼板の製造方法。 When performing the finish rolling, the total rolling reduction at (Ar 3 transformation point +100) ° C. or less is set to 50% or more, and the finish rolling end temperature is in the temperature range of Ar 3 transformation point to (Ar 3 transformation point +50) ° C. 12. The method for producing a high-strength thin steel sheet having excellent bending rigidity according to any one of claims 9 to 11, wherein: 仕上圧延を行うに際し、潤滑圧延を行うことを特徴とする請求項9から請求項12のいずれか1項に記載の曲げ剛性に優れた高強度薄鋼板の製造方法。   13. The method for producing a high-strength thin steel sheet having excellent bending rigidity according to claim 9, wherein lubrication rolling is performed when performing finish rolling. 仕上圧延後、3s以内に50℃/s以上の平均冷却速度で700℃以下まで冷却することを特徴とする請求項9から請求項13のいずれか1項に記載の曲げ剛性に優れた高強度薄鋼板の製造方法。   The high strength excellent in bending rigidity according to any one of claims 9 to 13, wherein after finishing rolling, cooling to 700 ° C or less at an average cooling rate of 50 ° C / s or more within 3s Manufacturing method of thin steel sheet. 焼鈍後に0.3〜10%の伸び率で調質圧延を行うことを特徴とする請求項9から請求項14のいずれか1項に記載の曲げ剛性に優れた高強度薄鋼板の製造方法。
15. The method for producing a high-strength thin steel sheet having excellent bending rigidity according to any one of claims 9 to 14, wherein the temper rolling is performed at an elongation rate of 0.3 to 10% after annealing.
JP2005283411A 2005-09-29 2005-09-29 High-strength steel sheet with excellent bending rigidity and method for producing the same Expired - Fee Related JP4665692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283411A JP4665692B2 (en) 2005-09-29 2005-09-29 High-strength steel sheet with excellent bending rigidity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283411A JP4665692B2 (en) 2005-09-29 2005-09-29 High-strength steel sheet with excellent bending rigidity and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007092126A true JP2007092126A (en) 2007-04-12
JP4665692B2 JP4665692B2 (en) 2011-04-06

Family

ID=37978173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283411A Expired - Fee Related JP4665692B2 (en) 2005-09-29 2005-09-29 High-strength steel sheet with excellent bending rigidity and method for producing the same

Country Status (1)

Country Link
JP (1) JP4665692B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126747A (en) * 2008-11-26 2010-06-10 Jfe Steel Corp High strength hot dip galvanized steel sheet, and method for producing the same
JP2011523440A (en) * 2008-05-21 2011-08-11 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Method for producing cold rolled duplex stainless steel with extremely high strength and steel plate produced thereby
WO2011111758A1 (en) * 2010-03-10 2011-09-15 新日本製鐵株式会社 High-strength hot-rolled steel plate and manufacturing method therefor
WO2012043863A1 (en) * 2010-09-30 2012-04-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet having excellent fatigue characteristics and manufacturing method therefor
JP2013136828A (en) * 2011-11-28 2013-07-11 Jfe Steel Corp Method for manufacturing high-strength thick steel plate for construction excellent in brittleness-cracking propagation-stopping characteristic
WO2013182621A1 (en) * 2012-06-05 2013-12-12 Thyssenkrupp Steel Europe Ag Steel, sheet steel product and process for producing a sheet steel product
JP2014005514A (en) * 2012-06-26 2014-01-16 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and ductility, and small in-plane anisotropy of ductility, and manufacturing method of the same
WO2014156671A1 (en) * 2013-03-26 2014-10-02 日新製鋼株式会社 High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
EP2834383A1 (en) * 2012-04-05 2015-02-11 Tata Steel IJmuiden B.V. Steel strip having a low si content
WO2017169939A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing thin steel sheet and method for producing plated steel sheet
KR20180119617A (en) * 2016-03-31 2018-11-02 제이에프이 스틸 가부시키가이샤 Thin steel plate, coated steel sheet and manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet, and manufacturing method of coated steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181361A (en) * 1981-04-28 1982-11-08 Nippon Steel Corp Large-sized cold rolled steel plate for forming with superior tensile rigidity and its manufacture
JPH05255804A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Cold rolled steel sheet excellent in formability and rigidity and its manufacture
JP2005120472A (en) * 2003-09-26 2005-05-12 Jfe Steel Kk High-strength steel sheet and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181361A (en) * 1981-04-28 1982-11-08 Nippon Steel Corp Large-sized cold rolled steel plate for forming with superior tensile rigidity and its manufacture
JPH05255804A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Cold rolled steel sheet excellent in formability and rigidity and its manufacture
JP2005120472A (en) * 2003-09-26 2005-05-12 Jfe Steel Kk High-strength steel sheet and its production method

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523440A (en) * 2008-05-21 2011-08-11 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Method for producing cold rolled duplex stainless steel with extremely high strength and steel plate produced thereby
US10190187B2 (en) 2008-05-21 2019-01-29 Arcelormittal Manufacturing method for very high-strength, cold-rolled, dual-phase steel sheets
JP2010126747A (en) * 2008-11-26 2010-06-10 Jfe Steel Corp High strength hot dip galvanized steel sheet, and method for producing the same
WO2011111758A1 (en) * 2010-03-10 2011-09-15 新日本製鐵株式会社 High-strength hot-rolled steel plate and manufacturing method therefor
JP4842413B2 (en) * 2010-03-10 2011-12-21 新日本製鐵株式会社 High strength hot-rolled steel sheet and manufacturing method thereof
US9121079B2 (en) 2010-03-10 2015-09-01 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet and method of manufacturing the same
CN102791896A (en) * 2010-03-10 2012-11-21 新日本制铁株式会社 High-strength hot-rolled steel plate and manufacturing method therefor
KR101420554B1 (en) 2010-03-10 2014-07-16 신닛테츠스미킨 카부시키카이샤 High-strength hot-rolled steel plate and manufacturing method therefor
CN102791896B (en) * 2010-03-10 2014-06-11 新日铁住金株式会社 High-strength hot-rolled steel plate and manufacturing method thereof
WO2012043863A1 (en) * 2010-09-30 2012-04-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet having excellent fatigue characteristics and manufacturing method therefor
CN103140596A (en) * 2010-09-30 2013-06-05 杰富意钢铁株式会社 High-strength hot-dip galvanized steel sheet having excellent fatigue characteristics and manufacturing method therefor
JP2012077317A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and manufacturing method of the same
KR101578984B1 (en) * 2010-09-30 2015-12-18 제이에프이 스틸 가부시키가이샤 High strength galvanized steel sheet exhibiting excellent fatigue property and method for manufacturing the same
US9044920B2 (en) 2010-09-30 2015-06-02 Jfe Steel Corporation High strength galvanized steel sheet exhibiting excellent fatigue property
JP2013136828A (en) * 2011-11-28 2013-07-11 Jfe Steel Corp Method for manufacturing high-strength thick steel plate for construction excellent in brittleness-cracking propagation-stopping characteristic
EP2834383B1 (en) * 2012-04-05 2021-07-21 Tata Steel IJmuiden B.V. Steel strip having a low si content
EP2834383A1 (en) * 2012-04-05 2015-02-11 Tata Steel IJmuiden B.V. Steel strip having a low si content
JP2015517033A (en) * 2012-04-05 2015-06-18 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Low Si content steel strip
WO2013182621A1 (en) * 2012-06-05 2013-12-12 Thyssenkrupp Steel Europe Ag Steel, sheet steel product and process for producing a sheet steel product
KR102073442B1 (en) 2012-06-05 2020-02-04 티센크루프 스틸 유럽 악티엔게젤샤프트 Steel, sheet steel product and process for producing a sheet steel product
KR20150023566A (en) * 2012-06-05 2015-03-05 티센크루프 스틸 유럽 악티엔게젤샤프트 Steel, sheet steel product and process for producing a sheet steel product
JP2015525292A (en) * 2012-06-05 2015-09-03 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Steel, flat steel material and method for producing flat steel material
KR20150028267A (en) * 2012-06-05 2015-03-13 티센크루프 스틸 유럽 악티엔게젤샤프트 Steel, sheet steel product and process for producing a sheet steel product
KR102073441B1 (en) 2012-06-05 2020-02-04 티센크루프 스틸 유럽 악티엔게젤샤프트 Steel, sheet steel product and process for producing a sheet steel product
JP2014005514A (en) * 2012-06-26 2014-01-16 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and ductility, and small in-plane anisotropy of ductility, and manufacturing method of the same
JP2014189812A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd High strength plated steel sheet for weld structure member and manufacturing method therefor
US10100395B2 (en) 2013-03-26 2018-10-16 Nisshin Steel Co., Ltd. High-strength plated steel plate for welded structural member, and method for producing the same
WO2014156671A1 (en) * 2013-03-26 2014-10-02 日新製鋼株式会社 High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
CN105121681A (en) * 2013-03-26 2015-12-02 日新制钢株式会社 High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
KR20180119617A (en) * 2016-03-31 2018-11-02 제이에프이 스틸 가부시키가이샤 Thin steel plate, coated steel sheet and manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet, and manufacturing method of coated steel sheet
CN109072374A (en) * 2016-03-31 2018-12-21 杰富意钢铁株式会社 The manufacturing method of sheet metal and coated steel sheet and hot rolled steel plate, manufacturing method, the manufacturing method of the manufacturing method of sheet metal and coated steel sheet of cold rolling is fully hard steel plate
EP3418418A4 (en) * 2016-03-31 2019-01-16 JFE Steel Corporation Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JPWO2017169939A1 (en) * 2016-03-31 2018-04-05 Jfeスチール株式会社 Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
WO2017169939A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel sheet and plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing thin steel sheet and method for producing plated steel sheet
KR102157430B1 (en) 2016-03-31 2020-09-17 제이에프이 스틸 가부시키가이샤 Thin steel sheet and plated steel sheet, and manufacturing method of hot rolled steel sheet, cold rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method
US10961600B2 (en) 2016-03-31 2021-03-30 Jfe Steel Corporation Steel sheet and plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
US11230744B2 (en) 2016-03-31 2022-01-25 Jfe Steel Corporation Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet
US11939640B2 (en) 2016-03-31 2024-03-26 Jfe Steel Corporation Method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, and method for producing heat-treated sheet

Also Published As

Publication number Publication date
JP4665692B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP6179677B2 (en) High strength steel plate and manufacturing method thereof
JP4665692B2 (en) High-strength steel sheet with excellent bending rigidity and method for producing the same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP4843982B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4867256B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP4843981B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP5370620B1 (en) Thin steel plate and manufacturing method thereof
JP4867257B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP4883216B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
JP2006193819A (en) High-strength cold-rolled steel sheet superior in deep drawability, and manufacturing method therefor
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP2011168878A (en) High-strength hot-dip galvanized steel sheet with excellent fatigue property and hole expansibility and method for producing the same
WO2012043420A1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JP6264861B2 (en) High Young&#39;s modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP4815974B2 (en) Manufacturing method of high strength cold-rolled steel sheet with excellent rigidity
JP5845837B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP4867258B2 (en) High-strength thin steel sheet with excellent rigidity and workability and manufacturing method thereof
JP4506439B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
WO2018092735A1 (en) High strength steel sheet, production method therefor, and high strength galvanized steel sheet
JP4622783B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP4506438B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4622784B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees