JP2007091819A - Fuel for premixed compression autoignition engine - Google Patents

Fuel for premixed compression autoignition engine Download PDF

Info

Publication number
JP2007091819A
JP2007091819A JP2005280502A JP2005280502A JP2007091819A JP 2007091819 A JP2007091819 A JP 2007091819A JP 2005280502 A JP2005280502 A JP 2005280502A JP 2005280502 A JP2005280502 A JP 2005280502A JP 2007091819 A JP2007091819 A JP 2007091819A
Authority
JP
Japan
Prior art keywords
fuel
engine
ignition
oxidation reaction
premixed compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005280502A
Other languages
Japanese (ja)
Other versions
JP4815178B2 (en
Inventor
Hajime Shibata
元 柴田
Koji Oyama
宏次 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2005280502A priority Critical patent/JP4815178B2/en
Publication of JP2007091819A publication Critical patent/JP2007091819A/en
Application granted granted Critical
Publication of JP4815178B2 publication Critical patent/JP4815178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel for a premixed compression autoignition engine, which has excellent ignition property in the combustion by the premixed compression autoignition, can improve the engine output and extend the engine rotational region as much as possible, and can attain improvement of the engine heat efficiency. <P>SOLUTION: The fuel for the premixed compression autoignition engine is the one which has a cyclopentane content of ≤7 vol%, a pentene content of ≤4 vol% and initiates the high temperature oxidation reaction under the condition that the temperature and the pressure satisfy the high temperature oxidation reaction formula (1) mentioned below. The formula (1) is -0.0105×T+14≤P≤-0.0105×T+16, wherein P and T are pressure (MPa) and a temperature (K), respectively, at the start of the high temperature oxidation reaction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、予混合圧縮自己着火式エンジン用の燃料に関し、詳しくは、予混合圧縮自己着火燃焼において優れた着火性を有し、エンジン出力並びにエンジン回転領域をできるだけ広げ、エンジン熱効率の向上を達成することができる予混合圧縮自己着火式エンジン用燃料に関する。   TECHNICAL FIELD The present invention relates to a fuel for a premixed compression self-ignition engine, and more particularly, has excellent ignitability in premixed compression self-ignition combustion, and widens the engine output and the engine rotation range as much as possible to achieve improvement in engine thermal efficiency. The present invention relates to a premixed compression self-ignition engine fuel that can be used.

今日、自動車用内燃機関としては、火花点火式ガソリンエンジンと圧縮自己着火式ディーゼルエンジンの二種類が広く使用されている。
火花点火式ガソリンエンジンは、吸気ポートあるいは燃焼室内に燃料を噴射して燃料と空気の予混合気を形成させ、スパークプラグによる電気放電で強制的に点火、燃焼させる方式であり、燃料特性として、蒸発しやすいこと、自己着火し難いこと、点火後は火炎伝播がスムーズに行われること等が求められる。火花点火式ガソリンエンジンにおいては、窒素酸化物(NOx)、炭化水素(HC)、一酸化炭素(CO)が排出されるため、これらの浄化に三元触媒等が広く使用されている。しかし、三元触媒による排出ガス浄化システムは、燃料と空気との割合が理論空燃比近傍になる範囲にしか適用できないため、圧縮自己着火式ディーゼルエンジンと比較すると熱効率、燃費が著しく劣るという欠点がある。
Today, two types of internal combustion engines for automobiles are widely used: a spark ignition gasoline engine and a compression self-ignition diesel engine.
A spark-ignition gasoline engine is a system in which fuel is injected into an intake port or combustion chamber to form a premixed mixture of fuel and air, and is forcibly ignited and burned by electric discharge by a spark plug. It is required that it is easy to evaporate, difficult to self-ignite, and that the flame propagates smoothly after ignition. In spark-ignition gasoline engines, nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO) are exhausted, and three-way catalysts and the like are widely used for purification of these. However, since the exhaust gas purification system using a three-way catalyst can only be applied to the range where the ratio of fuel to air is close to the theoretical air-fuel ratio, there is a disadvantage that the thermal efficiency and fuel efficiency are significantly inferior compared with a compression self-ignition diesel engine. is there.

一方、圧縮自己着火式ディーゼルエンジンは、圧縮工程でのピストン上昇により燃焼室内の空気が圧縮されて温度が上昇し、軽油の臨界温度以上に達したところに燃料を噴霧し自己着火燃焼させる方式であり、燃料特性には自己着火しやすいことが求められる。圧縮自己着火式ディーゼルエンジンは、燃費及び熱効率面に優れるものの燃料噴霧を圧縮上死点前30クランク角度から圧縮上死点後10クランク角度付近で行うため、燃焼時の温度分布に濃淡が生じ、NOx及び煤の排出量が著しく高くなるという欠点がある。また圧縮自己着火式ディーゼルエンジンでは、排出ガス浄化のための触媒があまり普及しておらず、NOxが100〜1200質量ppmと非常に高いレベルで大気中に放出されるケースもある。   On the other hand, the compression self-ignition type diesel engine is a system in which the air in the combustion chamber is compressed by the piston rise in the compression process, the temperature rises, and fuel is sprayed and self-ignited and combusted when it reaches the critical temperature of light oil. In addition, fuel characteristics are required to be easily ignited. Although the compression self-ignition type diesel engine is excellent in fuel efficiency and thermal efficiency, the fuel spray is performed from 30 crank angle before compression top dead center to around 10 crank angle after compression top dead center, so the temperature distribution during combustion is shaded, There is a drawback that the amount of NOx and soot emissions is significantly increased. Further, in a compression self-ignition diesel engine, a catalyst for purifying exhaust gas is not so popular, and there is a case where NOx is released into the atmosphere at a very high level of 100 to 1200 mass ppm.

このように、従来の火花点火式ガソリンエンジンは、排出ガスの浄化はある程度できるが燃費や熱効率の面に課題があり、一方、圧縮自己着火式ディーゼルエンジンは、低燃費、高熱効率であるが、NOx等の排出ガスの面に課題がある。このため、低NOx排出ガス、低燃費及び高熱効率を同時に達成するという課題を解決すべく予混合圧縮自己着火式エンジンが現在検討されている。
予混合圧縮自己着火式エンジンは、燃料の噴射圧力レベルが20MPa以下と圧縮自己着火式ディーゼルエンジンにおける噴射圧力に比べると著しく低い燃料噴射圧力にて燃料を吸気ポート又は燃焼室内に噴射し、そのサイクルで燃焼する燃料噴射を圧縮上死点前60クランク角度以前に終了するシステムであって、燃料と空気との予混合気をスパークプラグによる強制点火ではなく、自己着火で燃焼させるエンジンである。予混合圧縮自己着火式エンジンは、従来の圧縮自己着火式ディーゼルエンジンに比べて燃料が噴射されてから燃焼の始まるまでの時間が長く、燃料が燃料室内で均一に混合されるため、燃焼時に局部的に温度の高い領域ができず、NOx排出レベルを触媒未装着状態で10質量ppm以下に抑えることが可能となり、かつ燃費及び熱効率を圧縮自己着火式ディーゼルエンジン並みの低燃費、高効率にすることが可能である。
In this way, the conventional spark ignition gasoline engine can purify the exhaust gas to some extent, but there are problems in fuel efficiency and thermal efficiency, while the compression self-ignition diesel engine has low fuel consumption and high thermal efficiency. There is a problem in terms of exhaust gas such as NOx. For this reason, premixed compression self-ignition engines are currently being studied to solve the problem of simultaneously achieving low NOx emission, low fuel consumption and high thermal efficiency.
A premixed compression self-ignition engine injects fuel into the intake port or the combustion chamber at a fuel injection pressure level of 20 MPa or less, which is significantly lower than the injection pressure in a compression self-ignition diesel engine. This is a system that terminates fuel injection combusted at 60 crank angle before compression top dead center and burns premixed fuel and air by self-ignition rather than forced ignition by a spark plug. A premixed compression self-ignition engine has a longer time from fuel injection to the start of combustion than a conventional compression self-ignition diesel engine, and the fuel is uniformly mixed in the fuel chamber. The high temperature range is not possible, the NOx emission level can be suppressed to 10 ppm or less when no catalyst is installed, and the fuel efficiency and thermal efficiency are as low as those of a compression self-ignition diesel engine. It is possible.

このような予混合圧縮自己着火式エンジン用の燃料としては、燃料の揮発性指標およびセタン価、オクタン価等の既存のガソリンエンジン、ディーゼルエンジンの着火性指標に着目した燃料が提案されているが(例えば、特許文献1〜13参照。)、予混合圧縮自己着火燃焼のメカニズム面(燃料自身の自己着火特性)からみて、その特性を十分に発揮できているとは必ずしもいえず、予混合圧縮自己着火式エンジンにさらに適した燃料の開発が望まれている。
特開2004−91657号公報 特開2004−91658号公報 特開2004−91659号公報 特開2004−91660号公報 特開2004−91661号公報 特開2004−91662号公報 特開2004−91663号公報 特開2004−91664号公報 特開2004−91665号公報 特開2004−91666号公報 特開2004−91667号公報 特開2004−91668号公報 特開2004−315604号公報
As fuels for such premixed compression self-ignition engines, fuels that focus on the volatility index of fuel, the existing gasoline engines such as cetane number and octane number, and the ignitability index of diesel engines have been proposed ( For example, see Patent Documents 1 to 13), and from the viewpoint of the mechanism of premixed compression self-ignition combustion (self-ignition characteristics of the fuel itself), it cannot be said that the characteristics are sufficiently exhibited. Development of a fuel more suitable for an ignition engine is desired.
JP 2004-91657 A JP 2004-91658 A JP 2004-91659 A JP 2004-91660 A JP 2004-91661 A JP 2004-91662 A JP 2004-91663 A JP 2004-91664 A JP 2004-91665 A JP 2004-91666 A JP 2004-91667 A JP 2004-91668 A JP 2004-315604 A

本発明の目的は、予混合圧縮自己着火燃焼において優れた着火性を有し、エンジン出力並びにエンジン回転領域をできるだけ広げ、エンジン熱効率の向上を達成することができる予混合圧縮自己着火式エンジン用燃料を提供することにある。   An object of the present invention is to provide a fuel for a premixed compression self-ignition engine that has excellent ignitability in premixed compression self-ignition combustion, can widen the engine output and the engine rotation range as much as possible, and can improve the engine thermal efficiency. Is to provide.

本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、特定の組成を有し、かつ特定の条件で高温酸化反応が開始する燃料が予混合圧縮自己着火式エンジンの燃料に適していることを見いだし、本発明を完成するに至った。
すなわち、本発明は、シクロペンタン類の含有量が7容量%以下、ペンテン類の含有量が4容量%以下であり、かつ温度及び圧力が下記高温酸化反応式(1)を具備する条件下に高温酸化反応が開始することを特徴とする予混合圧縮自己着火式エンジン用燃料に関する。
(1) −0.0105×T+14≦P≦−0.0105×T+16
(ここで、Pは高温酸化反応開始時の圧力(MPa)、Tは高温酸化反応開始時の温度(K)を示す。)
As a result of intensive studies to solve the above problems, the present inventors have determined that a fuel having a specific composition and starting a high-temperature oxidation reaction under a specific condition is used as a fuel for a premixed compression self-ignition engine. It has been found suitable, and the present invention has been completed.
That is, the present invention is a condition in which the content of cyclopentanes is 7% by volume or less, the content of pentenes is 4% by volume or less, and the temperature and the pressure satisfy the following high-temperature oxidation reaction formula (1). The present invention relates to a premixed compression self-ignition engine fuel characterized in that a high-temperature oxidation reaction starts.
(1) −0.0105 × T + 14 ≦ P ≦ −0.0105 × T + 16
(Here, P represents the pressure (MPa) at the start of the high temperature oxidation reaction, and T represents the temperature (K) at the start of the high temperature oxidation reaction).

本発明の燃料は、予混合圧縮自己着火燃焼時のエンジン出力並びにエンジン回転領域をできるだけ広げ、エンジン熱効率の向上を達成することができる。また、本発明の燃料は、予混合圧縮自己着火方式エンジンと火花点火方式エンジン、ディーゼルエンジン、電気モーターエンジン火花点火方式エンジンまたはディーゼルエンジンと電気モータ等を組み合わせたハイブリッド式エンジン等とを併用するエンジンの燃料としても利用可能である。   The fuel of the present invention can increase the engine output and the engine rotation region during premixed compression self-ignition combustion as much as possible, and achieve an improvement in engine thermal efficiency. The fuel of the present invention is a premixed compression self-ignition engine and a spark ignition engine, a diesel engine, an electric motor engine, a spark ignition engine, or a hybrid engine that combines a diesel engine and an electric motor. It can also be used as fuel.

以下に本発明を詳述する。
本発明における燃料は、予混合圧縮自己着火方式エンジンに適した燃料である。ここで予混合圧縮自己着火方式とは、下記(A)、(B)及び(C)の条件下に燃料を噴射させ、自己着火により燃焼を行わせる燃焼形態をいう。
(A)燃料噴射圧力:20MPa以下
(B)燃料噴射位置:吸気ポート及び/又は燃焼室内部
(C)燃料噴射終了時期:圧縮上死点前60クランク角度以前
The present invention is described in detail below.
The fuel in the present invention is a fuel suitable for a premixed compression self-ignition engine. Here, the premixed compression self-ignition system refers to a combustion mode in which fuel is injected under the following conditions (A), (B), and (C), and combustion is performed by self-ignition.
(A) Fuel injection pressure: 20 MPa or less (B) Fuel injection position: intake port and / or inside combustion chamber (C) Fuel injection end time: 60 crank angle before compression top dead center

予混合圧縮自己着火方式は、従来のディーゼルエンジンなどにみられる圧縮自己着火方式と比較し、(A)の燃料噴射圧力が著しく低く、(C)の燃料噴射終了時期、即ち、燃料が噴射されてから燃焼が始まるまでの時間がかなり長い。従って、予混合圧縮自己着火方式においては、燃料が燃焼室内で均一に混合されるため、燃焼室内において局部的に温度の高い領域ができず、窒素酸化物の排出量を触媒未装着状態で10質量ppm以下にすることができる。
なお、予混合圧縮自己着火方式は、HCCI(Homogeneous Charge Compression Ignition)、PCCI(Premixed Charge Compression Ignition)、PCI(Premixed Compression Ignition)、CAI(Controlled Auto-Ignition)、AR(Active Radical (Combustion) )と呼ばれることもある。
本発明の燃料は、予混合圧縮自己着火方式エンジンに適した燃料であるが、該予混合圧縮自己着火方式と予混合圧縮自己着火方式エンジンと火花点火方式エンジン、ディーゼルエンジン、電気モーターエンジン火花点火方式エンジンまたはディーゼルエンジンと電気モータ等を組み合わせたハイブリッド式エンジン等とを併用するエンジンに対しても適用することができる。
In the premixed compression self-ignition method, compared with the compression self-ignition method found in conventional diesel engines, the fuel injection pressure in (A) is remarkably low, and the fuel injection end time in (C), that is, fuel is injected. It takes a long time to start burning. Therefore, in the premixed compression self-ignition method, the fuel is uniformly mixed in the combustion chamber, so that a region having a high temperature locally cannot be formed in the combustion chamber, and the amount of nitrogen oxide emitted is 10 in a state where no catalyst is mounted. It can be made into mass ppm or less.
The premixed compression self-ignition method includes HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), PCI (Premixed Compression Ignition), CAI (Controlled Auto-Ignition), and AR (Active Radical (Combustion)). Sometimes called.
The fuel of the present invention is a fuel suitable for a premixed compression self-ignition engine, and the premixed compression self-ignition system, premixed compression self-ignition engine and spark ignition engine, diesel engine, electric motor engine spark ignition. The present invention can also be applied to an engine that uses a combination engine or a hybrid engine that combines a diesel engine and an electric motor.

燃料が自己着火する場合は、図1に示す通り、まず低温酸化反応が起こり、続いて高温酸化反応が起きる。図1は、排気量2000cc、圧縮比14の4サイクル直列6気筒ガソリンエンジンを改造した予混合圧縮自己着火式エンジンにおいて、シリンダ内に埋め込まれた高速応答型圧力センサー(例えば、日本キスラー社製601A)から得られる熱発生率の変化を、クランク角度(CAdeg)を横軸に熱発生率(J/CAdeg)を縦軸にとって示した図である。ここで低温酸化反応の活性が低下すると、続いて起こる高温酸化反応開始時の温度及び圧力に負の影響を及ぼし、予混合圧縮自己着火式エンジンのエンジン回転領域を著しく低減させてしまうことを種々の検討結果により本発明者等は明らかにした。下記に示す高温酸化反応式(1)は上述の自己着火特性をもとに、予混合圧縮自己着火式エンジンにおいて安定した自己着火が得られる範囲を高温酸化反応開始時の温度(T)と圧力(P)の関係から本発明者等が見出したものである。ここでいう高温酸化反応開始時の温度(T)及び圧力(P)とは、図1において熱発生率(J/CAdeg)がマイナスからプラスに転じたクランク角度でのエンジンシリンダ内の温度(K)及び圧力(MPa)を指す。
なお、この高温酸化反応式(1)は予混合圧縮自己着火式エンジンであればエンジンの種類や運転条件(回転数、負荷、過給圧力、空気量、燃料消費量、吸気温度、EGR率、バルブタイミングなど)に左右されることなく式中の圧力(P)及び温度(T)により求められるものである。
(1) −0.0105×T+14≦P≦−0.0105×T+16
本発明の燃料は、予混合圧縮自己着火式エンジンにおいて安定した燃焼、エンジン出力の向上、及び広いエンジン回転領域が得られる点から、高温酸化反応開始時の温度(T)及び圧力(P)が、上記の高温酸化反応式(1)の条件を満たすことが必要である。高温酸化反応開始時の温度及び圧力が、高温酸化反応式(1)の条件から外れると、高温酸化反応が阻害され、予混合圧縮自己着火燃焼が不安定化するので好ましくない。
When the fuel self-ignites, as shown in FIG. 1, a low temperature oxidation reaction occurs first, followed by a high temperature oxidation reaction. FIG. 1 shows a pre-mixed compression self-ignition engine modified from a 4-cycle in-line 6-cylinder gasoline engine with a displacement of 2000 cc and a compression ratio of 14, a fast response pressure sensor embedded in the cylinder (for example, 601A manufactured by Nippon Kisler Co., Ltd.). FIG. 6 is a graph showing changes in the heat generation rate obtained from (1) with the crank angle (CAdeg) on the horizontal axis and the heat generation rate (J / CAdeg) on the vertical axis. Here, when the activity of the low-temperature oxidation reaction is reduced, the temperature and pressure at the start of the subsequent high-temperature oxidation reaction are negatively affected, and the engine rotation area of the premixed compression self-ignition engine is significantly reduced. The present inventors made it clear by the examination results. The high-temperature oxidation reaction formula (1) shown below is based on the above-mentioned self-ignition characteristics, and the range in which stable self-ignition can be obtained in a premixed compression self-ignition engine is the temperature (T) and pressure at the start of the high-temperature oxidation reaction. The present inventors have found out from the relationship (P). The temperature (T) and pressure (P) at the start of the high-temperature oxidation reaction here are the temperature (K) in the engine cylinder at the crank angle at which the heat generation rate (J / CAdeg) turns from minus to plus in FIG. ) And pressure (MPa).
If this high temperature oxidation reaction formula (1) is a premixed compression self-ignition engine, the engine type and operating conditions (rotation speed, load, supercharging pressure, air amount, fuel consumption, intake air temperature, EGR rate, It is obtained from the pressure (P) and temperature (T) in the formula without being influenced by the valve timing.
(1) −0.0105 × T + 14 ≦ P ≦ −0.0105 × T + 16
The fuel of the present invention has a temperature (T) and a pressure (P) at the start of the high-temperature oxidation reaction from the viewpoint that stable combustion in a premixed compression self-ignition engine, improvement in engine output, and a wide engine rotation range are obtained. It is necessary to satisfy the condition of the high temperature oxidation reaction formula (1). If the temperature and pressure at the start of the high-temperature oxidation reaction deviate from the conditions of the high-temperature oxidation reaction formula (1), the high-temperature oxidation reaction is hindered and the premixed compression self-ignition combustion becomes unstable.

本発明の燃料は、シクロペンタン類の含有量が7容量%以下であり、かつペンテン類の含有量が4容量%以下であることを満たすことが必要である。予混合圧縮自己着火式エンジンにおいて安定した燃焼、エンジン出力の向上、及び広いエンジン回転領域を得られる点からシクロペンタン類の含有量は5容量%以下が好ましく、3容量%以下がさらに好ましい。同様の理由から、ペンテン類の含有量は2容量%以下であることが好ましい。
シクロペンタン類の含有量及びペンテン類の含有量が上述の上限を超えると、予混合圧縮自己着火燃焼において、低温酸化反応の活性が低下し、引き続き起きる高温酸化反応が阻害されるので好ましくない。
シクロペンタン類としては、シクロペンタン骨格にアルキル基等の側鎖が1つまたは複数ついたものが挙げられ、代表的なものとしてはシクロペンタン、メチルシクロペンタン、エチルシクロペンタン、プロピルシクロペンタン、ジメチルシクロペンタン、メチルエチルシクロペンタン、トリメチルシクロペンタン及びこれらの異性体等が挙げられる。
また、ペンテン類としては、1−ペンテン、2−ペンテン等が代表的なものとして挙げられる。
なお、ここでいうシクロペンタン類の含有量及びペンテン類の含有量は、JIS K2536「石油製品−成分試験方法」に準拠してガスクロマトグラフを利用して測定される値をいう。
The fuel of the present invention needs to satisfy that the content of cyclopentanes is 7% by volume or less and the content of pentenes is 4% by volume or less. The content of cyclopentanes is preferably 5% by volume or less, and more preferably 3% by volume or less from the viewpoints of achieving stable combustion in a premixed compression self-ignition engine, improving engine output, and obtaining a wide engine rotation range. For the same reason, the content of pentenes is preferably 2% by volume or less.
When the content of cyclopentanes and the content of pentenes exceed the above-mentioned upper limit, the activity of the low-temperature oxidation reaction is lowered in the premixed compression auto-ignition combustion, and the subsequent high-temperature oxidation reaction is hindered.
Examples of cyclopentanes include those in which one or more side chains such as alkyl groups are attached to the cyclopentane skeleton, and typical examples include cyclopentane, methylcyclopentane, ethylcyclopentane, propylcyclopentane, and dimethyl. Examples thereof include cyclopentane, methylethylcyclopentane, trimethylcyclopentane, and isomers thereof.
Examples of pentenes include 1-pentene and 2-pentene.
In addition, content of cyclopentane here and content of pentene say the value measured using a gas chromatograph based on JISK2536 "petroleum product-component test method".

本発明の燃料において、芳香族分及びナフテン分は特に限定されないが、これらは予混合圧縮自己着火燃焼をする際の低温酸化反応が小さく、低温酸化反応を抑制するインヒビター作用を有するため、本発明の燃料では、それぞれ15容量%以下であることが好ましい。またエンジンの負荷と回転数に対して熱効率の高い予混合圧縮自己着火燃焼の領域をさらに広げるためにはそれぞれ10容量%以下であることがさらに好ましい。
なお、ここでいう芳香族分およびナフテン分のそれぞれの含有量は、JIS K2536「常圧法蒸留試験方法」による終点が250℃以下の場合は、JIS K2536「石油製品−成分試験方法」に準拠してガスクロマトグラフを利用して測定される値であり、終点が250℃を超える場合は、ナフテン分(容量%)はASTM D2786「Standard Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturates Fractions by High Ionizing Voltage Mass Spectrometry」に準拠して測定され、芳香族分(容量%)は、社団法人石油学会により発行されている石油学会誌JPI−5S−49−97「炭化水素タイプ試験法−高速液体クロマトグラフ法」に準拠して測定される値を指す。
In the fuel of the present invention, the aromatic content and the naphthene content are not particularly limited, but these have a low temperature oxidation reaction during premixed compression self-ignition combustion and have an inhibitory action to suppress the low temperature oxidation reaction. In each of these fuels, it is preferable that the amount is 15% by volume or less. Further, in order to further expand the premixed compression self-ignition combustion region having high thermal efficiency with respect to the engine load and the rotational speed, it is more preferable that the amount is 10% by volume or less.
In addition, the content of each of aromatic content and naphthene content referred to here conforms to JIS K2536 “Petroleum product-component test method” when the end point by JIS K2536 “Atmospheric pressure distillation test method” is 250 ° C. or less. If the end point exceeds 250 ° C, the naphthene content (volume%) is ASTM D2786 “Standard Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturates Fractions by High Ionizing Voltage. Measured according to “Mass Spectrometry” and the aromatic content (volume%) is JPI-5S-49-97 “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method” published by the Japan Petroleum Institute. The value measured in accordance with "".

本発明の燃料において、硫黄分の含有量は特に限定されないが、10質量ppm以下であることが好ましく、触媒の性能維持の点から5質量ppm以下がより好ましく、1質量ppm以下が最も好ましい。硫黄分が10質量ppmを超えると、エンジンに装着した排出ガス浄化のための触媒が硫黄により被毒され、排出ガス浄化能力が低下する問題が生じ好ましくない。
ここで、硫黄分とは、JIS K2541「原油及び石油製品一硫黄分試験方法」により測定される値である。
In the fuel of the present invention, the sulfur content is not particularly limited, but is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less from the viewpoint of maintaining the performance of the catalyst, and most preferably 1 ppm by mass or less. If the sulfur content exceeds 10 ppm by mass, the exhaust gas purification catalyst mounted on the engine is poisoned by sulfur, which causes a problem in that the exhaust gas purification capacity is lowered, which is not preferable.
Here, the sulfur content is a value measured according to JIS K2541 “Crude oil and petroleum product one sulfur content test method”.

本発明の燃料は、主成分として炭化水素を含むが、その他に、エーテル、アルコール、ケトン、エステル、グリコール等の含酸素化合物を含有していてもよい。
含酸素化合物としては、例えば、メタノール、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール、ノルマルブチルアルコール、イソブチルアルコール、ジメチルエーテル、ジイソプロピルエーテル、メチルターシャリーブチルエーテル(MTBE)、エチルターシャリーブチルエーテル(ETBE)、ターシャリーアミルメチルエーテル(TAME)、ターシャリーアミルエチルエーテル、脂肪酸メチルエステル、脂肪酸エチルエステル等が挙げられる。
本発明の燃料は、前記含酸素化合物を含有することにより、排出ガス中の未燃炭化水素(HC)、微小粒子状物質等を低減することができる。また、バイオマス由来の含酸素化合物を使用した場合は、二酸化炭素削減等にも寄与する。しかし、場合によっては窒素化合物の増加を招く場合もあるので、含酸素化合物の含有割合は、酸素元素換算(酸素含有量)で燃料全量に対し20質量%以下が好ましく、10質量%以下がより好ましく、3質量%以下が最も好ましい。
The fuel of the present invention contains hydrocarbon as a main component, but may contain oxygen-containing compounds such as ether, alcohol, ketone, ester, glycol and the like.
Examples of the oxygen-containing compound include methanol, ethanol, normal propyl alcohol, isopropyl alcohol, normal butyl alcohol, isobutyl alcohol, dimethyl ether, diisopropyl ether, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), and tertiary amyl. Examples include methyl ether (TAME), tertiary amyl ethyl ether, fatty acid methyl ester, and fatty acid ethyl ester.
By containing the oxygen-containing compound, the fuel of the present invention can reduce unburned hydrocarbon (HC), fine particulate matter, etc. in the exhaust gas. In addition, when an oxygen-containing compound derived from biomass is used, it contributes to carbon dioxide reduction and the like. However, in some cases, an increase in nitrogen compounds may be caused. Therefore, the content ratio of oxygen-containing compounds is preferably 20% by mass or less, more preferably 10% by mass or less, based on the total amount of fuel in terms of oxygen element (oxygen content). Preferably, 3 mass% or less is the most preferable.

本発明の燃料は、上述の通り所定の性状を有する燃料を得られさえすれば、その基材については特に制限されるものではなく、例えば、原油蒸留装置、ナフサ改質装置、アルキレーション装置等から得られるプロパンを中心とした直留系プロパン留分、ブタンを中心とした直留系ブタン留分、それらを脱硫した直留系脱硫プロパン留分、直留系脱硫ブタン留分、接触分解装置等から得られるプロパン・プロピレンを中心とした分解系プロパン留分、ブタン・ブテンを中心とした分解系ブタン留分、原油を常圧蒸留して得られるナフサ留分(フルレンジナフサ)、ナフサの軽質留分(軽質ナフサ)、ナフサの重質留分(重質ナフサ)、フルレンジナフサを脱硫した脱硫フルレンジナフサ、軽質ナフサを脱硫した脱硫軽質ナフサ、重質ナフサを脱硫した脱硫重質ナフサ、軽質ナフサを異性化装置でイソパラフィンに転化して得られる異性化ガソリン、イソブタン等の炭化水素化合物に低級オレフィンを付加(アルキル化)することによって得られるアルキレート、接触改質法で得られる改質ガソリン、改質ガソリンから芳香族分を抽出した残分であるラフィネート、改質ガソリンの軽質留分、改質ガソリンの中重質留分、改質ガソリンの重質留分、接触分解法、水素化分解法等で得られる分解ガソリン、分解ガソリンの軽質留分、分解ガソリンの重質留分、原油の常圧蒸留装置から得られる直留軽油および直留灯油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解または水素化分解して得られる接触分解軽油、接触分解灯油、水素化分解軽油または水素化分解灯油、これらの石油系炭化水素を水素化精製して得られる水素化精製軽油、水素化脱硫軽油、若しく水素化精製灯油、及び天然ガス等を一酸化炭素と水素とに分解した後にF−T(Fischer−Tropsch)合成で得られるGTL(Gas to liquids)のナフサ留分、灯油留分、軽油留分等の基材を1種又は2種以上混合して調製することができる。   The base material of the fuel of the present invention is not particularly limited as long as a fuel having a predetermined property can be obtained as described above. For example, a crude oil distillation device, a naphtha reforming device, an alkylation device, etc. From propane, mainly from propane, straight butane from butane, straight desulfurized propane, desulfurized butane, and catalytic cracking equipment Cracked propane fractions mainly from propane / propylene, cracked butane fractions centered on butane / butene, naphtha fractions obtained by atmospheric distillation of crude oil (full-range naphtha), light naphtha Distillate (light naphtha), heavy fraction of naphtha (heavy naphtha), desulfurized full range naphtha desulfurized full range naphtha, desulfurized light naphtha desulfurized light naphtha, dehydrated heavy naphtha Desulfurized heavy naphtha, light naphtha converted to isoparaffins by isomerization equipment, alkylates obtained by adding (alkylating) lower olefins to hydrocarbon compounds such as isomerized gasoline and isobutane, catalytic reforming Reformed gasoline obtained by the method, raffinate, which is a residue of aromatics extracted from reformed gasoline, light fraction of reformed gasoline, medium heavy fraction of reformed gasoline, heavy fraction of reformed gasoline , Cracked gasoline obtained by catalytic cracking method, hydrocracking method, etc., light fraction of cracked gasoline, heavy fraction of cracked gasoline, straight-run gas oil and straight-run kerosene obtained from atmospheric distillation equipment of crude oil, normal pressure Contact oil obtained by catalytic cracking or hydrocracking vacuum gas oil, vacuum gas fuel oil or desulfurized fuel oil obtained by treating straight-run heavy oil or residual oil obtained from a distillation unit with a vacuum distillation unit. Cracked gas oil, catalytic cracked kerosene, hydrocracked gas oil or hydrocracked kerosene, hydrorefined gas oil obtained by hydrorefining these petroleum hydrocarbons, hydrodesulfurized gas oil, hydrorefined kerosene, and natural 1 type of base material such as naphtha fraction, kerosene fraction, light oil fraction of GTL (Gas to liquids) obtained by FT (Fischer-Tropsch) synthesis after cracking gas etc. into carbon monoxide and hydrogen Or it can prepare by mixing 2 or more types.

本発明の燃料には、必要に応じて公知の燃料添加剤を添加しても良い。例えば、燃料添加剤としては、高級カルボン酸とアルコールアミンとのアミド化合物等の摩擦調整剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミン等の清浄分散剤、N,N’−ジイソプロピル−p−フェニレンジアミン、N,N’−ジイソブチル−p−フェニレンジアミン、2,6−ジ−t−ブチル−4−メチルフェノール、ヒンダードフェノール類等の酸化防止剤、N,N’−ジサリチリデン−1,2−ジアミノプロパン等のアミンカルボニル縮合化合物等の金属不活性化剤、有機リン系化合物等の表面着火防止剤、多価アルコール及びそのエーテル等の氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコール硫酸エステル等の助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等の帯電防止剤、アゾ染料等の着色剤、有機カルボン酸及びそれらの誘導体類、アルケニルコハク酸エステル等の防錆剤、ソルビタンエステル類等の水抜き剤、硝酸エステルや有機過酸化物等のセタン価向上剤、カルボン酸系、エステル系、アルコール系およびフェノール系の潤滑性向上剤、シリコン系などの消泡剤、エチレン−酢酸ビニル共重合体、アルケニルコハク酸アミド等の低温流動性向上剤、キニザリン、クマリン等の識別剤、着臭剤等が挙げられる。これらの添加剤は、単独若しくは混合物として添加することができ、これら添加剤全量が、燃料全量基準で0.5質量%以下、より好ましくは0.2質量%以下となるような割合で添加することが好ましい。なお、ここでいう添加剤全量とは、添加剤の有効成分としての添加量を意味している。   You may add a well-known fuel additive to the fuel of this invention as needed. For example, fuel additives include friction modifiers such as amide compounds of higher carboxylic acids and alcohol amines, detergent dispersants such as succinimides, polyalkylamines and polyetheramines, N, N′-diisopropyl-p- Antioxidants such as phenylenediamine, N, N′-diisobutyl-p-phenylenediamine, 2,6-di-t-butyl-4-methylphenol, hindered phenols, N, N′-disalicylidene-1, -Metal deactivators such as amine carbonyl condensation compounds such as diaminopropane, surface ignition inhibitors such as organophosphorus compounds, anti-icing agents such as polyhydric alcohols and ethers thereof, alkali metal salts or alkaline earths of organic acids Combustors such as metal salts and higher alcohol sulfates, anionic surfactants, cationic surfactants, amphoteric surfactants Such as antistatic agents such as azo dyes, organic carboxylic acids and derivatives thereof, rust preventives such as alkenyl succinic acid esters, draining agents such as sorbitan esters, nitrate esters and organic peroxides, etc. Low-temperature fluidity improvers such as cetane improvers, carboxylic acid-based, ester-based, alcohol-based and phenol-based lubricity improvers, silicon-based antifoaming agents, ethylene-vinyl acetate copolymers, alkenyl succinic acid amides, etc. Discriminating agents such as quinizarin and coumarin, and odorants. These additives can be added alone or as a mixture, and are added in such a ratio that the total amount of these additives is 0.5% by mass or less, more preferably 0.2% by mass or less based on the total amount of fuel. It is preferable. Here, the total amount of additive means the amount added as an active ingredient of the additive.

以下に、実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

(実施例1〜9および比較例1〜8)
表1に示す組成に従って本発明の燃料(実施例1〜9)及び比較用の燃料(比較例1〜8)を常法により調製した。得られた各燃料の炭化水素化合物の含有割合、硫黄分、並びに高温酸化反応開始時の温度、圧力の測定結果を表1に併記した。
また、得られた各燃料を下記の予混合圧縮自己着火式エンジンを用いて、以下の試験を行い燃料の評価を実施した。結果を表2に示す。
(Examples 1-9 and Comparative Examples 1-8)
According to the composition shown in Table 1, fuels of the present invention (Examples 1 to 9) and comparative fuels (Comparative Examples 1 to 8) were prepared by a conventional method. Table 1 shows the measurement results of the hydrocarbon compound content, sulfur content, temperature at the start of the high-temperature oxidation reaction, and pressure in each fuel obtained.
The obtained fuel was evaluated by performing the following tests using the following premixed compression self-ignition engine. The results are shown in Table 2.

(エンジン諸元)
エンジン種類:直列6気筒予混合圧縮自己着火式エンジン
排気量:2000cc
圧縮比:14
燃料噴射圧力:8MPa
(Engine specifications)
Engine type: Inline 6-cylinder premixed compression self-ignition engine Displacement: 2000cc
Compression ratio: 14
Fuel injection pressure: 8MPa

(エンジン試験)
<ケース1>
実施例及び比較例の燃料について、エンジン回転数:2000rpm、トルク:80Nmで、2400サイクル分(400サイクル分×6回)の燃焼圧力データ(分解能0.25CAdeg)を小野測器社製燃焼解析装置(型番DS2100)を用いて採取し、以下の値を求めた。
(1)高温酸化反応開始時の温度T(K)、圧力P(MPa)
(2)y切片A:P=−0.0105×T+Aの式に高温酸化反応開始時の温度(T) 及び圧力(P)を代入して算出
(3)最大圧力上昇率
(4)平均有効圧力の変動値(平均有効圧力変動幅/平均有効圧力)
(結果)
実施例の燃料は、全て予混合圧縮自己着火に適正な最大圧力上昇率を示し、平均有効圧力の変動率は小さく、安定した予混合圧縮自己着火燃焼が得られた。一方、比較例の燃料は最大圧力上昇率が小さくなるのと同時に平均有効圧力の変動率が大きく、不安定な燃焼を起こし、予混合圧縮自己着火エンジンに不適な燃料であることが分かる。
また、高温酸化反応開始時の温度、圧力及びy切片Aを求めたところ、実施例の燃料のy切片Aは全て14以上16以下に収まり、高温酸化反応式(1)を満たすのに対し、比較例の燃料のy切片Aは14未満となり高温酸化反応式(1)を満たしていない。
<ケース2>
実施例及び比較例の燃料について、さまざまな負荷でエンジンを運転し、運転できる最大及び最小の回転数の限界を求め、エンジン運転領域の広さの比較を燃料毎に実施する。
(結果)
実施例の燃料に比べ、比較例の燃料は可能運転回転領域が著しく狭く、予混合圧縮自己着火エンジンに不適な燃料であることが分かる。
(Engine test)
<Case 1>
Combustion analysis apparatus manufactured by Ono Sokki Co., Ltd. for combustion pressure data (resolution: 0.25 CAdeg) for 2400 cycles (400 cycles × 6 times) at an engine speed of 2000 rpm and a torque of 80 Nm for the fuels of the examples and comparative examples. (Model No. DS2100) was used to obtain the following values.
(1) Temperature T (K) and pressure P (MPa) at the start of the high-temperature oxidation reaction
(2) y-intercept A: calculated by substituting the temperature (T) and pressure (P) at the start of the high-temperature oxidation reaction into the equation of P = −0.0105 × T + A. (3) Maximum pressure increase rate (4) Average effective Pressure fluctuation value (average effective pressure fluctuation range / average effective pressure)
(result)
The fuels of the examples all showed a maximum pressure increase rate appropriate for premixed compression self-ignition, the fluctuation rate of the average effective pressure was small, and stable premixed compression self-ignition combustion was obtained. On the other hand, it can be seen that the fuel of the comparative example is not suitable for the premixed compression self-ignition engine because the maximum pressure increase rate is small and the fluctuation rate of the average effective pressure is large and unstable combustion occurs.
Further, when the temperature, pressure and y-intercept A at the start of the high-temperature oxidation reaction were obtained, all y-intercepts A of the fuels of the examples were within the range of 14 to 16 and satisfy the high-temperature oxidation reaction formula (1). The y intercept A of the fuel of the comparative example is less than 14 and does not satisfy the high temperature oxidation reaction formula (1).
<Case 2>
About the fuel of an Example and a comparative example, an engine is drive | operated by various load, the limit of the maximum and minimum rotation speed which can be drive | operated is calculated | required, and the comparison of the width of an engine operation area | region is implemented for every fuel.
(result)
Compared with the fuel of the example, the fuel of the comparative example has a remarkably narrow possible operation rotation range, and it can be seen that the fuel is not suitable for the premixed compression self-ignition engine.

Figure 2007091819
Figure 2007091819
Figure 2007091819
Figure 2007091819

シリンダ内の熱発生率の変化を、クランク角度を横軸に熱発生率を縦軸にとって示した図である。It is the figure which showed the change of the heat release rate in a cylinder with the crank angle on the horizontal axis and the heat release rate on the vertical axis.

Claims (1)

シクロペンタン類の含有量が7容量%以下、ペンテン類の含有量が4容量%以下であり、かつ温度及び圧力が下記高温酸化反応式(1)を具備する条件下に高温酸化反応が開始することを特徴とする予混合圧縮自己着火式エンジン用燃料。
(1) −0.0105×T+14≦P≦−0.0105×T+16
(ここで、Pは高温酸化反応開始時の圧力(MPa)、Tは高温酸化反応開始時の温度(K)を示す。)
The high-temperature oxidation reaction starts under the condition that the content of cyclopentanes is 7% by volume or less, the content of pentenes is 4% by volume or less, and the temperature and pressure satisfy the following high-temperature oxidation reaction formula (1). A fuel for a premixed compression self-ignition engine characterized by that.
(1) −0.0105 × T + 14 ≦ P ≦ −0.0105 × T + 16
(Here, P represents the pressure (MPa) at the start of the high temperature oxidation reaction, and T represents the temperature (K) at the start of the high temperature oxidation reaction).
JP2005280502A 2005-09-27 2005-09-27 Fuel for premixed compression self-ignition engines Expired - Fee Related JP4815178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280502A JP4815178B2 (en) 2005-09-27 2005-09-27 Fuel for premixed compression self-ignition engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280502A JP4815178B2 (en) 2005-09-27 2005-09-27 Fuel for premixed compression self-ignition engines

Publications (2)

Publication Number Publication Date
JP2007091819A true JP2007091819A (en) 2007-04-12
JP4815178B2 JP4815178B2 (en) 2011-11-16

Family

ID=37977903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280502A Expired - Fee Related JP4815178B2 (en) 2005-09-27 2005-09-27 Fuel for premixed compression self-ignition engines

Country Status (1)

Country Link
JP (1) JP4815178B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221511A1 (en) * 2017-05-31 2018-12-06 マツダ株式会社 Compression ignition engine
WO2018221489A1 (en) * 2017-05-31 2018-12-06 マツダ株式会社 Compression ignition engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279570A (en) * 1998-03-27 1999-10-12 Jomo Technical Reserch Center:Kk Fuel for gasoline engine and manufacture thereof
JP2002256925A (en) * 2001-02-27 2002-09-11 Nissan Motor Co Ltd Control device of premixed compression self-ignitable engine
WO2005059063A1 (en) * 2003-12-19 2005-06-30 Sasol Technology (Pty) Ltd Fuel for homogeneous charge compression ignition (hcci) systems and a process for production of said fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279570A (en) * 1998-03-27 1999-10-12 Jomo Technical Reserch Center:Kk Fuel for gasoline engine and manufacture thereof
JP2002256925A (en) * 2001-02-27 2002-09-11 Nissan Motor Co Ltd Control device of premixed compression self-ignitable engine
WO2005059063A1 (en) * 2003-12-19 2005-06-30 Sasol Technology (Pty) Ltd Fuel for homogeneous charge compression ignition (hcci) systems and a process for production of said fuel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221511A1 (en) * 2017-05-31 2018-12-06 マツダ株式会社 Compression ignition engine
WO2018221489A1 (en) * 2017-05-31 2018-12-06 マツダ株式会社 Compression ignition engine
JP2018204476A (en) * 2017-05-31 2018-12-27 マツダ株式会社 Compression ignition type engine
JP2018204469A (en) * 2017-05-31 2018-12-27 マツダ株式会社 Compression ignition type engine
CN110691898A (en) * 2017-05-31 2020-01-14 马自达汽车株式会社 Compression ignition engine

Also Published As

Publication number Publication date
JP4815178B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5355064B2 (en) Fuel for premixed compression self-ignition engines
JP5178253B2 (en) Fuel for premixed compression self-ignition engines
JP5019802B2 (en) Fuel for premixed compression self-ignition engines
JP5545677B2 (en) Fuel for premixed compression self-ignition engines
JP4634103B2 (en) Premixed compression self-ignition and spark ignition combined engine fuel
JP4109043B2 (en) Fuel for premixed compression self-ignition engines
JP4815178B2 (en) Fuel for premixed compression self-ignition engines
JP4109045B2 (en) Fuel for premixed compression self-ignition engines
JP4458405B2 (en) Fuel for premixed compression self-ignition engines
JP4634104B2 (en) Premixed compression self-ignition and spark ignition combined engine fuel
JP4109053B2 (en) Fuel for premixed compression self-ignition engines
JP4109046B2 (en) Fuel for premixed compression self-ignition engines
JP4109048B2 (en) Fuel for premixed compression self-ignition engines
JP4109051B2 (en) Fuel for premixed compression self-ignition engines
JP4109052B2 (en) Fuel for premixed compression self-ignition engines
JP4109044B2 (en) Fuel for premixed compression self-ignition engines
JP4109047B2 (en) Fuel for premixed compression self-ignition engines
JP4109054B2 (en) Fuel for premixed compression self-ignition engines
JP4109049B2 (en) Fuel for premixed compression self-ignition engines
JP4109050B2 (en) Fuel for premixed compression self-ignition engines
JP2009173827A (en) Fuel oil composition for off-road premixed charge compression ignition engine
JP5334557B2 (en) Fuel oil composition for premixed compression ignition engines
JP5436849B2 (en) Fuel oil composition for premixed compression ignition engines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Ref document number: 4815178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees