JP2007091558A - Method of manufacturing high heat resistant quartz glass powder, high heat resistant quartz glass powder and glass body - Google Patents

Method of manufacturing high heat resistant quartz glass powder, high heat resistant quartz glass powder and glass body Download PDF

Info

Publication number
JP2007091558A
JP2007091558A JP2005286246A JP2005286246A JP2007091558A JP 2007091558 A JP2007091558 A JP 2007091558A JP 2005286246 A JP2005286246 A JP 2005286246A JP 2005286246 A JP2005286246 A JP 2005286246A JP 2007091558 A JP2007091558 A JP 2007091558A
Authority
JP
Japan
Prior art keywords
quartz glass
glass powder
high heat
heat resistant
resistant quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005286246A
Other languages
Japanese (ja)
Other versions
JP5013573B2 (en
Inventor
Tatsuhiro Sato
龍弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2005286246A priority Critical patent/JP5013573B2/en
Publication of JP2007091558A publication Critical patent/JP2007091558A/en
Application granted granted Critical
Publication of JP5013573B2 publication Critical patent/JP5013573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing quartz glass powder for manufacturing a high heat resistant quartz glass body having a high temperature viscosity characteristic equal to or above that of natural quartz glass, high heat resistant quartz glass powder and a high heat resistant quartz glass body easily obtained by the method of manufacturing the high heat resistant quartz glass powder. <P>SOLUTION: The high heat resistant quartz glass powder is obtained by coexisting OH group-containing quartz glass powder and an organic silicon compound to react with each other to remove OH group which is a low viscosity factor in the quartz glass powder and to produce bonded species which is a high viscosity factor by the reaction effect. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、石英ガラス粉を熱処理して得られる高耐熱性石英ガラス粉の製造方法、高耐熱性石英ガラス粉及び高耐熱性石英ガラス体に関する。   The present invention relates to a method for producing a high heat-resistant quartz glass powder obtained by heat-treating quartz glass powder, a high heat-resistant quartz glass powder, and a high heat-resistant quartz glass body.

石英ガラスは、近年ますます、高い耐熱性が望まれている。特に、高純度特性を併せ持った合成石英ガラス体への要求度は高い。合成石英ガラス体は、一般的に、合成石英ガラス粉を加熱溶融することによって得られる。使用される合成石英ガラス粉は、通常ゾルゲル法によって製造されるが、この方法で製造された石英ガラス粉中には、高濃度のOH基が残留し、加熱焼成後製造された石英ガラス体は、OH基が多量に存在する為、ガラスの粘度が下がり、耐熱性が下がり、1000℃以上で使用される半導体工業用石英ガラス治具用途としては、変形を起こして好ましくない。   In recent years, quartz glass is increasingly required to have high heat resistance. In particular, the demand for a synthetic quartz glass body having high purity characteristics is high. The synthetic quartz glass body is generally obtained by heating and melting synthetic quartz glass powder. The synthetic quartz glass powder used is usually manufactured by the sol-gel method. In the quartz glass powder manufactured by this method, high-concentration OH groups remain, and the quartz glass body manufactured after heating and firing is Since a large amount of OH groups are present, the viscosity of the glass is lowered, the heat resistance is lowered, and the quartz glass jig for the semiconductor industry used at 1000 ° C. or higher is not preferable because of deformation.

この対策として、合成ガラス粉を塩素ガス中で加熱処理して、OH基を除去する方法など検討されている(特許文献1)。
特開平6−40713号公報
As a countermeasure, a method of removing synthetic OH powder from chlorine gas to remove OH groups has been studied (Patent Document 1).
JP-A-6-40713

上記の方法によって得られる合成石英ガラス粉は、OH基は除去されるが、Clが残留し、加熱焼成後のガラス体中に、泡が多量に確認され、且つ、得られる耐熱性も、天然石英ガラス体に比較して、十分なものではなく、問題であった。   In the synthetic quartz glass powder obtained by the above method, OH groups are removed, but Cl remains, a large amount of bubbles are confirmed in the glass body after heating and baking, and the obtained heat resistance is also natural stone. Compared to the British glass body, it was not enough and was a problem.

本発明の目的は、天然石英ガラスと同等以上の高温粘度特性を有する高耐熱性石英ガラス体製造用の石英ガラス粉の製造方法並びにその高耐熱性石英ガラス粉の製造方法により容易に得られる高耐熱性石英ガラス粉及び高耐熱性石英ガラス体を提供することにある。   An object of the present invention is to provide a method for producing a quartz glass powder for producing a high heat-resistant quartz glass body having a high-temperature viscosity characteristic equivalent to or higher than that of natural quartz glass, and a high-temperature silica glass powder that is easily obtained by the method for producing the high-heat-resistant quartz glass powder. The object is to provide a heat-resistant quartz glass powder and a high heat-resistant quartz glass body.

上記課題を解決する為、本発明の高耐熱性石英ガラス粉の製造方法は、OH基を含む石英ガラス粉と有機珪素化合物を共存反応させ、その反応効果によって、石英ガラス粉中の低粘度因子であるOH基を除去すると同時に、高粘度因子である結合種を生成させ、高耐熱性石英ガラス粉を得ることを特徴とする。前記前記石英ガラス粉と前記有機珪素化合物の共存反応を、100℃〜1000℃の反応温度で行うことが好ましい。   In order to solve the above-mentioned problems, the method for producing a high heat-resistant quartz glass powder according to the present invention causes a quartz glass powder containing an OH group and an organic silicon compound to coexist, and the low viscosity factor in the quartz glass powder is determined by the reaction effect. At the same time as the removal of the OH group, a binding species that is a high viscosity factor is generated to obtain a high heat-resistant quartz glass powder. The coexistence reaction of the quartz glass powder and the organosilicon compound is preferably performed at a reaction temperature of 100 ° C to 1000 ° C.

本発明方法に用いられる石英ガラス粉は、OH基が10ppm以上の石英ガラス粉であることが反応効果を得るために必要である。OH基は多いほうが、有機珪素化合物との反応が多量に起き、高粘度因子の数も増えて好ましい。石英ガラス粉としては、天然石英ガラス粉及び合成石英ガラス粉のいずれも使用可能であるが、合成石英ガラス粉を用いる場合、OH基濃度は50ppm以上が好適であり、さらには、100ppm以上がより好適である。   The quartz glass powder used in the method of the present invention is a quartz glass powder having an OH group of 10 ppm or more in order to obtain a reaction effect. A larger number of OH groups is preferable because a large amount of reaction with the organosilicon compound occurs and the number of high viscosity factors increases. As the quartz glass powder, either natural quartz glass powder or synthetic quartz glass powder can be used. When synthetic quartz glass powder is used, the OH group concentration is preferably 50 ppm or more, and more preferably 100 ppm or more. Is preferred.

また、前記石英ガラス粉を前記有機珪素化合物と共存反応させた後、有機珪素化合物の未反応残留物の置換を行うために加熱処理を行うことが好ましい。この加熱置換処理中の雰囲気ガス及び反応温度は特に限定されないが、水素を含む雰囲気中で加熱置換処理を行うと、有機珪素化合物が残留せず、得られた石英ガラス粉を用いて石英ガラス体を作製する場合、石英ガラス粉の加熱燒結時にガラス体中で泡とならず好ましい。加熱置換処理中の雰囲気ガスは、水素を含むガス以外に、He、N2、Arなどの不活性ガスでもよい。前記加熱処理は、300℃〜1400℃の温度範囲で行うことがより好ましい。
この方法で製造された石英ガラス粉を用いて、加熱燒結して作製された石英ガラス体は、天然石英ガラス体並かそれ以上の高耐熱性を有する。
Moreover, it is preferable that after the quartz glass powder is allowed to coexist with the organosilicon compound, heat treatment is performed to replace the unreacted residue of the organosilicon compound. The atmosphere gas and the reaction temperature during the heat substitution treatment are not particularly limited. However, when the heat substitution treatment is performed in an atmosphere containing hydrogen, no organosilicon compound remains, and the quartz glass body is obtained using the obtained quartz glass powder. Is preferable because it does not form bubbles in the glass body when the quartz glass powder is heated and sintered. The atmosphere gas during the heat replacement treatment may be an inert gas such as He, N 2 , or Ar in addition to the gas containing hydrogen. The heat treatment is more preferably performed in a temperature range of 300 ° C to 1400 ° C.
A quartz glass body produced by heating and sintering using the quartz glass powder produced by this method has a high heat resistance comparable to or higher than that of a natural quartz glass body.

本発明の高耐熱性石英ガラス粉は、本発明の製造方法で製造されることを特徴とする。
本発明の高耐熱性石英ガラス体は、本発明の高耐熱性石英ガラス粉で製造されたガラス体である。
The high heat-resistant quartz glass powder of the present invention is manufactured by the manufacturing method of the present invention.
The high heat-resistant quartz glass body of the present invention is a glass body produced from the high heat-resistant quartz glass powder of the present invention.

本発明の製造方法で製造された高耐熱性石英ガラス粉を用いれば、不純物がなく、且つ天然水晶を原料とする天然石英ガラスと同等又はそれ以上の高温時の粘度を有する高耐熱性石英ガラス体を製造可能であり、また、高耐熱性石英ガラス体を安全且つ収率良く製造することができる。   By using the high heat-resistant quartz glass powder produced by the production method of the present invention, there is no impurity and the high heat-resistant quartz glass has a viscosity at high temperature equal to or higher than that of natural quartz glass made from natural quartz. The high-heat-resistant quartz glass body can be manufactured safely and with high yield.

以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。   Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.

OH基を含む石英ガラス粉を準備し、有機珪素化合物を反応ガスとして選択し、該OH基を含む石英ガラス粉中に拡散させ、該OH基と該有機珪素化合物を反応させ、高耐熱性の石英ガラス粉を作製する。更に、得られた石英ガラス粉に焼成処理を施して、緻密な高耐熱性石英ガラス体を作製する。   Preparing quartz glass powder containing OH groups, selecting an organic silicon compound as a reaction gas, diffusing into the quartz glass powder containing OH groups, reacting the OH groups with the organosilicon compound, and having high heat resistance Quartz glass powder is produced. Further, the obtained quartz glass powder is fired to produce a dense high heat resistant quartz glass body.

上記OH基を含む石英ガラス粉としては、天然石英ガラス粉と合成石英ガラス粉のいずれも使用可能であるが、合成石英ガラス粉が好ましい。合成石英ガラス粉としては、特に限定はないが、ハロゲン化珪素の火炎加水分解で得た微粒子や、ゾルゲル法によって得られた微粉を用いることができる。天然石英ガラス粉でもOH基を含有するものなら同様な反応が起き、効果が得られる。なお、上記石英ガラス粉に含有される水酸基は、10〜20000ppmあれば充分であるが、50ppm以上が好ましく、100ppm以上がより好ましい。また、本発明に用いられる石英ガラス粉の粒径に制限はないが、1000nm〜1000μmが好ましく、3000nm〜500μmのものがより好ましい。   As the quartz glass powder containing an OH group, either natural quartz glass powder or synthetic quartz glass powder can be used, but synthetic quartz glass powder is preferable. The synthetic quartz glass powder is not particularly limited, and fine particles obtained by flame hydrolysis of silicon halide or fine powder obtained by a sol-gel method can be used. If natural quartz glass powder contains OH groups, the same reaction occurs and the effect is obtained. In addition, although it is sufficient if the hydroxyl group contained in the said quartz glass powder is 10-20000 ppm, 50 ppm or more is preferable and 100 ppm or more is more preferable. Moreover, although there is no restriction | limiting in the particle size of the quartz glass powder used for this invention, 1000 nm-1000 micrometers are preferable and the thing of 3000 nm-500 micrometers is more preferable.

上記有機珪素化合物(反応ガス)としては、例えば、オルガノアセトキシシラン、オルガノアルコキシシラン、オルガノクロルシラン、オルガノクロルフルシラン、オルガノジシラン、オルガノシラザン、オルガノシラノール、オルガノシラン、オルガノシランカルボン酸、オルガノシリコンイソシアナート、オルガノシリコンイソチオシアナート、オルガノシリコンエステル、オルガノシルチアン、オルガノシルメチレン、オルガノジシロキサン、オルガノヒドロゲノシラン、オルガノフルオルシラン、オルガノブロムシラン、オルガノポリシラン、等の揮発性の有機珪素化合物が使用可能であり、特に、ヘキサメチルジシラザン等のオルガノシラザンによる反応が最も粘度上昇に効果的であり好ましい。   Examples of the organosilicon compound (reaction gas) include organoacetoxysilane, organoalkoxysilane, organochlorosilane, organochloroflusilane, organodisilane, organosilazane, organosilanol, organosilane, organosilanecarboxylic acid, organosilicon isocyanate. Volatile organosilicon compounds such as natto, organosilicon isothiocyanate, organosilicon ester, organosilthien, organosilmethylene, organodisiloxane, organohydrogensilane, organofluorosilane, organobromosilane, organopolysilane, etc. In particular, a reaction with an organosilazane such as hexamethyldisilazane is most effective for increasing the viscosity and is preferable.

前記有機珪素化合物の具体例としては、アセトキシトリメチルシラン、ジアセトキシジメチルシラン、トリアセトキシメチルシラン、アセトキシトリエチルシラン、ジアセトキシジエチルシラン、トリアセトキシエチルシラン、アセトキシトリプロピルシラン、メトキシトリメチルシラン、ジメトキシジメチルシラン、トリメトキシメチルシラン、エトキシトリメチルシラン、ジエトキシジメチルシラン、トリエトキシメチルシラン、エトキシトリエチルシラン、ジエトキシジエチルシラン、トリエトキシエチルシラン、トリメチルフェノキシシラン、トリクロルメチルシラン、ジクロルジメチルシラン、クロルトリメチルシラン、トリクロルエチルシラン、ジクロルジエチルシラン、クロルトリエチルシラン、トリクロルフェニルシラン、ジクロルジフェニルシラン、クロルトリフェニルシラン、ジクロルジフェニルシラン、ジクロルメチルフェニルシラン、ジクロルエチルフェニルシラン、クロルジフルオルメチルシラン、ジクロルフルオルメチルシラン、クロルフルオルジメチルシラン、クロルエチルジフルオルシラン、ジクロルエチルフルオルシラン、クロルジフルオルプロピルシラン、ジクロルフルオルプロピルシラン、ヘキサメチルジシラン、ヘキサエチルジシラン、ヘキサプロピルシラン、ヘキサフェニルシラン、トリエチルシラザン、トリプロピルシラザン、トリフェニルシラザン、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサフェニルジシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、ヘキサエチルシクロトリシラザン、オクタエチルシクロテトラシラザン、ヘキサフェニルシクロトリシラザン、トリメチルシラノール、ジメチルフェニルシラノール、トリエチルシラノール、ジエチルシランジオール、トリプロピルシラノール、ジプロピルシランジオール、トリフェニルシラノール、ジフェニルシランジオール、テトラメチルシラン、エチルトリメチルシラン、トリメチルプロピルシラン、トリメチルフェニルシラン、ジエチルジメチルシラン、トリエチルメチルシラン、メチルトリフェニルシラン、テトラエチルシラン、トリエチルフェニルシラン、ジエチルジフェニルシラン、エチルトリフェニルシラン、テトラフェニルシラン、トリフェニルシリルカルボ酸、トリメチルシリル酢酸、トリメチルシリルプロニオン酸、トリメチルシリル酪酸、トリメチルシリコnイソシアナート、ジメチルシリコンジイソシアナート、メチルシリコントリイソシアナート、ブチルシリコントリイソシアナート、トリフェニルシリコニソシアナート、ジフェニルシリコンジイソシアナート、フェニルシリコントリイソシアナート、トリメチルシリコンイソチオシアナート、ジメチルシリコンジイソチオシアナート、メチルシリコントリイソチオシアナート、トリエチルシリコンイソチオシアナート、ジエチルシリコンジイソチオシアナート、エチルシリコントリイソチオシアナート、トリフェニルシリコンイソチオシアナート、ジフェニルシリコジイソチオシアナート、フェニルシリコントリイソチオシアナート、硫酸ビス(トリメチルシリル)、硫酸ビス(トリエチルシリル)、リン酸トリス(トリメチルシリル)、シアン化トリエチルシリル、酢酸トリメチルシリル、イソシアン酸トリメチルシリル、ヘキサメチルジシルチアン、ヘキサエチルジシルチアン、ヘキサプロピルジシルチアン、テトラメチルシクロジシルチアン、ヘキサエチルシクロトリシルチアン、テトラエチルシクロジシルチアン、ヘキサメチルジシルメチレン、ヘキサエチルジシルメチレン、ヘキサプロピルジシリメチレン、オクタメチルトリシルメチレン、デカメチルテトラシルメチレン、ドデガメチルペンタシルメチレン、ヘキサメチルジシロキサン、ヘキサエチルジシロキサン、ヘキサプロピルジシロキサン、ヘキサフェニルジシロキサン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、トリエチルシラン、トリプロピルシラン、ジフェニルシラン、トリフェニルシラン、トリフルオルメチルシラン、ジフルオルジメチルシラン、フルオルトリメチルシラン、エチルトリフルオルシラン、ジエチルジフルオルシラン、トリエチルフルオルシラン、トリフルオルプロピルシラン、フルオルトリプロピルシラン、トリフルオルフェニルシラン、ジフルオルジフェニルシラン、フルオルトリフェニルシラン、トリブロムメチルシラン、ジブロムジメチルシラン、ブロムトリメチルシラン、ブロムトリエチルシラン、ブロムトリプロピルシラン、ジブロムジフェニルシラン、ブロムトリフェニルシラン、ヘキサメチルジシラン、ヘキサエチルジシラン、ヘキサフェニルジシラン、オクタフェニルシクロテトラシラン、オクタシクロテトラシロキサン、などが挙げられる。上記有機珪素化合物は、単独で用いてもよく、2種以上併用してもよい。   Specific examples of the organosilicon compound include acetoxytrimethylsilane, diacetoxydimethylsilane, triacetoxymethylsilane, acetoxytriethylsilane, diacetoxydiethylsilane, triacetoxyethylsilane, acetoxytripropylsilane, methoxytrimethylsilane, dimethoxydimethylsilane. , Trimethoxymethylsilane, ethoxytrimethylsilane, diethoxydimethylsilane, triethoxymethylsilane, ethoxytriethylsilane, diethoxydiethylsilane, triethoxyethylsilane, trimethylphenoxysilane, trichloromethylsilane, dichlorodimethylsilane, chlorotrimethylsilane , Trichloroethylsilane, dichlorodiethylsilane, chlorotriethylsilane, trichlorophenylsilane, Chlordiphenylsilane, Chlortriphenylsilane, Dichlorodiphenylsilane, Dichloromethylphenylsilane, Dichloroethylphenylsilane, Chlordifluoromethylsilane, Dichlorofluoromethylsilane, Chlorfluorodimethylsilane, Chlorethyldifluorosilane , Dichloroethylfluorosilane, chlorodifluoropropylsilane, dichlorofluoropropylsilane, hexamethyldisilane, hexaethyldisilane, hexapropylsilane, hexaphenylsilane, triethylsilazane, tripropylsilazane, triphenylsilazane, hexamethyl Disilazane, hexaethyldisilazane, hexaphenyldisilazane, hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, hexaethylcyclotriazane Razan, octaethylcyclotetrasilazane, hexaphenylcyclotrisilazane, trimethylsilanol, dimethylphenylsilanol, triethylsilanol, diethylsilanediol, tripropylsilanol, dipropylsilanediol, triphenylsilanol, diphenylsilanediol, tetramethylsilane, ethyl Trimethylsilane, trimethylpropylsilane, trimethylphenylsilane, diethyldimethylsilane, triethylmethylsilane, methyltriphenylsilane, tetraethylsilane, triethylphenylsilane, diethyldiphenylsilane, ethyltriphenylsilane, tetraphenylsilane, triphenylsilylcarboic acid, Trimethylsilylacetic acid, trimethylsilylpronionic acid, trimethylsilylbutyric acid, Limethyl silicon n isocyanate, dimethyl silicon diisocyanate, methyl silicon triisocyanate, butyl silicon triisocyanate, triphenyl silicon isocyanate, diphenyl silicon diisocyanate, phenyl silicon triisocyanate, trimethyl silicon isothiocyanate, dimethyl silicon Diisothiocyanate, methylsilicon triisothiocyanate, triethylsilicon isothiocyanate, diethylsilicon diisothiocyanate, ethylsilicon triisothiocyanate, triphenylsilicon isothiocyanate, diphenylsilicodiisothiocyanate, phenylsilicon triisothiocyanate Isocyanate, bis (trimethylsilyl) sulfate, bis (triethylsilyl) sulfate, tris phosphate (trimethyl Rusilyl), triethylsilyl cyanide, trimethylsilyl acetate, trimethylsilyl isocyanate, hexamethyldisilthiane, hexaethyldisilthiane, hexapropyldisilthiane, tetramethylcyclodisilthiane, hexaethylcyclotrisilthiane, tetraethylcyclodiene Silthian, Hexamethyldisylmethylene, Hexaethyldisylmethylene, Hexapropyldisilimethylene, Octamethyltrisylmethylene, Decamethyltetrasylmethylene, Dodecamethylpentasilmethylene, Hexamethyldisiloxane, Hexaethyldisiloxane , Hexapropyldisiloxane, hexaphenyldisiloxane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, triethylsilane, tripropylsilane, dipheny Silane, triphenylsilane, trifluoromethylsilane, difluorodimethylsilane, fluortrimethylsilane, ethyl trifluorosilane, diethyldifluorosilane, triethylfluorosilane, trifluoropropylsilane, fluortripropylsilane, trifluorophenyl Silane, difluorodiphenylsilane, fluorotriphenylsilane, tribromomethylsilane, dibromodimethylsilane, bromotrimethylsilane, bromotriethylsilane, bromotripropylsilane, dibromodiphenylsilane, bromotriphenylsilane, hexamethyldisilane, Examples include hexaethyldisilane, hexaphenyldisilane, octaphenylcyclotetrasilane, octacyclotetrasiloxane, and the like. The said organosilicon compound may be used independently and may be used together 2 or more types.

前記石英粉と有機珪素化合物との共存反応は、100℃〜1000℃の温度範囲で、30分以上保持されることが好ましい。   The coexistence reaction between the quartz powder and the organosilicon compound is preferably maintained for 30 minutes or more in a temperature range of 100 ° C to 1000 ° C.

前記共存反応後さらに、水素を含む雰囲気中又は不活性ガス雰囲気中で加熱処理を行うことが好ましい。特に、水素を含む雰囲気中で加熱置換処理を行い、有機珪素化合物の未反応残留物の置換を行うことが好ましい。その加熱置換処理は300℃〜1400℃の範囲の加熱温度で30分以上保持されることが好適である。   After the coexistence reaction, it is preferable to perform heat treatment in an atmosphere containing hydrogen or an inert gas atmosphere. In particular, it is preferable to perform a heat replacement treatment in an atmosphere containing hydrogen to replace an unreacted residue of the organosilicon compound. The heat replacement treatment is preferably held at a heating temperature in the range of 300 ° C. to 1400 ° C. for 30 minutes or more.

前記水素を含む雰囲気としては、100%H2や、不活性ガスとH2ガスとの混合ガス、水蒸気等、分解して水素を発生するガスなら同様な効果を得ることができる。加熱置換処理時の雰囲気中の水素は、体積比率で0.5%以上4%以下が好適である。不活性ガスは、N2、He、Ar、Kr、Xeなど使用可能だが、Arが最も好適である。Arと他のガスを混合して用いてもよい。 If the atmosphere containing hydrogen is a gas that decomposes to generate hydrogen, such as 100% H 2 , a mixed gas of inert gas and H 2 gas, water vapor, or the like, the same effect can be obtained. The volume ratio of hydrogen in the atmosphere during the heat substitution treatment is preferably 0.5% or more and 4% or less. As the inert gas, N 2 , He, Ar, Kr, Xe and the like can be used, but Ar is most preferable. Ar and other gases may be mixed and used.

次に、本発明の石英ガラス粉の製造方法の一例として、反応ガスとして使用するガスとして、ヘキサメチルジシラザン[(CH33Si]2NHを用いた態様を例にして、詳細に説明する。 Next, as an example of the method for producing quartz glass powder of the present invention, an embodiment using hexamethyldisilazane [(CH 3 ) 3 Si] 2 NH as a gas used as a reaction gas will be described in detail. To do.

まず、公知のゾルゲル法で、合成石英ガラス粉を作る。この石英ガラス粉を電気炉内に設けられた石英ガラス製の炉心管内にセットし、所定の温度まで昇温する。
次にヘキサメチルジシラザン蒸気を窒素ガスで希釈しながら流し、ガラス粉中に残留している水酸基とヘキサメチルジシラザンとを反応させる。このとき下記式(1)のような反応が起こると考えられる。
Si−OH + [(CH33Si]2NH →
Si−N−[(CH33Si]2 + H2O ・・・(1)
この反応は、100℃未満では、反応が充分に進まず、1000℃を超えると、反応の前に反応ガスが熱分解してしまい効果を得ることができない。
First, synthetic quartz glass powder is made by a known sol-gel method. This quartz glass powder is set in a quartz glass core tube provided in an electric furnace, and the temperature is raised to a predetermined temperature.
Next, hexamethyldisilazane vapor is flowed while diluting with nitrogen gas to react the hydroxyl groups remaining in the glass powder with hexamethyldisilazane. At this time, it is considered that the reaction represented by the following formula (1) occurs.
Si-OH + [(CH 3 ) 3 Si] 2 NH →
Si—N — [(CH 3 ) 3 Si] 2 + H 2 O (1)
If the reaction is less than 100 ° C., the reaction does not proceed sufficiently. If the reaction temperature exceeds 1000 ° C., the reaction gas is thermally decomposed before the reaction, and the effect cannot be obtained.

石英ガラス粉中に生成したSi−N−[(CH33Si]2は、このまま、焼成処理を行うと、Si−N、Si−C又は、Si−Siに分解され、石英ガラス体の粘度を向上させる。シラザンの未反応残留分が多いとき、この未反応シラザンは、焼成体中において分解しCを多量に生成し、灰色または黒色を呈したり、或いは泡が多量に発生する場合もある。焼成処理の前に、加熱置換処理としてH2ガスを投入するこことにより、上記シラザン未反応残留物は、H2ガスと反応して、CH4ガスを生成して放出し、且つ、高粘度因子であるSi−N、Si−C、又はSi−Siに分解される。この加熱置換温度は、300℃未満では、置換が充分に行われないので不充分で、1400℃を超えると、石英ガラス粉の燒結が進んで、置換不能となるので不適である。前記加熱置換処理により、石英ガラス体の原料として非常に好適な、高耐熱性石英ガラス粉が得られる。 Si—N — [(CH 3 ) 3 Si] 2 produced in the quartz glass powder is decomposed into Si—N, Si—C, or Si—Si when subjected to the firing treatment as it is, and the quartz glass body Improve viscosity. When there is a large amount of unreacted silazane, this unreacted silazane decomposes in the fired body to produce a large amount of C, and may be gray or black, or a large amount of foam may be generated. By introducing H 2 gas as a heat replacement treatment before the firing treatment, the silazane unreacted residue reacts with H 2 gas to generate and release CH 4 gas and has a high viscosity. It is decomposed into Si—N, Si—C, or Si—Si as factors. If the heating substitution temperature is less than 300 ° C., the substitution is not sufficiently performed, and if it exceeds 1400 ° C., the sintering of the quartz glass powder proceeds and the substitution becomes impossible. By the heat substitution treatment, highly heat-resistant quartz glass powder that is very suitable as a raw material for the quartz glass body is obtained.

前記作製された石英ガラス粉に対して焼成処理を行うことにより、透明かつ気泡がなく、粘度も向上した高耐熱性の石英ガラス体が得られる。加熱焼成の方法は、特に限定されないが、電気加熱炉による溶融、酸水素火炎炉による溶融、溶射、アークプラズマ溶融、減圧下のチューブ中に充填して加熱溶融、等の方法が適用される。この粉を使用して、加熱焼成作製された石英ガラス体としては、例えば、板、棒、シリンダー、リング、ベルジャー、るつぼ等が挙げられる。   By baking the produced quartz glass powder, a highly heat-resistant quartz glass body that is transparent, free of bubbles and improved in viscosity is obtained. The method for heating and firing is not particularly limited, and methods such as melting with an electric heating furnace, melting with an oxyhydrogen flame furnace, thermal spraying, arc plasma melting, filling in a tube under reduced pressure and heating and melting are applied. Examples of the quartz glass body produced by heating and baking using this powder include a plate, a rod, a cylinder, a ring, a bell jar, and a crucible.

以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。
(実施例1)
ゾルゲル法によって作製された、粒度が50μm〜500μmの合成石英ガラス微粒子(OH基約300ppm含有)約1kgを、電気炉内に装着された石英ガラス製の炉心管(直径200mm)内にセットした。次いで、炉心管内を排気した後、500℃に加熱し、この温度で60分間予熱した。その後600℃まで昇温し、微粒子中のOH基と、反応ガスとしてヘキサメチルジシラザン蒸気1mol/HrをN2ガス1mol/Hrで希釈しながら供給し、反応させた。加熱は、表1に示した反応温度にて、1時間の間その温度にて保持して行った。
The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.
Example 1
About 1 kg of synthetic quartz glass fine particles (containing about 300 ppm of OH groups) produced by the sol-gel method and having a particle size of 50 μm to 500 μm were set in a quartz glass core tube (diameter: 200 mm) mounted in an electric furnace. Next, after exhausting the inside of the furnace tube, it was heated to 500 ° C. and preheated at this temperature for 60 minutes. Thereafter, the temperature was raised to 600 ° C., and OH groups in the fine particles and 1 mol / Hr of hexamethyldisilazane vapor as a reaction gas were supplied while being diluted with 1 mol / Hr of N 2 gas, and reacted. Heating was performed at the reaction temperature shown in Table 1 while maintaining the temperature for 1 hour.

反応終了後、処理された微粒子を加熱炉内に移し、800℃に昇温し、ArとH2ガスの比率が97:3である混合ガスを1mol/Hr掛け流しながら、1時間保持し、取り出した。加熱処理後の微粒子中の残留カーボン量を燃焼赤外線吸収法で測定したところ、カーボンは1ppm以下であった。
その後、微粒子をカーボン鋳型に充填し、加熱炉にセットし、1×10-3mmHg以下に減圧後、1500℃に昇温し、1時間保持した後、室温に冷却し、緻密化された透明石英ガラス体を得た。
After completion of the reaction, the treated fine particles are transferred into a heating furnace, heated to 800 ° C., and held for 1 hour while flowing a mixed gas having a ratio of Ar: H 2 gas of 97: 3 at 1 mol / Hr, I took it out. When the amount of residual carbon in the fine particles after the heat treatment was measured by a combustion infrared absorption method, the carbon content was 1 ppm or less.
Thereafter, the fine particles are filled in a carbon mold, set in a heating furnace, reduced in pressure to 1 × 10 −3 mmHg or less, heated to 1500 ° C., held for 1 hour, cooled to room temperature, and densified transparent A quartz glass body was obtained.

得られた石英ガラス中に残留するOH基(OH)、塩素(Cl)をそれぞれ赤外線吸収分光光度法及び比濁塩素分析法を用いて測定し、さらに、1280℃に加熱してビームベンディング法によりその温度における粘度(単位:ポアズ)を測定した。結果を表1に示す。なお、表1において粘度はその対数値(logη)を示した。得られた石英ガラス体の粘度は、1280℃のlogηで12.2であり、高い耐熱性を示した。   OH groups (OH) and chlorine (Cl) remaining in the obtained quartz glass were measured using infrared absorption spectrophotometry and turbidimetric chlorine analysis, respectively, and further heated to 1280 ° C. by beam bending. The viscosity at that temperature (unit: poise) was measured. The results are shown in Table 1. In Table 1, the viscosity is a logarithmic value (log η). The viscosity of the obtained quartz glass body was 12.2 at a log η of 1280 ° C., indicating high heat resistance.

Figure 2007091558
Figure 2007091558

(実施例2)
表1に示した如く、4塩化珪素を火炎加水分解して作製された、粒度が0.05μm〜10μmの合成石英ガラス微粒子(OH基約300ppm含有)約1kgを使用する以外は実施例1と同様に行い、透明なガラス体を得た。得られた石英ガラス体の物性を表1に示す。得られた石英ガラス体の粘度は、1280℃のlogηで12.2であり、高い耐熱性を示した。
(Example 2)
As shown in Table 1, Example 1 was used except that about 1 kg of synthetic quartz glass fine particles (containing about 300 ppm of OH groups) having a particle size of 0.05 μm to 10 μm prepared by flame hydrolysis of silicon tetrachloride was used. A transparent glass body was obtained in the same manner. Table 1 shows the physical properties of the obtained quartz glass body. The viscosity of the obtained quartz glass body was 12.2 at a log η of 1280 ° C., indicating high heat resistance.

(実施例3)
表1に示した如く、OH基を約200ppm含有する、粒度が5μm〜500μmの天然石英ガラス粉を使用する以外は実施例1と同様に行い、透明なガラス体を得た。得られた石英ガラス体の物性を表1に示す。得られた石英ガラス体の粘度は、1280℃のlogηで、12.4であり、極めて高い高耐熱性を示した。
(Example 3)
As shown in Table 1, a transparent glass body was obtained in the same manner as in Example 1 except that natural quartz glass powder containing about 200 ppm of OH groups and having a particle size of 5 μm to 500 μm was used. Table 1 shows the physical properties of the obtained quartz glass body. The viscosity of the obtained quartz glass body was 12.4 at a log η of 1280 ° C., indicating extremely high heat resistance.

(実施例4)
表1に示した如く、シラザン雰囲気処理のかわりに、シロキサン雰囲気処理を行う以外は実施例1と同様に行い、透明なガラス体を得た。得られた石英ガラス体の物性を表1に示す。得られた石英ガラス体の粘度は、1280℃のlogηで、12.2であり、高い耐熱性を示した。
Example 4
As shown in Table 1, a transparent glass body was obtained in the same manner as in Example 1 except that the siloxane atmosphere treatment was performed instead of the silazane atmosphere treatment. Table 1 shows the physical properties of the obtained quartz glass body. The viscosity of the obtained quartz glass body was 12.2 at a log η of 1280 ° C., indicating high heat resistance.

(比較例1)
表1に示した如く、シラザン雰囲気処理とその後のArとH2の混合雰囲気での加熱処理のかわりに、窒素雰囲気で処理する以外は実施例1と同様に行った。得られた石英ガラス体の物性を表1に示す。得られた石英ガラス体の粘度は、1280℃のlogηで、11.3であった。
(Comparative Example 1)
As shown in Table 1, instead of the silazane atmosphere treatment and the subsequent heat treatment in the mixed atmosphere of Ar and H 2 , the same procedure as in Example 1 was performed except that the treatment was performed in a nitrogen atmosphere. Table 1 shows the physical properties of the obtained quartz glass body. The viscosity of the obtained quartz glass body was 11.3 at a log η of 1280 ° C.

(比較例2)
表1に示した如く、シラザン雰囲気処理とその後のArとH2の混合雰囲気での加熱処理のかわりに、塩素雰囲気で処理する以外は実施例1と同様に行った。得られた石英ガラス体の物性を表1に示す。得られた石英ガラス体の粘度は、1280℃のlogηで、11.6であった。
(Comparative Example 2)
As shown in Table 1, instead of the silazane atmosphere treatment and the subsequent heat treatment in a mixed atmosphere of Ar and H 2 , the same procedure as in Example 1 was performed except that the treatment was performed in a chlorine atmosphere. Table 1 shows the physical properties of the obtained quartz glass body. The viscosity of the obtained quartz glass body was 11.6 at a log η of 1280 ° C.

(比較例3)
表1に示した如く、シラザン雰囲気処理とその後のArとH2の混合雰囲気での加熱処理のかわりに、窒素雰囲気で処理する以外は、実施例3と同様に行った。得られた石英ガラス体の物性を表1に示す。得られた石英ガラス体の粘度は、1280℃のlogηで、11.9であった。
(Comparative Example 3)
As shown in Table 1, instead of the silazane atmosphere treatment and the subsequent heat treatment in a mixed atmosphere of Ar and H 2 , the same procedure as in Example 3 was performed except that the treatment was performed in a nitrogen atmosphere. Table 1 shows the physical properties of the obtained quartz glass body. The resulting quartz glass body had a viscosity of 11.9 with a log η of 1280 ° C.

Claims (8)

OH基を含む石英ガラス粉と有機珪素化合物を共存反応させることを特徴とする高耐熱性石英ガラス粉の製造方法。   A method for producing a highly heat-resistant quartz glass powder, characterized by causing a quartz glass powder containing an OH group to co-react with an organosilicon compound. 前記OH基を含む石英ガラス粉が、OH基が50ppm以上の合成石英ガラス粉であることを特徴とする請求項1記載の高耐熱性合成石英ガラス粉の製造方法。   The method for producing a highly heat-resistant synthetic quartz glass powder according to claim 1, wherein the quartz glass powder containing OH groups is a synthetic quartz glass powder having an OH group of 50 ppm or more. 前記共存反応を、100℃〜1000℃の反応温度で行うことを特徴とする請求項1又は2記載の高耐熱性石英ガラス粉の製造方法。   The method for producing highly heat-resistant quartz glass powder according to claim 1 or 2, wherein the coexistence reaction is performed at a reaction temperature of 100 ° C to 1000 ° C. 前記共存反応の後に加熱処理を行うことを特徴とする請求項1〜3のいずれか1項記載の高耐熱性石英ガラス粉の製造方法。   The method for producing highly heat-resistant quartz glass powder according to any one of claims 1 to 3, wherein heat treatment is performed after the coexistence reaction. 前記加熱処理を、水素を含む雰囲気中で行うことを特徴とする請求項4記載の高耐熱性石英ガラス粉の製造方法。   The method for producing a high heat-resistant quartz glass powder according to claim 4, wherein the heat treatment is performed in an atmosphere containing hydrogen. 前記加熱処理を300℃〜1400℃の温度範囲で行うことを特徴とする請求項4又は5記載の高耐熱性石英ガラス粉の製造方法。   The method for producing a high heat-resistant quartz glass powder according to claim 4 or 5, wherein the heat treatment is performed in a temperature range of 300 ° C to 1400 ° C. 請求項1〜6のいずれか1項記載の方法で製造された高耐熱性石英ガラス粉。   A high heat-resistant quartz glass powder produced by the method according to claim 1. 請求項7記載の石英ガラス粉で製造された高耐熱性石英ガラス体。   A high heat-resistant quartz glass body produced from the quartz glass powder according to claim 7.
JP2005286246A 2005-09-30 2005-09-30 Method for producing high heat-resistant quartz glass powder, high heat-resistant quartz glass powder and glass body Active JP5013573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286246A JP5013573B2 (en) 2005-09-30 2005-09-30 Method for producing high heat-resistant quartz glass powder, high heat-resistant quartz glass powder and glass body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286246A JP5013573B2 (en) 2005-09-30 2005-09-30 Method for producing high heat-resistant quartz glass powder, high heat-resistant quartz glass powder and glass body

Publications (2)

Publication Number Publication Date
JP2007091558A true JP2007091558A (en) 2007-04-12
JP5013573B2 JP5013573B2 (en) 2012-08-29

Family

ID=37977688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286246A Active JP5013573B2 (en) 2005-09-30 2005-09-30 Method for producing high heat-resistant quartz glass powder, high heat-resistant quartz glass powder and glass body

Country Status (1)

Country Link
JP (1) JP5013573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105191A1 (en) * 2007-02-27 2008-09-04 Shin-Etsu Quartz Products Co., Ltd. Black synthetic quartz glass and process for producing the black synthetic quartz glass
JP2012211070A (en) * 2011-03-23 2012-11-01 Mitsubishi Materials Corp Synthetic amorphous silica powder and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539297A (en) * 1976-07-12 1978-01-27 Nat Semiconductor Corp Modified silica and method of making same
WO2004050570A1 (en) * 2002-11-29 2004-06-17 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539297A (en) * 1976-07-12 1978-01-27 Nat Semiconductor Corp Modified silica and method of making same
WO2004050570A1 (en) * 2002-11-29 2004-06-17 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105191A1 (en) * 2007-02-27 2008-09-04 Shin-Etsu Quartz Products Co., Ltd. Black synthetic quartz glass and process for producing the black synthetic quartz glass
JP2012211070A (en) * 2011-03-23 2012-11-01 Mitsubishi Materials Corp Synthetic amorphous silica powder and method for producing the same

Also Published As

Publication number Publication date
JP5013573B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
EP1580170B1 (en) Method for producing synthetic quartz glass and synthetic quartz glass article
JP5048445B2 (en) Black synthetic quartz glass with transparent layer
KR101403349B1 (en) Synthetic opaque quartz glass and process for production thereof
US9051203B2 (en) Black synthetic quartz glass with transparent layer and method for producing the same
EP2208715B1 (en) Method of producing synthetic quartz glass for excimer laser
US7975507B2 (en) Process for producing synthetic quartz glass and synthetic quartz glass for optical member
JP5013573B2 (en) Method for producing high heat-resistant quartz glass powder, high heat-resistant quartz glass powder and glass body
JP5583082B2 (en) Method for producing black synthetic quartz glass with transparent layer
JPH07300324A (en) Production of heat-resistant synthetic quartz glass
JP3818603B2 (en) Method for producing quartz glass
JP4437745B2 (en) Manufacturing method of high heat-resistant synthetic quartz glass
CN1863733A (en) High-purity pyrogenically prepared silicon dioxide
CN110921670B (en) Silicon carbide and preparation method thereof
JP4204398B2 (en) Method for producing quartz glass
JP5312313B2 (en) Black synthetic quartz glass and manufacturing method thereof
JP4781409B2 (en) Synthetic quartz glass body
JP5786406B2 (en) Method for producing synthetic quartz glass
KR101360509B1 (en) Silicon nitride and method for manufacturing the same
JP2017165602A (en) Method of producing silicon oxynitride crystal
KR20240104056A (en) Method for manufacturing TiO2-SiO2 glass body and glass body menufactured thereby
JPH0558676A (en) Production of sio2-sic-si composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5013573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250