JP2007090519A - Method and device for detecting machining axis and maximum radius of gyration of material wood - Google Patents

Method and device for detecting machining axis and maximum radius of gyration of material wood Download PDF

Info

Publication number
JP2007090519A
JP2007090519A JP2005248299A JP2005248299A JP2007090519A JP 2007090519 A JP2007090519 A JP 2007090519A JP 2005248299 A JP2005248299 A JP 2005248299A JP 2005248299 A JP2005248299 A JP 2005248299A JP 2007090519 A JP2007090519 A JP 2007090519A
Authority
JP
Japan
Prior art keywords
axis
turning
maximum
cross
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005248299A
Other languages
Japanese (ja)
Other versions
JP4772430B2 (en
Inventor
Kazuhito Motai
和仁 馬渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meinan Machinery Works Inc
Original Assignee
Meinan Machinery Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meinan Machinery Works Inc filed Critical Meinan Machinery Works Inc
Priority to JP2005248299A priority Critical patent/JP4772430B2/en
Publication of JP2007090519A publication Critical patent/JP2007090519A/en
Application granted granted Critical
Publication of JP4772430B2 publication Critical patent/JP4772430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Wood Veneers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect the machining axis and maximum radius of gyration of material wood by a simple operation. <P>SOLUTION: Each distance to the periphery of the material wood W rotated around a provisional axis 3b is detected every prescribed rotation angle of the material wood W by distance detectors 9a-9c. The rotation angles of first rotary arms 10a-10e which are set in parallel in the longitudinal direction of the material wood, have contact surfaces 11a'-11e' contacted with the periphery of the material wood, and rotate around a shaft center line O are detected by second angle detectors 19a-19e. First, the machining axis HS of the material wood W is calculated on the basis of each distance. Next, the lengths of perpendiculars from spots G1-G6 where a cross section passing through both ends of each contact surface in the longitudinal direction and crossing at right angles with the provisional axis 3b and the machining axis cross to each contact surface 11a'-11e' are obtained every prescribed rotation angle. The maximum of the obtained lengths of the perpendiculars is set as the maximum radius of gyration of the material wood W. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ベニヤレースで原木を最も有効に旋削できる旋削軸芯と、該旋削軸芯を中心とした該原木の最大回転半径を検出するための、原木の旋削軸芯及び最大回転半径検出方法及び装置に関する。   The present invention relates to a turning axis that can most effectively turn a log with a veneer race, and a turning axis and a maximum turning radius detection method for detecting the maximum turning radius of the log about the turning axis. And an apparatus.

従来技術として、例えば特開平6−293002号公報に示すように、原木の全長にわたって各検知域がほぼ密接して連なる複数の接触式又は非接触式の検知部を原木の外周に対応させた状態で、仮軸芯のまわりに原木を回転させて各検知域の仮軸芯と直交する断面での輪郭を各々検知し、それらの内の2以上の断面輪郭データに基づいて原木の旋削軸芯を求め、また前記各検知域の全ての断面輪郭に基づいて前記旋削軸芯を中心とする原木の最大回転半径を求めている。
ここで原木の最大回転半径を求める理由は、次の通りである。
原木を旋削するベニヤレースでは、スピンドルにより原木を支持して回転させ、刃物を備えた鉋台を、原木に向けて原木1回転当たりに設定された距離移動させている。ここで原木の切削を開始する際の、スピンドルと鉋台との距離が大き過ぎて原木から鉋台が離れ過ぎると、鉋台が接近し原木が切削されるまでに時間が掛かり、生産性が悪い。そこでスピンドルにより原木を支持した時の最大回転半径を予め求めておき、その値に応じた位置に鉋台を待機させから原木をスピンドルにより支持し、旋削するためである。
特開平6−293002号公報
As a conventional technique, for example, as shown in Japanese Patent Application Laid-Open No. Hei 6-293002, a plurality of contact-type or non-contact-type detection units in which the detection areas are almost closely connected over the entire length of the raw wood correspond to the outer circumference of the raw wood. Then, the raw wood is rotated around the temporary shaft core to detect the contours of the cross sections orthogonal to the temporary shaft core in each detection area, and the turning shaft core of the raw wood is based on two or more cross-sectional contour data of them. Further, the maximum turning radius of the raw wood around the turning axis is obtained based on all the cross-sectional contours of the respective detection areas.
The reason for obtaining the maximum turning radius of the raw wood is as follows.
In a veneer lace for turning a raw wood, the raw wood is supported by a spindle and rotated, and a gantry provided with a cutter is moved toward the raw wood by a set distance per rotation of the raw wood. Here, if the distance between the spindle and the base is too large when starting the cutting of the raw wood and the base is too far from the raw wood, it takes time until the base approaches and the raw wood is cut, resulting in poor productivity. Therefore, the maximum turning radius when the log is supported by the spindle is obtained in advance, and the log is supported by the spindle after turning off the stand at a position corresponding to the value and turning.
JP-A-6-293002

従来技術では、旋削軸芯を中心とする原木の最大回転半径を求めているが、演算が複雑であるため、求めるための時間も掛かり生産性が悪かった。   In the prior art, the maximum turning radius of the raw wood centering on the turning axis is obtained. However, since the calculation is complicated, it takes time to obtain and the productivity is poor.

本発明は、上記した従来の問題点を解決するために発明されたものであり、求められた旋削軸芯上の選択された箇所から各回動腕の当接面への垂線の長さを求め、これら値の最大値を、旋削軸芯を中心とする原木の最大回転半径とするものである。
尚、旋削軸芯とは、ベニヤレースで原木を旋削する際、該原木を有効に旋削できる原木の回転中心である。
The present invention has been invented in order to solve the above-described conventional problems, and obtains the length of a perpendicular line from a selected location on the obtained turning axis to the contact surface of each rotating arm. The maximum value of these values is the maximum turning radius of the raw wood around the turning axis.
The turning axis is the center of rotation of the raw wood that can be effectively turned when the raw wood is turned with a veneer race.

本発明は、簡易な演算により原木の旋削軸芯を中心とする該原木の最大回転半径を求めることができ、演算のための時間が短くなり生産性が向上する。   According to the present invention, the maximum turning radius of the raw wood around the turning axis of the raw wood can be obtained by simple computation, and the time for computation is shortened and the productivity is improved.

実施例を図1、2、3に基づいて説明する。図1は概略側面図、図2は図1のAA視図、図3は図1のBB視図である。
3、3aは一対の挟持部材としての芯出し用スピンドル(以下、第1スピンドルという)であり、図3に示す様に第1スピンドル3、3aは、仮の軸芯となる軸中心線3bが水平な同一直線上にあり、互いに向き合って矢印で示すZ方向に進退自在で、且つ回転自在に基台(図示せず)に支持されている。
また、一方の第1スピンドル3はサーボモータ等の電動機5に連結され、該電動機5の作動により該第1スピンドル3は回転・停止される。電動機5には、例えばアブソリュート形ロータリーエンコーダ等の第1角度検出器7が取付けられ、スピンドル3の回転した角度に対応する情報を制御器10に送る。
An embodiment will be described with reference to FIGS. 1 is a schematic side view, FIG. 2 is an AA view of FIG. 1, and FIG. 3 is a BB view of FIG.
Reference numerals 3 and 3a denote centering spindles (hereinafter referred to as first spindles) as a pair of clamping members. As shown in FIG. 3, the first spindles 3 and 3a have an axis center line 3b serving as a temporary axis. They are on the same horizontal straight line, are opposed to each other, are movable forward and backward in the Z direction indicated by arrows, and are rotatably supported by a base (not shown).
One of the first spindles 3 is connected to an electric motor 5 such as a servo motor, and the operation of the electric motor 5 rotates and stops the first spindle 3. A first angle detector 7 such as an absolute rotary encoder is attached to the electric motor 5, and sends information corresponding to the rotation angle of the spindle 3 to the controller 10.

9a、9b、9cは軸中心線3bから原木外周までの距離を検出するためのレーザー距離計等の距離検出器である。
これら距離検出器は、後述するように第1スピンドル3、3aに挟持された原木のZ方向での両木口付近と中間部において、各々軸中心線3bから距離L1離れた箇所で基台(図示せず)に取り付けられている。
これら距離検出器9a、9b、9cは、1点鎖線で示すように、軸中心線3bに向って光を照射する光源と、原木外周からの反射光を受光する受光部とで構成され、各距離検出器と原木外周との距離を測定し、制御器10に検出した距離の情報を送る。
制御器10では、距離L1から、前記測定された各距離検出器と原木外周との距離を減算することにより、軸中心線3bから原木外周までの距離を算出している。
Reference numerals 9a, 9b and 9c are distance detectors such as a laser distance meter for detecting the distance from the axial center line 3b to the outer circumference of the log.
As will be described later, these distance detectors have bases (in the vicinity of both ends in the Z direction in the Z direction of the raw wood sandwiched between the first spindles 3 and 3a and in the middle thereof at locations separated by a distance L1 from the axial center line 3b (see FIG. (Not shown).
These distance detectors 9a, 9b, and 9c are composed of a light source that emits light toward the axial center line 3b and a light receiving unit that receives reflected light from the outer circumference of the log, as indicated by a one-dot chain line, The distance between the distance detector and the outer circumference of the log is measured, and the detected distance information is sent to the controller 10.
The controller 10 calculates the distance from the axial center line 3b to the outer circumference of the log by subtracting the measured distance between each distance detector and the outer circumference of the log from the distance L1.

10a、10b、10c、10d、10eは図1、2に示すように、基台(図示せず)に取り付けられた、軸中心線3bと平行な軸中心線Oを有する軸13に、軸中心線方向に並べて回動自在に設けられた第1回動腕、第2回動腕、第3回動腕、第4回動腕、第5回動腕である。
これら回動腕の各先端側には、軸中心線Oと平行で平坦な面であって、且つ図2,3に示すように、軸13の軸中心線方向での幅がほぼ同じである当接面11a’、11b’、11c’、11d’、11e’を備えた当接部材11a、11b、11c、11d、11eが固定されている。
また各回動腕は、互いに前記回動の妨げとならぬ程度に、該軸中心線方向で当接面同士が接近した状態となるようにカラー15により位置決めされている。
更に各回動腕は、図1、3に示す様に、本体の終端部が基台(図示せず)に回動自在に取り付けられているシリンダ17の、ピストンロッド17aの先端と回動自在に連結されており、各シリンダ17の作動により回動腕が夫々回動上昇・下降することができる。
尚、各回動腕は、夫々のシリンダ17の作動によりピストンロッド17aがシリンダ17本体内に最も没した時、図1、3に示す様に、各当接面11a’、11b’、11c’、11d’、11e’が、軸中心線Oを通る同一水平面X−X上で待機するように設定し、この状態を初期状態とする。
またピストンロッド17aの長さは、後述するように、圧縮空気を注入し続けることでシリンダ17本体から進出させた場合、該各当接面が回転する原木の外周の形状に倣って接触し続け、各回動腕が図1の矢印方向に往復回動するために必要な十分な長さとする。
As shown in FIGS. 1 and 2, 10a, 10b, 10c, 10d, and 10e are attached to a base (not shown) with a shaft 13 having an axial center line O parallel to the axial center line 3b. They are the 1st rotation arm, the 2nd rotation arm, the 3rd rotation arm, the 4th rotation arm, and the 5th rotation arm which were provided in the line direction so that rotation was possible.
Each of the rotating arms has a flat surface parallel to the axis center line O and has substantially the same width in the axis center line direction of the shaft 13 as shown in FIGS. Contact members 11a, 11b, 11c, 11d, and 11e having contact surfaces 11a ′, 11b ′, 11c ′, 11d ′, and 11e ′ are fixed.
The rotating arms are positioned by the collar 15 so that the contact surfaces are close to each other in the axial center line direction so as not to interfere with the rotation.
Further, as shown in FIGS. 1 and 3, each rotating arm is rotatable with the tip of the piston rod 17a of the cylinder 17 in which the end portion of the main body is rotatably attached to a base (not shown). The rotation arms can be rotated up and down by the operation of each cylinder 17.
In addition, when the piston rod 17a is most submerged in the cylinder 17 main body by the operation of the respective cylinders 17, as shown in FIGS. 1 and 3, the respective rotating arms have contact surfaces 11a ′, 11b ′, 11c ′, 11d ′ and 11e ′ are set to stand by on the same horizontal plane XX passing through the axis center line O, and this state is set as an initial state.
Further, as will be described later, when the piston rod 17a is advanced from the cylinder 17 main body by continuously injecting compressed air, the abutting surfaces of the piston rod 17a continue to follow the shape of the outer periphery of the rotating raw wood. Each of the rotating arms has a sufficient length necessary for reciprocatingly rotating in the direction of the arrow in FIG.

一方、図2に示す様に各回動腕10a、10b、10c、10d、10eには、回動する角度に応じて信号を発生するアブソリュートロータリーエンコーダ等の第2角度検出器19a、19b、19c、19d、19eが、連結されている。これら第2角度検出器により、前記原木外周の形状に倣って各回動腕が図1の矢印方向に往復回動している時、前記同一水平面X−Xと各当接面11a’、11b’、11c’、11d’、11e’とがなす角度を検出する。
尚、第2角度検出器では前記のような角度を求めるが、軸中心線Oと軸中心線3bとを結ぶ線(以下、基準線という)に対する水平面X−Xとがなす角度は一定で予め分かっているため、該一定の角度から前記第2角度検出器により検出された角度を差し引けば、基準線に対し各回動腕の前記当接面がなす角度が得られることになる。ただ、これら角度は後述するように、旋削軸芯線HSの選択された箇所から前記各当接面への垂線の長さを求めるために必要となるものであり、第2角度検出器で求めた角度からも、結果的に該垂線の長さを求めることができる。
また第2角度検出器19a、19b、19c、19d、19eから得られる、回転した角度に対応する情報は、制御器10に送られ、各々角度を演算する。
更に制御器10では、後述するように、電動機5、シリンダ17等を作動させる信号を出すと共に、送られてきた情報により必要な値を演算する。
On the other hand, as shown in FIG. 2, each of the rotating arms 10a, 10b, 10c, 10d, and 10e has a second angle detector 19a, 19b, 19c, such as an absolute rotary encoder that generates a signal according to the angle of rotation. 19d and 19e are connected. By these second angle detectors, the respective horizontal arms XX and the respective contact surfaces 11a ′ and 11b ′ when the respective rotating arms reciprocally rotate in the direction of the arrow in FIG. 1 following the shape of the outer periphery of the log. , 11c ′, 11d ′, and 11e ′ are detected.
In the second angle detector, the angle as described above is obtained, but the angle formed by the horizontal plane XX with respect to a line connecting the axis center line O and the axis center line 3b (hereinafter referred to as a reference line) is constant and predetermined. Since it is known, if the angle detected by the second angle detector is subtracted from the certain angle, the angle formed by the contact surface of each rotating arm with respect to the reference line can be obtained. However, as will be described later, these angles are necessary for obtaining the length of the perpendicular from the selected location of the turning axis HS to each contact surface, and were obtained by the second angle detector. As a result, the length of the perpendicular can also be obtained from the angle.
Information corresponding to the rotated angle obtained from the second angle detectors 19a, 19b, 19c, 19d, and 19e is sent to the controller 10 to calculate the angle.
Further, as will be described later, the controller 10 outputs a signal for operating the electric motor 5, the cylinder 17 and the like, and calculates a necessary value based on the sent information.

次に、実施例の作用を説明する。
初期状態では、図3に示す様にピストンロッド17aがシリンダ17本体内に最も没し、前記のように各回動腕の当接面11a’、11b’、11c’、11d’、11e’が同一水平面X−X上に待機している。
この状態で図4に示す様に、公知の自動供給部材(図示せず)により第1スピンドル3、3aの間に原木Wを供給し、運転者の入力信号を受けた制御器10からの作動信号で、図5に示す様に第1スピンドル3、3aを互いに近づく矢印Z方向に進出させ、原木Wを挟持する。
前記挟持するのに十分な時間が経過後、制御器10からの信号で、各シリンダ17に圧縮空気を注入し続け全てのシリンダ17を作動させて、ピストンロッド17aを進出させる。
そこで各回動腕10a、10b、10c、10d及び10eは回動下降し、当接面11a’、11b’、11c’、11d’、11e’が原木Wの外周に当たった箇所で、該回動下降が停止させられる。
そこで、図6では第1回動腕10aの場合だけを示すが、各第2角度検出器19a、19b、19c、19d、19eにより、各当接面11a’、11b’、11c’、11d’、11e’が回動した情報を制御器10に送り、制御器10で水平面X−Xと各当接面とがなす角度(以下、回動角度という)θを各々求める。
尚、図7は、図6において線D−Dより矢印方向、即ち各回動腕に対し、ほぼ半径方向で外側から内側を見た部分説明図である。
Next, the operation of the embodiment will be described.
In the initial state, as shown in FIG. 3, the piston rod 17a is most submerged in the cylinder 17 body, and the contact surfaces 11a ′, 11b ′, 11c ′, 11d ′, and 11e ′ of the rotating arms are the same as described above. Waiting on the horizontal plane XX.
In this state, as shown in FIG. 4, the log W is supplied between the first spindles 3 and 3a by a known automatic supply member (not shown), and the operation from the controller 10 which receives the input signal of the driver. With the signal, as shown in FIG. 5, the first spindle 3, 3 a is advanced in the direction of the arrow Z approaching each other, and the log W is sandwiched.
After a sufficient time has passed for the clamping, a signal from the controller 10 continues to inject compressed air into each cylinder 17 to operate all the cylinders 17 and advance the piston rods 17a.
Therefore, each of the rotating arms 10a, 10b, 10c, 10d, and 10e is rotated and lowered, and the rotating surfaces 10a, 11b ', 11c', 11d ', and 11e' come into contact with the outer periphery of the log W. The descent is stopped.
Therefore, FIG. 6 shows only the case of the first rotating arm 10a, but the respective contact surfaces 11a ′, 11b ′, 11c ′, 11d ′ are obtained by the second angle detectors 19a, 19b, 19c, 19d, 19e. , 11e ′ are sent to the controller 10, and the controller 10 determines the angles θ (hereinafter referred to as “rotation angles”) θ between the horizontal plane XX and the respective contact surfaces.
FIG. 7 is a partial explanatory view of the inner side from the outer side in the direction of the arrow in FIG.

一方、前記十分な時間が経過後、距離検出器9a、9b、9cにより、各距離検出器から原木の外周までの距離、即ち図6では距離検出器9aの場合だけを示すが、L2を測定し、制御器10に各情報を送り、制御器10で半径の情報としてL1からL2を引いた値を求める。
次いで各当接面11a’、11b’、11c’、11d’、11e’が原木の外周に当接するために十分な時間が経過後、制御器10からの信号で、電動機5を駆動させて第1スピンドル3、3aにより、原木Wを矢印方向に少なくとも1回転させる。
この原木Wの回転において制御器10では、第1角度検出器7から得られる第1スピンドル3、3aの予め設定された所定回転角度毎(例えば10度毎)で、前述と同様に、各距離検出器9a、9b、9cにより軸中心線3bから原木の外周までの夫々の距離を、また各第2角度検出器19a、19b、19c、19d、19eにより各々回動角度を求める。
即ち、距離検出器9a、9b、9cでは、前記所定回転角度毎での図6におけるL2に相当する距離を測定し、L1−L2により軸中心線3bから原木Wの外周までの距離を求める。
次いで前記所定回転角度毎で得られた軸中心線3bからの距離により定まる各点を、原木Wの回転方向に直線で結ぶことで、原木Wの軸中心線3b方向での両木口付近及び中間部の3箇所において多角形を想定する。
次にこれら多角形での最大内接円を各々演算し、更には夫々の最大内接円内を通る最大直円筒の中心を通る直線を、軸中心線Oの所定の箇所を基準点とする三次元座標で求め、これを旋削軸芯HSとする。
この旋削軸芯線HSは、図7と同じ図において示すと、例えば図8のように示される。
On the other hand, after the sufficient time has elapsed, the distance detectors 9a, 9b, and 9c measure the distances from the distance detectors to the outer circumference of the log, that is, only the distance detector 9a in FIG. Each information is sent to the controller 10, and the controller 10 obtains a value obtained by subtracting L2 from L1 as radius information.
Next, after a sufficient time has elapsed for the contact surfaces 11a ′, 11b ′, 11c ′, 11d ′, and 11e ′ to contact the outer periphery of the raw wood, the motor 5 is driven by a signal from the controller 10 to The spindle W is rotated at least once in the arrow direction by one spindle 3, 3a.
In the rotation of the log W, the controller 10 determines each distance at every predetermined rotation angle (for example, every 10 degrees) of the first spindles 3 and 3a obtained from the first angle detector 7 in the same manner as described above. The detectors 9a, 9b, and 9c determine the respective distances from the axial center line 3b to the outer periphery of the raw wood, and the second angle detectors 19a, 19b, 19c, 19d, and 19e determine the rotation angles.
That is, the distance detectors 9a, 9b, and 9c measure the distance corresponding to L2 in FIG. 6 at each predetermined rotation angle, and obtain the distance from the axial center line 3b to the outer periphery of the log W by L1-L2.
Next, each point determined by the distance from the axis center line 3b obtained at each predetermined rotation angle is connected by a straight line to the rotation direction of the log W, so that both the vicinity of the both ends in the direction of the axis center line 3b of the log W and the middle A polygon is assumed at three locations of the part.
Next, the maximum inscribed circles in these polygons are respectively calculated, and further, a straight line passing through the center of the maximum right cylinder passing through each maximum inscribed circle is used as a reference point at a predetermined position of the axial center line O. Obtained by three-dimensional coordinates, this is defined as a turning axis HS.
The turning axis HS is shown in FIG. 8, for example, in the same view as FIG.

一方、回転する原木Wに対し各回動腕10a、10b、10c、10d、10eは、その当接面11a’、11b’、11c’、11d’、11e’が原木Wの外周に当接しつつ該外周の形状に倣って軸13を中心として往復回動する。
そこで制御器10は、前記所定回転角度毎に、第2角度検出器19a、19b、19c、19d、19eからの情報で、各回動腕の回動角度を演算する。
ただ、例えば図8に示すように各当接面は、原木外周の半径方向に最も突出した箇所に当たりつつ往復回動するが、該当たっている箇所が、軸中心線3bの軸中心線方向即ち図8の左右方向において、各当接面のどの位置であるかは判断できない。
そこで例えば、図8の左右方向で当接面11a’、11b’、11c’、11d’により得られる回動角度は、その左端を通り軸中心線3bに垂直な1点鎖線で示す断面の値と、また当接面11e’では、左端及び右端を通り軸中心線3bに垂直な1点鎖線で示す2つの断面での値として求める。
尚、説明上、図7、図8に示すように、当接面11a’の左側端縁を通り軸中心線3bに垂直な1点鎖線で示す断面を第1断面A1と、以下同様に当接面11b’の左側端縁を通る断面を第2断面A2、当接面11c’の左側端縁を通る断面を第3断面A3、当接面11d’の左側端縁を通る断面を第4断面A4、当接面11e’の左側端縁を通る断面を第5断面A5、当接面11e’の右側端縁を通る断面を第6断面A6と呼ぶ。
On the other hand, the rotating arms 10a, 10b, 10c, 10d, and 10e with respect to the rotating log W have their contact surfaces 11a ′, 11b ′, 11c ′, 11d ′, and 11e ′ in contact with the outer periphery of the log W. It reciprocates around the shaft 13 following the shape of the outer periphery.
Therefore, the controller 10 calculates the rotation angle of each rotation arm based on information from the second angle detectors 19a, 19b, 19c, 19d, and 19e for each predetermined rotation angle.
However, as shown in FIG. 8, for example, each contact surface reciprocally rotates while hitting the most protruding portion in the radial direction of the outer periphery of the log, but the corresponding portion is the axial center line direction of the axial center line 3b, that is, the figure. It is impossible to determine which position of each abutment surface is in the left-right direction.
Therefore, for example, the rotation angle obtained by the contact surfaces 11a ′, 11b ′, 11c ′, 11d ′ in the left-right direction of FIG. In the contact surface 11e ′, values are obtained as values in two cross sections indicated by a one-dot chain line that passes through the left end and the right end and is perpendicular to the axis center line 3b.
For the sake of explanation, as shown in FIGS. 7 and 8, a cross section indicated by a one-dot chain line passing through the left edge of the contact surface 11a ′ and perpendicular to the axial center line 3b is referred to as the first cross section A1. The cross section passing through the left edge of the contact surface 11b ′ is the second cross section A2, the cross section passing through the left edge of the contact surface 11c ′ is the third cross section A3, and the cross section passing through the left edge of the contact surface 11d ′ is the fourth. The cross section passing through the cross section A4 and the left edge of the contact surface 11e ′ is referred to as a fifth cross section A5, and the cross section passing through the right edge of the contact surface 11e ′ is referred to as a sixth cross section A6.

これら各断面において、制御器10において、各々回動角度を演算し且つ更にこれら演算された回動角度の内、隣り合う当接面の間の各断面では、以下のように該両当接面の回動角度を比較して小さい方の値を選択して記憶するが、その理由は後述する。
即ち、第1断面A1では、第1回動腕10aから得られる回動角度を記憶する。
また第2断面A2では、第1回動腕10aから得られる回動角度と、第2回動腕10bから得られる回動角度とを比較し、小さい方の値を記憶する。
同じく第3断面A3では、第2回動腕10bから得られる回動角度と、第3回動腕10cから得られる回動角度とを比較し、小さい方の値を、以下、第4断面A4、第5断面A5と、それぞれ断面を挟む回動腕から得られる回動角度のうち小さい方の値を記憶する。
また第6断面A6では、第5回動腕10eから得られる回動角度を記憶する。
In each of these cross sections, the controller 10 calculates a rotation angle, and among these calculated rotation angles, in each cross section between adjacent contact surfaces, both the contact surfaces are as follows. The smaller value is selected and stored, and the reason will be described later.
That is, in the first cross section A1, the rotation angle obtained from the first rotation arm 10a is stored.
In the second cross section A2, the rotation angle obtained from the first rotation arm 10a is compared with the rotation angle obtained from the second rotation arm 10b, and the smaller value is stored.
Similarly, in the third section A3, the rotation angle obtained from the second rotation arm 10b is compared with the rotation angle obtained from the third rotation arm 10c, and the smaller value is hereinafter referred to as the fourth section A4. The smaller value of the fifth cross section A5 and the rotation angle obtained from the rotation arm sandwiching each cross section is stored.
In the sixth section A6, the rotation angle obtained from the fifth rotation arm 10e is stored.

次いで、上記各々記憶した回動角度により、制御器10において前記所定回転角度毎に、第1断面A1、第2断面A2、第3断面A3、第4断面A4、第5断面A5、第6断面A6において、旋削軸芯線HSと各当接面との間の距離を求める。
この場合、前述のようにベニヤレースの第2スピンドルの軸中心線と旋削軸芯線HSを一致させるため、旋削軸芯線HSから各々最も離れた箇所までの長さ、即ち、前記各断面と旋削軸芯線HSとの各交点と、各交点での旋削軸芯線HSに対する垂線が各当接面と交差する点との間の長さを求めればいい。
ただ該垂線の長さは、前記各断面で、各当接面から、各断面と旋削軸芯線HSとの各交点までの長さとほぼ同一であるので、これを簡易的に求めても良い。
そこでここでは、前記簡易的に求める方法で行う場合を示す。
例えば図6で示したように、最初に第1スピンドル3、3aで挟持された原木Wに対し各回動腕が回動下降し、各当接面11a’、11b’、11c’、11d’、11e’が、図8に示すように、原木Wの外周に当たった場合で説明する。
この場合、当接面11a’の第1断面A1側だけを示す図9において述べると、第1断面A1と旋削軸芯線HSとが交差する点をG1とすると、G1から当接面11a’への垂線の長さを求めれば良い。
Next, the controller 10 controls the first cross-section A1, the second cross-section A2, the third cross-section A3, the fourth cross-section A4, the fifth cross-section A5, and the sixth cross-section for each predetermined rotation angle by the stored rotation angles. In A6, the distance between the turning axis HS and each contact surface is obtained.
In this case, as described above, in order to make the axis center line of the second spindle of the veneer race coincide with the turning axis line HS, the length from the turning axis line HS to the respective furthest points, that is, the respective cross sections and the turning axis. What is necessary is just to obtain | require the length between each intersection with the core line HS and the point where the perpendicular to the turning axis line HS at each intersection intersects each contact surface.
However, the length of the perpendicular line is almost the same as the length from each abutment surface to each intersection of each cross section and the turning axis line HS in each cross section.
Therefore, here, a case where the above method is used for simple calculation is shown.
For example, as shown in FIG. 6, each rotating arm first pivots down with respect to the log W sandwiched between the first spindles 3, 3 a, and each contact surface 11 a ′, 11 b ′, 11 c ′, 11 d ′, A case where 11e ′ hits the outer periphery of the log W as shown in FIG. 8 will be described.
In this case, referring to FIG. 9 showing only the first cross section A1 side of the contact surface 11a ′, if the point where the first cross section A1 and the turning axis line HS intersect is G1, the G1 will contact the contact surface 11a ′. Find the length of the vertical line.

そこで図9において,該垂線の長さを求めるために必要な長さ及び角度だけを図10に示す。
即ち、図10において、
線O−X:線X−Xを延長し回転中心Oを通る水平線、
線O−Y:半径方向で当接面11a’上を通り回転中心Oにいたる線、
X1:G1から線O−Yへの垂線との交点
X2:G1から線O−Xへの垂線との交点
X3:線G1−X2と線O−Yとの交点
とする。
また、前記のように三次元座標での旋削軸芯線HSが求められているため、軸中心線Oに対する点G1の座標も求められ、図10の式(1)で示すように、OとX2間の距離をT1、式(2)で示すようにX2とG1間の距離をT2とする。
尚、図10の式で、2つの符号を「・」の印を挟んで示し更に上部にラインを引いたものは、2つの符号間の距離を表わすものとする。
求めるものは式(3)で示すX1とG1間の距離L001である。
そこで、X2とX3間の距離は式(4)で示すように、T1×tanθ001となる。
このことから、X3とG1間の距離は式(5)で示すように、X2とG1間の距離からX2とX3間の距離を引いた距離、即ち式(6)で示すT2−T1×tanθ001となる。
また式(7)で示すように、角X3・G1・X1と、角X3・O・X2とは等しく、その値は(8)で示すようにθ001である。
そこで三角形G1、X1、X3において、cosθ001の値は、式(9)で示すように、L001をX3とG1間の距離で割ったものとなる。
この式(9)で両辺にX3とG1間の距離を掛けると式(10)となり、式(10)のX3とG1間の距離に式(5)の右辺を代入すると、式(11)となる。
この式(11)で、T1,T2及び回動角度の値θ001を各々代入して、L001の値を求めることができる。
Therefore, in FIG. 9, only the length and angle necessary for obtaining the length of the perpendicular are shown in FIG.
That is, in FIG.
Line OX: a horizontal line extending the line XX and passing through the center of rotation O,
Line OY: a line passing through the contact surface 11a ′ in the radial direction and reaching the rotation center O,
X1: intersection with the perpendicular from G1 to line OY X2: intersection with perpendicular from G1 to line OX X3: intersection between line G1-X2 and line OY
In addition, since the turning axis core line HS in three-dimensional coordinates is obtained as described above, the coordinates of the point G1 with respect to the axis center line O are also obtained. As shown by the equation (1) in FIG. 10, O and X2 The distance between them is T1, and the distance between X2 and G1 is T2 as shown in equation (2).
In the equation of FIG. 10, two symbols are shown with a mark “·” interposed between them and a line is further drawn on the upper side to represent the distance between the two symbols.
What is calculated is the distance L001 between X1 and G1 shown in equation (3).
Therefore, the distance between X2 and X3 is T1 × tan θ001, as shown in Expression (4).
From this, the distance between X3 and G1 is the distance obtained by subtracting the distance between X2 and X3 from the distance between X2 and G1, as shown in Expression (5), that is, T2−T1 × tan θ001 shown in Expression (6). It becomes.
Further, as shown in the equation (7), the angles X3, G1, and X1 are equal to the angles X3, O, and X2, and the value is θ001 as shown in (8).
Therefore, in the triangles G1, X1, and X3, the value of cos θ001 is obtained by dividing L001 by the distance between X3 and G1, as shown in Expression (9).
Multiplying both sides by the distance between X3 and G1 in equation (9) yields equation (10), and substituting the right side of equation (5) for the distance between X3 and G1 in equation (10) yields equation (11) and Become.
In this equation (11), the values of L001 can be obtained by substituting T1, T2 and the rotation angle value θ001, respectively.

制御器10では、上記説明した方法で、各々記憶した回動角度により、例えば図8の段階では、前記L001に加え、次のように各距離を求め、これら値を記憶する。尚、旋削軸芯線HSが、第2断面A2、第3断面A3、第4断面A4、第5断面A5、第6断面A6と交差する点を各々G2、G3、G4、G5、G6とする。
即ち、前述のように、隣接する回動腕間の前記各断面では、両回動腕で各々得られる回動角度同士を比較し、小さい方の値を記憶しているので、
第2断面A2では、G2から、当接面11b’より回動角度が小である当接面11a’への垂線の距離L002を、
第3断面A3では、G3から、当接面11c’より回動角度が小である当接面11’bへの垂線の距離L003を、
第4断面A4では、G4から、当接面11c’より回動角度が小である当接面11’dへの垂線の距離L004を、
第5断面A5では、G5から,当接面11’eより回動角度が小である当接面11’dへの垂線の距離L005を、
第6断面A6では、G6から、当接面11’eへの垂線の距離L006を各々求める。
The controller 10 obtains each distance as follows in addition to the above L001 in the stage shown in FIG. 8, for example, at the stage shown in FIG. Note that points where the turning axis HS intersects the second cross section A2, the third cross section A3, the fourth cross section A4, the fifth cross section A5, and the sixth cross section A6 are G2, G3, G4, G5, and G6, respectively.
That is, as described above, in each cross section between adjacent rotating arms, the rotation angles obtained by both rotating arms are compared with each other, and the smaller value is stored.
In the second cross section A2, a perpendicular distance L002 from G2 to the contact surface 11a ′ whose rotation angle is smaller than that of the contact surface 11b ′.
In the third cross section A3, a perpendicular distance L003 from G3 to the contact surface 11′b whose rotation angle is smaller than that of the contact surface 11c ′,
In the fourth cross section A4, a perpendicular distance L004 from G4 to the contact surface 11′d whose rotation angle is smaller than that of the contact surface 11c ′.
In the fifth cross section A5, a perpendicular distance L005 from G5 to the contact surface 11′d whose rotation angle is smaller than that of the contact surface 11′e,
In the sixth cross section A6, the distance L006 of the perpendicular to the contact surface 11′e is obtained from G6.

次に、図8に示す状態から、スピンドル3、3aにより原木Wが最初に前記所定角度回転した時に、原木Wに対する回動腕10a、10b、10c、10d、10eの位置関係が図11に示す状態であった場合、次のように各距離を求め、これら値を記憶する。尚、この状態で旋削軸芯線HSが、第1断面A1、第2断面A2、第3断面A3、第4断面A4、第5断面A5、第6断面A6と交差する点を各々H1、H2、H3、H4、H5、H6とする。
即ち、前記と同様に、隣接する回動腕間の前記各断面では、両回動腕で各々得られる回動角度同士を比較し、小さい方の値を記憶しているので、
第1断面A1では、H1から、当接面11a’への垂線の距離L011を求める。
第2断面A2では、H2から、当接面11a’より回動角度が小である当接面11b’ への垂線の距離L012を、
第3断面A3では、H3から、当接面11c’より回動角度が小である当接面11’bへの垂線の距離L013を、
第4断面A4では、H4から、当接面11c’より回動角度が小である当接面11’dへの垂線の距離L014を、
第5断面A5では、H5から、当接面11’dより回動角度が小である当接面11’eへの垂線の距離L015を、
第6断面A6では、H6から、当接面11’eへの垂線の距離L016を各々求め、各値を記憶する。
以後、同様に、スピンドル3、3aが1回転するまでの間、制御器10は前記所定回転角度毎に、夫々の距離を演算し各値を記憶する。
第1角度検出器7からスピンドル3、3aが1回転した信号を受けると、制御器10は前記記憶した垂線の距離の内で最大の値を、該原木Wの旋削軸芯からの最大回転半径と設定する。
また一方、各シリンダ17を作動させてピストンロッド17aを後退させ、第1回動腕10a、第2回動腕10b、第3回動腕10c、第4回動腕10d、第5回動腕10eの夫々を図1の実線で示す初期状態の位置に戻す。
Next, from the state shown in FIG. 8, when the log W is first rotated by the predetermined angle by the spindles 3 and 3a, the positional relationship of the rotating arms 10a, 10b, 10c, 10d and 10e with respect to the log W is shown in FIG. When it is in the state, each distance is obtained as follows, and these values are stored. In this state, the points where the turning axis HS intersects the first cross section A1, the second cross section A2, the third cross section A3, the fourth cross section A4, the fifth cross section A5, and the sixth cross section A6 are H1, H2, Let H3, H4, H5, H6.
That is, similarly to the above, in each cross section between adjacent rotating arms, the rotation angles obtained by both rotating arms are compared with each other, and the smaller value is stored.
In the first cross section A1, a perpendicular distance L011 from H1 to the contact surface 11a ′ is obtained.
In the second cross section A2, a perpendicular distance L012 from H2 to the contact surface 11b ′ whose rotation angle is smaller than that of the contact surface 11a ′,
In the third cross section A3, a perpendicular distance L013 from H3 to the contact surface 11′b whose rotation angle is smaller than that of the contact surface 11c ′.
In the fourth cross section A4, a perpendicular distance L014 from H4 to the contact surface 11′d whose rotation angle is smaller than that of the contact surface 11c ′,
In the fifth cross section A5, a perpendicular distance L015 from H5 to the contact surface 11′e whose rotation angle is smaller than that of the contact surface 11′d,
In the sixth cross section A6, the distance L016 of the perpendicular to the contact surface 11′e is obtained from H6, and each value is stored.
Thereafter, similarly, until the spindles 3 and 3a make one rotation, the controller 10 calculates each distance for each predetermined rotation angle and stores each value.
When receiving a signal indicating that the spindles 3 and 3a have made one rotation from the first angle detector 7, the controller 10 determines the maximum value of the stored perpendicular distances from the turning axis of the log W. And set.
On the other hand, each cylinder 17 is operated to retract the piston rod 17a, and the first rotating arm 10a, the second rotating arm 10b, the third rotating arm 10c, the fourth rotating arm 10d, and the fifth rotating arm. Each of 10e is returned to the initial position shown by the solid line in FIG.

以上のように得られた原木の旋削軸芯線HSと最大回転半径との値により、例えば、次のように、ベニヤレースの、刃物を設けた鉋台を待機させるとともに、該原木をベニヤレースに供給する。
即ち、ベニヤレースの一対のスピンドル(以下、第2スピンドルという)の軸中心線と刃物との間隔が、前記最大回転半径の値となるような位置に、鉋台を第2スピンドルに対し前後動させ、待機させておく。この場合、機械的誤差などを考慮し、該間隔を前記最大回転半径の値より若干大きい値としても良い。
次いで、別に設けた挟持搬送体により該原木を、該原木の前記演算された旋削軸芯線HSと第2スピンドルの軸中心線とが一致するように、ベニヤレースの第2スピンドルの間に供給した後、第2スピンドルを各々該原木に向けて移動させ該原木を挟持する。
この状態で、刃物により切削するべく第2スピンドルにより該原木を回転させた場合、該原木が鉋台に備えた部品、例えばノーズバーに当たって損傷させることがない。また該原木回転開始後、短時間で刃物による該原木の切削が開始されるため、生産性が良くなる。
以上の実施例によれば、簡易な演算により原木の旋削軸芯を中心とする該原木の最大回転半径を設定することができ、そのための時間も短くなる。
Depending on the value of the turning axis line HS and the maximum turning radius of the raw wood obtained as described above, for example, as shown below, the stand of the veneer lace provided with the cutting tool is waited and the raw wood is supplied to the veneer lace. To do.
That is, the base is moved back and forth with respect to the second spindle so that the distance between the axis center line of the pair of spindles of the veneer (hereinafter referred to as the second spindle) and the blade is the value of the maximum turning radius. Let me stand by. In this case, considering the mechanical error, the interval may be set to a value slightly larger than the value of the maximum turning radius.
Next, the log is supplied between the second spindle of the veneer race so that the calculated turning axis line HS of the log and the axis center line of the second spindle coincide with each other by a holding and conveying body provided separately. Thereafter, the second spindle is moved toward the log and the log is sandwiched.
In this state, when the log is rotated by the second spindle so as to be cut by the blade, the log does not hit and damage the parts provided on the table, for example, the nose bar. In addition, since the cutting of the raw wood by the cutting tool is started in a short time after the raw wood rotation starts, the productivity is improved.
According to the above embodiment, the maximum turning radius of the raw wood around the turning axis of the raw wood can be set by a simple calculation, and the time required for this can be shortened.

次に前記図7、図8を用いた説明において、演算された回動角度の内、隣り合う当接面の間の各断面A2、A3、A4、A5では、該両当接面の回動角度を比較して小さい方の値を選択して記憶することを説明したが、その理由は以下の通りである。
例えば、図8の要部拡大説明図として、原木Wと当接部材だけを、その当接面が原木Wの外周に当たっている状態で、図12で模式的に示し、以下説明する。
尚、図12における各符号は、
Wa:当接面11c’が当たっている原木の最も突出した部分
Wb:当接面11b’が当たっている原木の突出した部分
Wc:当接面11d’が当たっている原木の突出した部分
P1:Waと当接面11c’との当接箇所を通り断面A4と平行な面と、旋削軸芯線HSとの交点
P2:P1から当接面11c’へ引いた垂線の当接面11c’上の点
P3:G3から当接面11c’(正確には当接面11c’を延長した面)へ引いた垂線の、該面上の点
P4:Wcと当接面11d’との当接箇所を通り断面A5と平行な面と、旋削軸芯線HSとの交点
P5:P4から当接面11d’へ引いた垂線の当接面11d’上の点
P6:G4から当接面11d’(正確には当接面11d’を延長した面)へ引いた垂線の、該面上の点
P7:G4から当接面11c’(正確には当接面11c’を延長した面)へ引いた垂線の、該面上の点
とする。
Next, in the description using FIG. 7 and FIG. 8, the rotation of both contact surfaces in each of the cross sections A2, A3, A4, and A5 between the adjacent contact surfaces within the calculated rotation angle. The reason for comparing the angle and selecting and storing the smaller value has been described for the following reason.
For example, as an enlarged explanatory view of the main part of FIG. 8, only the raw wood W and the contact member are schematically shown in FIG. 12 in the state where the contact surface is in contact with the outer periphery of the raw wood W, and will be described below.
In addition, each code | symbol in FIG.
Wa: the most protruding portion of the raw wood that the contact surface 11c 'is in contact Wb: the protruding portion of the original wood that is in contact with the contact surface 11b' Wc: the protruding portion P1 of the original wood that is in contact with the contact surface 11d ' : Intersection of the surface parallel to the cross section A4 passing through the contact portion between Wa and the contact surface 11c 'and the turning axis HS P2: On the contact surface 11c' of the perpendicular drawn from P1 to the contact surface 11c ' Point P3: a contact point between the point P4: Wc and the contact surface 11d ′ of the perpendicular line drawn from the point G3 to the contact surface 11c ′ (exactly, a surface extending the contact surface 11c ′) The point P6 on the contact surface 11d ′ of the perpendicular drawn from the intersection P5: P4 to the contact surface 11d ′ from the plane parallel to the cross section A5 and the turning axis HS is from the contact surface 11d ′ (exact , The contact line 11c ′ (precisely the contact surface 1) from the point P7: G4 on the surface of the perpendicular drawn to the contact surface 11d ′) The point on the surface of the perpendicular drawn to the surface 1c ′ is extended.

図12から明らかなように、軸中心線3bから原木半径方向に最も離れた当接面は11c’であり、しかも当接面11c’に対し、軸中心線3bの軸中心線方向で右端寄りに最も突出した部分Waがあると仮定する。ただ、各当接面において、軸中心線3bの軸中心線方向でどの箇所が、原木外周に直接当たっているかは、各第2角度検出器から知ることはできない。
そこで各回動腕に設けた第2角度検出器により得られる各回動角度を、各当接面の、該軸中心線方向でどの箇所での値とするかを決定する必要がある。
仮に各回動角度を、図12の該軸中心線方向で左側の断面における値、即ち当接面11c’で得られる値は断面A3の,当接面11d’で得られる値は断面A4の値と順次設定すると、次のような場合に問題が生じる。
即ち、上述の設定で、距離検出器9a、9b、9cからの情報で制御器10により図12に示すように、右下がりに傾斜した旋削軸芯線HSが求められた場合である。
この場合、前記と同様に求めると、断面A3では、当接面11c’と旋削軸芯線HSとの距離即ちG3−P3間の長さが、断面A4では同じくG4−P7の長さが、それぞれの断面での最大値となる。
しかし図12から明らかなように、当接面11c’が当たっている箇所では、突出した部分WaでのP1−P2間の長さはG3−P3間の長さより大となっている。
As is apparent from FIG. 12, the contact surface 11c ′ that is furthest away from the shaft center line 3b in the log radial direction is 11c ′, and is closer to the right end in the shaft center line direction of the shaft center line 3b with respect to the contact surface 11c ′. It is assumed that there is a most prominent portion Wa. However, it is impossible to know from each second angle detector which portion of each abutment surface directly hits the outer periphery of the log in the axial center line direction of the axial center line 3b.
Therefore, it is necessary to determine at which location the respective rotation angles obtained by the second angle detectors provided on the respective rotation arms are values of the respective contact surfaces in the axial center line direction.
If each rotation angle is a value in the left cross section in the axial center line direction of FIG. 12, that is, a value obtained at the contact surface 11c ′ is a value of the cross section A3, and a value obtained at the contact surface 11d ′ is a value of the cross section A4. Will cause problems in the following cases.
That is, in the above-described setting, the turning axis core line HS inclined downward to the right is obtained by the controller 10 based on the information from the distance detectors 9a, 9b, and 9c as shown in FIG.
In this case, in the same manner as described above, the distance between the contact surface 11c ′ and the turning axis HS, that is, the length between G3-P3 in the cross section A3, and the length of G4-P7 in the cross section A4 are the same. It is the maximum value in the cross section.
However, as is apparent from FIG. 12, the length between P1 and P2 at the protruding portion Wa is greater than the length between G3 and P3 at the location where the contact surface 11c 'is in contact.

そこで仮に前記のように演算された結果、G3−P3間の長さが最大であるとして求められた場合、この値に対応して、前記と同様にベニヤレースの鉋台を第2スピンドルから離れた位置に待機させ、旋削軸芯線HSを回転中心として原木をチャッキングし且つ原木を回転させると,突出した部分Waが刃物等に当たることになり、ベニヤレースの部品が損傷する等の問題が生じてしまう。
即ち、当接面と求められた旋削軸芯線HSとの間隔が、該当接面の前記回動角度を得る箇所として決定された側の断面から離れるに従って広くなる場合、原木Wの各断面に突出した部分Waがない限り、旋削軸芯線HSを回転中心として原木をチャッキングすると、求めた半径より突出した部分Waの半径が大となってしまい、前記問題が生じてしまうのである。
そのため図12において、回動角度を当接面の右側の断面における値とした場合、求められた旋削軸芯線HSが前記と逆に左下がりであると、同様に、前記問題が生じてしまう。
そこで、前記実施例で説明したように、隣り合う当接面間の断面では、回動角度を比較して小さい方の値を、該断面での値として用いるのである。
このようにすれば、図12のような形状の場合、断面A3では当接面11b’より回動角度が小さい当接面11c’の値が、断面A4では当接面11d’より回動角度が小さい当接面11c’の値が用いられる。
その結果、図12で示す範囲では、該回動角度からG3−P3間の長さと、G4−P7間の長さが得られ、値が大きいG4−P7間の長さが最大回転半径となる。
ここでG4−P7間の長さはP1−P2間の長さより長いため、最大回転半径として得られる値が大きくなってしまい該値により前記鉋台を待機させる位置が第2スピンドルから必要以上に離れてしまい実際の切削開始まで時間が掛かるが、その長さの違いは小さいため実用上、支障はない。
Therefore, if it is determined that the length between G3 and P3 is the maximum as a result of the calculation as described above, the veneer race rack is moved away from the second spindle in the same manner as described above. If the raw wood is chucked and the raw wood is rotated with the turning axis line HS as the rotation center, the protruding portion Wa hits the blade etc., causing problems such as damage to the veneer lace parts. End up.
That is, when the distance between the contact surface and the calculated turning axis line HS becomes wider as the distance from the cross-section determined as the location for obtaining the rotation angle of the corresponding contact surface increases, the protrusion protrudes into each cross-section of the raw wood W. As long as there is no portion Wa, if the raw wood is chucked with the turning axis HS as the center of rotation, the radius of the portion Wa protruding from the obtained radius becomes larger, causing the above problem.
Therefore, in FIG. 12, when the rotation angle is a value in the right cross section of the contact surface, if the calculated turning axis HS is downwardly lowered, the same problem occurs.
Therefore, as described in the above embodiment, in the cross section between the adjacent contact surfaces, the smaller value compared with the rotation angle is used as the value in the cross section.
In this way, in the case of the shape as shown in FIG. 12, the value of the contact surface 11c ′ whose rotation angle is smaller than that of the contact surface 11b ′ in the cross section A3 is the rotation angle of the contact surface 11d ′ in the cross section A4. The value of the contact surface 11c ′ having a small is used.
As a result, in the range shown in FIG. 12, the length between G3 and P3 and the length between G4 and P7 are obtained from the rotation angle, and the length between G4 and P7 having a large value becomes the maximum turning radius. .
Here, since the length between G4 and P7 is longer than the length between P1 and P2, the value obtained as the maximum turning radius becomes large, and the position where the stand is waited is unnecessarily separated from the second spindle due to the value. However, it takes time to actually start cutting, but since the difference in length is small, there is no practical problem.

次に変更例を説明する。
1.実施例では図7において、前記のように各断面A1、A2、A3、A4、A5及びA6の位置を設定したが、各回動腕の軸中心線3b方向での略中央を断面として設定しても良い。
即ち、図12の例えば第3回動腕10cの場合で説明すると、D3を前記略中央の断面と設定するのである。この時、該断面D3と旋削軸芯線HSとの交点をP8とし、P8から当接面11c’へ引いた垂線の当接面11c’上の点をP9とする。
上記のように断面を設定した場合でも、求められた回動角度を図10の式(11)に代入してP8―P9間の距離を求める。ただP8の箇所は、図12からも明らかなように、三次元座標で求められる旋削軸芯線HS上でのG3及びG4と異なる点であるため、式(11)におけるT1及びT2の値を各々求めなおして代入しなければならない。
このようにして求められたP8―P9間の距離は、P1―P2間の距離に比べて短いが、G3−P3間の距離を半径として用いた場合に比べ誤差が小さくなる利点がある。また図12において、求められた旋削軸芯線HSが左下がりであった場合でも前記誤差が小さくなる。
一方このような誤差に対しては、ベニヤレースの第2スピンドルの軸中心線と刃物との間隔が、求められた最大回転半径の値より若干大きい値となるような位置に、鉋台を待機させておけば良い。
Next, a modified example will be described.
1. In the embodiment, in FIG. 7, the positions of the cross sections A1, A2, A3, A4, A5, and A6 are set as described above, but the approximate center of each rotating arm in the axial centerline 3b direction is set as a cross section. Also good.
That is, in the case of the third rotating arm 10c in FIG. 12, for example, D3 is set to the substantially central cross section. At this time, the intersection of the cross section D3 and the turning axis HS is P8, and the point on the contact surface 11c ′ of the perpendicular drawn from P8 to the contact surface 11c ′ is P9.
Even when the cross section is set as described above, the distance between P8 and P9 is obtained by substituting the obtained rotation angle into equation (11) in FIG. However, as is clear from FIG. 12, the point P8 is a point different from G3 and G4 on the turning axis HS obtained by the three-dimensional coordinates. Therefore, the values of T1 and T2 in the equation (11) are respectively set. It must be recalculated and assigned.
Although the distance between P8 and P9 obtained in this way is shorter than the distance between P1 and P2, there is an advantage that the error is smaller than when the distance between G3 and P3 is used as a radius. In FIG. 12, the error is reduced even when the obtained turning axis HS is descending to the left.
On the other hand, for such an error, the stand is put on standby at a position where the distance between the axis center line of the second spindle of the veneer and the blade is slightly larger than the calculated maximum turning radius. Just keep it.

2.原木の形状が円柱に近い場合、下記のような演算でも実用上問題はない。
即ち、所定回転角度毎の第1回動腕10a、第2回動腕10b、第3回動腕10c、第4回動腕10d、第5回動腕10eの内で回動した角度が最も小さい回動腕のみ、旋削軸芯に交差して該回動腕に垂直に当たるまでの距離を演算し、そして演算した距離の内で最も大きい距離を最大回転半径としても良い。そうすれば、演算時間が短縮できる。
3.実施例では、第1回動腕10a、第2回動腕10b、第3回動腕10c、第4回動腕10d、第5回動腕10eの軸中心線3b方向の幅が同じであるが、該方向で両端に位置する当接部材の該方向の幅を小さくしても良い。そうすれば説明は省略するが、求める最大回転半径の値の精度がより良くなる。
4. 実施例では、一対の第1スピンドル3、3aで原木Wを挟持してから第1回動腕10a、第2回動腕10b、第3回動腕10c、第4回動腕10d、第5回動腕10eを原木Wに当接させているが、挟持する前に当接させても良いし、また同時であっても良い。
5.実施例では、距離検出器9a、9b、9cによる距離検出と、当接面11a’、11b’、11c’、11d’、11eによる回動角度の検出とを、第1スピンドル3、3aが所定角度回転する毎に同時に行ったが、互いに異なる所定角度回転する毎に各々を検出するようにしても良い。
2. When the shape of the raw wood is close to a cylinder, there is no practical problem even with the following calculation.
That is, the angle of rotation among the first rotation arm 10a, the second rotation arm 10b, the third rotation arm 10c, the fourth rotation arm 10d, and the fifth rotation arm 10e for each predetermined rotation angle is the largest. Only a small rotating arm may be calculated by calculating the distance from intersecting the turning axis to be perpendicular to the rotating arm, and the largest of the calculated distances may be set as the maximum turning radius. Then, the calculation time can be shortened.
3. In the embodiment, the first rotation arm 10a, the second rotation arm 10b, the third rotation arm 10c, the fourth rotation arm 10d, and the fifth rotation arm 10e have the same width in the axial centerline 3b direction. However, the width of the abutting member positioned at both ends in the direction may be reduced. Then, although explanation is omitted, the accuracy of the value of the maximum turning radius to be obtained becomes better.
4. In the embodiment, after the log W is held between the pair of first spindles 3 and 3a, the first rotating arm 10a, the second rotating arm 10b, the third rotating arm 10c, the fourth rotating arm 10d, Although the fifth rotating arm 10e is in contact with the log W, it may be contacted before being sandwiched, or may be simultaneous.
5. In the embodiment, the first spindles 3 and 3a perform the distance detection by the distance detectors 9a, 9b, and 9c and the rotation angles by the contact surfaces 11a ′, 11b ′, 11c ′, 11d ′, and 11e. Although it was performed at the same time for each angle rotation, each may be detected each time the image rotates by a predetermined angle different from each other.

実施例の概略側面図である。It is a schematic side view of an Example. 図1において二点鎖線A―Aより矢印方向を見た図である。FIG. 2 is a view of an arrow direction taken along a two-dot chain line AA in FIG. 図1において二点鎖線B―Bより矢印方向を見た図である。FIG. 2 is a view of an arrow direction from a two-dot chain line BB in FIG. 実施例の作動説明図である。It is operation | movement explanatory drawing of an Example. 実施例の作動説明図である。It is operation | movement explanatory drawing of an Example. 実施例の作動説明図である。It is operation | movement explanatory drawing of an Example. 図6において二点差線D−Dより矢印方向、即ち各回動腕に対し、ほ ぼ半径方向で外側から内側を見た部分説明図である。FIG. 7 is a partial explanatory view when viewed from the outside in the direction of the arrow from the two-dotted line DD in FIG. 図7において、求められた旋削軸芯線HSを付加した図である。In FIG. 7, it is the figure which added the calculated | required turning axis line HS. 旋削軸芯線HSと当接面11a’との間の距離を求める場合の説明図 である。It is explanatory drawing in the case of calculating | requiring the distance between the turning axis line HS and contact surface 11a '. 垂線の長さL001を求めるための、要部の説明図及び計算式であ る。It is explanatory drawing and a calculation formula of the principal part for calculating | requiring the length L001 of a perpendicular line. 原木Wが最初に前記所定角度回転した時の、図7に対応する図であ る。FIG. 8 is a view corresponding to FIG. 7 when the log W is first rotated by the predetermined angle. 図8の要部拡大説明図である。FIG. 9 is an enlarged explanatory view of a main part of FIG. 8.

符号の説明Explanation of symbols

3・・・・第1スピンドル
9a、9b、9c・・・・・・距離検出器
10a、10b、10c、10d、10e・・・・・第1回動腕
11a’、11b’、11c’、11d’、11e’・・・・・当接面
19a、19b、19c、19d、19e・・・・・第2角度検出器
3 .... first spindle
9a, 9b, 9c ... Distance detector
10a, 10b, 10c, 10d, 10e ... 1st rotation arm
11a ', 11b', 11c ', 11d', 11e '... contact surfaces 19a, 19b, 19c, 19d, 19e ... second angle detector

Claims (12)

仮の軸芯を中心に原木を少なくとも1回転させ、原木の輪郭を計測すると共に、計測した輪郭情報に基づいて、原木の旋削に適する旋削軸芯と、旋削軸芯に対応する最大回転半径を算定する原木の旋削軸芯及び最大回転半径の検出方法であって、
旋削軸芯は、仮の軸芯の所定回転角度毎に、仮の軸芯と平行な方向で間隔をおいて設定された複数の箇所における仮の軸芯から原木外周までの各距離を求めて、該原木の旋削軸芯を演算して求め、
最大回転半径は、一端が、該仮の軸芯と平行な軸中心線を有する軸に回動自在に連結され、該軸中心線方向に多数配置された回動腕の、各他端に備えた該軸中心線と平行で平坦な当接面を、前記回転する原木外周に当接させ、
仮の軸芯の所定回転角度毎に、仮の軸芯と該軸中心線とを結ぶ線に対し、原木外周に倣って回動する各回動腕の前記当接面がなす角度を各々検出して記憶しておき、前記旋削軸芯が求められた後、前記記憶した各角度により、前記旋削軸芯上の選択された箇所から各当接面への垂線の長さを各々求め、該求めた垂線の長さの最大値を最大回転半径とする
原木の旋削軸芯及び最大回転半径の検出方法。
Rotate the log at least once around the temporary axis to measure the outline of the log, and based on the measured outline information, determine the turning axis suitable for turning the log and the maximum turning radius corresponding to the turning axis. A method of detecting a turning axis of a raw wood to be calculated and a maximum turning radius,
The turning shaft core calculates each distance from the temporary shaft core to the outer circumference of the log at a plurality of positions set at intervals in a direction parallel to the temporary shaft core at every predetermined rotation angle of the temporary shaft core. , Calculating the turning axis of the raw wood,
The maximum turning radius has one end rotatably connected to an axis having an axis center line parallel to the temporary axis, and is provided at each other end of a plurality of rotating arms arranged in the axis center line direction. Further, a flat contact surface parallel to the axial center line is brought into contact with the outer periphery of the rotating log,
For each predetermined rotation angle of the temporary axis, the angle formed by the abutment surface of each rotating arm that rotates following the outer circumference of the log is detected with respect to a line connecting the temporary axis and the axis center line. After the turning axis is obtained, the lengths of the perpendiculars from the selected locations on the turning axis to the respective contact surfaces are obtained according to the stored angles, respectively. The maximum value of the length of the vertical line is the maximum turning radius.
旋削軸芯を、
仮の軸芯の所定回転角度毎に、仮の軸芯と平行な方向で間隔をおいて設定された複数の箇所における仮の軸芯から原木外周までの各距離を求めて、該複数の断面輪郭情報を算定すると共に各断面輪郭における最大内接円を求め、該複数の箇所の各最大内接円内に取り得る最大直円柱の方向を想定し、この最大直円柱の中心を通る直線とする請求項1記載の原木の旋削軸芯及び最大回転半径の検出方法。
Turning axis
For each predetermined rotation angle of the temporary axis, the distances from the temporary axis to the outer periphery of the log at a plurality of positions set at intervals in a direction parallel to the temporary axis, Calculate the contour information and obtain the maximum inscribed circle in each cross-sectional contour, assume the direction of the maximum right circular cylinder that can be taken in each maximum inscribed circle of the plurality of locations, and the straight line passing through the center of the maximum right circular cylinder A method for detecting a turning axis of a raw wood and a maximum turning radius according to claim 1.
旋削軸芯を、
仮の軸芯の前記回転角度毎に、仮の軸芯と平行な方向で間隔をおいて設定された複数の箇所における仮の軸芯から原木外周までの各距離を求めて、該複数の断面輪郭情報を算定すると共に各断面輪郭における最大内接円を求め、該複数の箇所の各最大内接円内に取り得る最大直円柱の方向を予想し、この最大直円柱の中心線と初期の軸芯方向を定め、
前記仮の軸芯に基づいて検出した前記複数の断面輪郭情報を、前記中心線が共通の軸芯となる新断面輪郭情報に変換し、
これら変換した新断面輪郭情報を中心線の基に重ね合せてこれらの内側に入る断面輪郭情報を得ると共に、この断面輪郭情報に基づいて改めて最大内接円を求め、
この最大内接円の中心に前記中心線を変更した直線とする請求項1記載の原木の旋削軸芯及び最大回転半径の検出方法。
Turning axis
For each rotation angle of the temporary shaft core, the distances from the temporary shaft core to the outer periphery of the log are determined at a plurality of positions set at intervals in a direction parallel to the temporary shaft core. The contour information is calculated and the maximum inscribed circle in each cross-sectional contour is obtained, the direction of the maximum right circular cylinder that can be taken in each maximum inscribed circle at the plurality of locations is predicted, the center line of the maximum right circular cylinder and the initial line Determine the axis direction,
Converting the plurality of cross-sectional contour information detected based on the temporary axis to new cross-sectional contour information in which the center line is a common axis;
By superimposing these converted new cross-sectional contour information on the base of the center line to obtain the cross-sectional contour information that falls inside these, obtain the maximum inscribed circle again based on this cross-sectional contour information,
The method of detecting a turning axis of a raw wood and a maximum turning radius according to claim 1, wherein the straight line is obtained by changing the center line to the center of the maximum inscribed circle.
最大回転半径を求める時の、前記旋削軸芯上の選択された箇所を、該軸中心線方向における各当接面の両端を各々通り仮の軸芯と直交する断面と、前記旋削軸芯とが交差する箇所とする請求項1記載の原木の旋削軸芯及び最大回転半径の検出方法。 When the maximum turning radius is obtained, the selected location on the turning axis is a cross section passing through both ends of each contact surface in the axial center line direction and orthogonal to the temporary axis, and the turning axis The method of detecting a turning axis of a raw wood and a maximum turning radius according to claim 1, wherein the crossing points of the raw wood are defined as crossing points. 最大回転半径を求める時の、前記旋削軸芯上の選択された箇所を、該軸中心線方向における各当接面の中央を通り仮の軸芯と直交する断面と、前記旋削軸芯とが交差する箇所とする請求項1記載の原木の旋削軸芯及び最大回転半径の検出方法。 When the maximum turning radius is obtained, the selected location on the turning axis is a cross section passing through the center of each contact surface in the axial center line direction and orthogonal to the temporary axis, and the turning axis. The method of detecting a turning axis of a raw wood and a maximum turning radius according to claim 1, wherein the intersecting points are used as intersections. 仮の軸芯の所定回転角度毎に、仮の軸芯と該軸中心線とを結ぶ線に対し、原木外周に倣って回動する各回動腕の前記当接面がなす角度を各々検出して記憶する際、
前記所定回転角度毎で且つ当接面毎に検出された角度を、仮の軸芯の軸中心線方向で、両端に位置する当接面では、両当接面の該軸中心線方向で外側端部を各々通り仮の軸芯と直交する各断面での値として記憶し、
これら以外の各当接面では、該軸中心線方向で隣り合う2個の当接面において各々検出された角度を比較して大きい角度の値だけを、該2個の当接面の間を通り仮の軸芯と直交する断面での値として記憶しておき、
前記旋削軸芯が求められた後、前記記憶した各角度により、前記各断面と前記旋削軸芯上との各交点から各々対応する当接面への垂線の長さを求め、該求めた垂線の長さの最大値を最大回転半径とする請求項1記載の原木の旋削軸芯及び最大回転半径の検出方法。
For each predetermined rotation angle of the temporary axis, the angle formed by the abutment surface of each rotating arm that rotates following the outer circumference of the log is detected with respect to a line connecting the temporary axis and the axis center line. When remembering
The angle detected for each predetermined rotation angle and for each contact surface is in the axial centerline direction of the temporary shaft core, and the contact surfaces located at both ends are outside in the axial centerline direction of both contact surfaces. Store as values at each cross section perpendicular to the temporary axis through each end,
In each of the contact surfaces other than these, the angle detected between the two contact surfaces adjacent in the axial center line direction is compared with each other, and only a large angle value is obtained between the two contact surfaces. Store it as a value in a cross section orthogonal to the temporary axis of the street,
After the turning axis is obtained, the lengths of the perpendiculars from the respective intersections between the cross-sections and the turning axis to the corresponding contact surfaces are obtained from the stored angles, and the obtained perpendiculars are obtained. 2. A method of detecting a turning axis of a raw wood and a maximum turning radius according to claim 1, wherein the maximum value of the length is a maximum turning radius.
第1直線上に各々の軸中心線があり、軸中心線の方向に進退自在で、且つ回転自在の一対の挟持部材と、
一対の挟持部材を互いに接近又は離隔する方向に移動させる挟持部材移動部材と、
一対の挟持部材の少なくとも一方を回転させる回転部材と、
一対の挟持部材の回転角度を検出する第1角度検出部材と、
一対の挟持部材の間に原木を供給する原木供給部材と、
一端が第1直線と平行な第2軸中心線を有する軸に回動自在に連結され、他端には第2軸中心線と平行で平坦な当接面を有し、第2軸中心線方向に多数配置された回動腕と、
前記各回動腕を、前記各回動腕が一対の挟持部材の間に供給される原木に当たらない離隔位置と、一対の挟持部材に挟持された原木に各当接面が当たるために十分な当接位置との間を回動させる往復回動部材と、
前記各回動腕に設けられ、第1直線と第2軸中心線とを結ぶ線に対し、原木外周に倣って回動する各回動腕の前記当接面がなす角度を各々検出する第2角度検出部材と、
第1直線と平行な方向で間隔をおき且つ第1直線から所定距離離れた位置に各々設けられ、一対の挟持部材に挟持された原木表面までの距離を検出する複数の距離検出器と、
挟持部材移動部材により一対の挟持部材の間隔を原木の長さより大きい状態に離隔待機させ、且つ往復回動部材により前記各回動腕を離隔位置に待機させた初期状態で、
最初に原木供給部材により一対の挟持部材の間に原木を供給し、
次に挟持部材移動部材の作動により一対の挟持部材により原木を挟持し、
次いで往復回動部材により前記各回動腕を当接位置まで回動させ、
次に一対の挟持部材を回転部材で回転させ始めると共に、各距離検出器により検出された原木表面までの距離を記憶すること、及び各第2角度検出部材により検出された前記角度を記憶することを、第1角度検出部材からの検出信号を用いて一対の挟持部材が所定角度回転する毎に行い、
第1角度検出部材により一対の挟持部材が少なくとも1回転したことを検出した信号が出されると、各距離検出器により検出された原木表面までの距離の情報により、該原木の旋削軸芯を演算して求め、次いで、前記記憶した各角度により、前記旋削軸芯上の選択された箇所から各当接面への垂線の長さを各々求め、該求めた垂線の長さの最大値を最大回転半径として、各々出力する制御器とを備えた原木の旋削軸芯及び最大回転半径の検出装置。
A pair of clamping members each having an axial center line on the first straight line, capable of moving forward and backward in the direction of the axial center line, and rotatable;
A sandwiching member moving member that moves the pair of sandwiching members toward or away from each other;
A rotating member that rotates at least one of the pair of clamping members;
A first angle detection member for detecting a rotation angle of the pair of clamping members;
A log supply member that supplies log between a pair of clamping members;
One end is rotatably connected to an axis having a second axis center line parallel to the first straight line, and the other end has a flat contact surface parallel to the second axis center line, and the second axis center line A number of rotating arms arranged in the direction;
The rotating arms are separated from each other so that each rotating arm is in contact with the separated position where the rotating arms do not hit the log supplied between the pair of holding members and the log held between the pair of holding members. A reciprocating rotation member that rotates between the contact position;
A second angle that is provided on each of the rotating arms and detects an angle formed by the abutment surface of each of the rotating arms that rotates along the outer circumference of the log with respect to a line connecting the first straight line and the second axis center line. A detection member;
A plurality of distance detectors which are provided at positions spaced apart in a direction parallel to the first straight line and separated from the first straight line by a predetermined distance, and detect the distance to the surface of the log sandwiched between the pair of sandwiching members;
In an initial state in which the gap between the pair of clamping members is set to a state larger than the length of the log by the holding member moving member, and each of the rotating arms is set to a standby position by the reciprocating rotary member,
First, the raw wood is supplied between the pair of clamping members by the raw wood supply member,
Next, the operation of the sandwiching member moving member sandwiches the log with a pair of sandwiching members,
Next, each revolving arm is rotated to a contact position by a reciprocating rotation member,
Next, the pair of clamping members are started to be rotated by the rotating member, and the distance to the log surface detected by each distance detector is stored, and the angle detected by each second angle detecting member is stored. Is performed each time the pair of clamping members rotate by a predetermined angle using the detection signal from the first angle detection member,
When the first angle detection member outputs a signal that detects that the pair of clamping members has made at least one rotation, the turning axis of the raw wood is calculated based on the distance information to the raw wood surface detected by each distance detector. Then, each of the stored angles is used to determine the length of the perpendicular from the selected location on the turning axis to each abutment surface, and the maximum value of the obtained perpendicular length is maximized. A raw wood turning shaft core and a maximum turning radius detection device each having a controller for outputting as a turning radius.
旋削軸芯を、各距離検出器により検出された原木表面までの距離の情報により、各距離検出器が対応する複数の箇所に於ける原木の断面輪郭情報を算定すると共に各断面輪郭における最大内接円を求め、該複数の箇所の各最大内接円内に取り得る最大直円柱の方向を想定し、この最大直円柱の中心を通る直線とする制御器である請求項7記載の原木の旋削軸芯及び最大回転半径の検出装置。 Based on the information on the distance to the surface of the log of the turning shaft detected by each distance detector, the cross-section contour information of the log at a plurality of locations corresponding to each distance detector is calculated, and the maximum in each cross-section contour is calculated. 8. The raw wood according to claim 7, which is a controller that obtains a tangent circle, assumes a direction of a maximum right circular cylinder that can be taken in each maximum inscribed circle of the plurality of locations, and makes a straight line passing through the center of the maximum right circular cylinder Turning axis and maximum turning radius detector. 旋削軸芯を、各距離検出器により検出された原木表面までの距離の情報により、各距離検出器が対応する複数の箇所に於ける原木の断面輪郭情報を算定すると共に各断面輪郭における最大内接円を求め、該複数の箇所の各最大内接円内に取り得る最大直円柱の方向を予想し、この最大直円柱の中心線と所期の軸芯方向を定め、
前記仮の軸芯に基づいて検出した前記複数の断面輪郭情報を、前記中心線が共通の軸芯となる新断面輪郭情報に変換し、
これら変換した新断面輪郭情報を中心線の基に重ね合せてこれらの内側に入る断面輪郭情報を得ると共に、この断面輪郭情報に基づいて改めて最大内接円を求め、
この最大内接円の中心に前記中心線を変更した直線とする制御器である請求項7記載の原木の旋削軸芯及び最大回転半径の検出装置。
Based on the information on the distance to the surface of the log of the turning shaft detected by each distance detector, the cross-section contour information of the log at a plurality of locations corresponding to each distance detector is calculated, and the maximum in each cross-section contour is calculated. Find the tangent circle, predict the direction of the largest right circular cylinder that can be taken within each maximum inscribed circle of the plurality of locations, determine the center line of this largest right circular cylinder and the desired axial direction,
Converting the plurality of cross-sectional contour information detected based on the temporary axis to new cross-sectional contour information in which the center line is a common axis;
By superimposing these converted new cross-sectional contour information on the base of the center line to obtain the cross-sectional contour information that falls inside these, obtain the maximum inscribed circle again based on this cross-sectional contour information,
8. The raw wood turning shaft core and maximum turning radius detecting device according to claim 7, wherein the turning center of the raw wood is a controller that changes the center line to the center of the maximum inscribed circle.
最大回転半径を求める時の、前記旋削軸芯上の選択された箇所を、該軸中心線方向における各当接面の両端を通り仮の軸芯と直交する断面と、前記旋削軸芯とが交差する箇所とする請求項7記載の原木の旋削軸芯及び最大回転半径の検出装置。 When the maximum turning radius is obtained, the selected part on the turning axis is crossed through both ends of each contact surface in the axial center line direction and perpendicular to the temporary axis, and the turning axis is The raw wood turning shaft core and the maximum turning radius detection device according to claim 7, wherein the crossing points are places where they intersect. 最大回転半径を求める時の、前記旋削軸芯上の選択された箇所を、該軸中心線方向における各当接面の中央を通り仮の軸芯と直交する断面と、前記旋削軸芯とが交差する箇所とする請求項7記載の原木の旋削軸芯及び最大回転半径の検出装置。 When the maximum turning radius is obtained, the selected location on the turning axis is a cross section passing through the center of each contact surface in the axial center line direction and orthogonal to the temporary axis, and the turning axis. The raw wood turning shaft core and the maximum turning radius detection device according to claim 7, wherein the crossing points are places where they intersect. 第1直線上に各々の軸中心線があり、軸中心線の方向に進退自在で、且つ回転自在の一対の挟持部材と、
一対の挟持部材の少なくとも一方を回転させる回転部材と、
一対の挟持部材で挟持した原木を軸中心線に平行な直線上の2箇所以上から該直線に直交する方向で該原木の外周までの距離を検出する距離検出部材と、
一対の挟持部材の軸中心線に平行な平板で、且つ該第1直線に平行な回動軸で回動自在で、該回動軸方向に並設されている複数の回動腕と、
複数の回動腕が所定位置から夫々回動した角度を検出する角度検出部材と、
前記複数の回動腕を軸中心線方向で第1回動腕、第2回動腕、第3回動腕・・・・第(N−2)回動腕、第(N−1)回動腕・第N回動腕とし、
また軸中心線に垂直に仮想する複数の断面で、
第1回動腕の軸中心線方向で反第2回動腕側を第1断面、
第1回動腕と第2回動腕との間を第2断面、
第2回動腕と第3回動腕との間を第3断面とし、以下順次
第(N−2)回動腕と第(N−1)回動腕との間を第(N−1)断面、
第(N−1)回動腕と第N回動腕との間を第N断面、
第N回動腕の軸中心線方向で反第(N−1)回動腕側を第(N+1)断面とし、
次に回転部材で一対の挟持部材を回転させるまでに、一対の挟持部材を互いに近づく方向に進出させて原木を繊維方向で挟持させることと、複数の回動腕の夫々と該原木とを当接させることをさせ、
次に原木を挟持している一対の挟持部材を回転部材で少なくとも1回転させ、該1回転の所定回転角度毎での距離検出部材で検出した距離の総合データに基づいて該原木の旋削軸芯を演算して記憶すると共に、前記所定回転角度毎での角度検出部材で検出した角度の内で、
第1断面では第1回動腕の回動した角度を記憶し、
第2断面では第1回動腕と第2回動腕とで軸中心線より離れる方向に多く回動した回動腕の回動した角度を記憶し、
第3断面では第2回動腕と第3回動腕とで軸中心線より離れる方向に多く回動した回動腕の回動した角度を記憶し、
第(N−1)断面では第(N−2)回動腕と第(N−1)回動腕とで軸中心線より離れる方向に多く回動した回動腕の回動した角度を記憶し、
第N断面では第(N−1)回動腕と第N回動腕とで軸中心線より離れる方向に多く回動した回動腕の回動した角度を記憶し、
第(N+1)断面では第N回動腕の回動した角度を記憶し、
次に前記所定回転角度毎に、前記所定回転角度毎と同様に回転させた旋削軸芯と各断面と交差する位置から前記記憶した角度の回動腕の夫々に垂直に当たるまでの距離の夫々を演算して記憶し、
次に前記記憶した距離の内で最大の距離を該原木の旋削軸芯からの最大回転半径と設定し、次工程に該原木の旋削軸芯、最大回転半径の情報を出力する制御器と、で構成する原木旋削軸芯及び最大回転半径の検出装置。
A pair of clamping members each having an axial center line on the first straight line, capable of moving forward and backward in the direction of the axial center line, and rotatable;
A rotating member that rotates at least one of the pair of clamping members;
A distance detection member that detects a distance from the two or more locations on a straight line parallel to the axial center line to the outer periphery of the raw wood in a direction orthogonal to the straight line, the raw wood sandwiched between the pair of clamping members;
A plurality of rotating arms arranged in parallel in the direction of the rotation axis, which are rotatable on a rotation axis parallel to the first straight line and a flat plate parallel to the axial center line of the pair of clamping members;
An angle detection member for detecting an angle at which each of the plurality of rotating arms is rotated from a predetermined position;
The plurality of rotating arms are arranged in the axial center line direction as a first rotating arm, a second rotating arm, a third rotating arm,... (N-2) rotating arm, (N-1) th rotation. A moving arm and Nth turning arm
Also, with a plurality of virtual sections perpendicular to the axis center line,
A first cross section of the second rotating arm side in the axial center line direction of the first rotating arm,
A second cross section between the first rotating arm and the second rotating arm;
The section between the second and third rotating arms is a third cross section, and so on.
The (N-1) th section between the (N-2) th rotating arm and the (N-1) th rotating arm,
An Nth cross section between the (N-1) th rotating arm and the Nth rotating arm,
The anti- (N-1) th rotation arm side in the axial center line direction of the Nth rotation arm is the (N + 1) th section,
Next, until the pair of clamping members are rotated by the rotating member, the pair of clamping members are advanced in a direction approaching each other to clamp the log in the fiber direction, and each of the plurality of rotating arms is contacted with the log. Let them touch,
Next, a pair of holding members holding the raw wood is rotated at least once by the rotating member, and the turning axis of the raw wood is based on the total data of the distance detected by the distance detecting member at every predetermined rotation angle of the one rotation. Is calculated and stored, and within the angle detected by the angle detection member at each predetermined rotation angle,
In the first section, the turning angle of the first turning arm is stored,
In the second cross section, the rotation angle of the rotation arm that has been rotated a lot in the direction away from the axis center line between the first rotation arm and the second rotation arm is stored,
In the third cross section, the rotation angle of the rotation arm that has been rotated a lot in the direction away from the axis center line between the second rotation arm and the third rotation arm is stored.
In the (N-1) th section, the turning angle of the turning arm that is turned a lot in the direction away from the axial center line between the (N-2) turning arm and the (N-1) turning arm is stored. And
In the Nth cross section, the turning angle of the turning arm that has been turned a lot in the direction away from the axial center line between the (N-1) th turning arm and the Nth turning arm is stored,
In the (N + 1) th section, the turning angle of the Nth turning arm is stored,
Next, for each of the predetermined rotation angles, the respective distances from the position where the turning axis rotated in the same manner as each of the predetermined rotation angles and the crossing of each cross section to each of the rotating arms having the stored angles are perpendicular to each other. Calculate and store,
Next, a controller that outputs the information about the turning axis of the raw wood and the maximum turning radius to the next step, setting the maximum distance among the stored distances as the maximum turning radius from the turning axis of the raw wood, A raw wood turning shaft core and a maximum turning radius detection device.
JP2005248299A 2004-08-31 2005-08-29 Method and apparatus for detecting log turning axis and maximum turning radius Active JP4772430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248299A JP4772430B2 (en) 2004-08-31 2005-08-29 Method and apparatus for detecting log turning axis and maximum turning radius

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004252008 2004-08-31
JP2004252008 2004-08-31
JP2005247550 2005-08-29
JP2005247550 2005-08-29
JP2005248299A JP4772430B2 (en) 2004-08-31 2005-08-29 Method and apparatus for detecting log turning axis and maximum turning radius

Publications (2)

Publication Number Publication Date
JP2007090519A true JP2007090519A (en) 2007-04-12
JP4772430B2 JP4772430B2 (en) 2011-09-14

Family

ID=37976777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248299A Active JP4772430B2 (en) 2004-08-31 2005-08-29 Method and apparatus for detecting log turning axis and maximum turning radius

Country Status (1)

Country Link
JP (1) JP4772430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103846974A (en) * 2012-11-28 2014-06-11 南通跃通数控设备有限公司 Technology capable of automatically correcting pattern positions and applied to quadrilateral gauge square saw
US8805052B2 (en) 2008-11-06 2014-08-12 Meinan Machinery Works, Inc. Apparatus and method for measuring three-dimensional shape of wood block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8805052B2 (en) 2008-11-06 2014-08-12 Meinan Machinery Works, Inc. Apparatus and method for measuring three-dimensional shape of wood block
CN103846974A (en) * 2012-11-28 2014-06-11 南通跃通数控设备有限公司 Technology capable of automatically correcting pattern positions and applied to quadrilateral gauge square saw

Also Published As

Publication number Publication date
JP4772430B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US10432903B2 (en) 3D laser projection, scanning and object tracking
TWI680027B (en) Method and device for the machining of a tool
EP3203333B1 (en) Control device for machine tool and machine tool
JP2010117196A (en) Method of measuring gear
JP5036069B2 (en) Tire measuring method, measuring apparatus and tire forming apparatus
JP6008207B2 (en) Method for reducing the eccentricity of the inner surface with respect to the outer surface of a hollow workpiece that is rotatably mounted in a machine tool
JP2010537184A (en) Judgment of action course
JP2018134690A (en) Combined gear cutting device
US20010022098A1 (en) Setting up process for a tool or workpiece on a gear making machine
JP2008137090A (en) Machining apparatus
KR20200138731A (en) Grinding machine and method for manufacturing workpieces with helical grooves
KR20200096832A (en) Method and apparatus for measuring generating machine tools
JP6011353B2 (en) Machining condition prediction apparatus and machining condition prediction method
JP5023919B2 (en) Machine Tools
JP4772430B2 (en) Method and apparatus for detecting log turning axis and maximum turning radius
JP2004028947A (en) Apparatus and method for measuring rotation phase angle in eccentric part of shaft, and holder for measuring phase of spline groove used for its measurement
CA2777207A1 (en) Surface measurement, selection, and machining
JP4857861B2 (en) Cutting device and method thereof, method of calculating cutting radius of cutting blade, and method of manufacturing cut product
CN108723725A (en) A kind of processing method of aerial blade
CN101015919B (en) Detecting method and device for log rotary cut axis core and maximum rotating radius
JP5061558B2 (en) Numerical control device program description method, numerical control device, and machining device
JPH11161316A (en) Milling device with nuerical controller, storage medium where program for calculating movement data of cutting blade is recorded, and storage medium where movement data of cutting blade is recorded
KR101183102B1 (en) Method and apparatus of locating the optimum peeling axis of a log and the maximum radius portion thereof with respect to the optimum peeling axis
JP4957153B2 (en) Processing equipment
CN106270678B (en) The method for milling and milling attachment of the connecting rod neck of bent axle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4772430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250