JP2007090394A - Method for joining metals - Google Patents

Method for joining metals Download PDF

Info

Publication number
JP2007090394A
JP2007090394A JP2005283744A JP2005283744A JP2007090394A JP 2007090394 A JP2007090394 A JP 2007090394A JP 2005283744 A JP2005283744 A JP 2005283744A JP 2005283744 A JP2005283744 A JP 2005283744A JP 2007090394 A JP2007090394 A JP 2007090394A
Authority
JP
Japan
Prior art keywords
bonding
metal
joining
melting point
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283744A
Other languages
Japanese (ja)
Inventor
Masanori Kajiwara
正憲 梶原
Toshio Takenaka
俊夫 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005283744A priority Critical patent/JP2007090394A/en
Publication of JP2007090394A publication Critical patent/JP2007090394A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining a metal to another without using a joining material such as solder or brazing filler metal. <P>SOLUTION: Both joining surfaces of the metals, such as Cu or Cu-base alloy, are stuck and these joining surfaces are heated to the temperature at ≤40% of melting point Tm(K) of the metal, and on the joining boundary surfaces, the surface diffusion of the metal element is made to generate, and both metals are joined. At that time, it is suitable that the surface roughness on the joining surfaces of metals is made to ≤1μm at Rmax. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

Cuなどの金属同士を接合する方法に関し、特に、はんだやロウ材などの接合材料を用いることなく、接合する方法に関する。   The present invention relates to a method for bonding metals such as Cu, and particularly to a method for bonding without using a bonding material such as solder or brazing material.

電子デバイスのリードフレームやプリント基板の導電性材料にはCu基合金が広く使用されている。このようなリードフレームやプリント基板をSn基はんだ合金を介してはんだ接合すると、Cu基導電性合金とSn基はんだ合金のCu/Sn接合界面に、Cu−Sn系金属間化合物などが生成する。
しかしこれらの金属間化合物は電気抵抗が大きく、且つ延性に乏しいため、はんだ接合部の電気特性や機械強度が劣化することになる。
すなわち、動作速度が数GHzの電子デバイスを実装した電子機器では、はんだ接合部におけるこのような特性劣化が機器全体の動作速度を著しく低下させることになる。このため、はんだ接合法に代わる接合技術が求められている。
Cu-based alloys are widely used as conductive materials for electronic device lead frames and printed circuit boards. When such a lead frame or printed circuit board is soldered via an Sn-based solder alloy, a Cu—Sn-based intermetallic compound or the like is generated at the Cu / Sn bonding interface between the Cu-based conductive alloy and the Sn-based solder alloy.
However, since these intermetallic compounds have a large electric resistance and poor ductility, the electrical characteristics and mechanical strength of the solder joints deteriorate.
That is, in an electronic device in which an electronic device having an operation speed of several GHz is mounted, such characteristic deterioration in the solder joint portion significantly reduces the operation speed of the entire device. For this reason, a joining technique replacing the solder joining method is required.

はんだ合金を使用することなくリードフレームをプリント基板に接合できれば、接合部にCu−Sn系金属間化合物が生成することがなく、上述のような接合部における電気特性や機械強度の劣化を回避することができる。
本発明は、金属(合金を含む、以下、同様)同士を、はんだやロウ材などの接合材料を使用することなく、接合する方法を提供することを課題とする。
If the lead frame can be bonded to the printed circuit board without using a solder alloy, Cu—Sn intermetallic compounds are not generated at the bonded portion, and the above-described deterioration in electrical characteristics and mechanical strength at the bonded portion is avoided. be able to.
An object of the present invention is to provide a method for joining metals (including an alloy, hereinafter the same) without using a joining material such as solder or brazing material.

本発明は、上記の課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。
(1)金属の接合面同士を密着させ、該接合面を該金属の融点Tm(K)の40%以下の温度で加熱し、接合界面において金属元素の表面拡散を生じさせ、金属同士を接合することを特徴とする金属の接合方法。
(2)前記接合面を、接合する金属の高融点側の金属の融点Tm(K)の40%以下に加熱することを特徴とする(1)に記載の金属の接合方法。
(3)前記接合面を、前記金属の融点Tm(K)の15〜40%の温度で加熱することを特徴とする(1)または(2)に記載の金属の接合方法。
(4)前記接合面の表面粗さを、Rmaxで、1μm以下とすることを特徴とする(1)〜(3)のいずれか1項に記載の金属の接合方法。
(5)前記金属が、Cu、Cu基合金の1種または2種であることを特徴とする(1)〜(4)のいずれか1項に記載の金属の接合方法。
The present invention has been made to solve the above-described problems, and the gist thereof is as follows.
(1) The bonding surfaces of the metals are brought into close contact with each other, and the bonding surfaces are heated at a temperature of 40% or less of the melting point Tm (K) of the metal to cause surface diffusion of the metal element at the bonding interface, thereby bonding the metals together. A method for joining metals, characterized by:
(2) The metal bonding method according to (1), wherein the bonding surface is heated to 40% or less of a melting point Tm (K) of a metal on a high melting point side of the metal to be bonded.
(3) The metal bonding method according to (1) or (2), wherein the bonding surface is heated at a temperature of 15 to 40% of the melting point Tm (K) of the metal.
(4) The metal bonding method according to any one of (1) to (3), wherein a surface roughness of the bonding surface is 1 μm or less in terms of Rmax.
(5) The metal joining method according to any one of (1) to (4), wherein the metal is one or two of Cu and a Cu-based alloy.

本発明によれば、金属(合金を含む)同士を、はんだやロウ材などの接合材料を使用することなく、接合することができるので、はんだやロウ材と金属との間で金属間化合物などが生成したりすることがない。従って、接合部における電気特性、機械特性などが、金属母材(バルク部)と異なることがなく、全体として特性が均質なものを得ることができる。   According to the present invention, since metals (including alloys) can be bonded to each other without using a bonding material such as solder or brazing material, an intermetallic compound or the like can be used between the solder or brazing material and the metal. Does not generate. Therefore, the electrical characteristics, mechanical characteristics, and the like at the joint are not different from those of the metal base material (bulk part), and it is possible to obtain a uniform characteristic as a whole.

例えば、Cu製リードフレームをプリント基板の配線用Cu基導電性合金と接合する場合、通常のリフロー法では、上記の配線用Cu基導電性合金に、例えば、PbフリーSn基はんだ合金を置き、リードフレームとともに約240℃の温度で1分間程度、加熱処理することによって、はんだ接合を行っている。
これに対して、本発明方法によれば、はんだ合金を全く使用せず、かつ、リフローとほぼ同様の条件(温度・時間)での加熱処理により、両者を接合でき、接合部にCu−Sn系金属間化合物が生成することがなく、接合部の電気特性や機械強度の劣化のない電子機器を製造することができる。
For example, when joining a Cu lead frame with a Cu-based conductive alloy for wiring on a printed board, in a normal reflow method, for example, a Pb-free Sn-based solder alloy is placed on the Cu-based conductive alloy for wiring, Solder bonding is performed by heat treatment with the lead frame at a temperature of about 240 ° C. for about 1 minute.
On the other hand, according to the method of the present invention, the solder alloy is not used at all, and both can be joined by heat treatment under the same conditions (temperature and time) as in reflow, and Cu—Sn can be joined to the joint. No electronic intermetallic compound is produced, and an electronic device without deterioration of electrical properties and mechanical strength of the joint can be manufactured.

本発明の方法について、添付の図面を参照しながら、詳細に説明する。
本発明の金属の接合方法は、金属の接合界面における構成原子の表面拡散による高速物質移動現象を利用するものである。
The method of the present invention will be described in detail with reference to the accompanying drawings.
The metal bonding method of the present invention utilizes a high-speed mass transfer phenomenon due to surface diffusion of constituent atoms at the metal bonding interface.

図1は、本発明の金属の接合方法を説明する一実施形態を示したものである。
2mmの厚さに冷間圧延した純度99.99%のCu板材から、放電加工法により、12mm×5mm×2mm(厚さ)の2枚の薄板試験片を切り出し、石英管中に真空封入して950℃(1223K)で2hの焼鈍加熱処理を施した。
この焼鈍加熱処理した2つのCu試料1の一方の表面を、湿式エメリー紙(800番,1000番,1200番,2000番,4000番)を用いて機械研磨した後、粒径が1μmのダイヤモンド砥粒を用いて仕上げ研磨した。仕上げ研磨後の試験片の表面粗さは、Rmaxで1μm以下であった。
FIG. 1 shows an embodiment for explaining the metal bonding method of the present invention.
Two thin plate test pieces of 12 mm x 5 mm x 2 mm (thickness) were cut out from a 99.99% pure Cu plate that had been cold-rolled to a thickness of 2 mm by electrical discharge machining, and vacuum-sealed in a quartz tube. An annealing heat treatment was performed at 950 ° C. (1223 K) for 2 hours.
One surface of the two Cu samples 1 subjected to the annealing heat treatment is mechanically polished using wet emery paper (800, 1000, 1200, 2000, 4000), and then a diamond abrasive having a particle diameter of 1 μm. Final polishing was performed using the grains. The surface roughness of the test piece after finish polishing was 1 μm or less in Rmax.

上下2枚のステンレス鋼製の板2と、この間に2本のMo製のネジ3を備えた治具4を用い、上記2つのCu試料1の研磨面を互いに向かい合わせたCu試料5を、上下2枚のステンレス鋼製の板2の間に挟み、Mo製のネジ3で締め付けた。
なお、Cu試料は、仕上げ研磨した後から、上記治具4に挟んで締め付け終わるまでは、仕上げ研磨面の酸化を防ぐために、エタノール中で処理した。
Using a jig 4 having two upper and lower stainless steel plates 2 and two Mo screws 3 between them, a Cu sample 5 in which the polished surfaces of the two Cu samples 1 face each other, It was sandwiched between two upper and lower stainless steel plates 2 and tightened with screws 3 made of Mo.
The Cu sample was treated in ethanol in order to prevent oxidation of the finished polished surface until it was clamped by the jig 4 after finishing polishing.

次いで、治具で挟んだ状態のCu試料5をエタノール中から引き上げ、乾燥させた後、シリコン油浴に浸漬し、接合加熱処理を施した。
このときの接合加熱処理は、浴の温度を、120℃、160℃、200℃、(393K、433K、473K)とし、処理時間を3min〜160hとした。
Next, the Cu sample 5 sandwiched between jigs was pulled up from ethanol and dried, and then immersed in a silicon oil bath and subjected to bonding heat treatment.
The bonding heat treatment at this time was performed at a bath temperature of 120 ° C., 160 ° C., 200 ° C. (393K, 433K, 473K), and a treatment time of 3 min to 160 h.

接合加熱処理後の試料の接合面の状況を観察し、2つのCu試料を手で引き剥がせるかどうかを試みて、強固な接合界面が形成されているかどうかを、目視などによって確認した。その結果、強固な界面が形成された試料もあったが、一部の試料では強固な接合界面は形成されていなかった。
そして、強固な接合界面が形成されていた試料について、接合界面に垂直な断面を光学顕微鏡にて組織観察すると共に、ビッカース硬さ試験を行った。
図2は、強固な接合界面が得られた例として、200℃(473K)で6min(360s)の接合加熱処理した試験片(試料)の接合界面に垂直な断面の状況を示すものであり、(a)は光学顕微鏡写真、(b)はビッカース硬さ試験における接合界面とバルク部のダイヤモンド圧子の痕跡である。
The state of the bonding surface of the sample after the bonding heat treatment was observed, whether or not the two Cu samples could be peeled by hand, and whether or not a strong bonding interface was formed was confirmed by visual observation or the like. As a result, there was a sample in which a strong interface was formed, but in some samples, a strong bonding interface was not formed.
And about the sample in which the firm joining interface was formed, while carrying out the structure observation of the cross section perpendicular | vertical to a joining interface with an optical microscope, the Vickers hardness test was done.
FIG. 2 shows a state of a cross section perpendicular to the bonding interface of a test piece (sample) subjected to bonding heating treatment at 200 ° C. (473 K) for 6 min (360 s) as an example in which a strong bonding interface was obtained. (A) is an optical micrograph, (b) is a trace of the diamond indenter of a joining interface and a bulk part in a Vickers hardness test.

図2(a)から判るように、200℃(473K)で6min(360s)の接合加熱処理では、平滑で密着性の高いCu/Cu接合界面が形成されている。
また、図2(b)から判るように、ダイヤモンド圧子の痕跡は、接合界面とバルク部(母材部)のいずれにおいても同程度の大きさであり、バルク部と同様の機械強度を有する接合界面が形成されている。
As can be seen from FIG. 2 (a), a smooth Cu / Cu bonding interface is formed in the bonding heat treatment at 200 ° C. (473K) for 6 minutes (360s).
As can be seen from FIG. 2 (b), the diamond indenter trace has the same size at both the bonding interface and the bulk part (base material part), and has the same mechanical strength as the bulk part. An interface is formed.

発明者らは、上述の各種の接合加熱条件において、強固な接合界面が形成された場合について、接合界面とバルク部のビッカース硬さを調査した。
なお、強固な接合界面が形成されなかったものについては、測定できなかった。
図3は、各種の接合加熱処理条件で処理した試料の接合界面およびバルク部のビッカース硬さと加熱時間との関係の一例を示したもので、加熱温度が(a)は160℃(433K)、(b)は200℃(473K)の場合である。
Inventors investigated the Vickers hardness of a joining interface and a bulk part about the case where the firm joining interface was formed in the above-mentioned various joining heating conditions.
It was not possible to measure the case where a strong bonding interface was not formed.
FIG. 3 shows an example of the relationship between the Vickers hardness and heating time of the bonding interface and bulk part of the sample processed under various bonding heat treatment conditions, and the heating temperature (a) is 160 ° C. (433 K), (B) is a case of 200 degreeC (473K).

各加熱温度において強固な接合界面を得ることの出来る最短時間を、臨界加熱時間tc(s)とすると、加熱温度が120℃、160℃及び200℃(393K、433K及び473K)における臨界加熱時間tc(s)は、それぞれ601min、35minおよび6min(36060s、2100s及び360s)であった。
図3から判るように、いずれの加熱温度においても、臨界加熱時間tc(s)以上の加熱時間では、接合界面のビッカース硬さは、バルク部のそれとほぼ同等となっており、均質な接合界面が得られている。
Assuming that the shortest time during which a strong bonding interface can be obtained at each heating temperature is the critical heating time tc (s), the critical heating time tc when the heating temperature is 120 ° C, 160 ° C, and 200 ° C (393K, 433K, and 473K). (S) were 601 min, 35 min and 6 min (36060 s, 2100 s and 360 s), respectively.
As can be seen from FIG. 3, at any heating temperature, the Vickers hardness of the bonding interface is almost the same as that of the bulk portion at the heating time equal to or longer than the critical heating time tc (s), and the homogeneous bonding interface Is obtained.

さらに、発明者らは、(1)式で定義される接合速度ν(s−1)を用いて、臨界加熱時間tc(s)と加熱温度T(K)との関係を調査した。
ν=1/tc (1)
図4は、加熱温度T=393K,433K及び473Kにおける臨界加熱時間tc=36060s、2100sおよび360sより求めた各加熱温度における接合速度ν(s−1)と加熱温度との関係を示したものである。
図4から判るように、接合速度ν(s−1)と加熱温度の逆数1/T(K−1)の各プロットは、ほぼ直線上にあり、接合速度νと加熱温度の関係がアレニウス型の関係式により表現できることを意味している。
ν =νexp(−Qν/RT) (2)
ここで、ν:比例常数、Qν:活性化エンタルピー、R:気体常数
図4のプロットから、最小自乗法により、比例常数ν=2.33×10(s−1)および、活性化エンタルピーQν=89.4(kJ/mol)が得られる。
Furthermore, the inventors investigated the relationship between the critical heating time tc (s) and the heating temperature T (K) using the bonding speed ν (s −1 ) defined by the equation (1).
ν = 1 / tc (1)
FIG. 4 shows the relationship between the heating speed and the bonding speed ν (s −1 ) at each heating temperature obtained from the critical heating times tc = 36060 s, 2100 s, and 360 s at the heating temperatures T = 393K, 433K, and 473K. is there.
As can be seen from FIG. 4, each plot of the joining speed ν (s −1 ) and the reciprocal 1 / T (K −1 ) of the heating temperature is substantially on a straight line, and the relationship between the joining speed ν and the heating temperature is an Arrhenius type. It can be expressed by the relational expression.
ν = ν 0 exp (−Q ν / RT) (2)
Here, ν 0 : proportional constant, Q ν : activation enthalpy, R: gas constant From the plot of FIG. 4, the proportional constant ν 0 = 2.33 × 10 7 (s −1 ) and activity by the least square method. The enthalpy of chemicalization Q v = 89.4 (kJ / mol) is obtained.

ところでCuの体積拡散に対するトレーサー拡散係数の活性化エンタルピーは、Q=211(kJ/mol)とされている(例えば、金属データブック、日本金属学会編、丸善(1993)p21.参照)。
従って、上記Qν=89.4(kJ/mol)は、このQ=211(kJ/mol)の4割程度となっていることがわかる。
また、表面拡散に対する活性化エンタルピーは、体積拡散に対する値の1/2弱とされている。
これらのことから、Cu/Cu試料の界面における接合は、界面に沿ったCu原子の表面拡散によって実現されているといえる。
By the way, the activation enthalpy of the tracer diffusion coefficient for the volume diffusion of Cu is set to Q = 211 (kJ / mol) (see, for example, Metal Data Book, Japan Institute of Metals, Maruzen (1993) p21.).
Therefore, it can be seen that Q ν = 89.4 (kJ / mol) is about 40% of Q = 211 (kJ / mol).
In addition, the activation enthalpy for surface diffusion is a little less than half of the value for volume diffusion.
From these facts, it can be said that the bonding at the interface of the Cu / Cu sample is realized by the surface diffusion of Cu atoms along the interface.

すなわち、本発明の金属の接合方法は、CuやCu基合金に限らず、類似の高融点(例えば、融点が900K以上)の金属や高融点金属元素を構成成分とするFe基合金、Ni基合金、Co基合金、Al基合金、Mg合金、さらに、Au基合金、Ag基合金、Pt基合金、Pd基合金、Rh基合金、Ru基合金、Re基合金、Ir基合金、Os基合金などの材料の接合にも好適である。
また、これらの金属又は合金をベース材料とし、このベース材料に、ベース材料とは異なる上記金属或いは合金を、例えば、めっきやドライプロセスにより被覆を施した材料に対しても適用可能であり、例えば、Cu基合金のベース部材にAu基合金をめっきした部材同士を接合する場合にも本発明の方法を適用することができる。
すなわち、後述するように、めっき層を形成するAu基合金の融点の40%以下の温度で加熱することにより、表面拡散を生じさせ、接合することができる。
That is, the metal bonding method of the present invention is not limited to Cu and Cu-based alloys, but is based on similar high-melting-point metals (for example, melting points of 900K or higher) and Fe-based alloys and Ni-based alloys containing refractory metal elements. Alloy, Co base alloy, Al base alloy, Mg alloy, Au base alloy, Ag base alloy, Pt base alloy, Pd base alloy, Rh base alloy, Ru base alloy, Re base alloy, Ir base alloy, Os base alloy It is also suitable for joining materials such as.
Further, these metals or alloys can be used as a base material, and the above metal or alloy different from the base material can be applied to the base material, for example, a material coated by plating or a dry process. The method of the present invention can also be applied to the case where members plated with an Au-based alloy are joined to a Cu-based alloy base member.
That is, as will be described later, by heating at a temperature of 40% or less of the melting point of the Au-based alloy forming the plating layer, surface diffusion can be caused to join.

さらに、発明者らは、上記のνおよびQνの値を用いて、上記(1)式および(2)式により、前述の接合加熱処理条件での臨界加熱時間tc(s)の温度依存性を検討した。
図5は、図4に示したのと同様、加熱温度T=393K、433K及び473K(120℃、160℃、200℃)の場合の加熱温度T(K)と臨界加熱時間tc(s)との関係を示すものである。
Further, the inventors use the values of ν 0 and Q ν as described above to determine the temperature dependence of the critical heating time tc (s) under the above-described bonding heat treatment conditions according to the above formulas (1) and (2). The sex was examined.
FIG. 5 shows the heating temperature T (K) and critical heating time tc (s) when the heating temperatures T = 393K, 433K, and 473K (120 ° C., 160 ° C., 200 ° C.), as shown in FIG. This shows the relationship.

ところで、Snの融点は232℃(505K)であるが、通常、電子機器の接合などに利用されるSn基はんだ合金には、融点を低下させる種々の合金成分が添加されており、Sn基はんだ合金は230℃前後の温度域で溶融状態となり、はんだ接合が可能となり、1〜2min前後で接合処理される。
本発明による接合方法を、通常のはんだ接合が行われるのと同じ様な条件下で行うとすれば、210〜240℃の加熱温度とすることが必要であるが、図5に基づいて、加熱温度が483K、493K、503Kおよび513K(それぞれ、210℃、220℃、230℃、240℃)における加熱時間を外挿して求めると、それぞれtcは、200s、127s、82s及び54s(3.3min、2.1min、1.4min、及び0.9min)となり、通常のはんだ合金を使用して行われるはんだ接合作業(リフロー作業)の加熱条件とほぼ同じ加熱条件(温度、時間)で、はんだを使用することなく行うことができる。
By the way, the melting point of Sn is 232 ° C. (505 K). Usually, various alloy components that lower the melting point are added to Sn-based solder alloys used for joining electronic devices, etc. The alloy is in a molten state in a temperature range of about 230 ° C., enables solder bonding, and is bonded in about 1 to 2 minutes.
If the joining method according to the present invention is performed under the same conditions as those in which ordinary solder joining is performed, a heating temperature of 210 to 240 ° C. is necessary. When extrapolating the heating time at temperatures of 483K, 493K, 503K and 513K (210 ° C, 220 ° C, 230 ° C and 240 ° C, respectively), tc is 200s, 127s, 82s and 54s (3.3min, 2.1min, 1.4min, and 0.9min), and solder is used under almost the same heating conditions (temperature, time) as the soldering work (reflow work) performed using a normal solder alloy. Can be done without.

Cuの融点は1084℃(1357K)であり(例えば、Binary Alloy Phase Diagram, Vol.2 ed. T.B. Massalski et al., ASM International, Materials Park, OH,(1990)p.1481)、Cuに対するSnの融点(絶対温度)の比は、0.37となる。 従って、Cuの融点の40%以下という低温域で、かつ短時間の加熱処理によって、強固な接合界面を得ることが出来、接合が可能となる。   The melting point of Cu is 1084 ° C. (1357 K) (for example, Binary Alloy Phase Diagram, Vol. 2 ed. TB Massalski et al., ASM International, Materials Park, OH, (1990) p.1481). The ratio of the melting points (absolute temperature) is 0.37. Therefore, a strong bonding interface can be obtained by a heat treatment in a low temperature range of 40% or less of the melting point of Cu and in a short time, and bonding becomes possible.

上述のように、金属の融点Tm(K)の40%以下という低い加熱温度で接合する条件は、接合する各種の金属について、各種の加熱温度(少なくともTmの40%以下)と、強固な接合界面が形成される臨界加熱時間tcとの関係を、例えば図5のように求めておくことによって、これに基づいて所望の加熱温度と、加熱時間を適宜、選択することができる。   As described above, the conditions for bonding at a low heating temperature of 40% or less of the melting point Tm (K) of the metal are various heating temperatures (at least 40% or less of Tm) and strong bonding for various metals to be bonded. By obtaining the relationship with the critical heating time tc at which the interface is formed, for example, as shown in FIG. 5, a desired heating temperature and heating time can be appropriately selected based on the relationship.

このように、本発明の金属の接合方法においては、接合対象とする金属(合金を含む)の融点Tm(K)の40%以下の温度で加熱するものであるが、融点Tm(K)の異なる金属同士を接合する場合、接合加熱温度は、融点Tmの高い方の金属の融点Tm(K)の40%以下とすることが好ましい。
これは、表面拡散速度が、多くの場合、高融点の金属の融点に対する相対温度で支配されるからである。
また、本発明においては、加熱温度の下限は特に定めるものではないが、加熱温度は、好ましくは、金属の融点Tm(K)の15〜40%であり、さらに好ましくは、金属の融点Tm(K)の20〜40%である。
As described above, in the metal bonding method of the present invention, heating is performed at a temperature of 40% or less of the melting point Tm (K) of the metal (including alloy) to be bonded. When joining different metals, the joining heating temperature is preferably 40% or less of the melting point Tm (K) of the metal having the higher melting point Tm.
This is because the surface diffusion rate is often governed by the temperature relative to the melting point of the refractory metal.
In the present invention, the lower limit of the heating temperature is not particularly defined, but the heating temperature is preferably 15 to 40% of the melting point Tm (K) of the metal, more preferably the melting point Tm ( 20 to 40% of K).

このように本発明の接合方法においては、金属の融点Tm(K)の40%以下の温度で、比較的短時間の加熱処理により金属同士を接合することができる。
すなわち、融点の高い金属、例えば、融点が900K以上、であっても、金属同士を低い加熱温度で容易に接合することができるという利点を有する。
As described above, in the joining method of the present invention, metals can be joined by a heat treatment for a relatively short time at a temperature of 40% or less of the melting point Tm (K) of the metal.
That is, even when the metal has a high melting point, for example, a melting point of 900 K or more, it has an advantage that the metals can be easily joined at a low heating temperature.

強固な接合を得るには、接合加熱処理する際の金属の接合面同士が密着するようにしておくことが重要である。
このためには、1)接合面の表面粗さを適切に調整すること、2)接合面の清浄性を確保することが好ましい。また、場合によっては、3)接合面に圧力を付与することも有効である。
例えば、接合面の表面粗さを、Rmaxで、1μm以下、好ましくは0.8μm以下とすることが望ましい。1μm超では、十分強固な接合強度を得ることが困難となる。
この表面粗さは、上述のように、接合面を研磨紙や研磨剤による機械的研磨や、各種のエッチング液による化学的研磨、或いはスパッタリングなど物理的研磨などをもちいて調整することができる。
In order to obtain a strong bond, it is important that the metal bonding surfaces in the bonding heat treatment are in close contact with each other.
For this purpose, it is preferable to 1) appropriately adjust the surface roughness of the joint surface, and 2) to ensure the cleanliness of the joint surface. In some cases, it is also effective to 3) apply pressure to the joint surface.
For example, it is desirable that the surface roughness of the bonding surface is 1 μm or less, preferably 0.8 μm or less in terms of Rmax. If it exceeds 1 μm, it is difficult to obtain a sufficiently strong bonding strength.
As described above, the surface roughness can be adjusted by using mechanical polishing such as mechanical polishing with a polishing paper or an abrasive, chemical polishing with various etching solutions, or physical polishing such as sputtering.

また、接合面の密着性を得るために、接合面を清浄に保つことも重要である。
例えば、エタノール、アルカリ溶液などの洗浄液によって接合面に付着した油脂や異物を除去したり、或いは、表面粗さの調整と同様の機械的研磨、化学研磨、物理的研磨などによって、表面近傍の酸化皮膜などを除去することが好ましい。
金属の接合面にこのような処理を施す際は、酸化を防ぐために、周辺の雰囲気を非酸化性雰囲気、例えば、不活性ガス雰囲気とすることが好ましい。さらに、接合加熱処理の雰囲気を不活性ガス雰囲気とすることも好ましい。
なお、接合面の密着性を確保するために、例えば、適切な加圧あるいは締付け治具等を用いて接合面に圧着力を与えるようにすることも好ましい。
It is also important to keep the joint surface clean in order to obtain adhesion of the joint surface.
For example, the surface of the surface may be oxidized by removing oils and fats and foreign matter adhering to the joint surface with a cleaning solution such as ethanol or alkaline solution, or by mechanical polishing, chemical polishing, physical polishing similar to the adjustment of surface roughness. It is preferable to remove the film and the like.
When such a treatment is performed on the metal bonding surface, the surrounding atmosphere is preferably a non-oxidizing atmosphere, for example, an inert gas atmosphere, in order to prevent oxidation. Furthermore, it is also preferable that the bonding heat treatment atmosphere be an inert gas atmosphere.
In addition, in order to ensure the adhesiveness of a joining surface, it is also preferable to give a crimping | compression-bonding force to a joining surface, for example using appropriate pressurization or a clamping jig.

本発明の接合方法の一実施形態(Cu/Cu接合)を示す図である。It is a figure which shows one Embodiment (Cu / Cu joining) of the joining method of this invention. 本発明の接合方法において強固な接合界面が得られた試料の接合界面に垂直な断面の状況を示すものであり、(a)は光学顕微鏡写真、(b)は、ビッカース硬さ試験における接合界面とバルク部のダイヤモンド圧子の痕跡を示す。The bonding method of the present invention shows a cross-sectional state perpendicular to the bonding interface of a sample from which a strong bonding interface was obtained, (a) is an optical micrograph, and (b) is a bonding interface in a Vickers hardness test. And traces of the diamond indenter in the bulk part. 本発明の接合方法の加熱温度における加熱時間と、試料の接合界面およびバルク部のビッカース硬さとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the heating time in the heating temperature of the joining method of this invention, and the Vickers hardness of the joining interface and bulk part of a sample. 本発明の接合方法における加熱温度T(K)と接合速度ν(s−1)との関係を示す図である。It is a figure which shows the relationship between the heating temperature T (K) in the joining method of this invention, and joining speed | velocity ( nu ) (s <-1> ). 本発明の接合方法における加熱温度T(K)と臨界加熱時間tc(s)との関係を示す図である。It is a figure which shows the relationship between the heating temperature T (K) and critical heating time tc (s) in the joining method of this invention.

符号の説明Explanation of symbols

1 Cu試料
2 ステンレス鋼製の板
3 Mo製のネジ
4 治具
5 試料研磨面を向い合せた2つのCu試料
DESCRIPTION OF SYMBOLS 1 Cu sample 2 Stainless steel plate 3 Mo screw 4 Jig 5 Two Cu samples facing the sample polishing surface

Claims (5)

金属の接合面同士を密着させ、該接合面を該金属の融点Tm(K)の40%以下の温度で加熱し、接合界面において金属元素の表面拡散を生じさせ、金属同士を接合することを特徴とする金属の接合方法。   Bonding metal surfaces to each other, heating the bonding surface at a temperature of 40% or less of the melting point Tm (K) of the metal, causing surface diffusion of metal elements at the bonding interface, and bonding the metals together A method for joining metals. 前記接合面を、接合する金属の高融点側の金属の融点Tm(K)の40%以下に加熱することを特徴とする請求項1に記載の金属の接合方法。   2. The metal bonding method according to claim 1, wherein the bonding surface is heated to 40% or less of a melting point Tm (K) of a metal on a high melting point side of the metal to be bonded. 前記接合面を、前記金属の融点Tm(K)の15〜40%の温度で加熱することを特徴とする請求項1または2に記載の金属の接合方法。   The metal bonding method according to claim 1 or 2, wherein the bonding surface is heated at a temperature of 15 to 40% of a melting point Tm (K) of the metal. 前記接合面の表面粗さを、Rmaxで、1μm以下とすることを特徴とする請求項1〜3のいずれか1項に記載の金属の接合方法。   The metal bonding method according to any one of claims 1 to 3, wherein a surface roughness of the bonding surface is set to 1 µm or less in terms of Rmax. 前記金属が、Cu、Cu基合金の1種または2種であることを特徴とする請求項1〜4のいずれか1項に記載の金属の接合方法。   The metal joining method according to any one of claims 1 to 4, wherein the metal is one or two of Cu and a Cu-based alloy.
JP2005283744A 2005-09-29 2005-09-29 Method for joining metals Pending JP2007090394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283744A JP2007090394A (en) 2005-09-29 2005-09-29 Method for joining metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283744A JP2007090394A (en) 2005-09-29 2005-09-29 Method for joining metals

Publications (1)

Publication Number Publication Date
JP2007090394A true JP2007090394A (en) 2007-04-12

Family

ID=37976670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283744A Pending JP2007090394A (en) 2005-09-29 2005-09-29 Method for joining metals

Country Status (1)

Country Link
JP (1) JP2007090394A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266687A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film and method for manufacturing the same
JP2008266686A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
WO2011152423A1 (en) * 2010-05-31 2011-12-08 三洋電機株式会社 Method for bonding metals
WO2013027354A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Bonded body, power semiconductor device and method for manufacturing bonded body and power semiconductor device
JP2013524494A (en) * 2010-03-31 2013-06-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for permanently connecting two metal surfaces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273230A (en) * 2003-03-07 2004-09-30 Okutekku:Kk Metal joining method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273230A (en) * 2003-03-07 2004-09-30 Okutekku:Kk Metal joining method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266687A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film and method for manufacturing the same
JP2008266686A (en) * 2007-04-17 2008-11-06 Chubu Electric Power Co Inc Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
JP2013524494A (en) * 2010-03-31 2013-06-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for permanently connecting two metal surfaces
CN105513980A (en) * 2010-03-31 2016-04-20 Ev集团E·索尔纳有限责任公司 Method for permanent connection of two metal surfaces
US11282801B2 (en) 2010-03-31 2022-03-22 Ev Group E. Thallner Gmbh Method for permanent connection of two metal surfaces
WO2011152423A1 (en) * 2010-05-31 2011-12-08 三洋電機株式会社 Method for bonding metals
WO2013027354A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Bonded body, power semiconductor device and method for manufacturing bonded body and power semiconductor device
US9013029B2 (en) 2011-08-25 2015-04-21 Panasonic Intellectual Property Management Co., Ltd. Joined body having an anti-corrosion film formed around a junction portion, and a semiconductor device having the same

Similar Documents

Publication Publication Date Title
JP5871450B2 (en) High temperature solder material
JP6262968B2 (en) Electronic component mounting substrate and manufacturing method thereof
JP2021053704A (en) Lead-free solder alloy composition
Nadimpalli et al. R-curve behavior of Cu–Sn3. 0Ag0. 5Cu solder joints: Effect of mode ratio and microstructure
JP2007090394A (en) Method for joining metals
Ho et al. Development and evaluation of direct deposition of Au/Pd (P) bilayers over Cu pads in soldering applications
JP5231727B2 (en) Joining method
JP6546953B2 (en) Sputtering target-backing plate assembly and method for manufacturing the same
TW201615314A (en) Solder paste
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
JP2008042071A (en) Electroless plating method
JP6991172B2 (en) Sputtering target-backing plate junction
JP2015080812A (en) Joint method
JP5955183B2 (en) Die bond bonding structure of semiconductor element and die bond bonding method of semiconductor element
JP2000169922A (en) Molybdenum-nickel target material, electrode material, and packaging component
Nishikawa et al. Effect of heating method on microstructure of Sn-3.0 Ag-0.5 Cu solder on Cu substrate
JPS61115667A (en) Method of joining target for sputtering to cooling plate
JP2010205974A (en) Semiconductor device
JP2024041251A (en) Electronic component joining method
JP2017147285A (en) CONJUGATE JOINED BY CLAD MATERIAL OF Pb-free Zn-Al-based ALLOY SOLDER AND METAL BASE MATERIAL
JP2007048787A (en) Solder bonding method
WO2020071357A1 (en) Method for producing bonded structure
Steen Metallographic Examination of Soldered Joints
Mohammad Noor Bin Md Yassin The Effect Of Pre-Tinning Process With Respect To Gold Embrittlement Issue For Gold Plated Pins
JP5744080B2 (en) Bonded body and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719