JP2007090341A5 - - Google Patents

Download PDF

Info

Publication number
JP2007090341A5
JP2007090341A5 JP2006240041A JP2006240041A JP2007090341A5 JP 2007090341 A5 JP2007090341 A5 JP 2007090341A5 JP 2006240041 A JP2006240041 A JP 2006240041A JP 2006240041 A JP2006240041 A JP 2006240041A JP 2007090341 A5 JP2007090341 A5 JP 2007090341A5
Authority
JP
Japan
Prior art keywords
oxyapatite
active oxygen
containing active
general formula
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006240041A
Other languages
Japanese (ja)
Other versions
JP2007090341A (en
JP4766685B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006240041A priority Critical patent/JP4766685B2/en
Priority claimed from JP2006240041A external-priority patent/JP4766685B2/en
Publication of JP2007090341A publication Critical patent/JP2007090341A/en
Publication of JP2007090341A5 publication Critical patent/JP2007090341A5/ja
Application granted granted Critical
Publication of JP4766685B2 publication Critical patent/JP4766685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

活性酸素を含有したオキシアパタイト、その製造方法、及びそれからなる光触媒Oxyapatite containing active oxygen, method for producing the same, and photocatalyst comprising the same

本発明は、活性酸素を含有したオキシアパタイト、その製造方法、及びそれからなる光触媒オキシアパタイト構造を利用した光触媒に関するものである。 The present invention relates to an oxyapatite containing active oxygen, a method for producing the same, and a photocatalyst using a photocatalytic oxyapatite structure comprising the same.

歯や骨のような生体硬組織の主成分で有名なハイドロキシアパタイトは、六方晶に属する結晶構造を有している。結晶中のCaは、結晶学的に異なる2つの位置が存在し、酸素と9配位しているCa(以下、CaIとも記す)と酸素6配位しているCa(以下、CaIIとも記す)が存在するため、ハイドロキシアパタイトの組成は[CaI]4[CaII]6(PO4)6(OH)2と表わすことがきる。一般にアパタイトはCaIとOHとを中心にしたc軸方向に走るトンネル構造を形成しており、このトンネルに沿って、イオン移動やイオン交換能を有している。 Hydroxyapatite, which is famous for the main components of living hard tissues such as teeth and bones, has a crystal structure belonging to hexagonal crystals. There are two crystallographically different positions of Ca in the crystal, which are 9-coordinated with oxygen (hereinafter also referred to as CaI) and 6-coordinated Ca (hereinafter also referred to as CaII). Therefore, the composition of hydroxyapatite can be expressed as [CaI] 4 [CaII] 6 (PO 4 ) 6 (OH) 2 . In general, apatite forms a tunnel structure that runs in the c-axis direction centering on CaI and OH, and has ion migration and ion exchange capabilities along this tunnel.

ハイドロキシアパタイトの合成方法は、古くから数多く研究されており、必要としている特性を得るために、一般的に加湿空気雰囲気下で加熱して合成される。またCaの一部または全てを、またPの一部または全てを他の原子で置換したハイドロキシアパタイトについても数多くの合成報告がある。 Many methods for synthesizing hydroxyapatite have been studied for a long time, and in order to obtain the required properties, they are generally synthesized by heating in a humidified air atmosphere. There are also many reports on the synthesis of hydroxyapatite in which some or all of Ca and some or all of P are substituted with other atoms.

ハイドロキシアパタイトは古くから、イオン交換体、タンパク質等の生体成分吸着剤、クロマトグラフィ用吸着剤、湿度センサ、人工歯根、人工骨、人工臓器骨補填材、基礎化粧品など幅広い分野に利用されている(非特許文献1)。 Hydroxyapatite has long been used in a wide range of fields, including ion exchangers, biological component adsorbents such as proteins, chromatographic adsorbents, humidity sensors, artificial roots, artificial bones, artificial organ bone filling materials, and basic cosmetics (non- Patent Document 1).

近年、酸化チタンに代表される光触媒を用いて、生活環境に放出される有害物質、例えばNOxやSOxの分解・除去、あるいは日常の生活環境の中で発生する悪臭成分や油分などの分解・除去、廃水処理、水の殺菌などの重要性が高まっている。そこで光触媒の性能向上を目的とし、酸化チタンの触媒作用にハイドロキシアパタイトの吸着作用を付加する検討が行われ、両者を混合した光触媒(例えば特許文献1、2)や、アパタイト自身にチタン等を担持することで触媒作用を持たせた光触媒(特許文献3)などが提案されている。しかし、酸化チタンをアパタイトで一部被覆してしまうために光触媒性能が低下してしまう、アパタイト構造維持の問題からチタン担持量に限界があるなど、光触媒性能向上にはさらなる工夫が必要である。 In recent years, using photocatalysts typified by titanium oxide, decomposition and removal of harmful substances released into the living environment, such as NOx and SOx, or decomposition and removal of malodorous components and oils that occur in daily living environments The importance of wastewater treatment and water sterilization is increasing. Therefore, for the purpose of improving the performance of the photocatalyst, studies have been made to add the action of adsorbing hydroxyapatite to the catalytic action of titanium oxide. Thus, a photocatalyst having a catalytic action (Patent Document 3) has been proposed. However, further improvement is required for improving the photocatalytic performance, such as the photocatalytic performance is lowered because titanium oxide is partially coated with apatite, and the amount of titanium supported is limited due to the problem of maintaining the apatite structure.

酸素アニオン(O)、スーパーオキシドアニオン(O )、過酸化物アニオン(O 2−)などに代表される活性酸素は、非常に反応性に富み、有機物や無機物などさまざまな酸化反応に関与する重要な役割を果たすことが知られている(非特許文献2)。活性酸素を含有する物質は、光触媒をはじめとする触媒の様々な用途への応用が期待されている。そのため触媒作用の利用として、酸化物化合物の固体表面上に吸着した活性酸素については広範な研究が行われている(非特許文献3)。しかし活性酸素の不安定さ等から容易で安定に活性酸素を生成することが困難で、これらの研究のほとんどはγ線などの高エネルギーの放射線を照射することによって成し得ている。このように、従来技術では煩雑な工程を経て活性酸素を生成していたため、簡便な方法で合成可能な新たな材料の開発が望まれていた。
特開平10−244166号公報 特開2003−275601号公報 特許第3678606号公報 J.C.Elliott , Structure and Chemistry of the Apatites and OtherCalcium Orthophosphates, Elsevier 日本化学会編、活性酸素種の化学、季刊化学総説、学会出版センタ−、1990年、No7 J.H.Lunsford, Catal. Rev. 1973, 8, 135
Active oxygen typified by oxygen anion (O ), superoxide anion (O 2 ), peroxide anion (O 2 2− ), etc. is extremely reactive and has various oxidation reactions such as organic and inorganic substances. It is known that it plays an important role involved in (Non-patent Document 2). A substance containing active oxygen is expected to be applied to various uses of a catalyst such as a photocatalyst. For this reason, extensive research has been conducted on active oxygen adsorbed on the solid surface of an oxide compound as a catalytic action (Non-Patent Document 3). However, it is difficult to generate active oxygen easily and stably due to the instability of active oxygen, and most of these studies can be accomplished by irradiating high-energy radiation such as γ rays. As described above, since active oxygen is generated through a complicated process in the prior art, development of a new material that can be synthesized by a simple method has been desired.
Japanese Patent Laid-Open No. 10-244166 JP 2003-275601 A Japanese Patent No. 3678606 JCElliott, Structure and Chemistry of the Apatites and OtherCalcium Orthophosphates, Elsevier The Chemical Society of Japan, Reactive Oxygen chemistry, Quarterly Chemistry Review, Society Publishing Center, 1990, No7 JHLunsford, Catal. Rev. 1973, 8, 135

本発明は、合成が簡便で安定に活性酸素を含有でき、光が照射されることで触媒活性が持続できる光触媒を提供することを目的とする。 An object of the present invention is to provide a photocatalyst that is easy to synthesize, can contain active oxygen stably, and can maintain catalytic activity when irradiated with light.

本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、CaIIサイトの2価イオンを3価のイオンで一部置換した組成からなる物質をドライ雰囲気下合成することで、安定に触媒作用を有する活性酸素を含有でき、さらに光が照射されることで触媒活性を持続することができる光触媒作用を見出し、本発明に至った。
すなわち、本発明は以下のとおりである。
(1) 活性酸素を含有するオキシアパタイト。
(2) 該活性酸素を含有するオキシアパタイト中に光活性点を有することを特徴とする上記(1)に記載の活性酸素を含有するオキシアパタイト。
(3) 該活性酸素を含有するオキシアパタイトが下記一般式(1)で表されることを特徴とする上記(1)又は(2)に記載の活性酸素を含有するオキシアパタイト。
As a result of intensive studies to solve the above-mentioned problems, the present inventors stably synthesized a substance composed of a composition obtained by partially substituting divalent ions at the CaII site with trivalent ions in a dry atmosphere. The present inventors have found a photocatalytic action that can contain active oxygen having a catalytic action and can maintain the catalytic activity when irradiated with light, and has reached the present invention.
That is, the present invention is as follows.
(1) Okishiapatai you want to contain active oxygen.
(2) The oxyapatite containing active oxygen according to (1) above, wherein the oxyapatite containing active oxygen has a photoactive point .
(3) The oxyapatite containing active oxygen according to (1) or (2) above, wherein the oxyapatite containing active oxygen is represented by the following general formula (1) .

M1aM2b(M3OXY (1)
(式中のM1はCa、Mg、Sr、Ba、Sn、Mn、Fe、Co、Ni、Cu、Zn、Ru、Pb、Cd、Agのうちの少なくとも1種類以上の元素を表し、M2はSc、Y、La、Sb、Bi、Eu、Nd、Al、Ga、Inのうちの少なくとも1種類以上の元素を表し、M3はP、Si、Mn、As、Cr、V、Ge、B、W、Moのうちの少なくとも1種類以上の元素を表す。a+b=10、0.1≦b≦2.0を表す。Xは、O、O 、O のうちの少なくとも1種類以上の活性酸素を表し、YはX以外でオキシアパタイトの電荷を補償するものであってO2−、O 2−、OH、F、Cl、I、Br、S2−、NCN2−、CO 2−、SO 2−、NO2 2−、H、eで表され、Xのみでオキシアパタイトの電荷が補償されるときは、Yはなくてよい。)
M1 a M2 b (M3O 4 ) 6 XY (1)
(In the formula, M1 represents at least one element of Ca, Mg, Sr, Ba, Sn, Mn, Fe, Co, Ni, Cu, Zn, Ru, Pb, Cd, and Ag, and M2 represents Sc. , Y, La, Sb, Bi, Eu, Nd, Al, Ga, In, and M3 represents P, Si, Mn, As, Cr, V, Ge, B, W, Represents at least one element of Mo, a + b = 10, 0.1 ≦ b ≦ 2.0, X represents at least one active oxygen of O , O 2 , and O 3 , Y compensates for the charge of oxyapatite other than X, and O 2− , O 2 2− , OH , F , Cl , I , Br , S 2− , NCN 2− , CO 3 2-, SO 4 2-, NO 2 2-, H -, e - represented by, Oki only X When the charge of the apatite is compensated, Y may not.)

(4) 該一般式(1)に記載のYがO 2− であることを特徴とする請求項3に記載の活性酸素を含有するオキシアパタイト。 (4) The oxyapatite containing active oxygen according to claim 3, wherein Y in the general formula (1) is O 2− .

(5) 下記一般式で表されるオキシアパタイトを、加熱温度50℃以上1800℃以下、水蒸気分圧10Pa以下の乾燥雰囲で処理して得られることを特徴とする上記(4)に記載の活性酸素を含有するオキシアパタイトの製造方法。

M1 a M2 b (M3O
(式中の
M1はCa、Mg、Sr、Ba、Sn、Mn、Fe、Co、Ni、Cu、Zn、Ru、Pb、Cd、Agのうちの少なくとも1種類以上の元素を表し、
M2はSc、Y、La、Sb、Bi、Eu、Nd、Al、Ga、Inのうちの少なくとも1種類以上の元素を表し、
M3はP、Si、Mn、As、Cr、V、Ge、B、W、Moのうちの少なくとも1種類以上の元素を表す。
a+b=10、0.1≦b≦2.0を表す。
Yは、O 2− を表す。)
(6) 上記(4)に記載の活性酸素を含有するオキシアパタイトの製造方法であって、該一般式(1)中のM1、M2、M3の各々の元素の酸化物、水酸化物、炭酸化物、塩化物、フッ化物、硝酸塩、硫酸塩、アルコキシから選ばれた化合物をa+b=10、0.1≦b≦2.0を満たす組成割合で、加熱温度50℃以上1800℃以下、水蒸気分圧10 2 Pa以下の乾燥雰囲気で反応させて得ることを特徴とする請求項4に記載の活性酸素を含有するオキシアパタイトの製造方法。
(7) 上記(5)または(6)に記載の活性酸素を含有するオキシアパタイトの製造方法に、さらに光照射する工程を行うことを特徴とする活性酸素を含有するオキシアパタイトの製造方法。
(8) 上記(1)〜(4)のいずれかに記載の活性酸素を含有するオキシアパタイトからなる光触媒。
(5) In the above (4), characterized in that it is obtained by treating oxyapatite represented by the following general formula in a dry atmosphere having a heating temperature of 50 ° C. or more and 1800 ° C. or less and a water vapor partial pressure of 10 2 Pa or less. The manufacturing method of the oxyapatite containing the active oxygen of description .

M1 a M2 b (M3O 4 ) 6 Y
(In the formula
M1 represents at least one element of Ca, Mg, Sr, Ba, Sn, Mn, Fe, Co, Ni, Cu, Zn, Ru, Pb, Cd, Ag,
M2 represents at least one element of Sc, Y, La, Sb, Bi, Eu, Nd, Al, Ga, In,
M3 represents at least one element of P, Si, Mn, As, Cr, V, Ge, B, W, and Mo.
a + b = 10, 0.1 ≦ b ≦ 2.0.
Y represents O 2− . )
(6) A method for producing oxyapatite containing active oxygen as described in (4) above , wherein oxides, hydroxides, and carbonates of each element of M1, M2, and M3 in the general formula (1) A compound selected from the group consisting of fluoride, chloride, fluoride, nitrate, sulfate, and alkoxy at a composition ratio that satisfies a + b = 10, 0.1 ≦ b ≦ 2.0, a heating temperature of 50 ° C. to 1800 ° C., and a water vapor partial pressure of 10 2 Pa The method for producing oxyapatite containing active oxygen according to claim 4, which is obtained by reacting in the following dry atmosphere .
(7) A method for producing oxyapatite containing active oxygen, wherein the method for producing oxyapatite containing active oxygen according to (5) or (6) above is further performed by a light irradiation step.
(8) A photocatalyst comprising oxyapatite containing active oxygen according to any one of (1) to (4).

本発明の光触媒に用いるオキシアパタイトは、安定に活性酸素を含有でき、尚且つ合成が簡便である。さらに光活性点をも有しているため、光が照射されることで触媒活性を持続することができ、優れた光触媒として用いることができる。 The oxyapatite used for the photocatalyst of the present invention can contain active oxygen stably and is easy to synthesize. Furthermore, since it also has a photoactive point, the catalytic activity can be maintained when irradiated with light, and it can be used as an excellent photocatalyst.

以下に、本発明について詳細に説明する。 The present invention is described in detail below.

本発明の光触媒は、活性酸素を含有するオキシアパタイトを利用することを特徴とする。
本発明における活性酸素とは、O、O 、O3 をいい、アパタイト構造中にいずれか1種類で含有されていてもよく、それら複数種の混合体として含有されていてもよい。活性酸素が存在することにより、より強い光触媒作用が生じる。
The photocatalyst of the present invention is characterized by utilizing oxyapatite containing active oxygen.
The active oxygen in the present invention refers to O , O 2 , O 3 , which may be contained in any one kind in the apatite structure, or may be contained as a mixture of plural kinds thereof. . The presence of active oxygen results in stronger photocatalysis.

本発明における活性酸素は、電子常磁性共鳴分光(EPR)たとえばBruker社製のEMXを用いて室温で測定することで検出される。スペクトルより与えられるgの値から活性酸素の種類が決定でき、その値は本発明者の一人である細野らが特開2002−3218号公報に開示した値から決定できる。例えばOは、gx=gy=2.04、gz=2.00で規定することができる。 The active oxygen in the present invention is detected by measuring at room temperature using electron paramagnetic resonance spectroscopy (EPR), for example, EMX manufactured by Bruker. The type of active oxygen can be determined from the value of g given from the spectrum, and the value can be determined from the value disclosed in Japanese Patent Laid-Open No. 2002-3218 by Hosono et al. For example, O can be defined by gx = gy = 2.04 and gz = 2.00.

本発明における活性酸素の濃度は、上記各活性酸素のスペクトルから構成される重ね合わせのスペクトルを積分し、標準試料の硫酸銅五水和物と比較することで濃度を求めることができる。 The concentration of the active oxygen in the present invention can be determined by integrating the overlapping spectrum composed of the above-mentioned spectra of each active oxygen and comparing it with the copper sulfate pentahydrate of the standard sample.

本発明の光触媒に用いるオキシアパタイトに含まれる活性酸素の濃度は、本発明の効果を得るという観点から、1014cm−3以上であることが好ましく、より好ましくは1015cm−3以上、さらに好ましくは1016cm−3以上、さらに好ましくは1017cm−3以上、最も好ましくは1018cm−3以上である。活性酸素の濃度は、光触媒作用の観点から、可能な限り高いことが好ましいが、材料組成及び構造から、現実的な上限は1021cm−3である。 From the viewpoint of obtaining the effect of the present invention, the concentration of active oxygen contained in the oxyapatite used for the photocatalyst of the present invention is preferably 10 14 cm −3 or more, more preferably 10 15 cm −3 or more, Preferably it is 10 16 cm −3 or more, more preferably 10 17 cm −3 or more, and most preferably 10 18 cm −3 or more. The concentration of active oxygen is preferably as high as possible from the viewpoint of photocatalysis, but the practical upper limit is 10 21 cm −3 from the material composition and structure.

本発明のオキシアパタイト中に光活性点を有するとは、光が照射された時にオキシアパタイト中に光吸収サイトがあることをいう。すなわち、本発明におけるオキシアパタイトは、そのバンドギャップ以上のエネルギ−をもつ波長の光が照射されると、光励起により伝導体に電子を、価電子帯に正孔を生成する。これらの電子および正孔はフリーO2−や表面の酸素近傍に移動し、ここでの酸化還元反応により、活性酸素を生成させ、その濃度を高めることができる。さらには、アパタイトの特徴の1つである吸着作用も持ち合わせているため、吸着した種々の吸着物を酸化還元・分解することができる。オキシアパタイト自身が光触媒作用と吸着作用の両方を担うことができるため、従来技術のように酸化チタンとハイドロキシアパタイトを混合する必要がない。 Having a photoactive point in the oxyapatite of the present invention means that there is a light absorption site in the oxyapatite when irradiated with light. That is, the oxyapatite in the present invention generates electrons in the conductor and holes in the valence band by photoexcitation when irradiated with light having a wavelength having energy greater than the band gap. These electrons and holes move to the vicinity of free O 2− and oxygen on the surface, and active oxygen can be generated and the concentration thereof can be increased by the oxidation-reduction reaction here. Furthermore, since it also has an adsorption action which is one of the characteristics of apatite, various adsorbed substances adsorbed can be oxidized / reduced / decomposed. Since oxyapatite itself can assume both photocatalytic action and adsorption action, it is not necessary to mix titanium oxide and hydroxyapatite as in the prior art.

本発明の光触媒に用いるオキシアパタイトは、一般式(1)の化合物で表されることを特徴とする。 The oxyapatite used for the photocatalyst of the present invention is characterized by being represented by the compound of the general formula (1).

M1aM2b(M3OXY (1)
(式中のM1はCa、Mg、Sr、Ba、Sn、Mn、Fe、Co、Ni、Cu、Zn、Ru、Pb、Cd、Agのうちの少なくとも1種類以上の元素を表し、M2はSc、Y、La、Sb、Bi、Eu、Nd、Al、Ga、Inのうちの少なくとも1種類以上の元素を表し、M3はP、Si、Mn、As、Cr、V、Ge、B、W、Moのうちの少なくとも1種類以上の元素を表す。a+b=10で0.1≦b≦2.0を表す。Xは、O、O 、O のうちの少なくとも1種類以上の活性酸素を表し、YはX以外でオキシアパタイトの電荷を補償するものであってO2−、O 2−、OH、F、Cl、I、Br、S2−、NCN2−、CO 2−、SO 2−、NO2 2−、H、eで表され、Xのみでオキシアパタイトの電荷が補償されるときは、Yはなくてよい。)
本発明の光触媒に用いるオキシアパタイトは、上記要件を満たしていれば特に限定はされるものではないが、高い活性酸素の含有濃度を達成しやすい、合成が比較的容易である、構造が安定である等からCa8La2(PO4) 6 O2、Ca8Y2(PO4) 6 O2、Ca8Al2(PO4)6O2、Ca8In2(PO4) 6 O2、Ca8La2(SiO4) 6 O2が好適である。また、特に可視光による光触媒として用いるときはCr、V、Mnなどを含むCa8La2(CrO4) 6 O2、Ca8La2(VO4) 6 O2、Ca8Bi2(VO4) 6 O2、Ca8La2(MnO4) 6 O2、Ca8Bi2(MnO4) 6 O2などが好適である。
M1 a M2 b (M3O 4 ) 6 XY (1)
(In the formula, M1 represents at least one element of Ca, Mg, Sr, Ba, Sn, Mn, Fe, Co, Ni, Cu, Zn, Ru, Pb, Cd, and Ag, and M2 represents Sc. , Y, La, Sb, Bi, Eu, Nd, Al, Ga, In, and M3 represents P, Si, Mn, As, Cr, V, Ge, B, W, Represents at least one element of Mo. a + b = 10 represents 0.1 ≦ b ≦ 2.0 X represents at least one active oxygen selected from O , O 2 and O 3 , Y compensates for the charge of oxyapatite other than X, and O 2− , O 2 2− , OH , F , Cl , I , Br , S 2− , NCN 2− , CO 3 2-, SO 4 2-, NO 2 2-, H -, e - represented by, Oki only X When the charge of the apatite is compensated, Y may not.)
The oxyapatite used in the photocatalyst of the present invention is not particularly limited as long as the above requirements are satisfied, but it is easy to achieve a high active oxygen content concentration, the synthesis is relatively easy, and the structure is stable. For example, Ca 8 La 2 (PO 4 ) 6 O 2 , Ca 8 Y 2 (PO 4 ) 6 O 2 , Ca 8 Al 2 (PO 4 ) 6 O 2 , Ca 8 In 2 (PO 4 ) 6 O 2 Ca 8 La 2 (SiO 4 ) 6 O 2 is preferred. In particular, when used as a photocatalyst by visible light, Ca 8 La 2 (CrO 4 ) 6 O 2 , Ca 8 La 2 (VO 4 ) 6 O 2 , Ca 8 Bi 2 (VO 4 ) containing Cr, V, Mn, etc. ) 6 O 2 , Ca 8 La 2 (MnO 4 ) 6 O 2 , Ca 8 Bi 2 (MnO 4 ) 6 O 2 and the like are suitable.

これら光触媒作用を有するオキシアパタイトは、それ自身活性酸素を含有していることに加えて、光が照射されることによって活性酸素の生成が刹那かつ連続的に生じて活性酸素の濃度を高めることができ、加えてオキシアパタイトは高い吸着作用を有する。そのために、有害物質等の吸着及び吸着種の酸化や分解を単一物質で行うことができ、従来技術の酸化チタンとハイドロキシアパタイトの混合物等に比べ、触媒の効率や製造プロセスに非常に優れる。 These photocatalytic oxyapatites themselves contain active oxygen, and when irradiated with light, active oxygen generation occurs momentarily and continuously, increasing the concentration of active oxygen. In addition, oxyapatite has a high adsorption action. Therefore, adsorption of harmful substances and the like, and oxidation and decomposition of the adsorbed species can be performed with a single substance, and the efficiency of the catalyst and the manufacturing process are extremely superior compared to the conventional mixture of titanium oxide and hydroxyapatite.

本発明の光触媒に用いるオキシアパタイトは、光が照射されることによって、本発明の効果をさらに向上させることができることを特徴とする。光照射に用いられる光の種類は特に限定されないが可視光、紫外線、極紫外線、X線、γ線などを挙げることができる。光源は、利用するオキシアパタイトの組成により選ばれ、バンドギャップ以上のエネルギーをもつ波長の光が好ましい。照射は、それら光源を単独で用いてもよく、複数組み合わせて用いてもよい。光照射の時間については、本発明の効果を向上できれば特に限定されるものではないが、5秒以上3日以内が好ましく、さらに好ましくは10秒以上1日以内、最も好ましくは15秒以上12時間以内である。光照射を行うことで、前述のように活性酸素が生成して触媒活性を持続することができる。 The oxyapatite used for the photocatalyst of the present invention is characterized in that the effect of the present invention can be further improved by irradiation with light. The type of light used for light irradiation is not particularly limited, and examples thereof include visible light, ultraviolet light, extreme ultraviolet light, X-rays, and γ-rays. The light source is selected according to the composition of the oxyapatite to be used, and light having a wavelength having energy greater than or equal to the band gap is preferable. For irradiation, these light sources may be used alone or in combination. The time of light irradiation is not particularly limited as long as the effect of the present invention can be improved, but it is preferably 5 seconds or longer and 3 days or shorter, more preferably 10 seconds or longer and within 1 day, and most preferably 15 seconds or longer and 12 hours. Is within. By performing light irradiation, as described above , active oxygen can be generated and the catalytic activity can be maintained.

本発明の光触媒に用いるオキシアパタイトは、水蒸気分圧10Pa以下の雰囲気で前記一般式(1)のM1,M2,M3,Y及びa,bを満足する組成を有する原料組成物を加熱処理することで得ることが好ましい。 The oxyapatite used in the photocatalyst of the present invention is a heat treatment of a raw material composition having a composition satisfying M1, M2, M3, Y and a, b of the general formula (1) in an atmosphere having a water vapor partial pressure of 10 2 Pa or less. It is preferable to obtain by doing.

本発明に使用する前記原料化合物としては、特に限定はされないが、一般式(1)中のM1、M2、M3、及びYに対応する元素の酸化物、水酸化物、炭酸化物、塩化物、フッ化物、硝酸塩、硫酸塩、アルコキシド等が挙げられる。
通常、アパタイトは従来技術に見られるように、水蒸気又は加湿雰囲気下で合成することにより特性を得ようとされてきた。しかし本発明においては、従来の常套手段をとらずオキシアパタイトを水蒸気分圧10Pa以下の乾燥雰囲気下で合成することにより、活性酸素を含有することが可能になった。
Although it does not specifically limit as said raw material compound used for this invention, The oxide of the element corresponding to M1, M2, M3, and Y in General formula (1), hydroxide, carbonate, chloride, Fluorides, nitrates, sulfates, alkoxides and the like can be mentioned.
Ordinarily, apatite has been sought to obtain properties by synthesis under steam or a humid atmosphere, as found in the prior art. However, in the present invention, active oxygen can be contained by synthesizing oxyapatite in a dry atmosphere having a water vapor partial pressure of 10 2 Pa or less without using conventional methods.

本発明の光触媒に用いるオキシアパタイトは、水蒸気分圧10Pa以下の乾燥雰囲気で熱処理することで得られ、好ましくは水蒸気分圧10Pa以下、より好ましくは水蒸気分圧10Pa以下、最も好ましくは水蒸気分圧10−1Pa以下である。ガスの種類は、空気、酸素、窒素、アルゴン、ヘリウム等またはそれらの混合ガス等を用いることができる。水蒸気分圧を低くすることで、活性酸素の濃度を増加させることができる。 Hydroxyapatite used in the photocatalyst of the present invention is obtained by heat treatment in the following dry atmosphere water vapor partial pressure 10 2 Pa, preferably 10 1 Pa or less steam partial pressure, more preferably less steam partial pressure 10 0 Pa, most The water vapor partial pressure is preferably 10 −1 Pa or less. As the type of gas, air, oxygen, nitrogen, argon, helium, or a mixed gas thereof can be used. By reducing the water vapor partial pressure, the concentration of active oxygen can be increased.

本発明の光触媒に用いるオキシアパタイトの製造方法においては、アパタイト合成時に加熱温度50℃以上1800℃以下、水蒸気分圧102Pa以下の乾燥雰囲気で反応させること、または、通常のアパタイト合成後に加熱温度50℃以上1800℃以下、水蒸気分圧102Pa以下の乾燥雰囲気で反応することを特徴とする。従来の常套手段と異なり、上記乾燥雰囲気下で反応させる、または通常のアパタイト合成後に乾燥雰囲気下で反応することにより、オキシアパタイト中に活性酸素を含有することが可能になった。本発明の製造方法において、乾燥雰囲気下で合成または反応すること以外は、特に限定されることなく従来より公知のハイドロキシアパタイトの合成方法を用いることができる In the method for producing oxyapatite used for the photocatalyst of the present invention, the reaction is carried out in a dry atmosphere at a heating temperature of 50 ° C. to 1800 ° C. and a partial pressure of water vapor of 10 2 Pa or less at the time of apatite synthesis, or the heating temperature after normal apatite synthesis. It reacts in a dry atmosphere of 50 ° C. or higher and 1800 ° C. or lower and a water vapor partial pressure of 10 2 Pa or lower. Unlike conventional conventional means, it is possible to contain active oxygen in oxyapatite by reacting in the above dry atmosphere or by reacting in a dry atmosphere after normal apatite synthesis. In the production method of the present invention, a conventionally known method for synthesizing hydroxyapatite can be used without particular limitation, except that it is synthesized or reacted in a dry atmosphere.

公知のハイドロキシアパタイトの合成方法として、以下Ca10(PO4)6(OH)2について説明するが、本発明はこれに限定されるものではない。Ca10(PO4)6(OH)2は、塊状態、粉末状態等を得るときには、三リン酸カルシウム、炭酸カルシウムを1000℃以上で反応させる固相反応法、塩素アパタイトの元素置換を1000℃以上で行わせる転化反応法、300〜700℃の水熱条件下で結晶育成を行う水熱反応法、ブルッシャイトを水中で沸騰加熱するリフラックス法、ブルッシャイトや三リン酸カルシウムを100℃以下で加水分解しアパタイトに転換する加水分解法、カルシウム塩水溶液とリン酸塩水溶液を混合しpH8〜10の塩基性条件下で反応させる沈殿反応法などを用いることができる。薄膜形態の場合は、CVD法、スパッタリング法、レーザーアブレーション法、ゾルゲル法などの方法を用いることができる。また、単結晶を得るために融帯法、Czochralski法などを用いることができる(例えば 金澤孝文 無機リン化学 第1刷 講談社 P19〜、門間英毅、Inorganicmaterials,2, 401 (1995))。 As a known method for synthesizing hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 will be described below, but the present invention is not limited thereto. Ca 10 (PO 4 ) 6 (OH) 2 is a solid phase reaction method in which calcium triphosphate and calcium carbonate are reacted at 1000 ° C. or higher, and element substitution of chloroapatite is performed at 1000 ° C. or higher. Conversion reaction method to be performed, hydrothermal reaction method to grow crystals under 300 to 700 ° C hydrothermal conditions, reflux method to boil and heat brushite in water, hydrolyze brushite and calcium triphosphate at 100 ° C or less A hydrolysis method for converting to apatite, a precipitation reaction method in which a calcium salt aqueous solution and a phosphate aqueous solution are mixed and reacted under basic conditions of pH 8 to 10 can be used. In the case of a thin film form, a CVD method, a sputtering method, a laser ablation method, a sol-gel method or the like can be used. Also, floating melt zone method to obtain a single crystal, or the like can be used Czochralski method (e.g. Takafumi Kanazawa inorganic phosphorus chemical First Printing Kodansha P19~, Hideki Momma, Inorganicmaterials, 2, 401 (1995 )).

本発明の光触媒に用いるオキシアパタイトは上記方法により製造でき、用途に応じて、多孔化、針状等により表面積を増加させる手法や、結晶密度を上げる方法、粗精製材料を用いてコストダウンを図る方法などを用いることが可能である。 The oxyapatite used for the photocatalyst of the present invention can be produced by the above-mentioned method. Depending on the application, a method for increasing the surface area by making it porous, acicular, etc., a method for increasing the crystal density, and a cost reduction using a roughly purified material A method or the like can be used.

本発明の光触媒に用いるオキシアパタイトは、その効果を得ることができる範囲であれば、上記一般式(1)で表される物質に不純物が混合されていてもかまわない。不純物としては、非化学量論性によって得られる物質、各成分の一部が欠損となって上記一般式(1)からずれるもの、さらには上記一般式(1)にまったく含まれない元素からなる物質等を挙げることができる。 The oxyapatite used in the photocatalyst of the present invention may be mixed with impurities in the substance represented by the general formula (1) as long as the effect can be obtained. Impurities include substances obtained by non-stoichiometry, elements that are partially missing from the above general formula (1), and elements that are not included in the general formula (1) at all. Examples include substances.

本発明の光触媒に用いるオキシアパタイトが不純物を含む場合は、一般式(1)で表される物質が好ましくは50%以上100%以下、より好ましくは70%以上100%以下、更に好ましくは80%以上100%以下、最も好ましくは90%以上100%以下である。一般式(1)で表される物質が多いほど、活性酸素の濃度を高くすることができて、より効果を発現させるために好ましい。 When the oxyapatite used for the photocatalyst of the present invention contains impurities, the substance represented by the general formula (1) is preferably 50% to 100%, more preferably 70% to 100%, and still more preferably 80%. It is 100% or less and most preferably 90% or more and 100% or less. The more the substance represented by the general formula (1), the higher the concentration of active oxygen, which is preferable in order to achieve more effects.

本発明のオキシアパタイトは、他の物質と混合した状態で用いることができる。混合とは、例えばオキシアパタイトと単純に混合した状態、融点付近で練りこんだ状態、オキシアパタイトで被覆した状態、オキシアパタイト構造の一部と化学結合した状態などが挙げられる。例えば、成型前の粉末、壁やガラス用途等の塗料、薄膜やフィルム作製前の有機物質(ポリマー)・無機物質、家庭用品・室内備品や薄膜作成時に用いられるタ−ゲット原料、医療器具、電子機器などの表面塗布液に混合することができる。 The oxyapatite of the present invention can be used in a mixed state with other substances. Examples of the mixing include a state where it is simply mixed with oxyapatite, a state where it is kneaded near the melting point, a state where it is coated with oxyapatite, and a state where it is chemically bonded to a part of the oxyapatite structure. For example, powder before molding, paint for walls and glass, organic materials (polymers) / inorganic materials before thin film or film production, target materials used for making household goods / indoor equipment and thin films, medical devices, electronic It can be mixed in a surface coating solution such as equipment.

本発明において、光触媒に用いるオキシアパタイトの混合濃度は、本発明のオキシアパタイトの機能が発現できれば特に限定はないが、好ましくは0.1%以上80%以下であり、より好ましくは1.0%以上50%以下であり、もっとも好ましくは3.0%以上40%以下である。 In the present invention, the mixed concentration of the oxyapatite used for the photocatalyst is not particularly limited as long as the function of the oxyapatite of the present invention can be expressed, but is preferably 0.1% to 80%, more preferably 1.0%. It is 50% or less and most preferably 3.0% or more and 40% or less.

以下、本発明を実施例により具体的に説明するが、本発明は実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited to an Example.

本発明に用いられる評価法および測定法は以下のとおりである。
(XRD)(株)リガク製RINT2000において、CuのKα線を用いて測定する。測定条件は、加速電圧50V、加速電流は200mA、受光スリット幅0.15mm、走査速度4°/分、サンプリング0.02°である。なお回折線はグラファイトのモノクロメーターにより単色化されてカウントされる。構造は、MaterialsData社製のJADEを用いてまたは、過去の論文を参考にしてアパタイト構造の同定を行う。
(IR) Perkin Elmer社製のSpectrum Oneを使用する。測定条件は400−4000cm−1の範囲で分解能1cm−1である。3600cm−1付近に観察されるOH伸縮振動を確認する。
(耐熱性試験)1400℃のオーブン中で4時間処理し、上記記載のXRD測定で構造の変化を確認する。
(光触媒能試験)0.02mmol/Lのメチレンブルー(和光純薬工業(株))水溶液を調整しこれをブランク溶液とする。一方、0.02mmol/Lのメチレンブルー水溶液に0.05g/Lとなるようにオキシアパタイトを加える。両者を25℃で撹拌しながら光照射を行い、所定時間ごとに日立ハイテクノロジー(株)製分光光度計U4000を用いて、660nm付近のメチレンブルーの吸収ピーク量を測定して、吸収量の減少すなわちメチレンブルーの分解量からオキシアパタイトの光触媒性能確認する。
Evaluation methods and measurement methods used in the present invention are as follows.
(XRD) In RINT2000 manufactured by Rigaku Corporation, measurement is made using Cu Kα rays. Measurement conditions were an acceleration voltage 50 k V, accelerating current 200 mA, receiving slit width 0.15 mm, the scanning speed of 4 ° / min, a sampling 0.02 °. The diffraction lines are monochromatic by a graphite monochromator and counted. The structure is identified by using JADE made by MaterialsData or referring to past papers.
(IR) Use Spectrum One from Perkin Elmer. The measurement conditions are resolution of 1 cm -1 in a range of 400-4000cm -1. Confirm the OH stretching vibration observed around 3600 cm −1 .
(Heat resistance test) Process in an oven at 1400 ° C for 4 hours, and confirm the structural change by XRD measurement as described above.
(Photocatalytic ability test) 0.02 mmol / L methylene blue (Wako Pure Chemical Industries, Ltd.) to adjust the aqueous solution which is referred to as blank solution. On the other hand, oxyapatite is added to a 0.02 mmol / L methylene blue aqueous solution so as to be 0.05 g / L. Both were irradiated with light at 25 ° C while stirring, and using a spectrophotometer U4000 manufactured by Hitachi High Technology Co., Ltd., the amount of absorption peak of methylene blue near 660 nm was measured. Confirm the photocatalytic performance of oxyapatite from the decomposition amount of methylene blue.

[実施例1]
2.00gのCaCO3((株)高純度化学研究所)と7.61gのCaHPO4(和光純薬工業(株))を800℃で加熱して得られたCa2P2O7と3.25gのLa2O3((株)高純度化学研究所)をエタノール中で湿式混合して、均一混合された試料を得た。得られた試料を1400℃、6時間、水蒸気分圧6Paのドライ酸素フロー中(300ml/min)で焼成した。得られた化合物はXRDにより六方晶アパタイト構造に帰属でき、IR分析よりOH伸縮がないことを確認した。得られた化合物のEPR測定より、活性酸素の濃度は2×1016cm−3と定量された。以上よりLa2Ca8(PO4)6O(2+α)の合成を確認した。(αは活性酸素の存在により酸素原子が増加していることを表す。)また得られた化合物は、耐熱性試験後も構造に変化は見られず、耐熱性に優れることが分かった。
[Example 1]
2.00 g CaCO 3 in (Ltd. Pure Chemical Laboratories) and 7.61 g CaHPO 4 (Wako Pure Chemical Industries, Ltd.) and Ca 2 P 2 O 7 and 3.25g of obtained by heating at 800 ° C. the la 2 O 3 ((Ltd.) pure chemical Laboratories) was wet-mixed in ethanol, to obtain a uniform mixed sample. The obtained sample was calcined in a dry oxygen flow (300 ml / min) at 1400 ° C. for 6 hours and a water vapor partial pressure of 6 Pa. The obtained compound was assigned to a hexagonal apatite structure by XRD, and it was confirmed by IR analysis that there was no OH stretching. From the EPR measurement of the obtained compound, the concentration of active oxygen was quantified as 2 × 10 16 cm −3 . From the above, the synthesis of La 2 Ca 8 (PO 4 ) 6 O (2 + α) was confirmed. (α represents an increase in oxygen atoms due to the presence of active oxygen.) The obtained compound was found to have excellent heat resistance without any change in structure even after the heat resistance test.

[実施例2]
2.00gのCa(NO3)2・4H2O((株)高純度化学研究所)と0.81gのY(NO3)3・6H2O((株)高純度化学研究所)を純水に溶かし、30%アンモニア水を加えてpH=10程度に調整して溶液Aを得た。一方 0.84gの(NH4)2HPO4((株)高純度化学研究所)を純水に溶かし30%アンモニア水を加えてpH=10程度に調整して溶液Bを得た。両溶液に室温で窒素ガスを1時間バブリングして溶存炭酸ガスを取り除いた。
その後攪拌しながら、脱炭酸ガスをした溶液A中に脱炭酸ガスをした溶液BをpH=10程度になるように30%アンモニア水を加えてながら添加して、沈殿物を得た。得られた沈殿物を90℃、24時間、水蒸気分圧6Paのドライ酸素フロー中(300ml/min)で加熱した。
[Example 2]
Pure water 2.00g of Ca (NO 3) 2 · 4H 2 O (( Ltd.) Pure Chemical Laboratories) and 0.81g of Y (NO 3) 3 · 6H 2 O (( Ltd.) Pure Chemical Laboratories) Then, 30% aqueous ammonia was added to adjust the pH to about 10 to obtain a solution A. Meanwhile 0.84g of (NH 4) 2 HPO 4 ( ( Ltd.) Pure Chemical Laboratories) was added 30% aqueous ammonia dissolved in pure water and adjusted to about pH = 10 to obtain a solution B by. Both solutions were bubbled with nitrogen gas for 1 hour at room temperature to remove dissolved carbon dioxide gas.
Thereafter, with stirring, solution B with decarboxylated gas was added to solution A with decarboxylated gas while adding 30% aqueous ammonia so that the pH was about 10, thereby obtaining a precipitate. The resulting precipitate was heated at 90 ° C. for 24 hours in a dry oxygen flow (300 ml / min) with a water vapor partial pressure of 6 Pa.

得られた化合物はXRDにより六方晶アパタイト構造に帰属でき、IR分析よりOH伸縮がないことを確認した。得られた化合物のEPR測定より、活性酸素の濃度は1×1016cm−3と定量された。以上よりY2Ca8(PO4)6O(2+α)の合成を確認した。また得られた化合物は、耐熱性試験後も構造に変化は見られず、耐熱性に優れることが分かった。 The obtained compound could be assigned to the hexagonal apatite structure by XRD, and it was confirmed by IR analysis that there was no OH stretching. From the EPR measurement of the obtained compound, the concentration of active oxygen was quantified as 1 × 10 16 cm −3 . From the above, the synthesis of Y 2 Ca 8 (PO 4 ) 6 O (2 + α) was confirmed. In addition, it was found that the obtained compound was excellent in heat resistance without any change in structure after the heat resistance test.

[実施例3]
実施例1で作製した2.00gのオキシアパタイトに紫外線を15分照射した。得られた化合物は、XRDにより六方晶アパタイト構造に帰属でき、IR分析よりOH伸縮がないことを確認した。得られた化合物のEPR測定より、活性酸素の濃度は1×1017cm−3と定量され実施例1に比べ活性酸素の濃度が増加していた。また得られた化合物は、耐熱性試験後も構造に変化は見られず、耐熱性に優れることが分かった。
[Example 3]
The 2.00 g oxyapatite produced in Example 1 was irradiated with ultraviolet rays for 15 minutes. The obtained compound was assigned to a hexagonal apatite structure by XRD, and it was confirmed by IR analysis that there was no OH stretching. From the EPR measurement of the obtained compound, the concentration of active oxygen was quantified as 1 × 10 17 cm −3, and the concentration of active oxygen was increased as compared with Example 1. In addition, it was found that the obtained compound was excellent in heat resistance without any change in structure after the heat resistance test.

[実施例4]
2.00gのCaCO3((株)高純度化学研究所)と1.29gのV2O5((株)高純度化学研究所)と0.81gのLa2O3((株)高純度化学研究所)をエタノール中で湿式混合して、均一混合された試料を得た。得られた試料を1300℃、6時間、300ml/minドライ酸素フロー中で焼成した。得られた化合物はXRDにより六方晶アパタイト構造に帰属でき、IR分析よりOH伸縮がないことを確認した。得られた化合物のEPR測定より、活性酸素の濃度は2×1016cm−3と定量された。以上よりCa8La2(VO4)6O(2+α)の合成を確認した。また得られた化合物は、耐熱性試験後も構造に変化は見られず、耐熱性に優れることが分かった。
[実施例5]
2.00gのCaCO3((株)高純度化学研究所)と1.22gのV2O5((株)高純度化学研究所)と0.57gのLa2O3((株)高純度化学研究所)をエタノール中で湿式混合して、均一混合された試料を得た。得られた試料を1250℃、6時間、300ml/minドライ酸素フロー中で焼成した。得られた化合物はXRDにより六方晶アパタイト構造に帰属でき、IR分析よりOH伸縮がないことを確認した。得られた化合物のEPR測定より、活性酸素の濃度は7×1016cm−3と定量された。以上よりCa8.5La1.5(VO4)6O(2+α)の合成を確認した。また得られた化合物は、耐熱性試験後も構造に変化は見られず、耐熱性に優れることが分かった。
[実施例6]
実施例4、5で作製した2.00gのオキシアパタイトにそれぞれ可視光線を15分照射した。得られた化合物は、XRDにより六方晶アパタイト構造に帰属でき、IR分析よりOH伸縮がないことを確認した。得られた化合物のEPR測定より、活性酸素の濃度はそれぞれ2×1017cm−3、2×1018cm−3と定量され実施例4、5に比べ活性酸素の濃度が増加していた。また得られた化合物は、耐熱性試験後も構造に変化は見られず、耐熱性に優れることが分かった。
[実施例]
実施例4で作成したオキシアパタイトを可視光(400nm以上の波長)照射による光触媒能試験を行った結果、
1251954927853_0
に示すようにブランクに比べ、メチレンブルーの分解が顕著に進行しており、オキシアパタイトが光触媒能に非常に優れることが分かった。
[比較例1]
2.00gのCaCO3((株)高純度化学研究所)と3.81gのCaHPO4(和光純薬工業(株))を800℃で加熱して得られたCa2P2O7をエタノール中で湿式混合して、均一混合された試料を得た。得られた試料を1400℃、6時間、水蒸気分圧約103kPaの大気中で焼成した。得られた化合物はXRDにより六方晶アパタイト構造に帰属できた。IR分析よりOH伸縮観察され、ハイドロキシアパタイトが生成していると考えられた。以上よりCa10(PO4)6(OH)2の合成を確認した。得られた化合物のEPR測定より、活性酸素ラジカルに帰属できる吸収バンドは観察されなかった。また得られた化合物の耐熱性試験後は、構造を維持しておらず熱的安定性にかける。
[Example 4]
2.00 g CaCO 3 (Ltd. Pure Chemical Laboratories) and 1.29g of V 2 O 5 in (Ltd. Pure Chemical Laboratories) and 0.81 g La 2 O 3 in (Co. high purity Chemical Research ) Was wet mixed in ethanol to obtain a uniformly mixed sample. The obtained sample was fired at 1300 ° C. for 6 hours in a 300 ml / min dry oxygen flow. The obtained compound was assigned to a hexagonal apatite structure by XRD, and it was confirmed by IR analysis that there was no OH stretching. From the EPR measurement of the obtained compound, the concentration of active oxygen was quantified as 2 × 10 16 cm −3 . From the above, the synthesis of Ca 8 La 2 (VO 4 ) 6 O (2 + α) was confirmed. In addition, it was found that the obtained compound was excellent in heat resistance without any change in structure after the heat resistance test.
[Example 5]
2.00 g CaCO 3 (Ltd. Pure Chemical Laboratories) and 1.22g of V 2 O 5 in (Ltd. Pure Chemical Laboratories) and 0.57 g La 2 O 3 in (Co. high purity Chemical Research ) Was wet mixed in ethanol to obtain a uniformly mixed sample. The obtained sample was calcined at 1250 ° C. for 6 hours in a 300 ml / min dry oxygen flow. The obtained compound was assigned to a hexagonal apatite structure by XRD, and it was confirmed by IR analysis that there was no OH stretching. From the EPR measurement of the obtained compound, the concentration of active oxygen was quantified as 7 × 10 16 cm −3 . From the above, the synthesis of Ca 8.5 La 1.5 (VO 4 ) 6 O (2 + α) was confirmed. In addition, it was found that the obtained compound was excellent in heat resistance without any change in structure after the heat resistance test.
[Example 6]
Visible light was irradiated for 15 minutes to 2.00 g of oxyapatite prepared in Examples 4 and 5, respectively. The obtained compound was assigned to a hexagonal apatite structure by XRD, and it was confirmed by IR analysis that there was no OH stretching. From the EPR measurement of the obtained compound, the concentration of active oxygen was quantified as 2 × 10 17 cm −3 and 2 × 10 18 cm −3, respectively, and the concentration of active oxygen was increased as compared with Examples 4 and 5. In addition, it was found that the obtained compound was excellent in heat resistance without any change in structure after the heat resistance test.
[Example 7 ]
As a result of conducting a photocatalytic ability test by irradiating visible light (wavelength of 400 nm or more) with the oxyapatite prepared in Example 4,
1251954927853_0
As shown in Fig. 4, it was found that methylene blue was significantly decomposed compared to the blank, and that oxyapatite was extremely excellent in photocatalytic activity.
[Comparative Example 1]
2.00 g CaCO 3 in (Ltd. Pure Chemical Laboratories) and CaHPO of 3.81 g 4 (Wako Pure Chemical Industries, Ltd.) ethanol in Ca 2 P 2 O 7 obtained by heating at 800 ° C. Wet mixing was performed to obtain a uniformly mixed sample. The obtained sample was baked at 1400 ° C. for 6 hours in an atmosphere having a water vapor partial pressure of about 10 3 kPa. The obtained compound could be assigned to the hexagonal apatite structure by XRD. From the IR analysis, OH stretching was observed, and it was considered that hydroxyapatite was formed. From the above, the synthesis of Ca 10 (PO 4 ) 6 (OH) 2 was confirmed. From the EPR measurement of the obtained compound, an absorption band attributable to active oxygen radicals was not observed. Further, after the heat resistance test of the obtained compound, the structure is not maintained and thermal stability is applied.

[比較例2]
2.00gのCaCO3((株)高純度化学研究所)と7.61gのCaHPO4(和光純薬工業(株))を800℃で加熱して得られたCa2P2O7と3.25gのLa2O3 ((株)高純度化学研究所)をエタノール中で湿式混合して、均一混合された試料を得た。得られた試料を1400℃、6時間、水蒸気分圧約103kPaの大気中で焼成した。得られた化合物はXRDにより六方晶アパタイト構造に帰属できた。以上よりLa2Ca8(PO4)6O2の合成を確認した。得られた化合物のEPR測定より、活性酸素ラジカルに帰属できる吸収バンドは観察されなかった。
[Comparative Example 2]
2.00 g CaCO 3 in (Ltd. Pure Chemical Laboratories) and 7.61 g CaHPO 4 (Wako Pure Chemical Industries, Ltd.) and Ca 2 P 2 O 7 and 3.25g of obtained by heating at 800 ° C. the la 2 O 3 ((Ltd.) pure chemical Laboratories) was wet-mixed in ethanol, to obtain a uniform mixed sample. The obtained sample was baked at 1400 ° C. for 6 hours in an atmosphere having a water vapor partial pressure of about 10 3 kPa. The obtained compound could be assigned to the hexagonal apatite structure by XRD. From the above, the synthesis of La 2 Ca 8 (PO 4 ) 6 O 2 was confirmed. From the EPR measurement of the obtained compound, an absorption band attributable to active oxygen radicals was not observed.

[比較例3]
2.00gのCa(NO3)2・4H2O((株)高純度化学研究所)と0.81gのY(NO3)3・6H2O((株)高純度化学研究所)を純水に溶かし、30%アンモニア水を加えてpH=10程度に調整して溶液Aを得た。一方0.84gの(NH4)2HPO4((株)高純度化学研究所)を純水に溶かし30%アンモニア水を加えてpH=10程度に調整して溶液Bを得た。両溶液に室温で窒素ガスを1時間バブリングして溶存炭酸ガスを取り除いた。その後攪拌しながら、脱炭酸ガスをした溶液A中に脱炭酸ガスをした溶液BをpH=10程度になるように30%アンモニア水を加えてながら添加して、沈殿物を得た。得られた沈殿物を水蒸気分圧約103kPaの大気雰囲気で800℃、1時間仮焼し、次にこの仮焼後の粉末をペレット上に形成し、水蒸気分圧約103kPaの大気中で1250℃、1時間焼成した。得られた化合物はXRDにより六方晶アパタイト構造に帰属できた。以上よりY2Ca8(PO4)6O2の合成を確認した。得られた化合物の室温でのEPR測定より、活性酸素ラジカルに帰属できる吸収バンドは観察されなかった。
[Comparative Example 3]
Pure water 2.00g of Ca (NO 3) 2 · 4H 2 O (( Ltd.) Pure Chemical Laboratories) and 0.81g of Y (NO 3) 3 · 6H 2 O (( Ltd.) Pure Chemical Laboratories) Then, 30% aqueous ammonia was added to adjust the pH to about 10 to obtain a solution A. Meanwhile 0.84g of (NH 4) 2 HPO 4 ( ( Ltd.) Pure Chemical Laboratories) was added 30% aqueous ammonia dissolved in pure water and adjusted to about pH = 10 to obtain a solution B by. Both solutions were bubbled with nitrogen gas for 1 hour at room temperature to remove dissolved carbon dioxide gas. Thereafter, with stirring, solution B with decarboxylated gas was added to solution A with decarboxylated gas while adding 30% aqueous ammonia so that the pH was about 10, thereby obtaining a precipitate. The resulting precipitate was 800 ° C. in an air atmosphere of water vapor partial pressure of about 10 3 kPa, and 1 hour calcination, then the powder after the calcination was formed on the pellet, with a water vapor partial pressure of about 10 3 kPa in the air Firing was performed at 1250 ° C. for 1 hour. The obtained compound could be assigned to the hexagonal apatite structure by XRD. From the above, the synthesis of Y 2 Ca 8 (PO 4 ) 6 O 2 was confirmed. From the EPR measurement of the obtained compound at room temperature, no absorption band attributable to active oxygen radicals was observed.

以上説明したように、本発明の光触媒が利用する光触媒作用を有するオキシアパタイトは、それ自身活性酸素を含有していることに加えて、光が照射されることによって活性酸素の生成が刹那かつ連続的に生じて活性酸素の濃度を高めることができ、加えてオキシアパタイトは高い吸着作用を有する。そのために、有害物質等の吸着及び吸着種の酸化や分解を単一物質で行うことができ、従来技術の酸化チタンとハイドロキシアパタイトの混合物等に比べ、触媒の効率や製造プロセスに非常に優れている。したがって、本発明の活性酸素を含有するオキシアパタイトは、光触媒として非常に有用である。 As described above, the oxyapatite having a photocatalytic action used by the photocatalyst of the present invention itself contains active oxygen, and the generation of active oxygen is short and continuous when irradiated with light. This can occur to increase the concentration of active oxygen, and in addition, oxyapatite has a high adsorption action. Therefore, adsorption of harmful substances, etc. and oxidation and decomposition of adsorbed species can be performed with a single substance. Compared to conventional titanium oxide and hydroxyapatite mixtures, etc., the efficiency of the catalyst and the manufacturing process are extremely excellent. Yes. Therefore, the oxyapatite containing active oxygen of the present invention is very useful as a photocatalyst.

実施例のオキシアパタイト光触媒能試験結果。The oxyapatite photocatalytic ability test result of Example 7 .

Claims (8)

活性酸素を含有するオキシアパタイト。 Okishiapatai that you want to contain the active oxygen. 該活性酸素を含有するオキシアパタイト中に光活性点を有することを特徴とする請求項1に記載の活性酸素を含有するオキシアパタイト。 2. The oxyapatite containing active oxygen according to claim 1, wherein the oxyapatite containing active oxygen has a photoactive point . 該活性酸素を含有するオキシアパタイトが下記一般式(1)で表されることを特徴とする請求項1又は2に記載の活性酸素を含有するオキシアパタイト。
M1aM2b(M3OXY (1)
(式中のM1はCa、Mg、Sr、Ba、Sn、Mn、Fe、Co、Ni、Cu、Zn、Ru、Pb、Cd、Agのうちの少なくとも1種類以上の元素を表し、M2はSc、Y、La、Sb、Bi、Eu、Nd、Al、Ga、Inのうちの少なくとも1種類以上の元素を表し、M3はP、Si、Mn、As、Cr、V、Ge、B、W、Moのうちの少なくとも1種類以上の元素を表す。a+b=10、0.1≦b≦2.0を表す。Xは、O、O 、O のうちの少なくとも1種類以上の活性酸素を表し、YはX以外でオキシアパタイトの電荷を補償するものであってO2−、O 2−、OH、F、Cl、I、Br、S2−、NCN2−、CO 2−、SO 2−、NO2 2−、H、eで表され、Xのみでオキシアパタイトの電荷が補償されるときは、Yはなくてよい。)
The oxyapatite containing active oxygen according to claim 1 or 2, wherein the oxyapatite containing active oxygen is represented by the following general formula (1).
M1 a M2 b (M3O 4 ) 6 XY (1)
(In the formula, M1 represents at least one element of Ca, Mg, Sr, Ba, Sn, Mn, Fe, Co, Ni, Cu, Zn, Ru, Pb, Cd, and Ag, and M2 represents Sc. , Y, La, Sb, Bi, Eu, Nd, Al, Ga, In, and M3 represents P, Si, Mn, As, Cr, V, Ge, B, W, Represents at least one element of Mo, a + b = 10, 0.1 ≦ b ≦ 2.0, X represents at least one active oxygen of O , O 2 , and O 3 , Y compensates for the charge of oxyapatite other than X, and O 2− , O 2 2− , OH , F , Cl , I , Br , S 2− , NCN 2− , CO 3 2-, SO 4 2-, NO 2 2-, H -, e - represented by, Oki only X When the charge of the apatite is compensated, Y may not.)
該一般式(1)に記載のYがOY in the general formula (1) is O 2−2- であることを特徴とする請求項3に記載の活性酸素を含有するオキシアパタイト。The oxyapatite containing active oxygen according to claim 3. 下記一般式で表されるオキシアパタイトを、加熱温度50℃以上1800℃以下、水蒸気分圧10An oxyapatite represented by the following general formula has a heating temperature of 50 ° C. or higher and 1800 ° C. or lower and a water vapor partial pressure of 10 2 Pa以下の乾燥雰囲で処理して得られることを特徴とする請求項4に記載の活性酸素を含有するオキシアパタイトの製造方法。The method for producing oxyapatite containing active oxygen according to claim 4, which is obtained by treatment in a dry atmosphere of Pa or less.

M1M1 aa M2M2 bb (M3O(M3O 4 ) 6 Y
(式中の(In the formula
M1はCa、Mg、Sr、Ba、Sn、Mn、Fe、Co、Ni、Cu、Zn、Ru、Pb、Cd、Agのうちの少なくとも1種類以上の元素を表し、M1 represents at least one element of Ca, Mg, Sr, Ba, Sn, Mn, Fe, Co, Ni, Cu, Zn, Ru, Pb, Cd, Ag,
M2はSc、Y、La、Sb、Bi、Eu、Nd、Al、Ga、Inのうちの少なくとも1種類以上の元素を表し、M2 represents at least one element of Sc, Y, La, Sb, Bi, Eu, Nd, Al, Ga, In,
M3はP、Si、Mn、As、Cr、V、Ge、B、W、Moのうちの少なくとも1種類以上の元素を表す。M3 represents at least one element of P, Si, Mn, As, Cr, V, Ge, B, W, and Mo.
a+b=10、0.1≦b≦2.0を表す。a + b = 10, 0.1 ≦ b ≦ 2.0.
Yは、OY is O 2−2- を表す。)Represents. )
請求項4に記載の活性酸素を含有するオキシアパタイトの製造方法であって、該一般式(1)中のM1、M2、M3の各々の元素の酸化物、水酸化物、炭酸化物、塩化物、フッ化物、硝酸塩、硫酸塩、アルコキシから選ばれた化合物をa+b=10、0.1≦b≦2.0を満たす組成割合で、加熱温度50℃以上1800℃以下、水蒸気分圧10 2 Pa以下の乾燥雰囲気で反応させて得ることを特徴とする請求項4に記載の活性酸素を含有するオキシアパタイトの製造方法。 The method for producing oxyapatite containing active oxygen according to claim 4 , wherein oxides, hydroxides, carbonates, and chlorides of each element of M1, M2, and M3 in the general formula (1) , fluoride, nitrate, sulfate, a compound selected from alkoxy composition ratio satisfying a + b = 10,0.1 ≦ b ≦ 2.0, the heating temperature 50 ° C. or higher 1800 ° C. or less, the following dry atmosphere water vapor partial pressure 10 2 Pa The method for producing oxyapatite containing active oxygen according to claim 4, wherein the oxyapatite is obtained by reacting with an acid. 請求項5または請求項6に記載の活性酸素を含有するオキシアパタイトの製造方法に、さらに光照射する工程を行うことを特徴とする活性酸素を含有するオキシアパタイトの製造方法。A method for producing active oxygen-containing oxyapatite, comprising the step of further irradiating light to the method for producing active oxygen-containing oxyapatite according to claim 5 or 6. 請求項1〜4のいずれかに記載の活性酸素を含有するオキシアパタイトからなる光触媒。  The photocatalyst which consists of oxyapatite containing the active oxygen in any one of Claims 1-4.
JP2006240041A 2005-09-05 2006-09-05 Oxyapatite containing active oxygen, method for producing the same, and photocatalyst comprising the same Expired - Fee Related JP4766685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240041A JP4766685B2 (en) 2005-09-05 2006-09-05 Oxyapatite containing active oxygen, method for producing the same, and photocatalyst comprising the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005256166 2005-09-05
JP2005256166 2005-09-05
JP2006240041A JP4766685B2 (en) 2005-09-05 2006-09-05 Oxyapatite containing active oxygen, method for producing the same, and photocatalyst comprising the same

Publications (3)

Publication Number Publication Date
JP2007090341A JP2007090341A (en) 2007-04-12
JP2007090341A5 true JP2007090341A5 (en) 2009-10-22
JP4766685B2 JP4766685B2 (en) 2011-09-07

Family

ID=37976626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240041A Expired - Fee Related JP4766685B2 (en) 2005-09-05 2006-09-05 Oxyapatite containing active oxygen, method for producing the same, and photocatalyst comprising the same

Country Status (1)

Country Link
JP (1) JP4766685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078211A (en) * 2007-09-26 2009-04-16 National Institute For Materials Science Photocatalyst
JP6376748B2 (en) * 2013-11-27 2018-08-22 学校法人朝日大学 Teeth bleaching material composition and tooth bleaching method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903167B2 (en) * 2001-06-26 2007-04-11 独立行政法人産業技術総合研究所 Active oxygen generating material
US20050227119A1 (en) * 2002-07-23 2005-10-13 National Institute Of Advanced Indust Sci & Tech Hydraulic composite material having photocatalytic function and method for production thereof
JP2007091582A (en) * 2005-09-05 2007-04-12 Tokyo Institute Of Technology Active oxygen-containing oxy-apatite and its producing method

Similar Documents

Publication Publication Date Title
Kumar et al. Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method
Tõnsuaadu et al. A review on the thermal stability of calcium apatites
JP3678606B2 (en) Metal-modified apatite and method for producing the same
US5780003A (en) Crystalline manganese phosphate compositions
KR101000821B1 (en) Apatite and method for production thereof, and apatite base material
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
CN113244754A (en) General formula AM2O5Application of compound as catalyst for treating ozone at room temperature
JP4766685B2 (en) Oxyapatite containing active oxygen, method for producing the same, and photocatalyst comprising the same
KR101109991B1 (en) Visible light active nanohybrid photocatalyst and manufacuring method thereof
JP2007090341A5 (en)
JP2005219053A (en) Photocatalyst material and its production method
JP2007091582A (en) Active oxygen-containing oxy-apatite and its producing method
Yin et al. First-principles investigations of Ti-substituted hydroxyapatite electronic structure
CN115676896A (en) Amorphous manganese oxide composite material and preparation method and application thereof
KR101109946B1 (en) Visible light active nanohybrid photocatalyst and manufacuring method thereof
Guerra-López et al. Novel synthesis and crystallographic results of zinc substituted hydroxyapatite with high thermal stability
KR100769481B1 (en) Synthetic method of titanium dioxide photocatalysts to change crystal structure by low heat treatment
JP4324660B2 (en) Metal-modified apatite and method for producing the same
JP2005200302A (en) Metal-modified apatite and its manufacturing method
JP6623364B2 (en) Titanium oxide aggregate for photocatalyst and method for producing the same
Nakagawa et al. Fe-substituted hydroxyapatites as catalysts for oxidative decomposition of vocs
Nakagawa et al. Synthesis of hydroxyapatites via wet mechanochemical process for enhanced catalytic decomposition of volatile organic compounds
JP2019137600A (en) Porous complex oxide
Asjadi et al. Titanium and fluoride co-substitution in hydroxyl apatite
Novak Tušar et al. Isomorphous substitution of framework atoms by titanium in VPI-5 aluminophosphate molecular sieve