JP2007089335A - Voltage detection method of power switching element and power conversion device using this - Google Patents

Voltage detection method of power switching element and power conversion device using this Download PDF

Info

Publication number
JP2007089335A
JP2007089335A JP2005276256A JP2005276256A JP2007089335A JP 2007089335 A JP2007089335 A JP 2007089335A JP 2005276256 A JP2005276256 A JP 2005276256A JP 2005276256 A JP2005276256 A JP 2005276256A JP 2007089335 A JP2007089335 A JP 2007089335A
Authority
JP
Japan
Prior art keywords
voltage
power switching
voltage detection
switching element
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005276256A
Other languages
Japanese (ja)
Other versions
JP4773172B2 (en
Inventor
Hironobu Kin
宏信 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2005276256A priority Critical patent/JP4773172B2/en
Publication of JP2007089335A publication Critical patent/JP2007089335A/en
Application granted granted Critical
Publication of JP4773172B2 publication Critical patent/JP4773172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a more highly reliable voltage detection method for surge voltage control and short-circuit protection of power switching elements connected in parallel and a power conversion device using this method. <P>SOLUTION: This device is made up of a power converter comprising a plurality of connected-in-parallel power switching elements 1 each having a high-voltage side terminal 4 and a low-voltage side terminal 5, a control means that controls the control electrode of the power switching elements, and voltage detection circuits structured by connecting in series a plurality of resistors 6, 7 provided between the high-voltage side terminal 4 and the low-voltage side terminal 5 of each power switching element 1. Of the voltage values detected by each voltage detection circuit, the maximum detected voltage value is regarded as the detected voltage value of a plurality of the power switching elements 1 connected in parallel. The control means controls the control electrode of the power switching elements 1 according to the detected voltage value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数個並列接続して構成された電力用スイッチング素子の電圧検出方法及びこれを用いた電力変換装置に関する。   The present invention relates to a voltage detection method for a power switching element configured by connecting a plurality of devices in parallel and a power conversion device using the same.

電力用スイッチング素子を応用した電力変換器は、スイッチング素子の大容量化・高速化に伴い、その応用範囲を広げている。また近年は、サイリスタやGTOのような電流駆動型ゲート素子から、制御性の高い電圧駆動型ゲート素子であるIGBTやMOSFETにスイッチング素子が移行してきている。   Power converters using power switching elements have expanded their application range as the switching elements have larger capacities and higher speeds. In recent years, switching elements have shifted from current-driven gate elements such as thyristors and GTOs to IGBTs and MOSFETs, which are voltage-controlled gate elements with high controllability.

電圧駆動型ゲート素子は、ゲート制御によって素子のターンオフ・ターンオン時に発生するサージ電圧・サージ電流を抑制制御することが可能である。また、スイッチング過渡期の電圧・電流の傾きを自在に制御することも可能である。このゲート制御の例として、IGBTのターンオフ時の素子電圧を検出し、素子電圧が設定レベルを超えるとIGBTのゲートにオン方向のゲート電流を注入し、IGBTを再点弧してIGBTのサージ電圧を抑制す方法が提案されている(例えば特許文献1参照。)。   The voltage-driven gate element can suppress and control the surge voltage / surge current generated when the element is turned off / turned on by gate control. It is also possible to freely control the slope of the voltage / current during the switching transition period. As an example of this gate control, the device voltage at the turn-off time of the IGBT is detected, and when the device voltage exceeds the set level, the gate current in the ON direction is injected into the gate of the IGBT, the IGBT is re-ignited, and the surge voltage of the IGBT A method for suppressing the above has been proposed (see, for example, Patent Document 1).

上記と同様にゲート制御による短絡保護も行われている。この方法は、ゲートがオン状態期間中に素子電圧が短絡と判定されるレベルを超えたとき、IGBTには短絡電流が流れていると判断し、ゲート電圧値を通常オン時の電圧値より下げる。オンゲート電圧値を下げることによってIGBTの飽和電流値が下がるので、短絡電流をこの飽和電流値に制限できる。そして短絡電流を十分低い電流値に制限すれば、短絡発生時でもIGBTを破壊することなくターンオフすることが可能となる(例えば非特許文献1参照。)。
特開2005−33873号公報(第4−5頁、図1) “APPLICATION NOTES IGBTの短絡保護”、AN−984J、International Rectifier社、[平成17年8月9日検索]、インターネット<URL:http://www.irf-japan.com/technical-info/appnotes/an-984j.pdf>
Similarly to the above, short circuit protection by gate control is also performed. In this method, when the device voltage exceeds a level that is determined to be short-circuited while the gate is on, it is determined that a short-circuit current is flowing in the IGBT, and the gate voltage value is normally lower than the voltage value when on. . Since the saturation current value of the IGBT is lowered by lowering the on-gate voltage value, the short-circuit current can be limited to this saturation current value. If the short-circuit current is limited to a sufficiently low current value, it is possible to turn off the IGBT without destroying it even when a short-circuit occurs (see Non-Patent Document 1, for example).
Japanese Patent Laying-Open No. 2005-33873 (page 4-5, FIG. 1) "Short-circuit protection of APPLICATION NOTES IGBT", AN-984J, International Rectifier, [Retrieved August 9, 2005], Internet <URL: http://www.irf-japan.com/technical-info/appnotes/ an-984j.pdf>

特許文献1に示されているサージ電圧抑制、或いは非特許文献1に示されている短絡保護は、IGBTが並列接続されていない場合は問題なく行うことができる。しかしながら、IGBTが複数個並列接続されている場合は下記のような問題がある。   The surge voltage suppression shown in Patent Document 1 or the short-circuit protection shown in Non-Patent Document 1 can be performed without problems when the IGBTs are not connected in parallel. However, when a plurality of IGBTs are connected in parallel, there are the following problems.

通常並列接続されているIGBT間は銅ブスなどの接続導体で接続されており、IGBT間にはその銅ブスのインダクタンス成分が存在する。このインダクタンス成分は微小であるが、IGBTのターンオフ時の高いdi/dtによりその銅ブスのインダクタンス成分に電圧が発生する。そして、電流経路によるインダクタンス成分差と、IGBTのスイッチング特性差によるdi/dtの差により、場合によっては並列接続されたIGBT間で大きい電圧差が生じる。従って、IGBTを多並列接続して用いる場合、任意の1つの素子の素子電圧の検出だけでは、前記ゲート制御によるサージ電圧抑制において、十分なサージ電圧の抑制ができない恐れがあった。   Normally, IGBTs connected in parallel are connected by a connection conductor such as copper bus, and an inductance component of the copper bus exists between the IGBTs. Although this inductance component is very small, a voltage is generated in the inductance component of the copper bus due to high di / dt when the IGBT is turned off. In some cases, a large voltage difference occurs between IGBTs connected in parallel due to the difference in inductance component due to the current path and the difference in di / dt due to the switching characteristic difference of the IGBT. Therefore, when IGBTs are used in a multi-parallel connection, there is a possibility that the surge voltage cannot be sufficiently suppressed by suppressing the surge voltage by the gate control only by detecting the element voltage of any one element.

同様に、短絡発生時には短絡電流による高いdi/dtにより並列接続されたIGBT間の銅ブスのインダクタンス成分により、並列接続されたIGBT間で電圧差が生じる。例えば2並列接続されたIGBTの一方に短絡電流が直に流れ、他方のIGBTには銅ブスを介して短絡電流が流れるものとする。このときIGBTの飽和電流に達するまでは一定のdi/dtで短絡電流は上昇していき、IGBTの素子電圧も上昇して行くが、IGBTが飽和電流に達したとき、2個のIGBT素子電圧は一定値となる。di/dtが上昇期間中に短絡と判定されるレベルの素子電圧を検出できれば、IGBTへの短絡によるダメージを低減でき、前述のゲート制御による短絡保護の効果を高めることができる。しかしながら、その間の素子電圧は、短絡電流の経路によりインダクタンス成分を有する銅ブスにもdi/dtによる電圧が生じるため、2つのIGBT間の素子電圧には差が生じてしまう。   Similarly, when a short circuit occurs, a voltage difference occurs between the IGBTs connected in parallel due to the inductance component of the copper bus between the IGBTs connected in parallel due to high di / dt due to the short circuit current. For example, it is assumed that a short-circuit current flows directly to one of two IGBTs connected in parallel, and a short-circuit current flows to the other IGBT via a copper bus. At this time, the short-circuit current increases at a constant di / dt until the saturation current of the IGBT is reached, and the IGBT element voltage also increases. However, when the IGBT reaches the saturation current, two IGBT element voltages Is a constant value. If an element voltage at a level at which di / dt is determined to be short-circuited during the rising period can be detected, damage due to short-circuiting to the IGBT can be reduced, and the effect of short-circuit protection by gate control described above can be enhanced. However, the device voltage between them has a di / dt voltage also in the copper bus having an inductance component due to the short-circuit current path, so that a difference occurs in the device voltage between the two IGBTs.

従って、IGBTを多並列接続して電力変換装置に適用する場合、1つの素子の素子電圧の検出だけでは、迅速な短絡検出ができない場合があり、短絡保護の効果を期待できない恐れがあった。   Therefore, when IGBTs are connected in multiple parallels and applied to a power conversion device, there is a possibility that rapid short-circuit detection cannot be performed only by detecting the element voltage of one element, and the effect of short-circuit protection may not be expected.

本発明は上記の問題に鑑みて為されたもので、サージ電圧抑制及び短絡保護のためのより信頼性の高い並列接続された電力用スイッチング素子の電圧検出方法及びこれを用いた電力変換装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a voltage detection method for a power switching element connected in parallel with higher reliability for surge voltage suppression and short circuit protection, and a power converter using the same. The purpose is to provide.

上記目的を達成するため、本発明の第1の発明である電力用スイッチング素子の電圧検出方法は、高圧側端子と低圧側端子を有する複数個の電力用スイッチング素子を並列接続して構成した電力変換装置の電力用スイッチング素子の電圧検出方法であって、各々の前記電力用スイッチング素子の前記高圧側端子と前記低圧側端子の間に複数個の抵抗を直列接続して成る電圧検出回路を設け、各々の前記電圧検出回路により検出された電圧検出値のうち最大値となる電圧検出値を、並列接続された前記複数個の電力用スイッチング素子の検出電圧値とすることを特徴としている。   In order to achieve the above object, a voltage detection method for a power switching element according to a first invention of the present invention is a power configured by connecting a plurality of power switching elements having a high voltage side terminal and a low voltage side terminal in parallel. A method for detecting a voltage of a power switching element of a converter, comprising: a voltage detection circuit comprising a plurality of resistors connected in series between the high-voltage side terminal and the low-voltage side terminal of each of the power switching elements. The maximum voltage detection value among the voltage detection values detected by each of the voltage detection circuits is set as a detection voltage value of the plurality of power switching elements connected in parallel.

また、本発明の第2の発明である電力変換装置は、高圧側端子と低圧側端子を有する複数個の電力用スイッチング素子を並列接続して成る電力変換器と、前記電力用スイッチング素子の制御極を制御する制御手段と、各々の前記電力用スイッチング素子の前記高圧側端子と前記低圧側端子の間に設けられた複数個の抵抗を直列接続して成る電圧検出回路と
を具備し、各々の前記電圧検出回路により検出された電圧検出値のうち最大値となる電圧検出値を、並列接続された前記複数個の電力用スイッチング素子の検出電圧値とし、前記制御手段は、前記検出電圧値に応じて前記電力用スイッチング素子の制御極を制御するようにしたことを特徴としている。
The power converter according to the second aspect of the present invention includes a power converter formed by connecting a plurality of power switching elements having a high-voltage side terminal and a low-voltage side terminal in parallel, and control of the power switching element. Control means for controlling the pole, and a voltage detection circuit comprising a plurality of resistors connected in series between the high-voltage side terminal and the low-voltage side terminal of each of the power switching elements, The voltage detection value that is the maximum value among the voltage detection values detected by the voltage detection circuit is set as the detection voltage value of the plurality of power switching elements connected in parallel, and the control means includes the detection voltage value The control pole of the power switching element is controlled according to the above.

本発明によれば、サージ電圧抑制及び短絡保護のためのより信頼性の高い並列接続された電力用スイッチング素子の電圧検出方法及びこれを用いた電力変換装置を提供すること
が可能となる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the voltage detection method of the switching element for power switching with higher reliability for surge voltage suppression and short circuit protection, and a power converter device using the same.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係る電力用スイッチング素子の電圧検出方法を示す回路構成図である。   FIG. 1 is a circuit configuration diagram showing a voltage detection method for a power switching element according to Embodiment 1 of the present invention.

IGBT1A、1B及び1Cには夫々フライホイールダイオード2A、2B及び2Cが逆並列に接続されIGBTモジュールを構成している。IGBT1A、IGBT1B及びIGBT1Cの夫々のコレクタ端子4A、4B及び4Cが正側の接続導体3Pに、IGBT1A、IGBT1B及びIGBT1Cの夫々のエミッタ端子5A、5B及び5Cが負側の接続導体3Nに接続され、IGBT1A、1B及び1Cは並列回路を形成している。   Flywheel diodes 2A, 2B, and 2C are connected in reverse parallel to IGBTs 1A, 1B, and 1C, respectively, to form an IGBT module. The collector terminals 4A, 4B, and 4C of the IGBT 1A, IGBT 1B, and IGBT 1C are connected to the positive connection conductor 3P, and the emitter terminals 5A, 5B, and 5C of the IGBT 1A, IGBT 1B, and IGBT 1C are connected to the negative connection conductor 3N, The IGBTs 1A, 1B and 1C form a parallel circuit.

IGBT1A、IGBT1B及びIGBT1Cのコレクタ−エミッタ間には分圧抵抗6A及び7A、分圧抵抗6B及び7B並びに分圧抵抗6C及び7Cの直列回路が夫々接続されており、これらの直列回路の中点はIGBT1A、1B及び1Cのコレクタ−エミッタ間の電圧検出信号として、最大値選択回路20に入力されている。そして最大値選択回路20は、IGBT1A、1B及び1Cの各コレクタ−エミッタ電圧の最大値を並列接続されたIGBT1A、1B及び1Cのコレクタ−エミッタ電圧Vceとして選択する。   A series circuit of voltage dividing resistors 6A and 7A, voltage dividing resistors 6B and 7B, and voltage dividing resistors 6C and 7C is connected between the collector and emitter of IGBT 1A, IGBT 1B, and IGBT 1C, respectively. The voltage detection signal between the collectors and emitters of the IGBTs 1A, 1B, and 1C is input to the maximum value selection circuit 20. The maximum value selection circuit 20 selects the maximum value of the collector-emitter voltages of the IGBTs 1A, 1B, and 1C as the collector-emitter voltage Vce of the IGBTs 1A, 1B, and 1C connected in parallel.

図示したようにIGBTモジュールの並列接続用の接続導体3P及び3Nにはインダクタンス成分が存在する。このインダクタンス成分は各IGBTのターンオフ時、または短絡が発生したときその短絡電流のdi/dtにより電圧を発生する。そして電流経路によるインダクタンス成分差と各IGBTのスイッチング特性差によるdi/dtの差により各IGBTのコレクタ−エミッタ電圧には電圧差が生じる。   As shown, an inductance component exists in the connection conductors 3P and 3N for parallel connection of the IGBT module. This inductance component generates a voltage by di / dt of the short-circuit current when each IGBT is turned off or when a short-circuit occurs. A voltage difference is generated in the collector-emitter voltage of each IGBT due to a difference in di / dt due to a difference in inductance component due to the current path and a switching characteristic difference between the IGBTs.

ゲート制御によるサージ電圧抑制またはゲート制御による短絡保護を行なう場合、並列接続されたIGBTのうち最も高い素子電圧による制御が必要である。   When performing surge voltage suppression by gate control or short-circuit protection by gate control, control by the highest element voltage is necessary among IGBTs connected in parallel.

従ってこの実施例1に示した方法によれば、並列接続されたIGBTに各々分圧抵抗を接続してIGBTの素子電圧を各々検出し、これらの素子電圧値を比較して最大値を選択してゲート制御のための素子電圧値とするので、並列接続用の接続導体および各IGBTの特性差の影響がなくなり、ゲート制御によるサージ電圧抑制および短絡保護の性能が大幅に向上する。   Therefore, according to the method shown in the first embodiment, voltage dividing resistors are connected to the IGBTs connected in parallel to detect the device voltages of the IGBTs, and the device voltage values are compared to select the maximum value. Thus, the element voltage value for gate control is eliminated, and the influence of the characteristic difference between the connection conductor for parallel connection and each IGBT is eliminated, and the performance of surge voltage suppression and short circuit protection by gate control is greatly improved.

尚、以上の説明においては、IGBTの並列接続数が3の場合について説明したが、この並列接続数は2以上の任意の数でも良いことは明らかである。これは以下の実施例2以降についても同様である。   In the above description, the case where the number of IGBTs connected in parallel is 3 has been described, but it is obvious that the number of parallel connections may be any number of 2 or more. The same applies to the second and subsequent embodiments.

図2は本発明の実施例2に係る電力用スイッチング素子の電圧検出方法を示す回路構成図である。この実施例2の各部について、図1の実施例1に係る電力用スイッチング素子の電圧検出方法を示す回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、電圧検出用分圧抵抗6A及び7A、6B及び7B並びに6C及び7Cの夫々に並列にコンデンサ8A及び9A、8B及び9B並びに8C及び9Cを接続した点である。   FIG. 2 is a circuit configuration diagram illustrating a voltage detection method for a power switching element according to a second embodiment of the present invention. In the second embodiment, the same parts as those in the circuit configuration diagram showing the voltage detection method for the power switching device according to the first embodiment shown in FIG. The difference between the second embodiment and the first embodiment is that capacitors 8A and 9A, 8B and 9B, and 8C and 9C are connected in parallel with the voltage detection voltage dividing resistors 6A and 7A, 6B and 7B, and 6C and 7C, respectively. Is a point.

この実施例2で示した方法によれば、各々の分圧抵抗に並列にコンデンサを接続することによって、検出された素子電圧値が入力される図示しないゲート制御回路内のストレージキャパシタンス分を補償することが可能となる。従って、IGBTのスイッチング時における素子電圧の速い変化に追従することができ、ゲート制御によるサージ電圧抑制および短絡保護の性能を更に向上させることが可能となる。   According to the method shown in the second embodiment, by connecting a capacitor in parallel to each voltage dividing resistor, a storage capacitance in a gate control circuit (not shown) to which the detected element voltage value is input is compensated. It becomes possible. Therefore, it is possible to follow a fast change in the element voltage at the time of switching of the IGBT, and it is possible to further improve the performance of surge voltage suppression and short circuit protection by gate control.

図3は本発明の実施例3に係る電力用スイッチング素子の電圧検出方法を示す回路構成図である。この実施例3の各部について、図1の実施例1に係る電力用スイッチング素子の電圧検出方法を示す回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が実施例1と異なる点は、IGBT1A、1B及び1Cの高圧側の電圧検出点を、夫々のIGBTモジュールの主端子であるコレクタ端子4A、4B及び4Cに代え、夫々のIGBTモジュールのコレクタ電圧検出用端子10A、10B及び10Cとした点である。   FIG. 3 is a circuit configuration diagram illustrating a voltage detection method for a power switching element according to a third embodiment of the present invention. In the third embodiment, the same parts as those in the circuit configuration diagram showing the voltage detection method of the power switching element according to the first embodiment shown in FIG. The third embodiment is different from the first embodiment in that the high voltage side voltage detection points of the IGBTs 1A, 1B and 1C are replaced with collector terminals 4A, 4B and 4C which are main terminals of the respective IGBT modules, and the respective IGBT modules. The collector voltage detection terminals 10A, 10B, and 10C are used.

この実施例3の方法によれば、分圧抵抗をIGBTのコレクタ端子−エミッタ端子間ではなく、コレクタ電圧検出用端子−エミッタ端子間に接続することによって、IGBTモジュール内の導体ブスおよびワイヤーボンディングのインダクタンス成分の影響を除去することが可能となる。従ってゲート制御によるサージ電圧抑制および短絡保護の性能が更に向上する。   According to the method of the third embodiment, by connecting the voltage dividing resistor not between the collector terminal and the emitter terminal of the IGBT but between the collector voltage detection terminal and the emitter terminal, the conductor bus and the wire bonding in the IGBT module are connected. It is possible to remove the influence of the inductance component. Therefore, surge voltage suppression and short circuit protection performance by gate control is further improved.

図4は本発明の実施例4に係る電力用スイッチング素子の電圧検出方法を示す回路構成図である。この実施例4の各部について、図1の実施例1に係る電力用スイッチング素子の電圧検出方法を示す回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例4が実施例1と異なる点は、IGBT1A、1B及び1Cの低圧側の電圧検出点を、夫々のIGBTモジュールの主端子であるエミッタ端子5A、5B及び5Cに代え、夫々のIGBTモジュールのゲート制御用の補助エミッタ端子11A、11B及び10Cとした点である。   FIG. 4 is a circuit configuration diagram illustrating a voltage detection method for a power switching element according to a fourth embodiment of the present invention. In the fourth embodiment, the same parts as those in the circuit configuration diagram illustrating the voltage detection method for the power switching element according to the first embodiment shown in FIG. The fourth embodiment is different from the first embodiment in that the low voltage side voltage detection points of the IGBTs 1A, 1B and 1C are replaced with the emitter terminals 5A, 5B and 5C which are main terminals of the respective IGBT modules, and the respective IGBT modules. The auxiliary emitter terminals 11A, 11B, and 10C for gate control are used.

ゲート制御用の補助エミッタ端子とは、ゲート用負側端子のことであり、主回路のエミッタ端子とは異なり、エミッタ側のIGBTチップ近傍から直接配線を取り出す内部配線構造となっている。   The auxiliary emitter terminal for gate control is a negative terminal for gate, and unlike the emitter terminal of the main circuit, has an internal wiring structure in which wiring is directly taken out from the vicinity of the IGBT chip on the emitter side.

この実施例4の電圧検出方法によれば、分圧抵抗をIGBTのコレクタ端子−エミッタ端子間ではなく、コレクタ端子−補助エミッタ端子間に接続することによって、IGBTモジュール内の配線のインダクタンス成分の影響を除去することが可能となる。従って実施例3の方法と同様に、ゲート制御によるサージ電圧抑制および短絡保護の性能が更に向上する。   According to the voltage detection method of the fourth embodiment, by connecting the voltage dividing resistor between the collector terminal and the auxiliary emitter terminal instead of between the collector terminal and the emitter terminal of the IGBT, the influence of the inductance component of the wiring in the IGBT module is affected. Can be removed. Therefore, similarly to the method of the third embodiment, the performance of surge voltage suppression and short circuit protection by gate control is further improved.

図5は本発明の実施例5に係る電力用スイッチング素子の電圧検出方法を示す回路構成図である。この図5においては、並列接続されたIGBTのうちの1素子であるIGBT1Aの電圧検出部についての回路構成が示されており、他の部分については図示を省略している。   FIG. 5 is a circuit configuration diagram illustrating a voltage detection method for a power switching element according to a fifth embodiment of the present invention. In FIG. 5, the circuit configuration of the voltage detection unit of the IGBT 1A, which is one element of the IGBTs connected in parallel, is shown, and the other parts are not shown.

IGBT1Aには、フライホイールダイオード2Aが逆並列接続され、IGBTモジュールのコレクタ端子4A、エミッタ端子5Aは図示しない他のIGBTと並列接続されている。コレクタ端子4Aとエミッタ端子5A間には、分圧抵抗6A1及び7A1の直列回路が接続され、分圧抵抗6A1及び7A1の中点からコレクタ−エミッタ電圧Vce検出値1が検出され、図示しない最大値選択回路1に与えられる。   The flywheel diode 2A is connected in reverse parallel to the IGBT 1A, and the collector terminal 4A and emitter terminal 5A of the IGBT module are connected in parallel to other IGBTs not shown. A series circuit of voltage dividing resistors 6A1 and 7A1 is connected between the collector terminal 4A and the emitter terminal 5A, and the collector-emitter voltage Vce detection value 1 is detected from the middle point of the voltage dividing resistors 6A1 and 7A1, and the maximum value (not shown) It is given to the selection circuit 1.

同様に、コレクタ電圧検出用端子10Aと補助エミッタ端子11A間には分圧抵抗6A1及び7A1の直列回路が接続され、分圧抵抗6A2及び7A2の中点からコレクタ−エミッタ電圧Vce検出値2が検出され、図示しない最大値選択回路2の入力となる。   Similarly, a series circuit of voltage dividing resistors 6A1 and 7A1 is connected between the collector voltage detecting terminal 10A and the auxiliary emitter terminal 11A, and the collector-emitter voltage Vce detection value 2 is detected from the middle point of the voltage dividing resistors 6A2 and 7A2. Then, it becomes the input of the maximum value selection circuit 2 (not shown).

前述したように、IGBTモジュールのコレクタ端子4Aと電圧検出用コレクタ端子10A即ちモジュール内IGBTチップのコレクタ間には、接続導体やワイヤーボンディングがあり、インダクタンス成分が存在する。このインダクタンス成分はdi/dtにより電圧を発生するので、コレクタ端子4Aの検出電圧は電圧検出用コレクタ端子10Aの検出電圧とは異なる値となる。ゲート制御によるサージ電圧抑制は、主にターンオフ時の電圧サージを検出する必要があるが、この時の電流は減少方向となるので、di/dtによるこのインダクタンス成分に発生する電圧は、IGBTチップのコレクタ電圧に対しモジュールのコレクタ端子4Aの電圧を下げる方向に作用する。これはエミッタ側についても同様である。従って、サージ電圧抑制時には、IGBTチップのコレクタ電圧測定用であるコレクタ電圧検出用端子10A及び補助エミッタ11A間の電圧を検出すれば検出精度の向上を図ることができる。   As described above, there are connecting conductors and wire bonding between the collector terminal 4A of the IGBT module and the collector terminal 10A for voltage detection, that is, the collector of the IGBT chip in the module, and an inductance component exists. Since this inductance component generates a voltage by di / dt, the detection voltage at the collector terminal 4A is different from the detection voltage at the voltage detection collector terminal 10A. Surge voltage suppression by gate control mainly needs to detect a voltage surge at turn-off, but the current at this time decreases, so the voltage generated in this inductance component due to di / dt is the IGBT chip's voltage. It acts in a direction to lower the voltage at the collector terminal 4A of the module with respect to the collector voltage. The same applies to the emitter side. Therefore, when the surge voltage is suppressed, detection accuracy can be improved by detecting the voltage between the collector voltage detection terminal 10A for measuring the collector voltage of the IGBT chip and the auxiliary emitter 11A.

逆に、ゲート制御による短絡保護は、短絡電流が増加方向となるので、di/dtによってインダクタンス成分に発生する電圧は、IGBTチップのコレクタ電圧に対しモジュールのコレクタ端子4Aの電圧を上げる方向に作用する。これはエミッタ側についても同様である。従って、短絡保護時には、モジュールのコレクタ端子4A及びエミッタ5A間の電圧を検出すればより検出感度が高く速い保護動作を行うことが可能となる。   Conversely, short-circuit protection by gate control increases the short-circuit current, so that the voltage generated in the inductance component due to di / dt acts to increase the voltage at the collector terminal 4A of the module relative to the collector voltage of the IGBT chip. To do. The same applies to the emitter side. Therefore, at the time of short-circuit protection, if the voltage between the collector terminal 4A and the emitter 5A of the module is detected, it is possible to perform a fast protection operation with higher detection sensitivity.

以上説明したように、本発明の実施例5においては、ゲート制御によるサージ電圧抑制のための分圧抵抗をIGBTのコレクタ電圧検出用端子−補助エミッタ端子間に接続し、短絡保護のための分圧抵抗をコレクタ端子−エミッタ端子間に接続し、夫々の制御に適した素子電圧検出方法をとることによって、サージ電圧抑制に関してはIGBTモジュール内の導体ブスおよびワイヤーボンディングのインダクタンス成分の影響を除くことができ、短絡保護に関してはIGBTモジュール内の導体ブスおよびワイヤーボンディングのインダクタンス成分に発生する電圧を積極的に利用することが可能となる。従って、ゲート制御によるサージ電圧抑制および短絡保護の性能が大幅に向上する。   As described above, in the fifth embodiment of the present invention, the voltage dividing resistor for suppressing the surge voltage by the gate control is connected between the collector voltage detecting terminal of the IGBT and the auxiliary emitter terminal, and the dividing resistance for the short circuit protection is provided. By connecting a piezoresistor between the collector terminal and the emitter terminal and adopting an element voltage detection method suitable for each control, the influence of the conductor bus in the IGBT module and the inductance component of wire bonding is eliminated with regard to surge voltage suppression. With regard to short circuit protection, it is possible to positively use the voltage generated in the inductance component of the conductor bus and wire bonding in the IGBT module. Therefore, surge voltage suppression and short circuit protection performance by gate control is greatly improved.

実施例2で述べたように、検出された素子電圧値が入力される図示しないゲート制御回路内のストレージキャパシタンス分を補償するため、分圧抵抗6A1及び7A1に並列にコンデンサを接続しても良い。これは、分圧抵抗6A2及び7A2についても同様である。   As described in the second embodiment, a capacitor may be connected in parallel with the voltage dividing resistors 6A1 and 7A1 in order to compensate for the storage capacitance in the gate control circuit (not shown) to which the detected element voltage value is input. . The same applies to the voltage dividing resistors 6A2 and 7A2.

尚、IGBTモジュール内部のコレクタ側のインダクタンス成分に比べて、エミッタ側のインダクタンス成分は小さいので、コレクタ−エミッタ電圧Vce検出値2用の低圧側の検出端子としては補助エミッタ端子11Aに代えてエミッタ端子5Aを用いても良い。   Since the inductance component on the emitter side is smaller than the inductance component on the collector side inside the IGBT module, the low-voltage side detection terminal for the collector-emitter voltage Vce detection value 2 is replaced by an emitter terminal instead of the auxiliary emitter terminal 11A. 5A may be used.

図6は本発明の実施例6に係る電力用スイッチング素子の電圧検出方法を示す回路構成図である。   FIG. 6 is a circuit configuration diagram showing a voltage detection method for a power switching element according to Embodiment 6 of the present invention.

IGBT1A、1B及び1Cには夫々フライホイールダイオード2A、2B及び2Cが逆並列に接続されIGBTモジュールを構成している。IGBT1A、IGBT1B及びIGBT1Cの夫々のコレクタ端子4A、4B及び4Cが正側の接続導体3Pに、IGBT1A、IGBT1B及びIGBT1Cの夫々のエミッタ端子5A、5B及び5Cが負側の接続導体3Nに接続され、IGBT1A、1B及び1Cは並列回路を形成している。そして、上記のフライホイールダイオード2A、2B及び2Cを夫々逆並列に接続したIGBT1A、1B及び1C並びに正側及び負側の接続導体3P、3Nは構造的に一体化されIGBTユニット30を形成している。   Flywheel diodes 2A, 2B, and 2C are connected in reverse parallel to IGBTs 1A, 1B, and 1C, respectively, to form an IGBT module. The collector terminals 4A, 4B, and 4C of the IGBT 1A, IGBT 1B, and IGBT 1C are connected to the positive connection conductor 3P, and the emitter terminals 5A, 5B, and 5C of the IGBT 1A, IGBT 1B, and IGBT 1C are connected to the negative connection conductor 3N, The IGBTs 1A, 1B and 1C form a parallel circuit. The IGBTs 1A, 1B and 1C connected to the flywheel diodes 2A, 2B and 2C in reverse parallel and the positive and negative connection conductors 3P and 3N are structurally integrated to form an IGBT unit 30. Yes.

IGBTコレクタ側の正側接続導体3AのIGBTユニット30内における長手方向の中間点を点Pとし、この点Pと点Pに物理的に最も近いIGBT1B(図7ではIGBT1Bが最も近い素子としている)のエミッタ端子5Bの間には、IGBTユニット30のコレクタ−エミッタ電圧検出用の分圧抵抗6U及び7Uの直列回路が接続されている。そして、分圧抵抗6U及び7Uの中点で検出されたIGBTユニット30のコレクタ−エミッタ電圧をVce検出値として図示しないゲート制御部へ出力する。   An intermediate point in the longitudinal direction of the positive side connecting conductor 3A on the IGBT collector side in the IGBT unit 30 is a point P, and the IGBT 1B physically closest to the point P and the point P (in FIG. 7, the IGBT 1B is the closest element) A series circuit of voltage-dividing resistors 6U and 7U for detecting the collector-emitter voltage of the IGBT unit 30 is connected between the emitter terminals 5B. Then, the collector-emitter voltage of the IGBT unit 30 detected at the midpoint of the voltage dividing resistors 6U and 7U is output as a Vce detection value to a gate control unit (not shown).

短絡保護時の電圧検出は、精度より寧ろ如何に早く短絡による電圧が検出できるかが問題となる。IGBTが複数台並列接続して構成されたIGBTユニットの場合、各IGBTのコレクタ−エミッタ電圧を検出する必要はなく、短絡時にユニット全体でコレクタ−エミッタ電圧ができるだけ高くなる1点で検出できれば良い。また、前述したように、短絡電流のdi/dtによってIGBTモジュール内の導体ブスおよびワイヤーボンディングのインダクタンス成分に発生する電圧を利用することにより、より効果的に電圧検出ができる。   A problem with voltage detection during short-circuit protection is how quickly a voltage due to a short-circuit can be detected rather than accuracy. In the case of an IGBT unit configured by connecting a plurality of IGBTs in parallel, it is not necessary to detect the collector-emitter voltage of each IGBT, and it is only necessary to be able to detect at one point where the collector-emitter voltage becomes as high as possible in the entire unit when a short circuit occurs. Further, as described above, the voltage can be detected more effectively by using the voltage generated in the conductor bus in the IGBT module and the inductance component of the wire bonding by the di / dt of the short-circuit current.

以上により、並列接続されたIGBTモジュールの短絡時の共通のコレクタ電圧としては、IGBTモジュールコレクタ端子接続用の接続導体の電圧を検出し、これをIGBTユニット全体の短絡時のコレクタ電圧とすることが可能となる。ただし、短絡経路により接続導体のインダクタンス成分に発生する電圧の方向および大きさが変わってくるため、誤差を最小化するため接続導体の中間点をコレクタ電圧検出点とする。エミッタ側は、接続導体の中間点に最も近いIGBTモジュールのエミッタ端子をエミッタ電圧検出点とする。   As described above, as the common collector voltage when the IGBT modules connected in parallel are short-circuited, the voltage of the connection conductor for connecting the IGBT module collector terminal is detected, and this is used as the collector voltage when the entire IGBT unit is short-circuited. It becomes possible. However, since the direction and magnitude of the voltage generated in the inductance component of the connection conductor varies depending on the short-circuit path, the intermediate point of the connection conductor is set as the collector voltage detection point in order to minimize the error. On the emitter side, the emitter terminal of the IGBT module closest to the intermediate point of the connection conductor is used as the emitter voltage detection point.

この本発明の実施例6においては、IGBTモジュールが並列接続されてなるIGBTユニットの短絡保護のためのコレクタ−エミッタ電圧検出は、分圧抵抗をIGBTコレクタ端子接続用接続導体の中間点と、この中間点に最も近いIGBTモジュールのエミッタ端子間に1回路のみ接続することによって、短絡保護の性能を寧ろ向上させ、また主回路およびゲート回路の小型化を図ることができる。   In the sixth embodiment of the present invention, the collector-emitter voltage detection for short-circuit protection of the IGBT unit in which the IGBT modules are connected in parallel, the voltage dividing resistor is connected to the intermediate point of the connecting conductor for connecting the IGBT collector terminal, By connecting only one circuit between the emitter terminals of the IGBT module closest to the intermediate point, the performance of short circuit protection can be improved, and the size of the main circuit and gate circuit can be reduced.

この実施例6の場合も、実施例2で述べたように、検出された素子電圧値が入力される図示しないゲート制御回路内のストレージキャパシタンス分を補償するため、分圧抵抗6B及び7Bに並列にコンデンサを接続しても良い。   Also in the sixth embodiment, as described in the second embodiment, in order to compensate for the storage capacitance in the gate control circuit (not shown) to which the detected element voltage value is input, the voltage dividing resistors 6B and 7B are connected in parallel. A capacitor may be connected to the capacitor.

尚、上記において正側の接続導体の中間点を点Pとしたが、逆に負側の接続導体の中間点を点Pとし、点Pに最も近いIGBTのコレクタ端子と点P間の電圧を検出するようにしても良い。   In the above, the intermediate point of the positive connection conductor is point P, but conversely, the intermediate point of the negative connection conductor is point P, and the voltage between the collector terminal of the IGBT closest to point P and the point P is the point P. You may make it detect.

図7は本発明の実施例7に係る電力用スイッチング素子の電圧検出方法を用いた電力変換装置のブロック構成図である。電力変換器40は変換回路にIGBT等の電力用スイッチング素子を並列接続して適用し、例えば直流電源からの直流を交流に変換して電源系統と連系するように構成されている。   FIG. 7 is a block configuration diagram of a power conversion device using a voltage detection method for a power switching element according to a seventh embodiment of the present invention. The power converter 40 is applied by connecting a power switching element such as an IGBT in parallel to the conversion circuit, and is configured to convert a direct current from a direct current power source into an alternating current and link it with the power supply system, for example.

この電力変換器40内部のIGBTの並列接続部の素子電圧は、図5の実施例5で説明したような方法によって、最大値選択回路で最大値が選択されたあとのVce検出値1及びVce検出値2が得られる。   The element voltage of the parallel connection portion of the IGBT in the power converter 40 is determined by the method described in the fifth embodiment of FIG. 5 and the Vce detection value 1 and Vce after the maximum value is selected by the maximum value selection circuit. Detection value 2 is obtained.

Vce検出値1は、短絡判定回路41でIGBTがオン状態のとき所定値以上かどうか判定され、これが所定値以上であれば、短絡状態と判断し、短絡保護ゲート制御回路42でゲート電圧を絞ったあと、保護のためのオフ動作を行う。   The Vce detection value 1 is determined by the short circuit determination circuit 41 to determine whether or not it is equal to or greater than a predetermined value when the IGBT is on. If this is equal to or greater than the predetermined value, it is determined as a short circuit condition and the short circuit protection gate control circuit 42 reduces the gate voltage. After that, turn off for protection.

また、Vce検出値2は、サージ判定回路43でIGBTがオフ動作を始めたとき所定値以上かどうか判定され、これが所定値以上であれば、サージ電圧過大と判断し、サージ抑制ゲート制御回路44によって再度ゲート電流を流してサージ電圧を抑制する。   Further, the Vce detection value 2 is determined by the surge determination circuit 43 to determine whether it is equal to or greater than a predetermined value when the IGBT starts an off operation. If this is equal to or greater than the predetermined value, it is determined that the surge voltage is excessive, and the surge suppression gate control circuit 44 In order to suppress the surge voltage by supplying a gate current again.

以上説明したように本発明の実施例2の電圧検出方法を用いて短絡保護及びサージ電圧抑制制御を行うことが可能な電力変換装置を提供することができる。   As described above, it is possible to provide a power converter capable of performing short-circuit protection and surge voltage suppression control using the voltage detection method according to the second embodiment of the present invention.

尚、本発明の実施例1、実施例2、実施例3、実施例4及び実施例6の電圧検出方法を用いても同様に短絡保護及びサージ電圧抑制制御を行うことが可能な電力変換装置を提供することができることは明らかである。これらの場合はVce検出値1とVce検出値2が等しいので、短絡判定回路41とサージ判定回路43の入力のVce検出値は同一となる。   In addition, even if it uses the voltage detection method of Example 1, Example 2, Example 3, Example 4 and Example 6 of this invention, the power converter device which can perform a short circuit protection and surge voltage suppression control similarly. It is clear that can be provided. In these cases, since the Vce detection value 1 and the Vce detection value 2 are equal, the Vce detection values input to the short circuit determination circuit 41 and the surge determination circuit 43 are the same.

本発明の実施例1に係る電力用スイッチング素子の電圧検出方法を示す回路構成図。The circuit block diagram which shows the voltage detection method of the switching element for electric power which concerns on Example 1 of this invention. 本発明の実施例2に係る電力用スイッチング素子の電圧検出方法を示す回路構成図。The circuit block diagram which shows the voltage detection method of the switching element for electric power which concerns on Example 2 of this invention. 本発明の実施例3に係る電力用スイッチング素子の電圧検出方法を示す回路構成図。The circuit block diagram which shows the voltage detection method of the switching element for electric power which concerns on Example 3 of this invention. 本発明の実施例4に係る電力用スイッチング素子の電圧検出方法を示す回路構成図。The circuit block diagram which shows the voltage detection method of the switching element for electric power which concerns on Example 4 of this invention. 本発明の実施例5に係る電力用スイッチング素子の電圧検出方法を示す回路構成図。The circuit block diagram which shows the voltage detection method of the switching element for electric power which concerns on Example 5 of this invention. 本発明の実施例6に係る電力用スイッチング素子の電圧検出方法を示す回路構成図。The circuit block diagram which shows the voltage detection method of the switching element for electric power which concerns on Example 6 of this invention. 本発明の実施例7に係る電力用スイッチング素子の電圧検出方法を用いた電力変換装置のブロック構成図。The block block diagram of the power converter device using the voltage detection method of the switching element for electric power which concerns on Example 7 of this invention.

符号の説明Explanation of symbols

1A、1B、1C IGBT
2A、2B、2C フライホイールダイオード
3P、3N 接続導体
4A、4B、4C コレクタ端子
5A、5B、5C エミッタ端子
6A、6B、6C、6U,7A、7B、7C、7U 分圧抵抗
8A、8B、8C、9A、9B、9C コンデンサ
10A、10B、10C 電圧検出用エミッタ端子
11A、11B、11C 補助エミッタ端子
20 最大値選択回路
30 IGBTユニット
40 電力変換器
41 短絡判定回路
42 短絡保護ゲート制御回路
43 サージ判定回路
44 サージ抑制ゲート制御回路

1A, 1B, 1C IGBT
2A, 2B, 2C Flywheel diode 3P, 3N Connecting conductors 4A, 4B, 4C Collector terminals 5A, 5B, 5C Emitter terminals 6A, 6B, 6C, 6U, 7A, 7B, 7C, 7U Voltage dividing resistors 8A, 8B, 8C , 9A, 9B, 9C Capacitors 10A, 10B, 10C Emitter terminals 11A, 11B, 11C for voltage detection Auxiliary emitter terminal 20 Maximum value selection circuit 30 IGBT unit 40 Power converter 41 Short circuit determination circuit 42 Short circuit protection gate control circuit 43 Surge determination Circuit 44 Surge suppression gate control circuit

Claims (12)

高圧側端子と低圧側端子を有する複数個の電力用スイッチング素子を並列接続して構成した電力変換装置の電力用スイッチング素子の電圧検出方法であって、
各々の前記電力用スイッチング素子の前記高圧側端子と前記低圧側端子の間に複数個の抵抗を直列接続して成る電圧検出回路を設け、
各々の前記電圧検出回路により検出された電圧検出値のうち最大値となる電圧検出値を、並列接続された前記複数個の電力用スイッチング素子の検出電圧値とすることを特徴とする電力用スイッチング素子の電圧検出方法。
A voltage detection method for a power switching element of a power converter configured by connecting a plurality of power switching elements having a high-voltage side terminal and a low-voltage side terminal in parallel,
A voltage detection circuit comprising a plurality of resistors connected in series between the high-voltage side terminal and the low-voltage side terminal of each of the power switching elements;
The voltage switching value that is the maximum value among the voltage detection values detected by each of the voltage detection circuits is set as a detection voltage value of the plurality of power switching elements connected in parallel. Voltage detection method for the element.
前記高圧側端子は、
前記電力用スイッチング素子用のモジュールに設けられた前記電力用スイッチング素子用の高圧側電圧検出用端子であることを特徴とする請求項1に記載の電力用スイッチング素子の電圧検出方法。
The high voltage side terminal is
2. The voltage detection method for a power switching element according to claim 1, wherein the voltage detection terminal is a high voltage side voltage detection terminal for the power switching element provided in the module for the power switching element.
前記低圧側端子は、
前記電力用スイッチング素子用のモジュールに設けられた前記電力用スイッチング素子用の低圧側制御用端子であることを特徴とする請求項1に記載の電力用スイッチング素子の電圧検出方法。
The low-voltage side terminal is
2. The voltage detection method for a power switching element according to claim 1, wherein the power switching element is a low-voltage side control terminal for the power switching element provided in the module for the power switching element.
複数個の高圧側端子と少なくとも1個の低圧側端子を有する複数個の電力用スイッチング素子を並列接続して構成した電力変換装置の電力用スイッチング素子の電圧検出方法であって、
各々の前記電力用スイッチング素子の第1の前記高圧側端子と前記低圧側端子との間に複数個の抵抗を直列接続して成る第1の電圧検出回路と、
各々の前記電力用スイッチング素子の第2の前記高圧側端子と前記低圧側端子との間に複数個の抵抗を直列接続して成る第2の電圧検出回路を設け、
各々の前記第1の電圧検出回路により検出された電圧検出値のうち最大値となる電圧検出値を、複数個の前記電力用スイッチング素子が並列接続してなる該電力用スイッチング素子ユニットの短絡保護用検出電圧値とし、
各々の前記第2の電圧検出回路により検出された電圧検出値のうち最大値となる電圧検出値を、複数個の前記電力用スイッチング素子が並列接続してなる該電力用スイッチング素子ユニットのサージ電圧抑制制御用検出電圧値
することを特徴とする電力用スイッチング素子の電圧検出方法。
A method for detecting a voltage of a power switching element of a power converter configured by connecting in parallel a plurality of power switching elements having a plurality of high-voltage side terminals and at least one low-voltage side terminal,
A first voltage detection circuit comprising a plurality of resistors connected in series between the first high-voltage side terminal and the low-voltage side terminal of each of the power switching elements;
A second voltage detection circuit comprising a plurality of resistors connected in series between the second high-voltage side terminal and the low-voltage side terminal of each of the power switching elements;
Short-circuit protection of the power switching element unit in which a plurality of power switching elements are connected in parallel to the voltage detection value that is the maximum value among the voltage detection values detected by each of the first voltage detection circuits. Detection voltage value for
Among the voltage detection values detected by each of the second voltage detection circuits, the voltage detection value that is the maximum value is used as the surge voltage of the power switching element unit in which a plurality of power switching elements are connected in parallel. A voltage detection method for a switching element for power, wherein the detection voltage value for suppression control is used.
前記高圧側端子は前記電力用スイッチング素子用のモジュールに設けられた前記電力用スイッチング素子用の高圧側電圧検出用端子及び高圧側主端子を備え、
前記第1の電圧検出回路用の前記高圧側端子は前記高圧側主端子とし、
前記第2の電圧検出回路用の前記高圧側端子は前記高圧側電圧検出用端子としたことを特徴とする請求項4に記載の電力用スイッチング素子の電圧検出方法。
The high voltage side terminal includes a high voltage side voltage detection terminal and a high voltage side main terminal for the power switching element provided in the module for the power switching element,
The high voltage side terminal for the first voltage detection circuit is the high voltage side main terminal;
5. The voltage detection method for a power switching element according to claim 4, wherein the high voltage side terminal for the second voltage detection circuit is the high voltage side voltage detection terminal.
前記低圧側端子は前記電力用スイッチング素子用のモジュールに設けられた前記電力用スイッチング素子用の低圧側制御用端子及び低圧側主端子を備え、
前記第1の電圧検出回路用の前記高圧側端子は前記低圧側主端子とし、
前記第2の電圧検出回路用の前記低圧側端子は前記低圧側制御用端子としたことを特徴とする請求項4に記載の電力用スイッチング素子の電圧検出方法。
The low voltage side terminal comprises a low voltage side control terminal and a low voltage side main terminal for the power switching element provided in the module for the power switching element,
The high-voltage side terminal for the first voltage detection circuit is the low-voltage side main terminal;
5. The voltage detection method for a power switching element according to claim 4, wherein the low voltage side terminal for the second voltage detection circuit is the low voltage side control terminal.
複数個の電力用スイッチング素子を正側及び負側の接続導体を介し、この接続導体の長手方向に配列して並列接続した電力用スイッチング素子ユニットの電圧検出方法において、
前記正側の接続導体の中間点と、この中間点に最も近い前記電力用スイッチング素子の低圧側端子の間、若しくは
前記負側の接続導体の中間点と、この中間点に最も近い前記電力用スイッチング素子の高圧圧側端子の間に複数個の抵抗を直列接続して成る電圧検出回路を設け、
この電圧検出回路の電圧検出値を、並列接続された前記複数個の電力用スイッチング素子の検出電圧値とすることを特徴とする電力用スイッチング素子の電圧検出方法。
In the voltage detection method of the power switching element unit, in which a plurality of power switching elements are arranged in parallel in the longitudinal direction of the connection conductors via the positive and negative connection conductors,
Between the intermediate point of the positive connection conductor and the low-voltage side terminal of the power switching element closest to the intermediate point, or the intermediate point of the negative connection conductor, and the power closest to the intermediate point A voltage detection circuit comprising a plurality of resistors connected in series between the high voltage side terminals of the switching element is provided.
A voltage detection method for a power switching element, wherein the voltage detection value of the voltage detection circuit is set as a detection voltage value of the plurality of power switching elements connected in parallel.
前記電圧検出回路の各々の抵抗にコンデンサを並列接続したことを特徴とする請求項1乃至請求項7の何れか1項に記載の電力用スイッチング素子の電圧検出方法。   The voltage detection method for a power switching element according to any one of claims 1 to 7, wherein a capacitor is connected in parallel to each resistor of the voltage detection circuit. 高圧側端子と低圧側端子を有する複数個の電力用スイッチング素子を並列接続して成る電力変換器と、
前記電力用スイッチング素子の制御極を制御する制御手段と、
各々の前記電力用スイッチング素子の前記高圧側端子と前記低圧側端子の間に設けられた複数個の抵抗を直列接続して成る電圧検出回路と
を具備し、
各々の前記電圧検出回路により検出された電圧検出値のうち最大値となる電圧検出値を、並列接続された前記複数個の電力用スイッチング素子の検出電圧値とし、
前記制御手段は、
前記検出電圧値に応じて前記電力用スイッチング素子の制御極を制御するようにしたことを特徴とする電力変換装置。
A power converter formed by connecting a plurality of power switching elements having a high-voltage side terminal and a low-voltage side terminal in parallel;
Control means for controlling a control pole of the power switching element;
A voltage detection circuit comprising a plurality of resistors connected in series between the high-voltage side terminal and the low-voltage side terminal of each of the power switching elements;
The voltage detection value that is the maximum value among the voltage detection values detected by each of the voltage detection circuits is a detection voltage value of the plurality of power switching elements connected in parallel,
The control means includes
A power conversion apparatus, wherein a control pole of the power switching element is controlled in accordance with the detected voltage value.
高圧側主端子、高圧側電圧検出用端子、低圧側主端子及び低圧制御極端子を有する複数個の電力用スイッチング素子を並列接続して成る電力変換器と、
前記電力用スイッチング素子の制御極を制御する制御手段と、
各々の前記電力用スイッチング素子の前記高圧側主端子と前記低圧側端子又は前記低圧制御極端子の間に設けられた複数個の抵抗を直列接続して成る第1の電圧検出回路と、
各々の前記電力用スイッチング素子の前記高圧側電圧検出用端子と前記低圧側端子又は前記低圧制御極端子の間に設けられた複数個の抵抗を直列接続して成る第2の電圧検出回路と
を具備し、
各々の前記第1の電圧検出回路により検出された電圧検出値のうち最大値となる電圧検出値を、並列接続された前記複数個の電力用スイッチング素子の第1の検出電圧値とし、
各々の前記第2の電圧検出回路により検出された電圧検出値のうち最大値となる電圧検出値を、並列接続された前記複数個の電力用スイッチング素子の第2の検出電圧値とし、
前記制御手段は、
前記第1の検出電圧値に応じて短絡保護動作を行うように前記電力用スイッチング素子の制御極を制御し、
前記第2の検出電圧値に応じてサージ電圧抑制動作を行うように前記電力用スイッチング素子の制御極を制御するようにしたことを特徴とする電力変換装置。
A power converter formed by connecting in parallel a plurality of power switching elements having a high-voltage side main terminal, a high-voltage side voltage detection terminal, a low-voltage side main terminal, and a low-voltage control pole terminal;
Control means for controlling a control pole of the power switching element;
A first voltage detection circuit comprising a plurality of resistors connected in series between the high-voltage side main terminal and the low-voltage side terminal or the low-voltage control electrode terminal of each power switching element;
A second voltage detection circuit comprising a plurality of resistors connected in series between the high-voltage side voltage detection terminal and the low-voltage side terminal or the low-voltage control pole terminal of each of the power switching elements; Equipped,
Among the voltage detection values detected by each of the first voltage detection circuits, a voltage detection value that is the maximum value is set as a first detection voltage value of the plurality of power switching elements connected in parallel.
The voltage detection value that is the maximum value among the voltage detection values detected by each of the second voltage detection circuits is set as a second detection voltage value of the plurality of power switching elements connected in parallel.
The control means includes
Controlling the control pole of the power switching element to perform a short circuit protection operation according to the first detection voltage value;
A power conversion apparatus, wherein a control pole of the power switching element is controlled so as to perform a surge voltage suppressing operation according to the second detection voltage value.
複数個の電力用スイッチング素子を正側及び負側の接続導体を介し、この接続導体の長手方向に配列して並列接続した電力用スイッチング素子ユニットと、
前記電力用スイッチング素子の制御極を制御する制御手段と、
前記正側の接続導体の中間点と、前記負側の接続導体の中間点に最も近い前記電力用スイッチング素子の低圧側端子の間、若しくは
前記負側の接続導体の中間点と、前記正側の接続導体の中間点に最も近い前記電力用スイッチング素子の高圧圧側端子の間に設けられた複数個の抵抗を直列接続して成る電圧検出回路と
を具備し、
前記制御手段は、
前記電圧検出回路の検出電圧値に応じて前記電力用スイッチング素子の制御極を制御するようにしたことを特徴とする電力変換装置。
A power switching element unit in which a plurality of power switching elements are arranged in parallel in the longitudinal direction of the connection conductors via positive and negative connection conductors;
Control means for controlling a control pole of the power switching element;
Between the intermediate point of the positive connection conductor and the low voltage side terminal of the power switching element closest to the intermediate point of the negative connection conductor, or the intermediate point of the negative connection conductor and the positive side A voltage detection circuit comprising a plurality of resistors connected in series between the high-voltage side terminals of the power switching element closest to the midpoint of the connection conductor of
The control means includes
A power conversion apparatus, wherein a control pole of the power switching element is controlled in accordance with a detection voltage value of the voltage detection circuit.
前記電圧検出回路の各々の抵抗にコンデンサを並列接続したことを特徴とする請求項9乃至請求項11の何れか1項に記載の電力変換装置。

The power converter according to any one of claims 9 to 11, wherein a capacitor is connected in parallel to each resistor of the voltage detection circuit.

JP2005276256A 2005-09-22 2005-09-22 Voltage detection method for power switching element and power conversion device using the same Active JP4773172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276256A JP4773172B2 (en) 2005-09-22 2005-09-22 Voltage detection method for power switching element and power conversion device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276256A JP4773172B2 (en) 2005-09-22 2005-09-22 Voltage detection method for power switching element and power conversion device using the same

Publications (2)

Publication Number Publication Date
JP2007089335A true JP2007089335A (en) 2007-04-05
JP4773172B2 JP4773172B2 (en) 2011-09-14

Family

ID=37975735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276256A Active JP4773172B2 (en) 2005-09-22 2005-09-22 Voltage detection method for power switching element and power conversion device using the same

Country Status (1)

Country Link
JP (1) JP4773172B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153257A (en) * 2007-12-19 2009-07-09 Fuji Electric Systems Co Ltd Short circuit protection circuit of power converter
JP2019122175A (en) * 2018-01-09 2019-07-22 株式会社デンソー Surge voltage detector circuit
CN110138251A (en) * 2018-02-09 2019-08-16 丰田自动车株式会社 Switching circuit
JP2021005914A (en) * 2019-06-25 2021-01-14 株式会社デンソー Overcurrent detector of switch
CN114859205A (en) * 2022-07-06 2022-08-05 季华实验室 Online diagnosis system and method for inverter bridge of motor driver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386791A (en) * 1989-08-31 1991-04-11 Mobil Oil Corp Manufacture of low boiling-point hydrocarbon oil
JPH08214538A (en) * 1995-01-31 1996-08-20 Toshiba Corp Power converter
JPH1023744A (en) * 1996-07-02 1998-01-23 Toshiba Corp Power converter and its controller
JP2000350475A (en) * 1999-05-31 2000-12-15 Hitachi Ltd Semiconductor circuit
JP2003284319A (en) * 2002-03-20 2003-10-03 Mitsubishi Electric Corp Drive circuit
JP2004056980A (en) * 2002-07-24 2004-02-19 Fuji Electric Holdings Co Ltd Voltage detecting circuit of semiconductor switching element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386791A (en) * 1989-08-31 1991-04-11 Mobil Oil Corp Manufacture of low boiling-point hydrocarbon oil
JPH08214538A (en) * 1995-01-31 1996-08-20 Toshiba Corp Power converter
JPH1023744A (en) * 1996-07-02 1998-01-23 Toshiba Corp Power converter and its controller
JP2000350475A (en) * 1999-05-31 2000-12-15 Hitachi Ltd Semiconductor circuit
JP2003284319A (en) * 2002-03-20 2003-10-03 Mitsubishi Electric Corp Drive circuit
JP2004056980A (en) * 2002-07-24 2004-02-19 Fuji Electric Holdings Co Ltd Voltage detecting circuit of semiconductor switching element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153257A (en) * 2007-12-19 2009-07-09 Fuji Electric Systems Co Ltd Short circuit protection circuit of power converter
JP2019122175A (en) * 2018-01-09 2019-07-22 株式会社デンソー Surge voltage detector circuit
CN110138251A (en) * 2018-02-09 2019-08-16 丰田自动车株式会社 Switching circuit
JP2021005914A (en) * 2019-06-25 2021-01-14 株式会社デンソー Overcurrent detector of switch
JP7283255B2 (en) 2019-06-25 2023-05-30 株式会社デンソー Switch overcurrent detector
CN114859205A (en) * 2022-07-06 2022-08-05 季华实验室 Online diagnosis system and method for inverter bridge of motor driver
CN114859205B (en) * 2022-07-06 2022-09-30 季华实验室 Motor driver inverter bridge online diagnosis system and method

Also Published As

Publication number Publication date
JP4773172B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP6961944B2 (en) Power semiconductor module
US9800176B2 (en) TNPC inverter device and method for detecting short-circuit thereof
JP3193827B2 (en) Semiconductor power module and power converter
JP2006042410A (en) Snubber device
JP2009506736A (en) Power conversion circuit with distributed energy storage
JP4773172B2 (en) Voltage detection method for power switching element and power conversion device using the same
JP2015032984A (en) Device for driving semiconductor element, and power conversion device using the same
KR20220024907A (en) Short Circuit Protection System and Method for Flying Capacitor Based Buck Boost Converter
US10886910B2 (en) Semiconductor device with current sense element
CN111788769B (en) Power semiconductor module and power conversion device using same
JP5910584B2 (en) Voltage type multi-level converter
JP6952840B1 (en) Switching equipment and power conversion equipment
JP6950828B2 (en) Power module with built-in drive circuit
JP4662022B2 (en) Matrix converter
JP2018061301A (en) Semiconductor driving device and power conversion equipment using the same
JP5295405B1 (en) Switch element temperature detection circuit
US20210288640A1 (en) Semiconductor Device Signal Transmission Circuit for Drive-Control, Method of Controlling Semiconductor Device Signal Transmission Circuit for Drive-Control, Semiconductor Device, Power Conversion Device, and Electric System for Railway Vehicle
JP2001169533A (en) Power converter
JP4859528B2 (en) Snubber circuit
JP3722649B2 (en) 3-level inverter
CN112910234A (en) Boost converter and method for operating a boost converter
JP4487682B2 (en) Capacitor and installation method
CN110739941B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
CN110620370A (en) Safety design for DC-side capacitor
JP2020039205A (en) Power converter, variable-signal delay circuit, and power conversion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4773172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250