JP2007088401A - Substrate processing device, substrate processing method, program, and record medium recorded therewith - Google Patents

Substrate processing device, substrate processing method, program, and record medium recorded therewith Download PDF

Info

Publication number
JP2007088401A
JP2007088401A JP2005349556A JP2005349556A JP2007088401A JP 2007088401 A JP2007088401 A JP 2007088401A JP 2005349556 A JP2005349556 A JP 2005349556A JP 2005349556 A JP2005349556 A JP 2005349556A JP 2007088401 A JP2007088401 A JP 2007088401A
Authority
JP
Japan
Prior art keywords
processing
substrate
film
measurement
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005349556A
Other languages
Japanese (ja)
Other versions
JP2007088401A5 (en
Inventor
Hidetada Kanamaru
秀忠 金丸
Takebu Herai
武部 戸來
Moyuru Yasuhara
もゆる 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2005349556A priority Critical patent/JP2007088401A/en
Priority to PCT/JP2006/316747 priority patent/WO2007023951A1/en
Publication of JP2007088401A publication Critical patent/JP2007088401A/en
Publication of JP2007088401A5 publication Critical patent/JP2007088401A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • H01L21/02049Dry cleaning only with gaseous HF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • General Chemical & Material Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely remove an affix including a natural oxide film, for improved adhesion of the film formed on a substrate, to be processed, in a next film-forming process. <P>SOLUTION: A substrate processing device 103 is connected in common to process chambers 104A-104D and a measurement process chamber 400, and comprises a common transfer chamber 102 for delivery of wafers to/from the process chambers. The process chambers 104A-104D are, respectively, a product generation process chamber (COR process chamber) in which gas component and affix including a natural oxide film on the wafer are chemically reacted with each other to generate a product, a product removable process chamber (PHT process chamber) for removing a product of affix formed on the wafer in thermal treatment, a Ti film forming process chamber for forming Ti film on the wafer, and a TiN film forming process chamber for forming TiN film on the Ti film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体に関する。   The present invention relates to a substrate processing apparatus, a substrate processing method, a program, and a recording medium recording the program.

一般に,半導体デバイスの製造工程においては,半導体ウエハ(以下,単に「ウエハ」とも称する。)に対して各種の薄膜の成膜処理,酸化拡散処理,アニール処理,エッチング処理等が順次繰り返して施される。例えば薄膜に関しても,半導体ウエハ上に多層に形成される場合がある。このような各種処理を行う基板処理装置として,例えば連続して処理を行うことができる複数の処理室を1つの搬送室に共通に連結してなる,いわゆるクラスタ型の基板処理装置がある(例えば特許文献1参照)。この基板処理装置では,ウエハを各処理室間にいわば渡り歩くようにして搬送しつつ,その都度必要な処理を各処理室にて連続的に且つ効率的に行うようになっている。   In general, in a semiconductor device manufacturing process, various types of thin film deposition processing, oxidation diffusion processing, annealing processing, etching processing, and the like are sequentially performed on a semiconductor wafer (hereinafter simply referred to as “wafer”). The For example, a thin film may be formed in multiple layers on a semiconductor wafer. As such a substrate processing apparatus for performing various processes, for example, there is a so-called cluster type substrate processing apparatus in which a plurality of processing chambers capable of performing consecutive processing are commonly connected to one transfer chamber (for example, Patent Document 1). In this substrate processing apparatus, a wafer is transferred so as to walk between processing chambers, and necessary processing is continuously and efficiently performed in each processing chamber each time.

ところで,ウエハ上には,パーティクル,金属,有機物,吸着分子等の表面被膜等のコンタミネーション,自然酸化膜(Silicon Native Oxide)などが付着するので,成膜処理などを実行する前に,このような自然酸化膜などの付着物を除去することが必要となる。   By the way, since contamination such as particles, metals, organic substances, surface coatings such as adsorbed molecules, and native oxide film (Silicon Native Oxide) adhere to the wafer, it is necessary to do this before performing the film forming process. It is necessary to remove deposits such as a natural oxide film.

このため,従来は,例えば基板処理装置外でウエハを希フッ酸(DHF)等を利用したウエット洗浄によって自然酸化膜を除去した上で,洗浄されたウエハを基板処理装置内に取込んで成膜処理を実行するようにしていた。   For this reason, conventionally, for example, after the natural oxide film is removed by wet cleaning using, for example, dilute hydrofluoric acid (DHF) outside the substrate processing apparatus, the cleaned wafer is taken into the substrate processing apparatus. A membrane treatment was to be performed.

特開2004−119635号公報JP 2004-119635 A 特開2002−166237号公報JP 2002-166237 A 特開平04−336426号公報Japanese Patent Laid-Open No. 04-336426 特開2004−327546号公報JP 2004-327546 A 特開平03−283618号公報Japanese Patent Laid-Open No. 03-283618

しかしながら,基板処理装置外でウエハ上の自然酸化膜を除去したとしても,成膜処理などを施すためにウエハを基板処理装置内に取込むときにウエハ表面が大気に露出されるので,ウエハ表面には新たに自然酸化膜が発生する虞がある。こうして発生した自然酸化膜の膜厚によっては,その後に形成される半導体デバイスの特性に大きく影響する。例えばウエハ表面に膜厚0.5nm以上の自然酸化膜が新たに形成されると,例えば膜厚65nm以下のゲート絶縁膜を形成する場合に大きな問題となる。   However, even if the natural oxide film on the wafer is removed outside the substrate processing apparatus, the wafer surface is exposed to the atmosphere when the wafer is taken into the substrate processing apparatus in order to perform a film forming process. In some cases, a natural oxide film may be newly generated. Depending on the thickness of the natural oxide film thus generated, the characteristics of the semiconductor device formed thereafter are greatly affected. For example, when a natural oxide film having a film thickness of 0.5 nm or more is newly formed on the wafer surface, it becomes a serious problem when a gate insulating film having a film thickness of 65 nm or less is formed.

また,上記ウエット洗浄によればウエハ表面の自然酸化膜は除去されるものの,ウエハ表面に新たにウォータマーク(例えばウエハの搬送又は乾燥中に水滴を介して局所的に形成されたシリコン酸化膜(SiO)など)が発生する虞がある。すなわち,DHF洗浄液によりウエハ表面の自然酸化膜が除去されるので下地シリコンが露出してウエハ表面は疎水性となり,ウエハをDHF洗浄液から引き上げたときに表面に水滴が残留する。この水滴はスピン乾燥後にウォータマークとなり得る。このようなウォータマークは,洗浄処理後に実行される成膜処理などにおいて阻害要素となって半導体デバイスの特性を劣化させる虞がある。 In addition, although the natural oxide film on the wafer surface is removed by the above wet cleaning, a new watermark (for example, a silicon oxide film locally formed on the wafer surface via water droplets during the transfer or drying of the wafer ( (SiO 2 ) and the like) may occur. That is, since the natural oxide film on the wafer surface is removed by the DHF cleaning liquid, the underlying silicon is exposed, the wafer surface becomes hydrophobic, and water droplets remain on the surface when the wafer is pulled up from the DHF cleaning liquid. This water droplet can become a watermark after spin drying. Such a watermark may be an impediment factor in a film forming process performed after the cleaning process, and may deteriorate the characteristics of the semiconductor device.

この点,ウォータマークや自然酸化膜の発生を抑えるために,ウエット洗浄後の乾燥工程にイソプロピルアルコール(IPA)を用いる方法もある(例えば特許文献2参照)。ところが,IPA乾燥後のウエハ表面にはIPA分子(炭素等の有機物)が残留する場合がある。このIPA分子は例えばゲート酸化膜特性に悪影響を与える虞がある。(K. MOTAI, T. Itoga, and T. Irie, Extended Abstruct of 1997,International Conference onSolidState Devices and Materials, Hamamatsu, pp.24-25(1997)参照)。   In this regard, in order to suppress the generation of watermarks and natural oxide films, there is a method using isopropyl alcohol (IPA) in the drying process after wet cleaning (see, for example, Patent Document 2). However, IPA molecules (organic matter such as carbon) may remain on the wafer surface after IPA drying. This IPA molecule may adversely affect the gate oxide film characteristics, for example. (See K. MOTAI, T. Itoga, and T. Irie, Extended Abstruct of 1997, International Conference on Solid State Devices and Materials, Hamamatsu, pp. 24-25 (1997)).

そこで,近年では,上記ウエット洗浄方法によらずに,プラズマを用いたドライ洗浄方法によってウエハ上の自然酸化膜を除去するものも知られている。このドライ洗浄方法としては,例えば水素ガスとアルゴンガスを用いて誘導結合プラズマを形成することにより,ウエハ上の自然酸化膜を除去するものがある(例えば特許文献3参照)。このようなドライ洗浄方法によれば,ウエット洗浄方法による洗浄液などの水成分を用いないので,ウォータマークが発生することなく,自然酸化膜を除去することができる。   Therefore, in recent years, there has been known a method of removing a natural oxide film on a wafer by a dry cleaning method using plasma, instead of the wet cleaning method. As this dry cleaning method, for example, there is a method of removing a natural oxide film on a wafer by forming inductively coupled plasma using hydrogen gas and argon gas (see, for example, Patent Document 3). According to such a dry cleaning method, since a water component such as a cleaning solution by a wet cleaning method is not used, a natural oxide film can be removed without generating a watermark.

しかしながら,ドライ洗浄方法をプラズマ処理によって行うと,ウエハにプラズマ起因のチャージアップダメージを負わせてしまう虞がある。このようなダメージを残したままウエハ上に半導体デバイスを生成すると,例えばゲート絶縁膜の破壊などが起って,半導体デバイスの特性が劣化するなどの問題がある。   However, when the dry cleaning method is performed by plasma processing, there is a risk that charge-up damage due to plasma may be caused to the wafer. If a semiconductor device is generated on a wafer with such damage remaining, there is a problem that the characteristics of the semiconductor device deteriorate due to, for example, destruction of a gate insulating film.

ところで,ウエハ上の膜厚やパーティクルを測定することによって,実際にウエハ上の自然酸化膜などの付着物が除去されたか否かについて検査を行うことができれば,次の成膜処理によって成膜される膜質の均一性を確保することができるなど利点も多い。   By the way, if the film thickness and particles on the wafer can be measured to check whether or not deposits such as a natural oxide film on the wafer have actually been removed, the film is formed by the following film forming process. There are many advantages such as ensuring uniformity of film quality.

しかしながら,従来のパーティクル測定装置(例えば特許文献4参照)や膜厚測定装置(特許文献5参照)では,ウエハ上の自然酸化膜などの付着物を除去してから連続してウエハ上の膜厚やパーティクルを測定を行うことができない。上記ウエット洗浄などを基板処理装置外で実行する場合には,上記のような測定装置にウエハを搬入する際に大気に露出しなければならないので,この場合にもウエハ表面には新たに自然酸化膜が発生する虞がある。   However, in the conventional particle measuring device (see, for example, Patent Document 4) and film thickness measuring device (see, Patent Document 5), the film thickness on the wafer is continuously removed after removing deposits such as a natural oxide film on the wafer. And particles cannot be measured. When the wet cleaning is performed outside the substrate processing apparatus, it must be exposed to the atmosphere when the wafer is loaded into the measurement apparatus as described above. There is a risk of film formation.

そこで,本発明は,このような問題に鑑みてなされたもので,その目的とするところは,水成分を用いず且つプラズマを用いずに基板上の自然酸化膜を含む付着物を除去し,その後に基板を大気に露出することなく,測定処理,成膜処理などを連続して実行することができる基板処理装置等を提供することにある。   Therefore, the present invention has been made in view of such problems, and its object is to remove deposits including a natural oxide film on a substrate without using a water component and without using plasma, It is an object of the present invention to provide a substrate processing apparatus or the like that can continuously perform measurement processing, film formation processing, and the like without exposing the substrate to the atmosphere.

上記課題を解決するために,本発明のある観点によれば,被処理基板に所定の処理を施す複数の処理室と,これらの処理室に共通に連結され,前記各処理室に対して前記被処理基板の搬出入を行う共通搬送室とを備える基板処理装置であって,前記複数の処理室は,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去するための付着物除去処理室と,前記被処理基板上に成膜処理を施すための成膜処理室と,前記被処理基板上の測定処理を行うための測定処理室とを含むことを特徴とする基板処理装置が提供される。この場合,上記付着物除去処理室は,例えば前記被処理基板上の前記付着物とガス成分とを化学反応させて生成物を生成するための生成物生成処理室と,前記被処理基板上に形成された前記付着物の生成物を熱処理により除去するための生成物除去処理室との2つの処理室により構成される。また,上記成膜処理室は,例えば前記被処理基板に第1膜を成膜する第1膜成膜処理室と,前記第1膜上に第2膜を成膜する第2膜成膜処理室との2つの処理室により構成される。   In order to solve the above-described problems, according to one aspect of the present invention, a plurality of processing chambers for performing a predetermined process on a substrate to be processed and a common connection to these processing chambers, A substrate processing apparatus comprising a common transfer chamber for carrying in and out of a substrate to be processed, wherein the plurality of processing chambers are configured to remove deposits including a natural oxide film deposited on the substrate to be processed from gas components that do not depend on plasma. A deposit removal processing chamber for removing by chemical reaction and heat treatment, a film forming chamber for performing a film forming process on the substrate to be processed, and a measurement for performing a measurement process on the substrate to be processed A substrate processing apparatus including a processing chamber is provided. In this case, the deposit removal processing chamber includes, for example, a product generation processing chamber for generating a product by chemically reacting the deposit on the substrate to be processed and a gas component, and a substrate on the substrate to be processed. It is comprised by two process chambers with the product removal process chamber for removing the formed product of the said deposit | attachment by heat processing. The film formation chamber includes, for example, a first film formation chamber that forms a first film on the substrate to be processed, and a second film formation process that forms a second film on the first film. It consists of two processing chambers with a chamber.

このような本発明によれば,自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去するので,ウエット洗浄のような水成分を用いないため,被処理基板上にウォータマークなどが発生することを防止することができる。また,プラズマを用いないため,被処理基板にプラズマ起因のチャージアップダメージを負わせることを防止することができる。また,基板処理装置内で付着物除去処理の後に測定処理,成膜処理を連続して実行することができるので,成膜処理前に被処理基板上に自然酸化膜が新たに形成されることを防止することができる。このように,自然酸化膜を含む付着物を確実に除去することができるので,次の成膜処理によって被処理基板に形成される膜の密着性をより向上させることができ,強度もより向上させることができる。   According to the present invention, the deposit containing the natural oxide film is removed by a chemical reaction with a gas component that does not depend on plasma and heat treatment, so that no water component such as wet cleaning is used. It is possible to prevent the occurrence of a watermark or the like. Further, since plasma is not used, it is possible to prevent the substrate to be processed from being charged with damage due to plasma. In addition, since the measurement process and the film formation process can be continuously performed after the deposit removal process in the substrate processing apparatus, a natural oxide film is newly formed on the substrate to be processed before the film formation process. Can be prevented. As described above, the deposit including the natural oxide film can be surely removed, so that the adhesion of the film formed on the substrate to be processed can be further improved by the next film forming process, and the strength is further improved. Can be made.

また,上記測定処理室は,例えば前記被処理基板上の膜厚を測定する膜厚測定部と,前記被処理基板上のパーティクルを測定するパーティクル測定部とを備える。これにより,1つの測定処理室で,膜厚とパーティクルの両方を測定することができるので,スループットを向上させることができる。また,上記測定処理室は,さらに前記被処理基板の表面画像を撮像し,認識するための画像処理部を備えてもよい。これにより,被処理基板表面のパターンマッチングなどを行うことができるので,例えば膜厚やパーティクルを測定する被処理基板上の測定ポイントを特定することができる。   The measurement processing chamber includes, for example, a film thickness measuring unit that measures the film thickness on the substrate to be processed and a particle measuring unit that measures particles on the substrate to be processed. Thereby, since both a film thickness and a particle can be measured in one measurement processing chamber, the throughput can be improved. The measurement processing chamber may further include an image processing unit for capturing and recognizing a surface image of the substrate to be processed. Thereby, since pattern matching of the surface of the substrate to be processed can be performed, for example, a measurement point on the substrate to be processed for measuring a film thickness or particles can be specified.

上記課題を解決するために,本発明の別の観点によれば,被処理基板に所定の処理を施す複数の処理室と,これらの処理室に共通に連結される共通搬送室と,この共通搬送室内に設けられた前記被処理基板を搬送するための搬送機構とをそれぞれ備える複数の真空処理装置をパス部を介してそれぞれ連結してなる基板処理装置であって,前記複数の処理室は,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去するための付着物除去処理室と,前記被処理基板上に成膜処理を施すための成膜処理室と,前記被処理基板上の測定処理を行うための測定処理室とを含むことを特徴とする基板処理装置が提供される。この場合,上記付着物除去処理室は,例えば前記被処理基板上の前記付着物とガス成分とを化学反応させて生成物を生成するための生成物生成処理室と,前記被処理基板上に形成された前記付着物の生成物を熱処理により除去するための生成物除去処理室との2つの処理室により構成される。また,上記成膜処理室は,例えば前記被処理基板に第1膜を成膜する第1膜成膜処理室と,前記第1膜上に第2膜を成膜する第2膜成膜処理室との2つの処理室により構成される。   In order to solve the above problems, according to another aspect of the present invention, a plurality of processing chambers for performing a predetermined process on a substrate to be processed, a common transfer chamber connected in common to these processing chambers, and this common A substrate processing apparatus comprising: a plurality of vacuum processing apparatuses each having a transport mechanism for transporting the target substrate provided in a transport chamber; , A deposit removing treatment chamber for removing deposits including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and heat treatment; and a film forming process on the substrate to be treated There is provided a substrate processing apparatus including a film formation processing chamber for performing a measurement process and a measurement processing chamber for performing a measurement process on the substrate to be processed. In this case, the deposit removal processing chamber includes, for example, a product generation processing chamber for generating a product by chemically reacting the deposit on the substrate to be processed and a gas component, and a substrate on the substrate to be processed. It is comprised by two process chambers with the product removal process chamber for removing the formed product of the said deposit | attachment by heat processing. The film formation chamber includes, for example, a first film formation chamber that forms a first film on the substrate to be processed, and a second film formation process that forms a second film on the first film. It consists of two processing chambers with a chamber.

このような本発明によっても,自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去するので,ウォータマークなどが発生せず,チャージアップダメージもなく,さらに自然酸化膜が新たに形成されることもない。このように,自然酸化膜を含む付着物を確実に除去することができるので,次の成膜処理によって被処理基板に形成される膜の密着性をより向上させることができ,強度もより向上させることができる。   Also according to the present invention, deposits including a natural oxide film are removed by a chemical reaction with a gas component that does not depend on plasma and heat treatment, so that no watermark is generated, no charge-up damage is caused, and further natural oxidation is achieved. A film is not newly formed. As described above, the deposit including the natural oxide film can be surely removed, so that the adhesion of the film formed on the substrate to be processed can be further improved by the next film forming process, and the strength is further improved. Can be made.

なお,上記成膜処理室は,前記被処理基板に第1膜を成膜する第1膜成膜処理室と,前記第1膜上に第2膜を成膜する第2膜成膜処理室とから構成される2つの処理室の組を複数含むようにしてもよい。これにより,例えば複数組の成膜処理装置で並列して成膜処理を実行することができるので,装置全体のスループットを大幅に向上させることができる。   The film formation chamber includes a first film formation chamber for forming a first film on the substrate to be processed and a second film formation chamber for forming a second film on the first film. A plurality of sets of two processing chambers may be included. As a result, for example, film forming processes can be performed in parallel by a plurality of sets of film forming processing apparatuses, so that the throughput of the entire apparatus can be greatly improved.

また,上記付着物除去処理室で処理される被処理基板は,例えばコンタクトホール又はビアホールが形成された被処理基板であり,前記成膜処理室は,例えば前記被処理基板に形成されたコンタクトホール又はビアホールの内側に第1バリア層を成膜する第1バリア層成膜処理室と,前記第1バリア層の上側に第2バリア層を成膜する第2バリア層成膜処理室とにより構成される。これによれば,被処理基板に形成されたコンタクトホール又はビアホールに付着した自然酸化膜などの付着物を確実に除去した上で,第1バリア層,第2バリア層を成膜することができるので,これらの密着性をより向上させることができ,強度もより向上させることができる。   Further, the substrate to be processed in the deposit removal processing chamber is, for example, a substrate to be processed in which a contact hole or a via hole is formed, and the film formation processing chamber is, for example, a contact hole formed in the substrate to be processed. Alternatively, the first barrier layer film forming process chamber for forming the first barrier layer inside the via hole and the second barrier layer film forming process chamber for forming the second barrier layer above the first barrier layer are configured. Is done. According to this, the first barrier layer and the second barrier layer can be formed after reliably removing deposits such as a natural oxide film adhering to the contact hole or via hole formed in the substrate to be processed. Therefore, these adhesiveness can be improved more and intensity | strength can also be improved more.

また,上記付着物除去処理室で処理される被処理基板は,例えばシリコン基板であり,前記成膜処理室は,前記被処理基板上に酸素ラジカルによってベース酸化膜層を成膜するベース酸化膜層成膜処理室と,前記ベース酸化膜層が形成された被処理基板に高誘電体ゲート酸化膜を成膜する高誘電体ゲート酸化膜成膜処理室とにより構成される。これによれば,シリコン基板に付着した自然酸化膜などの付着物を確実に除去した上で,ベース酸化膜層,高誘電体ゲート酸化膜を成膜することができるので,これらの密着性をより向上させることができ,強度もより向上させることができる。   Further, the substrate to be processed in the deposit removal processing chamber is, for example, a silicon substrate, and the film formation processing chamber is a base oxide film that forms a base oxide film layer on the substrate to be processed by oxygen radicals. A layer deposition processing chamber and a high dielectric gate oxide film deposition processing chamber for depositing a high dielectric gate oxide film on the substrate to be processed on which the base oxide film layer is formed. According to this, the base oxide film layer and the high dielectric gate oxide film can be formed after reliably removing the deposits such as the natural oxide film attached to the silicon substrate. The strength can be further improved.

上記課題を解決するために,本発明の別の観点によれば,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,前記付着物除去処理後に,前記被処理基板上の測定処理を行う測定処理ステップと,前記測定処理後に,前記被処理基板上に成膜処理を施す成膜処理ステップとを有することを特徴とする基板処理方法が提供される。この場合,上記付着物除去処理ステップは,例えば前記被処理基板上の前記付着物とガス成分とを化学反応させて生成物を生成するステップと,前記被処理基板上に形成された前記付着物の生成物を熱処理により除去するステップとを有する。また,上記成膜処理ステップは,例えば前記被処理基板に第1膜を成膜するステップと,前記第1膜上に第2膜を成膜するステップとを有する。   In order to solve the above-described problems, according to another aspect of the present invention, the deposit including the natural oxide film deposited on the substrate to be processed is removed by a chemical reaction with a gas component that does not depend on plasma and a heat treatment. A deposit removal processing step, a measurement processing step for performing measurement processing on the substrate to be processed after the deposit removal processing, and a film deposition processing step for performing film deposition processing on the substrate to be processed after the measurement processing. A substrate processing method is provided. In this case, the deposit removal processing step includes, for example, a step of chemically reacting the deposit on the substrate to be processed and a gas component to generate a product, and the deposit formed on the substrate to be processed. Removing the product by heat treatment. Further, the film forming process step includes, for example, a step of forming a first film on the substrate to be processed and a step of forming a second film on the first film.

このような本発明によれば,付着物除去処理(生成物生成処理,生成物除去処理)と,測定処理と,成膜処理とを連続実行することにより,自然酸化膜を含む付着物を確実に除去することができるので,次の成膜処理によって被処理基板に形成される膜の密着性をより向上させることができ,強度もより向上させることができる。   According to the present invention as described above, the deposit including the natural oxide film can be reliably obtained by continuously executing the deposit removal process (product generation process, product removal process), the measurement process, and the film formation process. Therefore, the adhesion of the film formed on the substrate to be processed can be further improved by the next film forming process, and the strength can be further improved.

また,上記測定処理ステップは,例えば付着物除去処理が適正に実行されたか否かを検査するための測定を行う。この場合,上記測定処理ステップは,前記被処理基板上において前記付着物除去処理が施された表面の膜厚測定を行うステップと,前記付着物除去処理が施された表面の付着物測定を行うステップとを1つの測定処理室内で実行することが好ましい。このように,膜厚とパーティクルとの両方を測定することによって,被処理基板上から自然酸化膜を含む付着物が除去されたか否かを確実に検査することができる。   Moreover, the said measurement process step performs the measurement for test | inspecting whether the deposit | attachment removal process was performed appropriately, for example. In this case, the measurement processing step includes a step of measuring the film thickness of the surface on which the deposit removal process has been performed on the substrate to be processed, and a measurement of the deposit on the surface on which the deposit removal process has been performed. Preferably, the steps are performed in one measurement processing chamber. In this way, by measuring both the film thickness and the particles, it is possible to reliably inspect whether or not the deposits including the natural oxide film have been removed from the substrate to be processed.

また,上記測定処理ステップは,さらに前記膜厚測定ステップと前記パーティクル測定ステップにより測定された測定結果に基づいて,前記付着物除去処理を実行するためのプロセスレシピを補正するようにしてもよい。これにより,実際の処理結果に応じた付着物除去処理ステップを実行することができるため,被処理基板上から自然酸化膜を含む付着物を確実に除去することができる。   The measurement processing step may further correct a process recipe for executing the deposit removal process based on the measurement results measured by the film thickness measurement step and the particle measurement step. Thereby, since the deposit removal processing step according to the actual processing result can be executed, deposits including the natural oxide film can be reliably removed from the substrate to be processed.

また,上記測定処理ステップは,さらに前記膜厚測定ステップと前記パーティクル測定ステップにより測定された測定結果に基づいて,次の前記成膜処理ステップを実行するか否かを判断するようにしてもよい。この場合,例えば前記膜厚測定ステップと前記パーティクル測定ステップにより測定された測定結果が許容範囲内にあれば,次の前記成膜処理ステップを実行可能と判断し,許容範囲になければ次の前記成膜処理ステップを実行不可能と判断するようにしてもよい。これにより,常に被処理基板上の自然酸化膜を含む付着物が除去された状態で次の成膜処理ステップを実行することができるので,被処理基板上に成膜された膜質の均一性を確保することができる。   The measurement processing step may further determine whether or not to execute the next film formation processing step based on the measurement results measured by the film thickness measurement step and the particle measurement step. . In this case, for example, if the measurement results measured by the film thickness measurement step and the particle measurement step are within an allowable range, it is determined that the next film forming process step can be performed. You may make it judge that the film-forming process step cannot be performed. As a result, the next film forming process step can be executed in a state where the deposits including the natural oxide film on the substrate to be processed are always removed, so that the uniformity of the film quality formed on the substrate to be processed can be improved. Can be secured.

また,上記測定処理ステップは,前記付着物除去処理が適正に実行されたか否かを検査するための測定と,次の前記成膜処理が施される下地膜の膜厚測定とを行うようにしてもよい。この場合,上記測定処理ステップは,前記被処理基板上において前記付着物除去処理が施された表面の膜厚測定及び前記成膜処理が施される下地膜の膜厚測定を行うステップと,前記付着物除去処理が施された表面の付着物測定を行うステップとを1つの測定処理室内で実行することが好ましい。これによれば,付着物除去処理が適正に実行されたか否かを検査するための膜厚測定と,次の成膜処理が施される下地膜の膜厚測定とを同時に実行できるので,測定処理にかかる時間を大幅に短縮することができる。   In the measurement processing step, measurement for inspecting whether or not the deposit removal process has been performed properly and measurement of the thickness of the underlying film on which the next film formation process is performed are performed. May be. In this case, the measurement processing step includes a step of measuring a film thickness of the surface on which the deposit removal process is performed on the substrate to be processed and a film thickness measurement of a base film on which the film formation process is performed, It is preferable to perform the step of measuring the deposit on the surface subjected to the deposit removing process in one measurement processing chamber. According to this, the film thickness measurement for inspecting whether or not the deposit removal process has been properly executed and the film thickness measurement of the base film to be subjected to the next film formation process can be performed simultaneously. Processing time can be greatly reduced.

上記課題を解決するために,本発明の別の観点によれば,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,前記付着物除去処理後に,前記被処理基板上に成膜処理を施す成膜処理ステップと,前記成膜処理後に,前記被処理基板上の測定処理を行う測定処理ステップとを有することを特徴とする基板処理方法が提供される。この場合,上記測定処理ステップは,例えば前記成膜処理により形成された膜の膜厚測定を行うステップを有する。これにより,成膜後の状態についても検査することができる。   In order to solve the above-described problems, according to another aspect of the present invention, the deposit including the natural oxide film deposited on the substrate to be processed is removed by a chemical reaction with a gas component that does not depend on plasma and a heat treatment. A deposit removal process step, a deposition process step for performing a deposition process on the target substrate after the deposit removal process, and a measurement process step for performing a measurement process on the target substrate after the deposition process; A substrate processing method is provided. In this case, the measurement processing step includes, for example, a step of measuring a film thickness of the film formed by the film forming process. Thereby, the state after film formation can also be inspected.

また,上記測定処理ステップは,さらに前記膜厚測定ステップにより測定された測定結果に基づいて,前記成膜処理を実行するためのプロセスレシピを補正するようにしてもよい。これにより,以降の被処理基板に対して常に適正な成膜処理を実行させることができる。   In the measurement process step, a process recipe for executing the film formation process may be corrected based on the measurement result measured in the film thickness measurement step. Thereby, it is possible to always execute an appropriate film forming process on the subsequent substrates to be processed.

上記課題を解決するために,本発明の別の観点によれば,前記被処理基板上の測定処理を行う測定処理ステップと,前記測定処理後に,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,前記付着物除去処理後に,前記被処理基板上に成膜処理を施す成膜処理ステップとを有することを特徴とする基板処理方法が提供される。このように,被処理基板の測定処理は,付着物除去処理前に行うようにしてもよい。   In order to solve the above problems, according to another aspect of the present invention, a measurement processing step for performing a measurement process on the substrate to be processed, and a natural oxide film adhering to the substrate to be processed after the measurement process are provided. A deposit removal treatment step for removing the deposits by a chemical reaction with a gas component that does not depend on plasma and heat treatment; and a film deposition treatment step for performing a film deposition process on the substrate to be processed after the deposit removal treatment. A substrate processing method is provided. As described above, the measurement processing of the substrate to be processed may be performed before the deposit removal processing.

上記課題を解決するために,本発明の別の観点によれば,コンピュータに,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,前記被処理基板上の測定処理を行う測定処理ステップと,前記付着物が除去された前記被処理基板上に成膜処理を施す成膜処理ステップとを実行させるためのプログラムが提供される。   In order to solve the above-described problems, according to another aspect of the present invention, a computer includes a deposit including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and a heat treatment. An adhesion removing process step to be removed; a measurement processing step for performing a measurement process on the substrate to be processed; and a film forming process step for performing a film forming process on the substrate to be processed from which the deposit has been removed. A program is provided.

上記課題を解決するために,本発明の別の観点によれば,コンピュータに,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,前記被処理基板上の測定処理を行う測定処理ステップと,前記付着物が除去された前記被処理基板上に成膜処理を施す成膜処理ステップとを実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。   In order to solve the above-described problems, according to another aspect of the present invention, a computer includes a deposit including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and a heat treatment. An adhesion removing process step to be removed; a measurement processing step for performing a measurement process on the substrate to be processed; and a film forming process step for performing a film forming process on the substrate to be processed from which the deposit has been removed. A computer-readable recording medium on which a program for recording is recorded is provided.

このようなプログラム又は記録媒体に記録されたプログラムによれば,本発明にかかる付着物除去処理(生成物生成処理,生成物除去処理)と,測定処理と,成膜処理とを連続実行することができる。これにより,自然酸化膜を含む付着物を確実に除去することができるので,次の成膜処理によって被処理基板に形成される膜の密着性をより向上させることができ,強度もより向上させることができる。   According to such a program or a program recorded on a recording medium, the deposit removal processing (product generation processing, product removal processing), measurement processing, and film formation processing according to the present invention are continuously executed. Can do. As a result, the deposits including the natural oxide film can be surely removed, so that the adhesion of the film formed on the substrate to be processed by the next film forming process can be further improved and the strength can be further improved. be able to.

以上説明したように本発明によれば,自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去した上で,測定処理,成膜処理を連続して実行することができるので,水成分を用いず且つプラズマを用いずに基板上の自然酸化膜を含む付着物を除去し,その後に基板を大気に露出することなく,成膜処理などを連続して実行することができる。このため,ウォータマークなどが発生せず,チャージアップダメージもなく,さらに自然酸化膜が新たに形成されることもなく,自然酸化膜を含む付着物を確実に除去することができる。従って,次の成膜処理によって被処理基板に形成される膜の密着性をより向上させることができ,強度もより向上させることができる。   As described above, according to the present invention, the deposit including the natural oxide film is removed by the chemical reaction with the gas component that does not depend on the plasma and the heat treatment, and then the measurement process and the film forming process are continuously performed. Therefore, it is possible to remove deposits including a natural oxide film on the substrate without using water components and without using plasma, and then continuously perform film formation without exposing the substrate to the atmosphere. be able to. For this reason, a watermark or the like is not generated, there is no charge-up damage, and a natural oxide film is not newly formed, and the deposits including the natural oxide film can be reliably removed. Therefore, the adhesion of the film formed on the substrate to be processed by the next film formation process can be further improved, and the strength can be further improved.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(第1実施形態にかかる基板処理装置の構成例)
先ず,本発明の第1実施形態にかかる基板処理装置の構成例を図面を参照しながら説明する。図1は第1実施形態にかかる基板処理装置の1例を示す概略構成図である。図1に示すように,この基板処理装置100は,略多角形状(例えば六角形状)に形成された1つ共通搬送室102と,真空引き可能に構成された複数(例えば4つ)の処理室104A〜104Dとを備える真空処理装置を有する。
(Configuration Example of Substrate Processing Apparatus According to First Embodiment)
First, a configuration example of a substrate processing apparatus according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating an example of a substrate processing apparatus according to the first embodiment. As shown in FIG. 1, this substrate processing apparatus 100 includes one common transfer chamber 102 formed in a substantially polygonal shape (for example, hexagonal shape) and a plurality (for example, four) processing chambers configured to be evacuated. 104A to 104D.

各処理室104A〜104Dは共通搬送室102の周囲にそれぞれゲートバルブ106A〜106Dを介して連結している。また,各処理室104A〜104Dには被処理基板例えば半導体ウエハ(以下,単に「ウエハ」とも称する。)Wを載置する載置台105A〜105Dが設けられている。各処理室104A〜104Dはそれぞれ載置台105A〜105Dに載置されたウエハWに対して所定の処理を施し得るようになっている。   The processing chambers 104A to 104D are connected to the periphery of the common transfer chamber 102 via gate valves 106A to 106D, respectively. The processing chambers 104A to 104D are provided with mounting tables 105A to 105D on which a substrate to be processed, for example, a semiconductor wafer (hereinafter also simply referred to as “wafer”) W is mounted. Each of the processing chambers 104A to 104D can perform a predetermined process on the wafer W mounted on the mounting tables 105A to 105D, respectively.

共通搬送室102には,真空引き可能に構成された2つのロードロック室108A,108Bを介して略長方形状の搬入側搬送室110が連結されている。ロードロック室108A,108Bと共通搬送室102及び搬入側搬送室110との連結部にはそれぞれゲートバルブ107A,107Bが介在している。   The common transfer chamber 102 is connected to a substantially rectangular loading-side transfer chamber 110 via two load lock chambers 108A and 108B configured to be evacuated. Gate valves 107A and 107B are interposed at connecting portions between the load lock chambers 108A and 108B and the common transfer chamber 102 and the carry-in transfer chamber 110, respectively.

上記搬入側搬送室110には,ウエハWを複数枚収容できるカセットを載置する例えば3つの導入ポート112A〜112C及びウエハWを回転してこの偏心量を光学的に求めて位置合わせを行うオリエンタ114が連結されている。   In the carry-in transfer chamber 110, for example, three introduction ports 112A to 112C on which a cassette capable of storing a plurality of wafers W is placed, and the wafer W is rotated to optically determine the amount of eccentricity and to perform alignment. 114 are connected.

搬入側搬送室110内には,ウエハWを保持する2つのピック116A,116Bを有して屈伸,旋回,昇降及び直線移動可能に構成された搬入側搬送機構116が設けられている。また,共通搬送室102内には,ウエハWを保持する2つのピック118A,118Bを有して屈伸及び旋回可能になされた搬送機構118が設けられている。基板処理装置100には,制御部200が接続されており,この制御部200により基板処理装置100の各部が制御されるようになっている。   In the carry-in side transfer chamber 110, a carry-in side transfer mechanism 116 having two picks 116A and 116B for holding the wafer W and configured to bend, stretch, turn, move up and down and move linearly is provided. In the common transfer chamber 102, a transfer mechanism 118 having two picks 118 </ b> A and 118 </ b> B for holding the wafer W and capable of bending and stretching and turning is provided. A control unit 200 is connected to the substrate processing apparatus 100, and each unit of the substrate processing apparatus 100 is controlled by the control unit 200.

なお,共通搬送室102と2つのロードロック室の内のいずれか一方,例えばロードロック室108Aとの連結部の搬送口109AはウエハWを共通搬送室102内へ専用に搬入する搬入口として用いられ,他方のロードロック室108Bとの連結部の搬送口109BはウエハWを共通搬送室102から外へ専用に搬出する搬出口として用いられる。   It should be noted that one of the common transfer chamber 102 and the two load lock chambers, for example, the transfer port 109A of the connecting portion with the load lock chamber 108A is used as a transfer inlet for carrying the wafer W into the common transfer chamber 102 exclusively. The transfer port 109B connected to the other load lock chamber 108B is used as a carry-out port for carrying the wafer W out of the common transfer chamber 102 exclusively.

(ウエハ処理の具体例)
本実施形態にかかる基板処理装置100は,ウエハ上の付着物(例えばコンタミネーションや自然酸化膜など)をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理と,この付着物除去処理が施されたウエハ上に所定の薄膜を形成する成膜処理とを連続して実行する。
(Specific example of wafer processing)
The substrate processing apparatus 100 according to the present embodiment includes a deposit removal process for removing deposits (for example, contamination and natural oxide film) on a wafer by a chemical reaction with a gas component not using plasma and heat treatment. A film forming process for forming a predetermined thin film on the wafer subjected to the kimono removal process is continuously executed.

(付着物除去処理)
先ず,成膜処理の前処理として実行する付着物除去処理について詳細に説明する。本実施形態では,水成分を用いず且つプラズマを用いない付着物除去処理を実行する。この付着物除去処理は,例えばウエハに付着した自然酸化膜を含む付着物とガス成分とを化学反応させて生成物を生成する生成物生成処理と,ウエハ上に生成された生成物を熱処理により除去する生成物除去処理との2段階の処理によって構成される。
(Adherent removal processing)
First, the deposit removal process executed as a pre-process of the film forming process will be described in detail. In this embodiment, the deposit removal process is performed without using water components and without using plasma. This deposit removal processing includes, for example, a product generation process that generates a product by chemically reacting a deposit including a natural oxide film attached to a wafer and a gas component, and a product generated on the wafer by heat treatment. It consists of a two-stage process including a product removal process to be removed.

生成物生成処理は例えばCOR(Chemical Oxide Removal)処理であり,生成物除去処理は例えばPHT(Post Heat Treatment)処理である。COR処理は,ウエハ上に付着した付着物例えば自然酸化膜などの酸化膜と例えばアンモニア(NH)ガス及び弗化水素(HF)ガスなどのガス分子とを化学反応させて生成物(主に(NHSiF)を生成する処理である。PHT処理は,COR処理が施されたウエハを加熱して,COR処理の化学反応によってウエハ上に生成した生成物を気化(昇華)させてウエハから除去する処理である。 The product generation process is, for example, a COR (Chemical Oxide Removal) process, and the product removal process is, for example, a PHT (Post Heat Treatment) process. The COR processing is performed by chemically reacting an oxide film such as a natural oxide film deposited on a wafer with gas molecules such as ammonia (NH 3 ) gas and hydrogen fluoride (HF) gas. This is a process for generating (NH 4 ) 2 SiF 6 ). The PHT process is a process in which a wafer subjected to the COR process is heated to vaporize (sublimate) a product generated on the wafer by a chemical reaction of the COR process and remove it from the wafer.

このように,COR処理及びPHT処理,特にCOR処理は水成分を用いず且つプラズマを用いずにウエハの自然酸化膜などの付着物を除去することができるため,プラズマレスエッチング処理及びドライクリーニング処理(乾燥洗浄処理)に相当する。   As described above, the COR process and the PHT process, particularly the COR process, can remove deposits such as a natural oxide film on the wafer without using a water component and without using a plasma. This corresponds to (dry cleaning treatment).

例えばCOR処理及びPHT処理においてアンモニアガス及び弗化水素ガスを反応ガスとして用いることにより,以下の化学反応を利用して自然酸化膜などの付着物を除去する。   For example, by using ammonia gas and hydrogen fluoride gas as reaction gases in COR processing and PHT processing, deposits such as a natural oxide film are removed using the following chemical reaction.

[COR処理の化学反応式]
SiO+4HF → SiF+2HO↑
SiF+2NH+2HF → (NHSiF
[Chem chemical reaction formula]
SiO 2 + 4HF → SiF 4 + 2H 2 O ↑
SiF 4 + 2NH 3 + 2HF → (NH 4 ) 2 SiF 6

[PHT処理の化学反応式]
(NHSiF → SiF↑+2NH↑+2HF↑
[Chemical reaction formula of PHT treatment]
(NH 4 ) 2 SiF 6 → SiF 4 ↑ + 2NH 3 ↑ + 2HF ↑

上述した化学反応を利用したCOR処理及びPHT処理は,以下の特性を有する。なお,PHT処理においては,N及びHも若干量発生する。 The COR process and the PHT process using the chemical reaction described above have the following characteristics. In the PHT process, a small amount of N 2 and H 2 is also generated.

[COR処理及びPHT処理の特性]
(1)熱酸化膜の選択比(除去速度)が高い。具体的にはCOR処理及びPHT処理は,熱酸化膜の選択比が高い一方,ポリシリコンの選択比が低い。従って,熱酸化膜であるSiO膜からなる絶縁膜の表層やSiO膜と同様の特性を有する疑似SiO層又はシリコン表層の自然酸化膜及びウォータマークを効率よく除去することができる。
[Characteristics of COR processing and PHT processing]
(1) The thermal oxide film has a high selectivity (removal rate). Specifically, in the COR process and the PHT process, the selectivity of the thermal oxide film is high, while the selectivity of polysilicon is low. Therefore, the surface layer of the insulating film made of the SiO 2 film, which is a thermal oxide film, and the natural oxide film and watermark on the pseudo-SiO 2 layer or silicon surface layer having the same characteristics as the SiO 2 film can be efficiently removed.

(2)表層や疑似SiO層が除去された絶縁膜の表面における自然酸化膜の成長速度が遅い。具体的にはウェットエッチングによって表面が露出したウエハの表面においては,厚さ3オングストロームの自然酸化膜の成長時間が略10分であるのに対して,COR処理及びPHT処理によって表面が露出したウエハの表面においては,厚さ3オングストロームの自然酸化膜の成長時間は略2時間以上である。従って,COR処理及びPHT処理による洗浄工程では,ウォータマークが新たに発生することはなく,さらに洗浄工程後の時間経過による自然酸化膜の成長も抑制されるので,半導体デバイスの信頼性を向上させることができる。 (2) The growth rate of the natural oxide film on the surface of the insulating film from which the surface layer and the pseudo SiO 2 layer are removed is slow. Specifically, on the surface of a wafer whose surface is exposed by wet etching, the growth time of a natural oxide film having a thickness of 3 angstroms is about 10 minutes, whereas the wafer whose surface is exposed by COR processing and PHT processing. On the surface, the growth time of a natural oxide film having a thickness of 3 angstroms is approximately 2 hours or more. Therefore, in the cleaning process by the COR process and the PHT process, a new watermark is not generated, and the growth of the natural oxide film with the passage of time after the cleaning process is suppressed, so that the reliability of the semiconductor device is improved. be able to.

(3)ドライ環境において反応が進行する。具体的にはCOR処理において水を反応に用いることはない。またCOR処理によって水分子が発生したとしても,COR処理は略真空状態で行われるため,水分子は気体状態で発生する。従って,水分子が液体状態でウエハに付着することはないので,ウエハの表面にウォータマーク等が発生することはない。またPHT処理は高温下で行われるため,ウエハの表面にウォータマーク等が発生することはなく,表面が露出したウエハの表面にOH基が配されることもない。従って,ウエハの表面が不動態化(passivate)されて親水性になることがないので,ウエハの表面は吸湿することもないため,半導体デバイスの配線信頼性の低下を防止することができる。 (3) The reaction proceeds in a dry environment. Specifically, water is not used for the reaction in the COR treatment. Further, even if water molecules are generated by the COR process, the COR process is performed in a substantially vacuum state, so that the water molecules are generated in a gas state. Accordingly, since water molecules do not adhere to the wafer in a liquid state, a watermark or the like is not generated on the surface of the wafer. Further, since the PHT process is performed at a high temperature, a watermark or the like is not generated on the surface of the wafer, and OH groups are not arranged on the surface of the wafer where the surface is exposed. Therefore, since the surface of the wafer is not passivated and becomes hydrophilic, the surface of the wafer does not absorb moisture, thereby preventing a reduction in wiring reliability of the semiconductor device.

(4)生成物(錯体)の生成量は所定時間が経過すると緩和する。具体的には所定時間が経過すると,それ以降はウォータマークをアンモニアガス及び弗化水素ガスの混合気体に暴露し続けても,生成物の生成量は増加しない。また生成物の生成量は,混合気体の圧力,体積流量比等の混合気体のパラメータによって決定される。従って,ウォータマークの除去量の制御を容易に行うことができる。 (4) The production amount of the product (complex) is relaxed after a predetermined time. Specifically, after a predetermined time has elapsed, the amount of product produced does not increase even if the watermark is continuously exposed to a mixed gas of ammonia gas and hydrogen fluoride gas. The amount of product produced is determined by the parameters of the gas mixture, such as the pressure of the gas mixture and the volumetric flow ratio. Therefore, it is possible to easily control the removal amount of the watermark.

(5)パーティクルの発生が非常に少ない。具体的には例えば2000枚のウエハにおける自然酸化膜の除去を実行しても,処理室内や処理室の内壁等にパーティクルの付着がほとんど観察されない。従って半導体デバイスにおいてパーティクルを介した配線の短絡等が発生することがなく,半導体デバイスの信頼性を向上させることができる。 (5) Generation of particles is very small. Specifically, for example, even when the natural oxide film is removed from 2000 wafers, adhesion of particles is hardly observed on the processing chamber or the inner wall of the processing chamber. Therefore, there is no occurrence of a short circuit of wiring via particles in the semiconductor device, and the reliability of the semiconductor device can be improved.

(成膜処理)
次に,成膜処理について説明する。ここでは,成膜処理としてウエハに形成されたコンタクトホール又はビアホールの内側に例えば第1膜としてのTi系膜及び第2膜としてのTiN系膜の2層構造のバリア層を成膜する成膜処理を実行する。このような成膜処理を実行する前に,上述したような水成分を用いず且つプラズマを用いない付着物除去処理を実行することにより,膜の密着性,強度を向上させることができる。また,本実施形態にかかる付着物除去処理ではプラズマを用いないため,ウエハの下地膜にプラズマ起因のチャージアップダメージを負わせることを防止することができるので,ダメージのない配線加工を行うことができ,また良好なコンタクト抵抗を有する膜を成膜することができる。
(Deposition process)
Next, the film forming process will be described. Here, as a film formation process, a barrier layer having a two-layer structure, for example, a Ti film as a first film and a TiN film as a second film is formed inside a contact hole or via hole formed on a wafer. Execute the process. Before performing such a film forming process, the adhesion removal and the strength of the film can be improved by executing the deposit removing process without using a water component and without using plasma as described above. In addition, since the deposit removal process according to the present embodiment does not use plasma, it is possible to prevent charge-up damage caused by plasma from being applied to the underlying film of the wafer, so that wiring processing without damage can be performed. In addition, a film having good contact resistance can be formed.

半導体デバイスの製造においては,最近の高密度化および高集積化の要請に対応して,回路構成を多層配線構造にする傾向にある。このため,下層の半導体デバイスと上層の配線層との接続部であるコンタクトホールや,上下の配線層同士の接続部であるビアホールなどの層間の電気的接続のための埋め込み技術が重要になっている。このようなコンタクトホールやビアホールの埋め込みには,一般的にAl(アルミニウム)やW(タングステン),あるいはこれらを主体とする合金が用いられる。このような金属や合金と下層のシリコン(Si)基板やポリシリコン(poly−Si)層とのコンタクトを形成するために,これらの埋め込みに先立ってコンタクトホールやビアホールの内側にTi系膜(例えばTi膜)とTiN系膜(例えばTiN膜)を成膜することが行われている。   In the manufacture of semiconductor devices, the circuit configuration tends to be a multilayer wiring structure in response to the recent demand for higher density and higher integration. For this reason, an embedding technique for electrical connection between layers such as a contact hole which is a connection portion between a lower semiconductor device and an upper wiring layer and a via hole which is a connection portion between upper and lower wiring layers becomes important. Yes. In general, Al (aluminum), W (tungsten), or an alloy mainly composed of these is used for filling such contact holes and via holes. In order to form a contact between such a metal or alloy and the underlying silicon (Si) substrate or polysilicon (poly-Si) layer, a Ti-based film (for example, inside the contact hole or via hole prior to filling them) A TiN film) and a TiN-based film (for example, a TiN film) are formed.

これらの膜の成膜には,デバイスの微細化および高集積化が進んでも電気抵抗が増加せず良質な膜を形成することができ,しかもステップカバレッジを良好にすることができるCVD(Chemical Vapor Deposition:化学気相成長)法が用いられている。そして,例えばTiClを反応ガスとしてCVD法によりTi膜を成膜することにより下地のシリコン基板と反応させてコンタクトホールの底のシリコン拡散層上に自己整合的にTiSiを選択成長させ,良好なオーミック抵抗を得ている。 These films can be formed by CVD (Chemical Vapor), which is capable of forming high-quality films without increasing the electrical resistance even when device miniaturization and high integration are advanced, and also providing good step coverage. Deposition (chemical vapor deposition) method is used. Then, for example, a Ti film is formed by a CVD method using TiCl 4 as a reaction gas to react with the underlying silicon substrate to selectively grow TiSi 2 in a self-aligned manner on the silicon diffusion layer at the bottom of the contact hole. Ohmic resistance is obtained.

このようなCVD−Ti膜を成膜する場合,反応ガスとしては上述したようにTiClガスが一般的に用いられ,還元ガスとしてHガス等が用いられる。このTiClガスの結合エネルギーはかなり高く,熱エネルギー単独では1200℃程度の高温でなければ分解しないので,プラズマエネルギーを併用するプラズマCVD法によって,通常,プロセス温度650℃程度で成膜を行っている。 When such a CVD-Ti film is formed, TiCl 4 gas is generally used as the reaction gas as described above, and H 2 gas or the like is used as the reducing gas. The binding energy of this TiCl 4 gas is quite high, and thermal energy alone does not decompose unless it is a high temperature of about 1200 ° C. Therefore, a film is usually formed at a process temperature of about 650 ° C. by plasma CVD using plasma energy. Yes.

一方,このようなメタル成膜においては,良好なコンタクト抵抗を得るために,成膜処理に先立って,下地の上に形成された自然酸化膜を除去する処理が施される。このような自然酸化膜の除去は一般的に希弗酸により行われてきたが,水素ガスとアルゴンガスを用いて誘導結合プラズマを形成することにより,自然酸化膜を除去するものもある。   On the other hand, in such metal film formation, in order to obtain good contact resistance, a process of removing a natural oxide film formed on the base is performed prior to the film formation process. Such removal of the natural oxide film has been generally carried out with dilute hydrofluoric acid, but there is also a method of removing the natural oxide film by forming inductively coupled plasma using hydrogen gas and argon gas.

しかしながら,従来のプラズマCVD法でTi膜を成膜すると,粒径が不均一なTiSi結晶が形成される傾向がある。すなわち,従来はTiSi膜の成膜に先立ってアルゴンプラズマを用いたドライ洗浄によって自然酸化膜除去を行っていたので,Si拡散層表面がダメージを受けて不均一にアモルファス化しており,その状態でプラズマCVDでTi膜を成膜すると,形成されるTiSi結晶が一層不均一になってしまう。そして,このような不均一な状態のTiSi結晶は比較的疎に存在するため,比抵抗が高いとともにTiSi膜と下地との接触が不均一となる。したがって,コンタクト抵抗が増加してしまう。 However, when a Ti film is formed by a conventional plasma CVD method, TiSi 2 crystals having a non-uniform grain size tend to be formed. In other words, since the natural oxide film was removed by dry cleaning using argon plasma prior to the formation of the TiSi 2 film, the Si diffusion layer surface was damaged and became non-uniformly amorphous. When a Ti film is formed by plasma CVD, the TiSi 2 crystal to be formed becomes more uneven. Since such a non-uniform TiSi 2 crystal exists relatively sparsely, the specific resistance is high and the contact between the TiSi 2 film and the base becomes non-uniform. Therefore, the contact resistance increases.

この点,本実施形態では,前処理として水成分を用いず且つプラズマを用いない付着物除去処理(例えばCOR処理及びPHT処理)によって,ウエハ上に形成されたコンタクトホール又はビアホール内の自然酸化膜を除去した上で,Ti系膜及びTiN系膜を成膜する。これにより,Ti系膜及びTiN系膜を成膜する前の下地にプラズマ起因のチャージアップダメージを負わせることを防止することができるので,プラズマCVD法でTi膜を成膜しても,ダメージのない配線加工を行うことができ,また良好なコンタクト抵抗を有する膜を成膜することができる。また,Ti系膜及びTiN系膜の各膜の密着性,強度も向上させることができる。   In this respect, in the present embodiment, the natural oxide film in the contact hole or via hole formed on the wafer by the deposit removal process (for example, the COR process and the PHT process) that does not use the water component and does not use the plasma as the pretreatment. Then, a Ti film and a TiN film are formed. As a result, it is possible to prevent the plasma base charge-up damage from being applied to the base before the Ti-based film and TiN-based film are formed. Wiring can be performed without any problem, and a film having good contact resistance can be formed. In addition, the adhesion and strength of each of the Ti film and the TiN film can be improved.

ここで,第1膜成膜処理としてのTi系膜成膜処理の具体例を説明する。Ti系膜成膜処理としては,例えば上述したようにプラズマCVDによりTi膜を成膜するCVD−Ti膜成膜処理を行う。CVD−Ti膜成膜処理は例えばTiClガスの供給とArガスの供給とHガスの供給とプラズマ発生とを同時期に行う工程と,NHガスの供給とArガスの供給とHガスの供給とプラズマ発生とを同時期に行う工程とによって,CVD−Ti膜を成膜する。この場合,温度は650℃に設定する。 Here, a specific example of the Ti-based film forming process as the first film forming process will be described. As the Ti-based film forming process, for example, as described above, a CVD-Ti film forming process for forming a Ti film by plasma CVD is performed. The CVD-Ti film forming process includes, for example, a process of supplying TiCl 4 gas, Ar gas, H 2 gas, and generating plasma at the same time, supplying NH 3 gas, supplying Ar gas, and H 2. A CVD-Ti film is formed by a process of supplying gas and generating plasma at the same time. In this case, the temperature is set to 650 ° C.

なお,Ti系膜成膜処理としては,上記に限られるものではなく,上記650℃よりも低温の400℃〜450℃に設定してプラズマCVDによりTi膜を成膜するSFD(Sequential Flow Deposition)−Ti膜成膜処理を実行してもよい。SFD−Ti膜成膜処理は例えばTiClガスの供給とArガスの供給とHガスの供給とプラズマ発生とを同時期に行ってTiClガスの供給を止める工程を複数回繰返した後に,NHガスの供給とArガスの供給とHガスの供給とプラズマ発生とを同時期に行う工程を行うことによって,SFD−Ti膜を成膜する。 The Ti-based film forming process is not limited to the above, and SFD (Sequential Flow Deposition) is used to form a Ti film by plasma CVD at a temperature lower than 650 ° C., which is set to 400 ° C. to 450 ° C. A Ti film forming process may be executed. In the SFD-Ti film forming process, for example, a TiCl 4 gas supply, an Ar gas supply, a H 2 gas supply, and a plasma generation are performed at the same time to stop the supply of TiCl 4 gas a plurality of times. An SFD-Ti film is formed by performing a process of supplying NH 3 gas, Ar gas, H 2 gas, and generating plasma at the same time.

さらに,他のTi膜成膜処理として,原子層堆積(ALD:Atomic Layered Deposition)の手法を用いたALD−Ti膜成膜処理を実行してもよい。ALD−Ti膜成膜処理としては,例えばTiClガスを供給した後に,Arガスの供給とHガスの供給とプラズマ生成とを行う工程を複数回繰返した後に,NHガスの供給とArガスの供給とHガスの供給とプラズマ発生とを同時期に行う工程を行うことによって,ALD−Ti膜を成膜する。 Further, as another Ti film forming process, an ALD-Ti film forming process using an atomic layer deposition (ALD) technique may be executed. As the ALD-Ti film forming process, for example, after supplying TiCl 4 gas, the process of supplying Ar gas, supplying H 2 gas, and generating plasma is repeated a plurality of times, then supplying NH 3 gas and Ar An ALD-Ti film is formed by performing a process of supplying gas, supplying H 2 gas, and generating plasma at the same time.

また,TiClガスの供給とTiClガスの供給とArガスの供給とプラズマ生成を同時期に行った後にHガスの供給を供給する工程を複数回繰返した後,NHガスの供給とArガスの供給とHガスの供給とプラズマ発生とを同時期に行う工程を行うことによって,ALD−Ti膜を成膜するようにしてもよい。 Further, after repeating several times the step of supplying the supply of the H 2 gas supply and plasma generation supply and Ar gas supply and TiCl 4 gas TiCl 4 gas after the same time, the supply of NH 3 gas The ALD-Ti film may be formed by performing a process of supplying Ar gas, supplying H 2 gas, and generating plasma at the same time.

さらに,TiClガスの供給とTiClガスの供給とArガスの供給とプラズマ生成を同時期に行った後にHガスの供給とArガスの供給とプラズマ発生を同時期に行う工程を複数回繰返した後,NHガスの供給とArガスの供給とHガスの供給とプラズマ発生とを同時期に行う工程を行うことによって,ALD−Ti膜を成膜するようにしてもよい。 Further, a plurality of steps for supplying the plasma generation supply and Ar gas of the H 2 gas at the same time times after the supply and plasma generation supply and Ar gas supply and TiCl 4 gas TiCl 4 gas at the same time After repeating, an ALD-Ti film may be formed by performing a process of supplying NH 3 gas, Ar gas, H 2 gas, and generating plasma at the same time.

次に,第2膜成膜処理としてのTiN系膜成膜処理は,例えば上述したようにTiClガス,NHガスを反応ガスとして用い,設定温度を500〜610℃に設定として,プラズマCVDによりTi膜を成膜する。 Next, the TiN-based film forming process as the second film forming process is performed by using, for example, plasma CVD with TiCl 4 gas and NH 3 gas as reaction gases and a set temperature of 500 to 610 ° C. as described above. A Ti film is formed by the above.

(処理室の構成例)
次に,上記のような処理を実行するための基板処理装置100における処理室の構成例を説明する。本実施形態にかかる基板処理装置100は,上述したようにウエハ上の自然酸化膜などの付着物を,水成分を用いず且つプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理と,この付着物除去処理が施されたウエハ上に所定の薄膜を形成する成膜処理とを連続して実行する。
(Configuration example of processing chamber)
Next, a configuration example of a processing chamber in the substrate processing apparatus 100 for performing the above processing will be described. As described above, the substrate processing apparatus 100 according to the present embodiment removes deposits such as a natural oxide film on a wafer by a chemical reaction with a gas component that does not use a water component and does not depend on plasma, and a heat treatment. The removing process and the film forming process for forming a predetermined thin film on the wafer subjected to the deposit removing process are continuously executed.

このため,処理室104A〜104Dのうち少なくとも2つの処理室の一方を付着物除去処理室として構成し,他方の処理室を成膜処理室として構成する。また,付着物除去処理は上述したように複数段階の処理を連続して実行するようにしてもよく,この場合には付着物除去処理室を複数の処理室で構成してもよい。具体的には上述したような生成物生成処理(例えばCOR処理)と,生成物除去処理(例えばPHT処理)との2段階の処理によって行う場合には処理室104A〜104Dのうちの2つの処理室を付着物除去処理室として構成する。この場合,一方の処理室を生成物生成処理室として構成し,他方の処理室を生成物除去処理室として構成する。   For this reason, one of at least two processing chambers among the processing chambers 104A to 104D is configured as a deposit removal processing chamber, and the other processing chamber is configured as a film forming processing chamber. Further, as described above, the deposit removing process may be performed in a plurality of stages continuously. In this case, the deposit removing process chamber may be constituted by a plurality of process chambers. Specifically, in the case of performing the two-stage processing of the product generation processing (for example, COR processing) and the product removal processing (for example, PHT processing) as described above, two processing out of the processing chambers 104A to 104D. The chamber is configured as a deposit removal processing chamber. In this case, one processing chamber is configured as a product generation processing chamber, and the other processing chamber is configured as a product removal processing chamber.

また成膜処理は異なる膜を連続して成膜するようにしてもよく,この場合には成膜処理室を複数の処理室で構成してもよい。具体的には第1膜(例えばTi系膜)と,第2膜(例えばTiN系膜)を連続して成膜する場合には処理室104A〜104Dのうちの2つの処理室を成膜処理室として構成する。この場合,一方の処理室を第1膜を成膜する第1膜成膜処理室として構成し,他方の処理室を第2膜を成膜する第2膜成膜処理室として構成する。このように,基板処理装置100によって実行される付着物除去処理と成膜処理の内容に応じて各処理室104A〜104Dの構成が決定される。   In the film forming process, different films may be successively formed. In this case, the film forming process chamber may be composed of a plurality of process chambers. Specifically, in the case where a first film (for example, a Ti-based film) and a second film (for example, a TiN-based film) are continuously formed, two of the processing chambers 104A to 104D are formed. Configure as a chamber. In this case, one processing chamber is configured as a first film deposition processing chamber for depositing a first film, and the other processing chamber is configured as a second film deposition processing chamber for depositing a second film. Thus, the configuration of each of the processing chambers 104A to 104D is determined according to the contents of the deposit removal process and the film forming process executed by the substrate processing apparatus 100.

ここで,例えばコンタクトホール又はビアホールが形成されたウエハWを基板処理装置100に導入し,このウエハWに対して上述したような付着物除去処理としてのCOR処理,PHT処理を連続して実行した後,成膜処理としてのTi膜成膜処理,TiN膜成膜処理を連続して実行する場合の基板処理装置100における処理室の構成例を図2に示す。   Here, for example, a wafer W in which contact holes or via holes are formed is introduced into the substrate processing apparatus 100, and the COR processing and the PHT processing as the deposit removal processing as described above are continuously performed on the wafer W. Thereafter, FIG. 2 shows a configuration example of the processing chamber in the substrate processing apparatus 100 when the Ti film forming process and the TiN film forming process as the film forming process are successively executed.

図2に示す構成例は,処理室104A,104B,104C,104DをそれぞれCOR処理室,PHT処理室,Ti膜成膜処理室,TiN膜成膜処理室として構成したものである。各処理室104A〜104Dにおける処理はそれぞれ,後述する制御部200のEC(装置制御部)300に設けられるプログラムデータ記憶手段360に記憶されたプロセス処理プログラム364に基づいて実行される。すなわち,EC300のCPU310はプロセス処理プログラム364から必要な処理プログラムを読出し,処理データ記憶手段370に記憶されるプロセス処理情報(例えばプロセスレシピ情報)374から必要な情報を読み出して各処理を実行する。なお,制御部200の構成の詳細は後述する。   In the configuration example shown in FIG. 2, the processing chambers 104A, 104B, 104C, and 104D are configured as a COR processing chamber, a PHT processing chamber, a Ti film deposition processing chamber, and a TiN film deposition processing chamber, respectively. Processing in each of the processing chambers 104A to 104D is executed based on a process processing program 364 stored in a program data storage unit 360 provided in an EC (apparatus control unit) 300 of the control unit 200 described later. That is, the CPU 310 of the EC 300 reads a necessary processing program from the process processing program 364, reads necessary information from the process processing information (for example, process recipe information) 374 stored in the processing data storage unit 370, and executes each processing. Details of the configuration of the control unit 200 will be described later.

(基板搬送処理の具体例)
次に,図2に示すような構成の基板処理装置100におけるウエハWの搬送処理について説明する。ウエハWに対する各処理室104A〜104Dにおける処理の順序が上記の順序で行われるので,ウエハWの搬送経路は図2に示す実線矢印のようになる。このようなウエハ搬送処理は,制御部200のEC(装置制御部)300に設けられる後述のプログラムデータ記憶手段360に記憶された搬送処理プログラム362に基づいて実行される。すなわち,EC300のCPU310は処理データ記憶手段370に記憶される搬送処理情報(例えば搬送経路情報)372から必要な情報を読み出して搬送処理プログラム362を実行することによって,ウエハの搬送処理を実行する。
(Specific example of substrate transfer processing)
Next, the wafer W transfer process in the substrate processing apparatus 100 configured as shown in FIG. 2 will be described. Since the order of processing in the processing chambers 104A to 104D for the wafer W is performed in the above-described order, the transfer path of the wafer W is as shown by a solid line arrow shown in FIG. Such wafer transfer processing is executed based on a transfer processing program 362 stored in a program data storage unit 360 (described later) provided in an EC (apparatus control unit) 300 of the control unit 200. That is, the CPU 310 of the EC 300 reads the necessary information from the transfer process information (for example, transfer path information) 372 stored in the process data storage unit 370 and executes the transfer process program 362 to execute the wafer transfer process.

ここでは一例として中央の導入ポート112Bに設置したカセット(キャリアも含む)から例えばコンタクトホール又はビアホールが形成された処理前ウエハWが取り出されるものとし,また2つのロードロック室108A,108Bのうちのいずれか一方のロードロック室,例えばロードロック室108Aを処理前ウエハWの搬入用に用い,他方のロードロック室108Bを処理済ウエハWの搬出用に用いる。今,各処理室104A〜104D内にはそれぞれウエハWが収容されてそれぞれの処理が終了しているか,又はほぼ終了しかけているものとする。   Here, as an example, it is assumed that, for example, a pre-process wafer W in which a contact hole or a via hole is formed is taken out from a cassette (including a carrier) installed in the central introduction port 112B, and one of the two load lock chambers 108A and 108B. One of the load lock chambers, for example, the load lock chamber 108A is used for loading the unprocessed wafer W, and the other load lock chamber 108B is used for unloading the processed wafer W. Now, it is assumed that the wafers W are accommodated in the respective processing chambers 104A to 104D, and the respective processes are finished or almost finished.

先ず,搬入側搬送室110内の搬送処理について説明する。ロードロック室108B内には,処理室104Dでの処理が終了した処理済のウエハWが収容されているものとすると,この処理済ウエハWは,搬入側搬送機構116により搬送経路X11に示すように中央の導入ポート112Bへ搬送して収容される。   First, the transfer process in the carry-in transfer chamber 110 will be described. If the processed wafer W that has been processed in the processing chamber 104D is stored in the load lock chamber 108B, the processed wafer W is transferred to the transfer path X11 by the transfer-side transfer mechanism 116 as shown in FIG. Are conveyed to and accommodated in the central introduction port 112B.

また,中央の導入ポート112Bに収容されている処理前のウエハWは,搬入側搬送機構116により搬送経路X12に示すようにオリエンタ114へ搬送され,ここでウエハWの位置合わせをした後に,再度搬入側搬送機構116により搬送経路X13に示すように位置合わせ後のウエハWを他方のロードロック室108A内へ収容し,待機させておく。以上の操作が,ウエハWの処理が進む毎に繰り返し行われる。   The unprocessed wafer W accommodated in the central introduction port 112B is transferred to the orienter 114 as shown by the transfer path X12 by the transfer-side transfer mechanism 116, and after aligning the wafer W, the wafer W is aligned again. As shown in the transfer path X13 by the transfer-side transfer mechanism 116, the aligned wafer W is accommodated in the other load lock chamber 108A and kept in a standby state. The above operation is repeated every time the processing of the wafer W proceeds.

次に,共通搬送室102内でのウエハの搬送処理について説明する。先ず,搬送機構118により処理室104Dに収容されている処理済のウエハWを取りに行き,搬送経路Y11に示すようにこれを空き状態のロードロック室108B内に置く。次いで,搬送機構118により処理室104C内に収容されている処理済のウエハWを取りに行き,搬送経路Y12に示すようにこれを空き状態の処理室104D内へ搬入して置き,処理室104D内での処理を開始する。   Next, wafer transfer processing in the common transfer chamber 102 will be described. First, the processed wafer W accommodated in the processing chamber 104D is picked up by the transfer mechanism 118, and placed in the empty load lock chamber 108B as indicated by the transfer path Y11. Next, the processed wafer W accommodated in the processing chamber 104C is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104D and placed as shown in the transfer path Y12. Start processing within.

続いて,搬送機構118により処理室104Bに収容されている処理済のウエハWを取りに行き,搬送経路Y13に示すようにこれを空き状態の処理室104C内へ搬入して置き,処理室104C内での処理を開始する。次いで,搬送機構118により処理室104A内に収容されている処理済のウエハWを取りに行き,搬送経路Y14に示すようにこれを空き状態の処理室104B内へ搬入して置き,処理室104B内での処理を開始する。   Subsequently, the processed wafer W accommodated in the processing chamber 104B is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104C as shown by the transfer path Y13, and is then set in the processing chamber 104C. Start processing within. Next, the processed wafer W accommodated in the processing chamber 104A is picked up by the transfer mechanism 118, and loaded into the empty processing chamber 104B as shown in the transfer path Y14, and placed in the processing chamber 104B. Start processing within.

続いて,ロードロック室108A内で待機していた処理前のウエハWを搬送機構118によって取りに行き,搬送経路Y15に示すようにこれを上記空き状態の処理室104A内へ搬入して置き,この処理室104A内での処理を開始する。なお,ウエハWの搬出入の際には,各ゲートバルブ106A〜106D,107A,107Bのうち,ウエハWの搬出入に必要なゲートバルブを開閉操作する。そして,各処理室104A〜104DにてウエハWの処理が完了する毎に上記の操作が繰り返し行われることになる。   Subsequently, the unprocessed wafer W waiting in the load lock chamber 108A is picked up by the transfer mechanism 118, and is loaded into the empty process chamber 104A as shown in the transfer path Y15. Processing in the processing chamber 104A is started. When the wafer W is loaded / unloaded, among the gate valves 106A to 106D, 107A, 107B, a gate valve necessary for loading / unloading the wafer W is opened / closed. The above operation is repeated each time the processing of the wafer W is completed in each of the processing chambers 104A to 104D.

こうして,コンタクトホール又はビアホールが形成された処理前のウエハWに対して処理室104A〜処理室104DにてそれぞれCOR処理,PHT処理,Ti膜成膜処理,TiN膜成膜処理が連続して施される。従って,ウエハWのコンタクトホール又はビアホールの内壁には,COR処理及びPHT処理によって自然酸化膜などの付着物が除去された状態で,Ti膜成膜処理及びTiN膜成膜処理によってTi膜及びTiN膜のバリア層が成膜される。   In this way, the COR process, the PHT process, the Ti film forming process, and the TiN film forming process are successively performed in the processing chamber 104A to the processing chamber 104D on the unprocessed wafer W in which the contact hole or the via hole is formed. Is done. Therefore, on the inner wall of the contact hole or via hole of the wafer W, the deposits such as a natural oxide film are removed by the COR process and the PHT process, and the Ti film and the TiN film are formed by the Ti film formation process and the TiN film formation process. A barrier layer of the film is formed.

これにより,膜の密着性,強度が向上するのみならず,ウエハの下地膜にプラズマ起因のチャージアップダメージを負わせることを防止することができるので,ダメージのない配線加工を行うことができ,また良好なコンタクト抵抗を有する膜を成膜することができる。   As a result, not only the adhesion and strength of the film are improved, but also it is possible to prevent the charge-up damage caused by the plasma from being applied to the underlying film of the wafer, so that wiring processing without damage can be performed. In addition, a film having good contact resistance can be formed.

なお,上記各処理室104A〜104Dの構成は図2に示すものに限られるものではない。例えば各処理室104A〜104Dのうちのどの処理室をCOR処理室,PHT処理室,Ti膜成膜処理室,TiN膜成膜処理室として構成してもよい。従って,ウエハの搬送順序も,各処理室104A〜104DのうちのCOR処理室,PHT処理室,Ti膜成膜処理室,TiN膜成膜処理室の順に搬送すれば,必ずしも各処理室104A〜104Dの順でなくてもよい。   The configuration of each of the processing chambers 104A to 104D is not limited to that shown in FIG. For example, any of the processing chambers 104A to 104D may be configured as a COR processing chamber, a PHT processing chamber, a Ti film deposition processing chamber, and a TiN film deposition processing chamber. Therefore, if the wafers are transferred in the order of the COR processing chamber, the PHT processing chamber, the Ti film deposition processing chamber, and the TiN film deposition processing chamber among the processing chambers 104A to 104D, the processing chambers 104A to 104A are not necessarily transferred. The order may not be 104D.

(制御部の構成例)
基板処理装置100の制御部200の構成例を図面を参照しながら説明する。図3は,制御部(システムコントローラ)200の構成を示すブロック図である。図3に示すように,制御部200は,装置制御部(EC:Equipment Controller)300と,複数のモジュール制御部(MC:Module Controller)230A,230B,230C…と,EC300と各MC230A,230B,230C…とをそれぞれ接続するスイッチングハブ(HUB)220とを備える。
(Configuration example of control unit)
A configuration example of the control unit 200 of the substrate processing apparatus 100 will be described with reference to the drawings. FIG. 3 is a block diagram illustrating a configuration of the control unit (system controller) 200. As shown in FIG. 3, the control unit 200 includes an apparatus control unit (EC) 300, a plurality of module control units (MC) 230A, 230B, 230C,..., An EC 300, and MCs 230A, 230B. 230C... Are respectively connected to a switching hub (HUB) 220.

制御部200は,EC300から例えばLAN(Local Area Network)202を介して基板処理装置100が設置される工場全体の製造工程を管理するMES(Manufacturing Execution System)204に接続されている。MES204は例えばコンピュータにより構成される。MES204は,制御部200と連携して工場における工程に関するリアルタイム情報を基幹業務システム(図示しない)にフィードバックするとともに,工場全体の負担等を考慮して工程に関する判断を行う。   The control unit 200 is connected from the EC 300 to a manufacturing execution system (MES) 204 that manages the manufacturing process of the entire factory where the substrate processing apparatus 100 is installed, for example, via a LAN (local area network) 202. The MES 204 is configured by a computer, for example. The MES 204 cooperates with the control unit 200 to feed back real-time information related to the process in the factory to a basic business system (not shown), and makes a determination regarding the process in consideration of the burden of the entire factory.

EC300は,MC230A,230B,230C…を統括して基板処理装置100全体の動作を制御する主制御部(マスタ制御部)を構成する。スイッチングハブ220は,EC300からの制御信号に応じてEC300の接続先としてのMC230A,230B,230C…を切換える。   The EC 300 constitutes a main control unit (master control unit) that controls the overall operation of the substrate processing apparatus 100 by supervising the MCs 230A, 230B, 230C. The switching hub 220 switches MCs 230A, 230B, 230C... As connection destinations of the EC 300 according to a control signal from the EC 300.

各MC230A,230B,230C…はそれぞれ,基板処理装置100の共通搬送室102,処理室104A〜104D,ロードロック室108A,108B,搬送室110,オリエンタ114等の各モジュールの動作を制御する副制御部(スレーブ制御部)を構成する。各MC230A,230B,230C…はそれぞれ,DIST(Distribution)ボード234A,234B,234C…によって例えばGHOSTネットワーク206を介して各I/O(入出力)モジュール236A,236B,236C…に接続される。GHOSTネットワーク206は,EC300が有するMCボードに搭載されたGHOST(General High-Speed Optimum Scalable Transceiver)と称されるLSIによって実現されるネットワークである。GHOSTネットワーク206には最大で31個のI/Oモジュールを接続することができる。なお,GHOSTネットワーク206ではMCがマスタに相当し,I/Oモジュールがスレーブに相当する。   Each of the MCs 230A, 230B, 230C,... Is a sub-control that controls the operation of each module such as the common transfer chamber 102, the process chambers 104A to 104D, the load lock chambers 108A and 108B, the transfer chamber 110, the orienter 114, etc. Part (slave control part). Each of the MCs 230A, 230B, 230C,... Is connected to each of the I / O (input / output) modules 236A, 236B, 236C, etc. via the GHOST network 206 by DIST (Distribution) boards 234A, 234B, 234C,. The GHOST network 206 is a network realized by an LSI called GHOST (General High-Speed Optimum Scalable Transceiver) mounted on the MC board of the EC 300. A maximum of 31 I / O modules can be connected to the GHOST network 206. In the GHOST network 206, MC corresponds to the master and the I / O module corresponds to the slave.

各I/Oモジュール236A,236B,236C…はそれぞれ,処理室104A〜104Dなどの各モジュールの各構成要素(以下,「エンドデバイス」と称する。)に接続された複数のI/O部238A,238B,238C…からなり,各エンドデバイスへの制御信号及び各エンドデバイスからの出力信号の伝達を行う。例えば処理室104のエンドデバイスとしては,処理室104内に導入されるガスの流量を制御するマスフローコントローラ,処理室104からの排気を制御するAPCバルブなどが挙げられる。   Each of the I / O modules 236A, 236B, 236C,..., Includes a plurality of I / O units 238A, 238A to 238A connected to each component (hereinafter referred to as “end device”) of each module such as the processing chambers 104A to 104D. 238B, 238C..., And transmits a control signal to each end device and an output signal from each end device. For example, examples of the end device of the processing chamber 104 include a mass flow controller that controls the flow rate of the gas introduced into the processing chamber 104, and an APC valve that controls exhaust from the processing chamber 104.

各GHOSTネットワーク206には,I/O部238A,238B,238C…におけるデジタル信号,アナログ信号,シリアル信号の入出力を制御するI/Oボード(図示しない)も接続される。   Also connected to each GHOST network 206 is an I / O board (not shown) that controls input / output of digital signals, analog signals, and serial signals in the I / O units 238A, 238B, 238C.

ここで,図3に示すEC300の構成例を図面を参照しながら説明する。図4はEC300の構成例を示すブロック図である。図4に示すように,EC300はEC本体を構成するCPU(中央処理装置)310,CPU310が行う各種データ処理のために使用されるメモリエリア等を設けたRAM(ランダム・アクセス・メモリ)320,操作画面や選択画面などを表示する液晶ディスプレイなどで構成される表示手段330,オペレータによるプロセスレシピの入力や編集など種々のデータの入力及び所定の記憶媒体へのプロセスレシピやプロセス・ログの出力など種々のデータの出力などを行うことができる入出力手段340,基板処理装置100に漏電等の異常が発生した際に報知する警報器(例えばブザー)などの報知手段350を備える。   Here, a configuration example of the EC 300 shown in FIG. 3 will be described with reference to the drawings. FIG. 4 is a block diagram showing a configuration example of EC300. As shown in FIG. 4, an EC 300 includes a CPU (Central Processing Unit) 310 constituting an EC main body, a RAM (Random Access Memory) 320 provided with a memory area used for various data processing performed by the CPU 310, Display means 330 including a liquid crystal display for displaying an operation screen, a selection screen, etc., input of various data such as process recipe input and editing by an operator, and output of process recipes and process logs to a predetermined storage medium, etc. An input / output unit 340 capable of outputting various data and the like, and an informing unit 350 such as an alarm device (for example, a buzzer) for informing when an abnormality such as electric leakage occurs in the substrate processing apparatus 100 are provided.

また,EC300は,基板処理装置100の種々の処理を実行するための処理プログラムを記憶するプログラムデータ記憶手段360,処理プログラムを実行するために必要な情報(データ)が記憶される処理データ記憶手段370を備える。プログラムデータ記憶手段360,処理データ記憶手段370は例えばハードディスク(HDD)などの記憶領域に構築される。CPU310は必要に応じてプログラムデータ記憶手段360,処理データ記憶手段370から必要なプログラム,データ等を読み出して,各種の処理プログラムを実行する。   The EC 300 includes a program data storage unit 360 that stores processing programs for executing various processes of the substrate processing apparatus 100, and a processing data storage unit that stores information (data) necessary to execute the processing programs. 370. The program data storage unit 360 and the processing data storage unit 370 are constructed in a storage area such as a hard disk (HDD). The CPU 310 reads necessary programs, data, and the like from the program data storage unit 360 and the processing data storage unit 370 as necessary, and executes various processing programs.

上記CPU310と,RAM320,表示手段330,入出力手段340,報知手段350,プログラムデータ記憶手段360,処理データ記憶手段370等とは,制御バス,データバス等のバスラインにより接続されている。このバスラインには,上記スイッチングハブ220なども接続されている。   The CPU 310, the RAM 320, the display means 330, the input / output means 340, the notification means 350, the program data storage means 360, the processing data storage means 370, etc. are connected by a bus line such as a control bus or a data bus. The switching hub 220 and the like are also connected to the bus line.

ここで,上述したような構成の制御部200による基板処理装置100の制御例について説明する。各処理室104A〜104Dにおいて,例えばウエハWに上述したようなCOR処理,PHT処理,Ti膜成膜処理,TiN膜成膜処理などのプロセス処理を施す場合には,EC300のCPU310はプログラムデータ記憶手段360のプロセス処理プログラム364から実行する処理プログラムを読出し,処理データ記憶手段370のプロセス処理情報374から実行する処理のプロセスレシピの処理情報に基づいて各処理を実行する。すなわち,CPU310は,各処理プログラムに応じてスイッチングハブ220及び処理室104A〜104Dを制御するそれぞれのMC230,GHOSTネットワーク206及びI/Oモジュール236におけるI/O部238を介して,所望のエンドデバイスに制御信号を送信することによって各処理を実行する。   Here, a control example of the substrate processing apparatus 100 by the control unit 200 having the above-described configuration will be described. In each of the processing chambers 104A to 104D, for example, when the wafer W is subjected to process processing such as COR processing, PHT processing, Ti film formation processing, TiN film formation processing as described above, the CPU 310 of the EC 300 stores program data. A processing program to be executed is read from the process processing program 364 of the means 360, and each processing is executed based on the process recipe processing information of the processing to be executed from the process processing information 374 of the processing data storage means 370. That is, the CPU 310 performs a desired end device via the MC 230, the GHOST network 206, and the I / O module 236 in the I / O module 236 that controls the switching hub 220 and the processing chambers 104A to 104D according to each processing program. Each process is executed by transmitting a control signal to the.

具体的には例えばCOR処理室として構成される処理室104Aにおいて,ウエハWにCOR処理を施す場合には,CPU310が処理室104Aのガス導入系のマスフローコントローラ(例えばアンモニアガス供給管及び弗化水素ガス供給管のマスフローコントローラ)に制御信号を送信することによって処理室104Aにおけるアンモニアガス及び弗化水素ガスの体積流量比を所望の値に調節し,排気系の真空ポンプ(例えばTMP)及び圧力調整バルブ(例えばAPCバルブ)に制御信号を送信することによって処理室104A内の圧力を所望の値に調整する。このとき,圧力計が処理室104A内の圧力値を出力信号としてEC300のCPU310に送信し,CPU300は送信された処理室104A内の圧力値に基づいて,アンモニアガス供給管と弗化水素ガス供給管のマスフローコントローラ,APCバルブやTMPの制御パラメータを決定する。   Specifically, for example, in the processing chamber 104A configured as a COR processing chamber, when the COR processing is performed on the wafer W, the CPU 310 performs a gas flow system mass flow controller (for example, an ammonia gas supply pipe and a hydrogen fluoride) in the processing chamber 104A. The volume flow ratio of ammonia gas and hydrogen fluoride gas in the processing chamber 104A is adjusted to a desired value by transmitting a control signal to the mass flow controller of the gas supply pipe), and the exhaust system vacuum pump (eg, TMP) and pressure adjustment The pressure in the processing chamber 104A is adjusted to a desired value by transmitting a control signal to a valve (for example, an APC valve). At this time, the pressure gauge transmits the pressure value in the processing chamber 104A as an output signal to the CPU 310 of the EC 300, and the CPU 300 supplies the ammonia gas supply pipe and the hydrogen fluoride gas supply based on the transmitted pressure value in the processing chamber 104A. The control parameters of the pipe mass flow controller, APC valve and TMP are determined.

また,PHT処理室として構成される処理室104Bにおいて,ウエハWにPHT処理を施す場合には,CPU310が処理室104Bのガス供給系のマスフローコントローラ(例えば窒素ガス供給管のマスフローコントローラ)及び排気系の圧力調整バルブ(例えばAPCバルブ)に制御信号を送信することによって処理室104B内の圧力を所望の値に調整する。そして,ステージヒータに制御信号を送信することによってウエハWの温度を所望の温度に調整する。このとき,圧力計が処理室104B内の圧力値を出力信号としてEC300のCPU310に送信し,CPU310は送信された処理室104B内の圧力値に基づいて,窒素ガス供給管のMFCやAPCバルブ69の制御パラメータを決定する。   Further, in the processing chamber 104B configured as a PHT processing chamber, when performing PHT processing on the wafer W, the CPU 310 performs a gas flow system mass flow controller (for example, a mass flow controller of a nitrogen gas supply pipe) and an exhaust system in the processing chamber 104B. The pressure in the processing chamber 104B is adjusted to a desired value by transmitting a control signal to a pressure adjusting valve (for example, an APC valve). Then, the temperature of the wafer W is adjusted to a desired temperature by transmitting a control signal to the stage heater. At this time, the pressure gauge transmits the pressure value in the processing chamber 104B as an output signal to the CPU 310 of the EC 300, and the CPU 310 based on the transmitted pressure value in the processing chamber 104B and the MFC and APC valve 69 of the nitrogen gas supply pipe. Determine the control parameters.

このような図3に示す制御部(システムコントローラ)200では,複数のエンドデバイスがEC300に直接接続されることなく,その複数のエンドデバイスに接続されたI/O部がモジュール化されてI/Oモジュールを構成する。このI/OモジュールはMC及びスイッチングハブ220を介してEC300に接続されるため,通信系統を簡素化することができる。   In such a control unit (system controller) 200 shown in FIG. 3, a plurality of end devices are not directly connected to the EC 300, but the I / O units connected to the plurality of end devices are modularized to form I / Os. Configure the O module. Since this I / O module is connected to the EC 300 via the MC and the switching hub 220, the communication system can be simplified.

また,EC300のCPU310が送信する制御信号には,所望のエンドデバイスに接続されたI/O部のアドレス,及びそのI/O部を含むI/Oモジュールのアドレスが含まれているため,スイッチングハブ220は制御信号におけるI/Oモジュールのアドレスを参照し,MCのGHOSTが制御信号におけるI/O部のアドレスを参照することによって,スイッチングハブ220やMCがCPU310に制御信号の送信先の問い合わせを行う必要を無くすことができ,これにより,制御信号の円滑な伝達を実現することができる。   The control signal transmitted by the CPU 310 of the EC 300 includes the address of the I / O unit connected to the desired end device and the address of the I / O module including the I / O unit. The hub 220 refers to the address of the I / O module in the control signal, and the GHOST of the MC refers to the address of the I / O unit in the control signal, so that the switching hub 220 or the MC inquires the CPU 310 about the destination of the control signal. Thus, smooth transmission of the control signal can be realized.

このように,第1実施形態にかかる基板処理装置100では,成膜処理を行う前に,ウエハに付着した自然酸化膜などの付着物をプラズマを用いない付着物除去処理(例えばCOR処理及びPHT処理)を実行することによって除去した後,ウエハを大気に露出することなく連続して成膜処理を実行することができるため,膜の密着性,強度を向上させることができる。また,プラズマを用いないで自然酸化膜を除去できるので,ダメージのない配線加工を行うことができ,良好なコンタクト抵抗を有する膜を成膜することができる。   As described above, in the substrate processing apparatus 100 according to the first embodiment, before the film forming process, the deposits such as a natural oxide film attached to the wafer are removed from the deposits without using plasma (for example, COR processing and PHT). Since the film formation process can be performed continuously without exposing the wafer to the atmosphere after the removal by performing the process, the adhesion and strength of the film can be improved. Further, since the natural oxide film can be removed without using plasma, wiring processing without damage can be performed, and a film having good contact resistance can be formed.

なお,上記のようにコンタクトホール又はビアホールのバリア層を成膜する処理では,前工程としてCOR処理及びPHT処理を行うことが有効であることを説明したが,成膜処理としてはこれに限られるものではなく,以下のような他の成膜処理の前工程としてCOR処理及びPHT処理を行うようにしてもよい。   In the process of forming the contact hole or via hole barrier layer as described above, it has been described that the COR process and the PHT process are effective as the previous process, but the film forming process is not limited thereto. Instead, the COR process and the PHT process may be performed as a pre-process of another film forming process as described below.

(成膜処理の他の具体例)
ここで,本発明に適用可能な成膜処理の他の具体例について説明する。ここでは,前工程としてCOR処理及びPHT処理を行うことが有効な成膜処理として例えばMOSFETなどのMOSデバイスのゲート絶縁膜を高誘電体(High−K)材料により成膜する処理について説明する。
(Other specific examples of film forming process)
Here, another specific example of the film forming process applicable to the present invention will be described. Here, a process for forming a gate insulating film of a MOS device such as a MOSFET with a high dielectric (High-K) material will be described as a film forming process in which it is effective to perform the COR process and the PHT process as the previous process.

MOSデバイスのゲート絶縁膜は,微細化の進展により,近年ではシリコン酸化膜相当で1nm以下の厚さの膜が必要とされている。これは3〜4原子層の厚さに相当する。このくらい薄くなると,トンネル電流の増大,ゲート電極にドープした元素の拡散,信頼性の低下等により,シリコン酸化膜は使えないため,誘電率が高い膜(いわゆるHigh−K膜)の開発が非常な勢いで進められている。すなわち,ZrO,HfOなどの遷移金属酸化膜,Laなどの希土類酸化膜およびそれらのシリケートなどは,高い誘電率,高い熱的安定性,Si中の正孔と電子に対して高いエネルギー障壁を有することから,次世代のMOSFETなどのMOSデバイスにおけるゲート絶縁膜として精力的に研究されている。 With the progress of miniaturization, in recent years, a gate insulating film equivalent to a silicon oxide film having a thickness of 1 nm or less is required for a MOS device. This corresponds to a thickness of 3-4 atomic layers. At such a thin film, a silicon oxide film cannot be used due to an increase in tunneling current, diffusion of an element doped in the gate electrode, a decrease in reliability, etc., so development of a film having a high dielectric constant (so-called High-K film) It is proceeding at a rapid pace. That is, transition metal oxide films such as ZrO 2 and HfO 2 , rare earth oxide films such as La 2 O 3, and silicates thereof have high dielectric constant, high thermal stability, resistance to holes and electrons in Si. Since it has a high energy barrier, it has been energetically studied as a gate insulating film in MOS devices such as next-generation MOSFETs.

これらの高誘電率膜とSi基板との間には,シリケートからなる組成遷移層が形成され,シリケート層とSi基板の間にSiの中間酸化状態からなる組成遷移層が形成されてしまう。従って,これら組成遷移層が形成されることを防止するために,先に酸化防止層としてベース酸化膜(例えばSiO膜)を成膜する必要がある。このようにベース酸化膜をシリケート層とSi基板に介在させることによってデバイス特性の劣化,つまり移動度の低下を防止する効果もある。 A composition transition layer made of silicate is formed between these high dielectric constant films and the Si substrate, and a composition transition layer made of an intermediate oxidation state of Si is formed between the silicate layer and the Si substrate. Therefore, in order to prevent these composition transition layers from being formed, it is necessary to form a base oxide film (for example, SiO 2 film) as an antioxidant layer first. Thus, by interposing the base oxide film between the silicate layer and the Si substrate, there is an effect of preventing deterioration of device characteristics, that is, reduction of mobility.

このような高誘電体(High−K)材料によるゲート絶縁膜の成膜に際しては原子層レベルでの制御が必要であるため,ゲート絶縁膜の成膜処理を実行する前に,プラズマを用いないドライクリーニングである付着物除去処理(例えばCOR処理及びPHT処理)を実行して自然酸化膜などの付着物を除去することによって,膜の密着性,強度を向上させることができる。   When forming a gate insulating film using such a high dielectric (High-K) material, it is necessary to control at the atomic layer level, so that plasma is not used before the gate insulating film forming process is performed. The adhesion and strength of the film can be improved by performing the deposit removal process (for example, COR process and PHT process), which is dry cleaning, to remove deposits such as a natural oxide film.

また,もしプラズマを用いて自然酸化膜を除去すれば,ゲート絶縁膜を成膜する下地にプラズマ励起のチャージアップダメージを負わせる虞がある。このように下地にダメージを残したままゲート酸化膜を成膜すると,そのダメージの程度によってはゲート酸化膜の破壊を招き,MOSデバイス自体の特性が劣化する虞がある。この点,本実施形態にかかる付着物除去処理(例えばCOR処理及びPHT処理)では,プラズマを用いないため,ゲート絶縁膜を成膜する下地にダメージを与えることもないので,MOSデバイスの特性が劣化することを防止することができる。   Further, if the natural oxide film is removed using plasma, there is a risk of causing charge-up damage due to plasma excitation to the base on which the gate insulating film is formed. If a gate oxide film is formed with damage on the underlying layer as described above, the gate oxide film may be destroyed depending on the degree of the damage, and the characteristics of the MOS device itself may be deteriorated. In this regard, in the deposit removal processing (for example, COR processing and PHT processing) according to the present embodiment, plasma is not used, and therefore, the substrate on which the gate insulating film is formed is not damaged. Deterioration can be prevented.

このような高誘電体(High−K)材料のゲート絶縁膜(高誘電体ゲート絶縁膜)を成膜する処理は,ウエハ上すなわちシリコン基板上に非常に薄い,好ましくは1nm以下の膜厚のSiO膜などのベース酸化膜を成膜した後,High−K膜(例えばHfSiOなどのシリケート膜)を成膜する。なお,ベース酸化膜成膜処理は第1膜成膜処理に相当し,High−K膜成膜処理は第2膜成膜処理に相当する。 The process of forming such a high dielectric (High-K) gate insulating film (high dielectric gate insulating film) is very thin on the wafer, that is, on the silicon substrate, preferably with a film thickness of 1 nm or less. After forming a base oxide film such as a SiO 2 film, a High-K film (for example, a silicate film such as HfSiO 2 ) is formed. The base oxide film forming process corresponds to the first film forming process, and the High-K film forming process corresponds to the second film forming process.

ベース酸化膜成膜処理(第1膜成膜処理)は,例えば紫外光励起酸素ラジカルを使ったラジカル酸化処理によって行われる。具体的にはシリコン基板の紫外光励起ラジカル酸化処理により,2〜3分子層に相当する膜厚のベース酸化膜を安定に,再現性良く形成することができる。このように,酸素ラジカルによってシリコン基板上の表面にベース酸化膜として例えば略0.5nm程度のSiO原子層を形成する。この場合の処理時間は例えば300秒である。 The base oxide film forming process (first film forming process) is performed by radical oxidation using, for example, ultraviolet light-excited oxygen radicals. Specifically, a base oxide film having a film thickness corresponding to 2 to 3 molecular layers can be stably formed with good reproducibility by ultraviolet light excited radical oxidation treatment of a silicon substrate. Thus, an SiO 2 atomic layer of about 0.5 nm, for example, is formed as a base oxide film on the surface of the silicon substrate by oxygen radicals. In this case, the processing time is, for example, 300 seconds.

High−K膜成膜処理(第2膜成膜処理)は,ベース酸化膜成膜処理によってベース酸化膜が形成されたウエハ上に,例えば有機金属化学気相堆積(MOCVD)法などにより金属酸化膜(例えばHfSiOなどのシリケート膜)を形成する。具体的には例えばベース酸化膜としてSiO原子層が形成された基板を400〜600℃に加熱した状態で,基板上に原料ガスを導入すると,原料ガスが分解して基板上に例えばHfSiOなどのシリケート膜の薄膜が形成される。この場合の処理時間としては例えば343秒である。 The High-K film deposition process (second film deposition process) is performed by, for example, metal oxide chemical vapor deposition (MOCVD) on the wafer on which the base oxide film is formed by the base oxide film deposition process. A film (for example, a silicate film such as HfSiO 2 ) is formed. Specifically, for example, when a source gas is introduced onto a substrate on which a SiO 2 atomic layer as a base oxide film is heated to 400 to 600 ° C., the source gas is decomposed and, for example, HfSiO 2 is deposited on the substrate. A thin film of a silicate film such as is formed. The processing time in this case is, for example, 343 seconds.

(処理室の他の構成例)
次に,このような処理を実行するための基板処理装置100における処理室の構成例を説明する。本実施形態にかかる基板処理装置100は,COR処理,PHT処理,ベース酸化膜成膜処理(UV処理),High−K膜成膜処理(MOCVD処理)を連続して実行する。
(Other configuration examples of processing chamber)
Next, a configuration example of a processing chamber in the substrate processing apparatus 100 for performing such processing will be described. The substrate processing apparatus 100 according to the present embodiment sequentially performs COR processing, PHT processing, base oxide film formation processing (UV processing), and High-K film formation processing (MOCVD processing).

このため,処理室104A〜104Dのうち少なくとも2つの処理室の一方をそれぞれCOR処理,PHT処理を実行する付着物除去処理室として構成し,他方の2つの処理室をそれぞれ酸化膜成膜処理(UV処理),High−K膜成膜処理(MOCVD処理)を実行する成膜処理室として構成する。   Therefore, one of at least two processing chambers among the processing chambers 104A to 104D is configured as a deposit removal processing chamber for performing COR processing and PHT processing, respectively, and the other two processing chambers are respectively formed with oxide film deposition processing ( UV processing), and a film forming process chamber for performing a High-K film forming process (MOCVD process).

ここで,基板処理装置100における処理室104A,104B,104C,104DをそれぞれCOR処理室,PHT処理室,酸化膜成膜処理(UV処理)室,High−K膜成膜処理(MOCVD処理)室として構成した例を図5に示す。酸化膜成膜処理(UV処理)室,High−K膜成膜処理(MOCVD処理)室における処理については,それぞれ上述した制御部200のEC(装置制御部)300のプログラムデータ記憶手段360に記憶されたプロセス処理プログラム364に基づいて実行される。EC300のCPU310はプロセス処理プログラム364から必要な処理プログラムを読出し,処理データ記憶手段370に記憶されるプロセス処理情報(例えばプロセスレシピ情報)374から必要な情報を読み出して各処理を実行する。   Here, the processing chambers 104A, 104B, 104C, and 104D in the substrate processing apparatus 100 are a COR processing chamber, a PHT processing chamber, an oxide film deposition processing (UV processing) chamber, and a High-K film deposition processing (MOCVD processing) chamber, respectively. An example configured as shown in FIG. The processes in the oxide film deposition process (UV process) chamber and the High-K film deposition process (MOCVD process) chamber are stored in the program data storage unit 360 of the EC (apparatus control unit) 300 of the control unit 200 described above, respectively. It is executed based on the processed process program 364. The CPU 310 of the EC 300 reads a necessary processing program from the process processing program 364, reads necessary information from the process processing information (for example, process recipe information) 374 stored in the processing data storage unit 370, and executes each processing.

なお,各処理室104A〜104Dを図5に示すように構成した場合の基板処理装置100におけるウエハWの搬送処理については,図2に示す構成の場合と同様であるため,その詳細な説明を省略する。   The wafer W transfer process in the substrate processing apparatus 100 when each of the processing chambers 104A to 104D is configured as shown in FIG. 5 is the same as that in the configuration shown in FIG. Omitted.

(第2実施形態にかかる基板処理装置の構成例)
次に,第2実施形態にかかる基板処理装置の構成例を図面を参照しながら説明する。図6は第2実施形態にかかる基板処理装置の概略構成図である。図6に示すように,基板処理装置101は複数の処理室を接続する共通搬送室を備える真空処理装置を複数連結した構成である。このような構成の基板処理装置101においても本発明を適用することができる。
(Configuration Example of Substrate Processing Apparatus According to Second Embodiment)
Next, a configuration example of the substrate processing apparatus according to the second embodiment will be described with reference to the drawings. FIG. 6 is a schematic configuration diagram of a substrate processing apparatus according to the second embodiment. As shown in FIG. 6, the substrate processing apparatus 101 has a configuration in which a plurality of vacuum processing apparatuses including a common transfer chamber for connecting a plurality of processing chambers are connected. The present invention can also be applied to the substrate processing apparatus 101 having such a configuration.

図6に示す基板処理装置101は,図1に示す基板処理装置100における共通搬送室を第1共通搬送室102とすれば,この第1共通搬送室102と2つのロードロック室108A,108Bとの間に別の第2共通搬送室120を介在させた例である。この第2共通搬送室120は,略多角形(例えば変則的な七角形)に構成されており,2つの辺に各処理室104E,104Fをそれぞれゲートバルブ106E,106Fを介して連結している。なお,第1共通搬送室102とこれに接続される処理室(処理室104A〜104D)を備える真空処理装置は第1真空処理装置の1例を構成し,第2共通搬送室120とこれに接続される処理室(処理室104E,104F)を備える真空処理装置は第2真空処理装置の1例を構成する。   A substrate processing apparatus 101 shown in FIG. 6 has a first common transfer chamber 102 and two load lock chambers 108A and 108B, if the common transfer chamber in the substrate processing apparatus 100 shown in FIG. This is an example in which another second common transfer chamber 120 is interposed between the two. The second common transfer chamber 120 has a substantially polygonal shape (for example, an irregular heptagon), and the processing chambers 104E and 104F are connected to two sides via gate valves 106E and 106F, respectively. . Note that the vacuum processing apparatus including the first common transfer chamber 102 and the processing chambers (processing chambers 104A to 104D) connected to the first common transfer chamber 102 constitutes an example of the first vacuum processing apparatus. A vacuum processing apparatus including processing chambers (processing chambers 104E and 104F) to be connected constitutes an example of a second vacuum processing apparatus.

第1共通搬送室102と第2共通搬送室120との間には,両共通搬送室102,120を連通すると共にウエハWを一時的に保持するパス部122が連結されている。第1共通搬送室102と第2共通搬送室120との間でウエハを搬送する際には,このパス部122にウエハWを一時的に保持するようになっている。この場合,第1共通搬送室102の形状は,パス部122を連結するために変則的な七角形に成形されている。第1共通搬送室102とパス部122の接合部にはゲートバルブ126が設けられている。このゲートバルブ126を開閉することにより,両共通搬送室102,120間を連通及び遮断が可能となる。   Between the first common transfer chamber 102 and the second common transfer chamber 120, a path unit 122 that connects both the common transfer chambers 102 and 120 and temporarily holds the wafer W is connected. When the wafer is transferred between the first common transfer chamber 102 and the second common transfer chamber 120, the wafer W is temporarily held in the path unit 122. In this case, the shape of the first common transfer chamber 102 is formed into an irregular heptagon in order to connect the path portion 122. A gate valve 126 is provided at the junction between the first common transfer chamber 102 and the pass unit 122. By opening and closing the gate valve 126, the common transfer chambers 102 and 120 can be connected and disconnected.

上記各処理室104E,104F内には,他の処理室104A〜104Dと同様にウエハWを保持する載置台105E,105Fがそれぞれ設けられる。また,第2共通搬送室120内には,第1共通搬送室102と同様に,2つのピック124A,124Bを有する屈伸及び旋回可能になされた搬送機構124が設けられている。第2共通搬送室120の搬送機構124は,第1共通搬送室102の搬送機構118の場合と同様な操作でウエハを効率的に搬送するようになっている。   In the processing chambers 104E and 104F, mounting tables 105E and 105F for holding the wafer W are provided similarly to the other processing chambers 104A to 104D. In the second common transfer chamber 120, similarly to the first common transfer chamber 102, a transfer mechanism 124 having two picks 124A and 124B that can be bent and stretched is provided. The transfer mechanism 124 of the second common transfer chamber 120 efficiently transfers the wafer by the same operation as that of the transfer mechanism 118 of the first common transfer chamber 102.

なお,第2共通搬送室120と2つのロードロック室の内のいずれか一方,例えばロードロック室108Aとの連結部の搬送口152AはウエハWを第2共通搬送室120内へ専用に搬入する搬入口として用いられ,他方のロードロック室108Bとの連結部の搬送口152BはウエハWを第2共通搬送室120から外へ専用に搬出する搬出口として用いられる。   Note that one of the second common transfer chamber 120 and the two load lock chambers, for example, the transfer port 152A of the connecting portion with the load lock chamber 108A, carries the wafer W into the second common transfer chamber 120 exclusively. The transfer port 152B, which is used as a carry-in port and connected to the other load lock chamber 108B, is used as a carry-out port for carrying out the wafer W exclusively from the second common transfer chamber 120.

(処理室の構成例)
次に,図6に示す基板処理装置101における処理室の構成例を説明する。第2実施形態にかかる基板処理装置101においても,ウエハ上の自然酸化膜などの付着物を水成分を用いず且つプラズマを用いずに除去する付着物除去処理と,この付着物除去処理が施されたウエハ上に所定の薄膜を形成する成膜処理とを連続して実行するように構成することができる。
(Configuration example of processing chamber)
Next, a configuration example of the processing chamber in the substrate processing apparatus 101 illustrated in FIG. 6 will be described. Also in the substrate processing apparatus 101 according to the second embodiment, the deposit removal process for removing deposits such as a natural oxide film on the wafer without using a water component and without using plasma, and the deposit removal process are performed. A film forming process for forming a predetermined thin film on the formed wafer can be continuously performed.

処理室104A〜104Fのうち少なくとも2つの処理室の一方を付着物除去処理室として構成し,他方の2つの処理室を成膜処理室として構成する。また,付着物除去処理は上述したように複数段階の処理を連続して実行するようにしてもよく,この場合には付着物除去処理室を複数の処理室で構成してもよい。具体的には上述したような生成物生成処理(例えばCOR処理)と,生成物除去処理(例えばPHT処理)との2段階の処理によって行う場合には処理室104A〜104Fのうちの2つの処理室を付着物除去処理室として構成する。この場合,一方の処理室を生成物生成処理室として構成し,他方の処理室を生成物除去処理室として構成する。   One of at least two processing chambers among the processing chambers 104A to 104F is configured as a deposit removal processing chamber, and the other two processing chambers are configured as a film forming processing chamber. Further, as described above, the deposit removing process may be performed in a plurality of stages continuously. In this case, the deposit removing process chamber may be constituted by a plurality of process chambers. Specifically, in the case of performing the two-stage processing of the product generation processing (for example, COR processing) and the product removal processing (for example, PHT processing) as described above, two processing out of the processing chambers 104A to 104F. The chamber is configured as a deposit removal processing chamber. In this case, one processing chamber is configured as a product generation processing chamber, and the other processing chamber is configured as a product removal processing chamber.

また成膜処理は異なる膜を連続して成膜するようにしてもよく,この場合には成膜処理室を複数の処理室で構成してもよい。具体的には第1膜(例えばTi系膜)と,第2膜(例えばTiN系膜)を連続して成膜する場合には処理室104A〜104Fのうちの2つの処理室を成膜処理室として構成する。この場合,一方の処理室を第1膜を成膜する第1膜成膜処理室として構成し,他方の処理室を第2膜を成膜する第2膜成膜処理室として構成する。このように,基板処理装置101によって実行される付着物除去処理と成膜処理の内容に応じて各処理室104A〜104Fの構成が決定される。   In the film forming process, different films may be successively formed. In this case, the film forming process chamber may be composed of a plurality of process chambers. Specifically, in the case where a first film (for example, a Ti-based film) and a second film (for example, a TiN-based film) are continuously formed, two of the processing chambers 104A to 104F are formed. Configure as a chamber. In this case, one processing chamber is configured as a first film deposition processing chamber for depositing a first film, and the other processing chamber is configured as a second film deposition processing chamber for depositing a second film. As described above, the configuration of each of the processing chambers 104A to 104F is determined according to the contents of the deposit removal process and the film forming process executed by the substrate processing apparatus 101.

ここで,例えばコンタクトホール又はビアホールが形成されたウエハWを基板処理装置101に導入し,このウエハWに対して上述したような付着物除去処理としてのCOR処理,PHT処理を連続して実行した後,成膜処理としてのTi膜成膜処理,TiN膜成膜処理を連続して実行する場合の基板処理装置101における処理室の構成例を図7に示す。   Here, for example, a wafer W in which contact holes or via holes are formed is introduced into the substrate processing apparatus 101, and the COR processing and the PHT processing as the deposit removal processing as described above are continuously performed on the wafer W. Thereafter, FIG. 7 shows a configuration example of the processing chamber in the substrate processing apparatus 101 when the Ti film forming process and the TiN film forming process as the film forming process are successively executed.

図7に示す構成例は,第1共通搬送室102に接続される処理室104A,104B,104C,104DをそれぞれCOR処理室,PHT処理室,Ti膜成膜処理室,TiN膜成膜処理室として構成したものである。   In the configuration example shown in FIG. 7, the processing chambers 104A, 104B, 104C, and 104D connected to the first common transfer chamber 102 are a COR processing chamber, a PHT processing chamber, a Ti film deposition processing chamber, and a TiN film deposition processing chamber, respectively. It is constituted as follows.

(ウエハの搬送処理)
このような図7に示す構成の基板処理装置101におけるウエハWの搬送処理について説明する。ウエハWに対する各処理室104A〜104Dにおける処理の順序が上記の順序で行われるので,ウエハWの搬送経路は図7に示す実線矢印のようになる。
(Wafer transfer processing)
The wafer W transfer process in the substrate processing apparatus 101 configured as shown in FIG. 7 will be described. Since the order of processing in the processing chambers 104A to 104D for the wafer W is performed in the above-described order, the transfer path of the wafer W is as shown by a solid line arrow shown in FIG.

ここでは,一例として中央の導入ポート112Bに設置したカセット(キャリアも含む)から例えばコンタクトホール又はビアホールが形成された処理前ウエハWが取り出されるものとし,また2つのロードロック室108A,108Bのうちのいずれか一方のロードロック室,例えばロードロック室108Aを処理前ウエハWの搬入用に用い,他方のロードロック室108Bを処理済ウエハWの搬出用に用いる。今,各処理室104A〜104D内にはそれぞれウエハWが収容されてそれぞれの処理が終了しているか,又はほぼ終了しかけているものとする。   Here, as an example, it is assumed that the pre-process wafer W in which, for example, a contact hole or a via hole is formed is taken out from a cassette (including a carrier) installed in the central introduction port 112B, and one of the two load lock chambers 108A and 108B. One of the load lock chambers, for example, the load lock chamber 108A is used for loading the unprocessed wafer W, and the other load lock chamber 108B is used for unloading the processed wafer W. Now, it is assumed that the wafers W are accommodated in the respective processing chambers 104A to 104D, and the respective processes are finished or almost finished.

先ず,図7に示す搬入側搬送室110内のウエハWの搬送処理については,図2に示す場合と同様であるため,その詳細な説明は省略する。この場合,図7に示す搬送経路X21〜X23はそれぞれ図2に示す搬送経路X11〜X13に相当する。   First, the transfer process of the wafer W in the carry-in transfer chamber 110 shown in FIG. 7 is the same as that shown in FIG. In this case, the transport paths X21 to X23 shown in FIG. 7 correspond to the transport paths X11 to X13 shown in FIG.

また,第1共通搬送室102内のウエハWの搬送処理についても,図2に示す場合とほぼ同様であるが,図7における第1共通搬送室102内の搬送処理においてはウエハWをパス部122との間で搬送する点で,ウエハWをロードロック室108A,108Bとの間で搬送する図2の場合と相違する。   Also, the transfer process of the wafer W in the first common transfer chamber 102 is almost the same as that shown in FIG. 2, but in the transfer process in the first common transfer chamber 102 in FIG. 2 is different from the case of FIG. 2 in which the wafer W is transferred between the load lock chambers 108A and 108B.

具体的には,図7に示す搬送経路Y21〜Y25はそれぞれ図2に示す搬送経路Y11〜Y15に相当するが,搬送経路Y21についてはウエハWを処理室104Dからパス部122へ搬送し,搬送経路Y25についてはウエハWをパス部122から処理室104Aへ搬送する点で,搬送経路Y11,Y15と異なる。   Specifically, the transfer paths Y21 to Y25 shown in FIG. 7 correspond to the transfer paths Y11 to Y15 shown in FIG. 2, respectively, but the transfer path Y21 transfers the wafer W from the processing chamber 104D to the pass unit 122 and transfers it. The route Y25 is different from the transfer routes Y11 and Y15 in that the wafer W is transferred from the path unit 122 to the processing chamber 104A.

第2共通搬送室120内のウエハWの搬送処理については,先ず搬送機構124によりパス部122に収容されている処理済のウエハWを取りに行き,搬送経路Z21に示すようにこれを空き状態のロードロック室108B内に置く。次いで,ロードロック室108A内で待機していた処理前のウエハWを搬送機構124によって取りに行き,搬送経路Z22に示すようにこれを上記パス部122内へ搬送する。   As for the transfer processing of the wafer W in the second common transfer chamber 120, first, the processed wafer W accommodated in the pass unit 122 is picked up by the transfer mechanism 124, and the empty state as shown in the transfer path Z21. In the load lock chamber 108B. Next, the unprocessed wafer W waiting in the load lock chamber 108A is picked up by the transfer mechanism 124, and is transferred into the pass section 122 as indicated by the transfer path Z22.

なお,ウエハWの搬出入の際には,各ゲートバルブ106A〜106F,107A,107B,126のうち,ウエハWの搬出入に必要なゲートバルブを開閉操作する。そして,各処理室104A〜104DにてウエハWの処理が完了する毎に上記の操作が繰り返し行われることになる。   When the wafer W is loaded / unloaded, among the gate valves 106A to 106F, 107A, 107B, 126, a gate valve necessary for loading / unloading the wafer W is opened / closed. The above operation is repeated each time the processing of the wafer W is completed in each of the processing chambers 104A to 104D.

こうして,コンタクトホール又はビアホールが形成された処理前ウエハWに対して処理室104A〜処理室104DにてそれぞれCOR処理,PHT処理,Ti膜成膜処理,TiN膜成膜処理が連続して施される。   Thus, the COR process, the PHT process, the Ti film forming process, and the TiN film forming process are successively performed in the processing chamber 104A to the processing chamber 104D on the pre-processing wafer W in which the contact hole or the via hole is formed. The

このように,図7に示す処理室の構成によれば,第1共通搬送室102に接続する処理室104A〜処理室104DをそれぞれCOR処理室,PHT処理室,Ti膜成膜処理室,TiN膜成膜処理室として構成するため,第2共通搬送室120に接続する処理室104E,104Fについては,ウエハに他の処理を施す処理室として構成することができる。   Thus, according to the configuration of the processing chamber shown in FIG. 7, the processing chamber 104A to the processing chamber 104D connected to the first common transfer chamber 102 are respectively connected to the COR processing chamber, the PHT processing chamber, the Ti film deposition processing chamber, TiN. Since it is configured as a film deposition processing chamber, the processing chambers 104E and 104F connected to the second common transfer chamber 120 can be configured as processing chambers for performing other processing on the wafer.

例えば処理室104E又は104Fは,コンタクトホール又はビアホール内に埋込むためのタングステン膜などを成膜する金属系膜成膜室として構成してもよい。この場合には,処理室104A〜処理室104Dによって処理されたウエハWを処理室104E又は104Fに搬送して,ウエハWに形成されたTi膜及びTiN膜のバリア層上にタングステン膜を形成するようにしてもよい。これにより,コンタクトホール又はビアホール内のプラズマレス洗浄処理,Ti膜及びTiN膜のバリア層成膜処理,タングステン膜の埋込み処理を連続して行うことができる。   For example, the processing chamber 104E or 104F may be configured as a metal film deposition chamber for depositing a tungsten film or the like for filling in a contact hole or a via hole. In this case, the wafer W processed by the processing chamber 104A to the processing chamber 104D is transferred to the processing chamber 104E or 104F, and a tungsten film is formed on the Ti film and the TiN film barrier layer formed on the wafer W. You may do it. Thereby, the plasmaless cleaning process in the contact hole or the via hole, the barrier film forming process of the Ti film and the TiN film, and the filling process of the tungsten film can be continuously performed.

なお,基板処理装置101の処理室の構成は,上記のものに限られるものではない。例えば成膜処理としてベース酸化膜成膜処理(UV処理),High−K膜成膜処理(MOCVD処理)を行う場合には,図8に示すように処理室104C,104Dをベース酸化膜成膜処理(UV処理)室,High−K膜成膜処理(MOCVD処理)室として構成してもよい。この場合の搬送処理は,図7に示す場合と同様であるため,その詳細な説明を省略する。   Note that the configuration of the processing chamber of the substrate processing apparatus 101 is not limited to the above. For example, when a base oxide film forming process (UV process) or a high-K film forming process (MOCVD process) is performed as a film forming process, the process chambers 104C and 104D are formed in the base oxide film as shown in FIG. You may comprise as a process (UV process) chamber and a High-K film-forming process (MOCVD process) chamber. Since the carrying process in this case is the same as that shown in FIG. 7, a detailed description thereof will be omitted.

また,第1共通搬送室102に接続する処理室104A〜処理室104Dについては成膜処理室として構成し,第2共通搬送室120に接続する処理室104E,104Fについては付着物除去処理室(例えばCOR処理室及びPHT処理室)として構成してもよい。この場合,例えば図9に示すように第1共通搬送室102に接続する処理室104A〜104Dを2系統の成膜処理室として構成するようにしてもよい。   Further, the processing chamber 104A to the processing chamber 104D connected to the first common transfer chamber 102 is configured as a film forming processing chamber, and the processing chambers 104E and 104F connected to the second common transfer chamber 120 are set to be a deposit removal processing chamber ( For example, a COR processing chamber and a PHT processing chamber may be configured. In this case, for example, as shown in FIG. 9, the processing chambers 104A to 104D connected to the first common transfer chamber 102 may be configured as two systems of film forming processing chambers.

具体的には図9に示すように第1共通搬送室102に接続する処理室104A,104Bを第1系統,すなわち第1Ti膜成膜処理室,第1TiN膜成膜処理室として構成し,処理室104C,104Dを第2系統,すなわち第2Ti膜成膜処理室,第2TiN膜成膜処理室として構成する。この第1系統と第2系統では同じプロセスレシピで成膜処理を実行するようにしてもよく,また例えばガス流量や圧力などが異なるプロセスレシピで成膜処理を実行するようにしてもよい。一方,第2共通搬送室120に接続する処理室104E,処理室104FをそれぞれCOR処理室,PHT処理室として構成する。   Specifically, as shown in FIG. 9, the processing chambers 104A and 104B connected to the first common transfer chamber 102 are configured as a first system, that is, a first Ti film deposition processing chamber and a first TiN film deposition processing chamber. The chambers 104C and 104D are configured as a second system, that is, a second Ti film deposition process chamber and a second TiN film deposition process chamber. In the first system and the second system, the film forming process may be executed with the same process recipe, or the film forming process may be executed with process recipes having different gas flow rates or pressures, for example. On the other hand, the processing chamber 104E and the processing chamber 104F connected to the second common transfer chamber 120 are configured as a COR processing chamber and a PHT processing chamber, respectively.

ここで,図9に示すように構成された基板処理装置101の搬送処理について説明する。図9では,第2共通搬送室120内ではウエハWは処理室104E,104Fの順に処理されてパス部122に収容される。そして,第1共通搬送室102内では,ウエハWはパス部122から処理室104A,104Bにこの順に搬送されて処理される第1系統と,ウエハWはパス部122から処理室104C,104Dにこの順に搬送されて処理される第2系統との2つの系統の処理が実行可能である。これら2系統の処理は並列して実行してもよく,またいずれか一方の系統のみの処理を実行してもよい。   Here, the transfer process of the substrate processing apparatus 101 configured as shown in FIG. 9 will be described. In FIG. 9, in the second common transfer chamber 120, the wafers W are processed in the order of the processing chambers 104 </ b> E and 104 </ b> F and stored in the pass unit 122. In the first common transfer chamber 102, the wafer W is transferred from the pass section 122 to the process chambers 104A and 104B in this order and processed, and the wafer W is transferred from the pass section 122 to the process chambers 104C and 104D. Two systems of processing can be executed, with the second system being transported and processed in this order. These two systems may be executed in parallel, or only one of the systems may be executed.

先ず,図9に示す搬入側搬送室110内のウエハWの搬送処理については,図2に示す場合と同様であるため,その詳細な説明は省略する。この場合,図9に示す搬送経路X31〜X33はそれぞれ図2に示す搬送経路X11〜X13に相当する。   First, the transfer process of the wafer W in the carry-in transfer chamber 110 shown in FIG. 9 is the same as that shown in FIG. In this case, the transport paths X31 to X33 shown in FIG. 9 correspond to the transport paths X11 to X13 shown in FIG.

次に,第2共通搬送室120内のウエハWの搬送処理について説明する。先ず搬送機構124によりパス部122に収容されている処理室104B又は処理室104Dにて処理済のウエハWを取りに行き,搬送経路Z31に示すようにこれを空き状態のロードロック室108B内に置く。   Next, the transfer process of the wafer W in the second common transfer chamber 120 will be described. First, the wafer W that has been processed in the processing chamber 104B or the processing chamber 104D accommodated in the pass section 122 is taken by the transfer mechanism 124, and this is put into the empty load lock chamber 108B as indicated by the transfer path Z31. Put.

次いで,搬送機構124により処理室104Fにて処理済のウエハWを取りに行き,搬送経路Z32に示すようにこれを空き状態のパス部122内に置く。続いて,搬送機構124により処理室104Eにて処理済のウエハWを取りに行き,搬送経路Z33に示すようにこれを空き状態の処理室104F内へ搬入して置き,処理室104F内での処理を開始する。   Next, the wafer W that has been processed in the processing chamber 104F is picked up by the transfer mechanism 124, and is placed in the empty path section 122 as indicated by the transfer path Z32. Subsequently, the wafer W that has been processed in the processing chamber 104E is picked up by the transfer mechanism 124, and is loaded into the empty processing chamber 104F and placed in the empty processing chamber 104F as indicated by the transfer path Z33. Start processing.

次いで,ロードロック室108A内で待機していた処理前のウエハWを搬送機構124によって取りに行き,搬送経路Z34に示すようにこれを上記空き状態の処理室104E内へ搬入して置き,この処理室104E内での処理を開始する。   Next, the unprocessed wafer W waiting in the load lock chamber 108A is picked up by the transfer mechanism 124, and is loaded into the empty process chamber 104E as shown in the transfer path Z34. Processing in the processing chamber 104E is started.

次に,第1共通搬送室102内のウエハWの搬送処理について説明する。第1共通搬送室102内では,上述したように2系統の処理が実行可能である。第1系統(処理室104A,104B)で処理を行う場合は,先ず搬送機構118により処理室104Bに収容されている処理済のウエハWを取りに行き,搬送経路Ya31に示すようにこれを空き状態のパス部122に置く。   Next, transfer processing of the wafer W in the first common transfer chamber 102 will be described. In the first common transfer chamber 102, two systems of processing can be executed as described above. When processing is performed in the first system (processing chambers 104A and 104B), first, the processed wafer W accommodated in the processing chamber 104B is picked up by the transfer mechanism 118, and this is emptied as indicated by the transfer path Ya31. Place it in the path portion 122 of the state.

次いで,搬送機構118により処理室104A内に収容されている処理済のウエハWを取りに行き,搬送経路Ya32に示すようにこれを空き状態の処理室104B内へ搬入して置き,処理室104B内での処理を開始する。続いて,第2共通搬送室120からパス部122内に搬送されたウエハWを搬送機構118によって取りに行き,搬送経路Ya33に示すようにこれを上記空き状態の処理室104A内へ搬入して置き,この処理室104A内での処理を開始する。   Next, the processed wafer W accommodated in the processing chamber 104A is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104B as shown by the transfer path Ya32, and is set in the processing chamber 104B. Start processing within. Subsequently, the wafer W transferred from the second common transfer chamber 120 into the pass unit 122 is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104A as indicated by the transfer path Ya33. Then, processing in the processing chamber 104A is started.

また,第2系統(処理室104C,104D)で処理を行う場合は,先ず搬送機構118により処理室104Dに収容されている処理済のウエハWを取りに行き,搬送経路Yb31に示すようにこれを空き状態のパス部122に置く。   When processing is performed in the second system (processing chambers 104C and 104D), first, the processed wafer W accommodated in the processing chamber 104D is picked up by the transfer mechanism 118, and as shown in the transfer path Yb31. Is placed in the empty path section 122.

次いで,搬送機構118により処理室104C内に収容されている処理済のウエハWを取りに行き,搬送経路Yb32に示すようにこれを空き状態の処理室104D内へ搬入して置き,処理室104D内での処理を開始する。続いて,第2共通搬送室120からパス部122内に搬送されたウエハWを搬送機構118によって取りに行き,搬送経路Yb33に示すようにこれを上記空き状態の処理室104C内へ搬入して置き,この処理室104C内での処理を開始する。   Next, the processed wafer W accommodated in the processing chamber 104C is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104D and placed as shown in the transfer path Yb32. Start processing within. Subsequently, the wafer W transferred from the second common transfer chamber 120 into the pass unit 122 is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104C as indicated by a transfer path Yb33. Then, processing in the processing chamber 104C is started.

なお,ウエハWの搬出入の際には,各ゲートバルブ106A〜106F,107A,107B,126のうち,ウエハWの搬出入に必要なゲートバルブを開閉操作する。そして,処理室104E及び104F,処理室104A及び104B,処理室104C及び104Dにて処理が行われ,ウエハWの処理が完了する毎に上記した操作が繰り返し行われることになる。こうして,コンタクトホール又はビアホールが形成された処理前のウエハWに対してCOR処理,PHT処理,Ti膜成膜処理,TiN膜成膜処理が連続して施される。   When the wafer W is loaded / unloaded, among the gate valves 106A to 106F, 107A, 107B, 126, a gate valve necessary for loading / unloading the wafer W is opened / closed. Then, the processing is performed in the processing chambers 104E and 104F, the processing chambers 104A and 104B, and the processing chambers 104C and 104D, and the above operation is repeated every time the processing of the wafer W is completed. In this way, the COR process, the PHT process, the Ti film forming process, and the TiN film forming process are successively performed on the unprocessed wafer W on which the contact hole or the via hole is formed.

このように,図9に示す処理室の構成によれば,第1共通搬送室102に接続する処理室104A〜処理室104Dを2系統のTi膜成膜処理室,TiN膜成膜処理室として構成するため,これら2系統の処理を並列して実行すれば,装置全体のスループットを大幅に向上させることができる。というのも,通常は,成膜処理(ここではTi膜成膜処理,TiN膜成膜処理)の方が,付着物除去処理(ここではCOR処理,PHT処理)よりも時間がかかるので,一方の系統の成膜処理を実行している間にCOR処理,PHT処理などの洗浄処理が終了すれば,他方の系統の処理室が空いていれば成膜処理を直ぐに実行することができるからである。   As described above, according to the configuration of the processing chamber shown in FIG. 9, the processing chamber 104A to the processing chamber 104D connected to the first common transfer chamber 102 are used as two systems of Ti film deposition processing chambers and TiN film deposition processing chambers. Because of the configuration, if these two systems are executed in parallel, the overall throughput of the apparatus can be greatly improved. This is because the film formation process (here, Ti film formation process, TiN film formation process) takes longer than the deposit removal process (here, COR process, PHT process). If the cleaning process such as the COR process and the PHT process is completed while the film forming process of this system is being executed, the film forming process can be executed immediately if the other process chamber is available. is there.

また,1つの第2共通搬送室120に成膜処理室を集中させるので,第1共通搬送室の処理室と分けることができ,各成膜処理室や第2共通搬送室120のクリーニングを行う際に効率がよい。このように真空処理装置(第1真空処理装置と第2真空処理装置)を処理の種類によって分けることによって,例えば各真空処理装置ごとにクリーニングを行うこともできるので効率がよい。   Further, since the film forming process chambers are concentrated in one second common transfer chamber 120, the film forming process chambers can be separated from the process chambers of the first common transfer chamber, and each film forming process chamber and the second common transfer chamber 120 are cleaned. Efficient. Thus, by separating the vacuum processing apparatuses (the first vacuum processing apparatus and the second vacuum processing apparatus) according to the type of processing, for example, cleaning can be performed for each vacuum processing apparatus, which is efficient.

(第3実施形態にかかる基板処理装置の構成例)
次に,本発明の第3実施形態にかかる基板処理装置の構成例を図面を参照しながら説明する。図10は第3実施形態にかかる基板処理装置の1例を示す概略構成図である。図10に示す基板処理装置103は,図7に示す基板処理装置101にウエハWの膜厚の測定及びパーティクル(上記付着物を含む)の測定を行うことができる測定処理室400を取付けたものである。
(Configuration Example of Substrate Processing Apparatus According to Third Embodiment)
Next, a configuration example of a substrate processing apparatus according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 10 is a schematic configuration diagram illustrating an example of a substrate processing apparatus according to the third embodiment. A substrate processing apparatus 103 shown in FIG. 10 is obtained by attaching a measurement processing chamber 400 capable of measuring the film thickness of the wafer W and measuring particles (including the deposits) to the substrate processing apparatus 101 shown in FIG. It is.

測定処理室400は,第1共通搬送室102,第2共通搬送室120の各辺のうち,空いている部分であればどの位置に取付けてもよい。図10に示す構成例では測定処理室400を第1共通搬送室102に取付けている。なお,測定処理室400は,図10に示す制御部200のEC(装置制御部)300により制御される。この場合,図3に示す制御部200にEC300とスイッチングハブ220を介して測定処理室400を制御するMC(モジュール制御部)を接続し,このMCにDISTCボードを介して接続される例えばI/Oモジュール236Kに測定処理室400の各部を接続する。これにより,測定処理室400と制御部200のEC300との間で制御信号やデータのやり取りが可能となる。   The measurement processing chamber 400 may be attached to any position of the sides of the first common transfer chamber 102 and the second common transfer chamber 120 as long as they are vacant. In the configuration example shown in FIG. 10, the measurement processing chamber 400 is attached to the first common transfer chamber 102. Note that the measurement processing chamber 400 is controlled by an EC (apparatus control unit) 300 of the control unit 200 shown in FIG. In this case, an MC (module control unit) that controls the measurement processing chamber 400 is connected to the control unit 200 shown in FIG. 3 via the EC 300 and the switching hub 220, and this MC is connected to the MC via a DISTC board, for example, Each part of the measurement processing chamber 400 is connected to the O module 236K. As a result, control signals and data can be exchanged between the measurement processing chamber 400 and the EC 300 of the control unit 200.

ここで,測定処理室400の構成例を図11に示す。この測定処理室400は,ウエハWを載置して保持するステージ(ターンテーブル)405と,このステージ405を回転させるためのモータ407とを備える。このモータ407は例えばモータドライブなどで構成されるモータ駆動部408からの駆動信号に基づいて駆動する。モータ駆動部408は,例えばI/Oモジュール236K,上記MCを介してEC300に接続され,上記MC又はEC300からの制御信号によって制御される。   Here, a configuration example of the measurement processing chamber 400 is shown in FIG. The measurement processing chamber 400 includes a stage (turn table) 405 for mounting and holding the wafer W, and a motor 407 for rotating the stage 405. The motor 407 is driven based on a drive signal from a motor drive unit 408 configured by, for example, a motor drive. The motor drive unit 408 is connected to the EC 300 via, for example, the I / O module 236K and the MC, and is controlled by a control signal from the MC or EC 300.

測定処理室400は,ウエハWに形成された薄膜などの膜厚を測定するための膜厚測定部410と,ウエハWの表面画像を撮像し,パターン認識などを行うための画像処理部420,ウエハW上のパーティクルを測定するパーティクル測定部430とを備える。   The measurement processing chamber 400 includes a film thickness measuring unit 410 for measuring the film thickness of a thin film formed on the wafer W, an image processing unit 420 for capturing a surface image of the wafer W, performing pattern recognition, and the like. And a particle measuring unit 430 for measuring particles on the wafer W.

膜厚測定部410は,ウエハWへ向けて例えばレーザ光を照射する光源414と,光源414から照射されてウエハWから反射した反射光を受光する受光部416と,この受光部416で受光した受光信号を処理する信号処理部412とを備える。信号処理部412は例えばI/Oモジュール236Kを介してEC300に接続される。これにより,EC300は信号処理部412を介してウエハW上の膜厚に関するデータ(例えば膜厚データ,膜厚評価データなど)を受信可能となる。   The film thickness measuring unit 410 receives, for example, a light source 414 that emits laser light toward the wafer W, a light receiving unit 416 that receives reflected light that is irradiated from the light source 414 and reflected from the wafer W, and the light receiving unit 416 receives the light. A signal processing unit 412 for processing the received light signal. The signal processing unit 412 is connected to the EC 300 via, for example, the I / O module 236K. As a result, the EC 300 can receive data relating to the film thickness on the wafer W (for example, film thickness data, film thickness evaluation data, etc.) via the signal processing unit 412.

膜厚測定部410は,光源414からのレーザ光を用いて例えば分光エリプソ法によって膜厚を測定する。分光エリプソ法とは,一般に,レーザ光の入射光とウエハからの反射光の偏光変化量(振幅,位相差)が膜厚×光学定数に比例した量であることに基づいて膜厚を測定する方法である。   The film thickness measurement unit 410 measures the film thickness by using, for example, a spectroscopic ellipso method using laser light from the light source 414. Spectral ellipsometry generally measures film thickness based on the fact that the amount of change in polarization (amplitude and phase difference) between the incident light of the laser beam and the reflected light from the wafer is proportional to the film thickness x optical constant. Is the method.

画像処理部420は,ウエハWの表面画像を撮像するCCD(Charge Coupled Devices)などの撮像素子424と,この撮像素子424からの画像信号を処理する信号制御部422とを備える。信号処理部422はI/Oモジュール236Kを介してEC300に接続される。これにより,EC300は信号処理部422を介してウエハWの表面画像に関するデータを受信可能となる。   The image processing unit 420 includes an imaging device 424 such as a CCD (Charge Coupled Devices) that captures a surface image of the wafer W, and a signal control unit 422 that processes an image signal from the imaging device 424. The signal processing unit 422 is connected to the EC 300 via the I / O module 236K. As a result, the EC 300 can receive data relating to the surface image of the wafer W via the signal processing unit 422.

パーティクル測定部430は,ウエハWへ向けて例えばレーザ光を照射する光源434と,光源434から照射されてウエハW上で散乱した散乱光を受光する受光部436と,この受光部436で受光した受光信号を処理する信号処理部432とを備える。信号処理部432はI/Oモジュール236Kを介してEC300に接続される。これにより,EC300は信号処理部432を介してウエハW上のパーティクルに関するデータ(例えばピクセルデータ,パーティクル評価データなど)を受信可能となる。   The particle measuring unit 430 receives, for example, a light source 434 that emits laser light toward the wafer W, a light receiving unit 436 that receives scattered light irradiated from the light source 434 and scattered on the wafer W, and the light receiving unit 436 receives the light. A signal processing unit 432 for processing the received light signal. The signal processing unit 432 is connected to the EC 300 via the I / O module 236K. As a result, the EC 300 can receive data (for example, pixel data, particle evaluation data, etc.) regarding particles on the wafer W via the signal processing unit 432.

次に,第3実施形態にかかる制御部200のEC300の構成例について図面を参照しながら説明する。図12は第3実施形態にかかるEC300の構成例を示すブロック図である。図12に示すEC300は,図4に示すプログラムデータ記憶手段360に測定処理室400の測定処理プログラム460を加えるとともに,処理データ記憶手段370に測定処理情報470を加えたものである。   Next, a configuration example of the EC 300 of the control unit 200 according to the third embodiment will be described with reference to the drawings. FIG. 12 is a block diagram showing a configuration example of the EC 300 according to the third embodiment. The EC 300 shown in FIG. 12 is obtained by adding the measurement processing program 460 of the measurement processing chamber 400 to the program data storage unit 360 shown in FIG. 4 and adding the measurement processing information 470 to the processing data storage unit 370.

膜厚測定部410,画像処理部420,パーティクル測定部430はそれぞれ光学系ユニットとして構成され,各光学系ユニットをウエハWの半径方向へ移動可能に構成されている。これにより,ステージ405にウエハWを保持して回転しながら各光学系ユニットをウエハWの中心から端部までの間で移動可能とするだけで,ウエハ全面の測定処理を行うことができる。これにより,光学系ユニットの移動距離を短くすることができ,測定処理室400の省スペース化を図ることができ,測定処理室400自体を小型化することができる。なお,膜厚測定部410,画像処理部420,パーティクル測定部430を1つの光学系ユニットで移動可能に構成してもよい。また膜厚測定部410,パーティクル測定部430を1つの光学系ユニットで移動可能に構成し,画像処理部420は固定するようにしてもよい。   The film thickness measurement unit 410, the image processing unit 420, and the particle measurement unit 430 are each configured as an optical system unit, and each optical system unit is configured to be movable in the radial direction of the wafer W. As a result, measurement processing of the entire surface of the wafer can be performed by merely allowing each optical system unit to move from the center to the end of the wafer W while holding the wafer W on the stage 405 and rotating it. Thereby, the moving distance of the optical system unit can be shortened, the space for the measurement processing chamber 400 can be saved, and the measurement processing chamber 400 itself can be miniaturized. Note that the film thickness measurement unit 410, the image processing unit 420, and the particle measurement unit 430 may be configured to be movable by one optical system unit. Further, the film thickness measurement unit 410 and the particle measurement unit 430 may be configured to be movable by one optical system unit, and the image processing unit 420 may be fixed.

測定処理プログラム460は,膜厚測定プログラム462,画像処理プログラム464,パーティクル測定プログラム466,ステージ駆動プログラム468などの測定処理室400の各部を制御して測定処理を行い,測定結果を評価するためのプログラムを備える。また,測定処理情報470は,膜厚評価情報472,パーティクル評価情報474,測定条件レシピ476を備える。このステージ駆動プログラム468は,ステージ405のモータ407を制御して,ウエハWの回転タイミング,回転数,回転速度などを制御するものである。   The measurement processing program 460 controls each part of the measurement processing chamber 400 such as the film thickness measurement program 462, the image processing program 464, the particle measurement program 466, the stage drive program 468, etc., and performs measurement processing to evaluate the measurement results. Provide a program. The measurement processing information 470 includes film thickness evaluation information 472, particle evaluation information 474, and a measurement condition recipe 476. The stage drive program 468 controls the motor 407 of the stage 405 to control the rotation timing, rotation speed, rotation speed, etc. of the wafer W.

膜厚測定プログラム462は,測定条件レシピ476に基づいて膜厚測定部410の各部を制御してウエハWの膜厚測定を実行し,その測定結果に基づいて膜厚評価を行うものである。具体的にはウエハWを回転させながら膜厚測定部410を移動して光源414からのレーザ光をウエハWに向けて照射し,ウエハWの膜厚測定を行う。より好ましくは,ウエハWを静止させた状態で膜厚測定部410を移動して,光源414からのレーザ光をウエハWの測定ポイントに向けて照射し,ウエハWの膜厚測定を行う。そして,ウエハWの測定ポイントが複数ある場合には,各測定ポイントにレーザ光を照射することにより,各測定ポイントごとに膜厚測定を行う。すると,測定結果として例えば膜厚データが得られる。そして,この膜厚データに基づいて例えば目標の膜厚が形成されているかなどを評価するための膜厚評価データを作成し,これを膜厚評価情報472として記憶する。   The film thickness measurement program 462 controls each part of the film thickness measurement unit 410 based on the measurement condition recipe 476 to execute the film thickness measurement of the wafer W, and evaluates the film thickness based on the measurement result. Specifically, the film thickness measurement unit 410 is moved while rotating the wafer W, and laser light from the light source 414 is irradiated toward the wafer W to measure the film thickness of the wafer W. More preferably, the film thickness measurement unit 410 is moved while the wafer W is stationary, the laser light from the light source 414 is irradiated toward the measurement point of the wafer W, and the film thickness of the wafer W is measured. When there are a plurality of measurement points on the wafer W, the film thickness is measured for each measurement point by irradiating each measurement point with laser light. Then, for example, film thickness data is obtained as a measurement result. Based on the film thickness data, for example, film thickness evaluation data for evaluating whether a target film thickness is formed or the like is created and stored as film thickness evaluation information 472.

画像処理プログラム464は,測定条件レシピ476に基づいて画像処理部420の各部を制御して撮像素子424によってウエハWの表面画像を撮像し,その結果に基づいてパターン認識などの画像処理を行うものである。例えばウエハWの表面画像に基づいてパターン認識することにより,パターンマッチングを行って,ウエハWの膜厚測定やパーティクル測定の対象となる測定ポイントを特定することができる。   The image processing program 464 controls each unit of the image processing unit 420 based on the measurement condition recipe 476, captures the surface image of the wafer W by the image sensor 424, and performs image processing such as pattern recognition based on the result. It is. For example, by recognizing a pattern based on the surface image of the wafer W, pattern matching can be performed to specify a measurement point that is an object of film thickness measurement or particle measurement of the wafer W.

パーティクル測定プログラム466は,測定条件レシピ476に基づいてパーティクル測定部430の各部を制御してウエハWの表面のパーティクル測定を実行し,その測定結果に基づいてパーティクル評価を行うものである。具体的にはウエハWを回転させながらパーティクル測定部430を移動して光源434からのレーザ光をウエハWに向けて照射し,ウエハWのパーティクル測定を行う。すると,測定結果として例えばパーティクルの有無と関連づけたピクセルデータが得られる。そして,このピクセルデータに基づいて例えばパーティクル有りのピクセルデータが設定値を越えているか否かに対応した2値化データからなるパーティクル評価データを作成し,これを膜厚評価情報472として記憶する。   The particle measurement program 466 controls each part of the particle measurement unit 430 based on the measurement condition recipe 476, performs particle measurement on the surface of the wafer W, and performs particle evaluation based on the measurement result. Specifically, the particle measuring unit 430 is moved while rotating the wafer W, and laser light from the light source 434 is irradiated toward the wafer W to measure the particles on the wafer W. Then, for example, pixel data associated with the presence or absence of particles is obtained as a measurement result. Then, based on the pixel data, for example, particle evaluation data composed of binarized data corresponding to whether or not pixel data with particles exceeds a set value is created and stored as film thickness evaluation information 472.

(処理室の構成例とウエハの搬送処理)
次に,図10に示す基板処理装置103における処理室の構成例を説明する。第3実施形態にかかる基板処理装置103においても,ウエハ上の自然酸化膜などの付着物を,水成分を用いず且つプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理と,この付着物除去処理が施されたウエハ上に所定の薄膜を形成する成膜処理とを連続して実行するように構成することができる。
(Process chamber configuration example and wafer transfer process)
Next, a configuration example of the processing chamber in the substrate processing apparatus 103 illustrated in FIG. 10 will be described. Also in the substrate processing apparatus 103 according to the third embodiment, the deposit removal process for removing deposits such as a natural oxide film on the wafer by a chemical reaction with a gas component that does not use a water component and does not depend on plasma and a heat treatment. And a film forming process for forming a predetermined thin film on the wafer on which the deposit removal process has been performed.

ここで,例えばコンタクトホール又はビアホールが形成されたウエハWを基板処理装置103に導入し,このウエハWに対して上述したような付着物除去処理としてのCOR処理,PHT処理を連続して実行した後,成膜処理としてのTi膜成膜処理,TiN膜成膜処理を連続して実行する場合の基板処理装置103における処理室の構成例を図13に示す。   Here, for example, a wafer W in which contact holes or via holes are formed is introduced into the substrate processing apparatus 103, and the COR processing and the PHT processing as the deposit removal processing as described above are continuously performed on the wafer W. FIG. 13 shows a configuration example of the processing chamber in the substrate processing apparatus 103 when the Ti film forming process and the TiN film forming process as the film forming process are subsequently executed.

図13に示す構成例は,第1共通搬送室102に接続される処理室104A,104B,104C,104DをそれぞれCOR処理室,PHT処理室,Ti膜成膜処理室,TiN膜成膜処理室として構成したものである。   In the configuration example shown in FIG. 13, the processing chambers 104A, 104B, 104C, and 104D connected to the first common transfer chamber 102 are a COR processing chamber, a PHT processing chamber, a Ti film deposition processing chamber, and a TiN film deposition processing chamber, respectively. It is constituted as follows.

このような図13に示す構成の基板処理装置101におけるウエハWの搬送処理について説明する。ウエハWに対する各処理室104A〜104Dにおける処理の順序が上記の順序で行われるので,ウエハWの搬送経路は図13に示す実線矢印のようになる。   The wafer W transfer process in the substrate processing apparatus 101 configured as shown in FIG. 13 will be described. Since the order of processing in the processing chambers 104A to 104D for the wafer W is performed in the order described above, the transfer path of the wafer W is as shown by a solid arrow in FIG.

ここでは,一例として中央の導入ポート112Bに設置したカセット(キャリアも含む)から例えばコンタクトホール又はビアホールが形成された処理前ウエハWが取り出されるものとし,また2つのロードロック室108A,108Bのうちのいずれか一方のロードロック室,例えばロードロック室108Aを処理前ウエハWの搬入用に用い,他方のロードロック室108Bを処理済ウエハWの搬出用に用いる。また,ここではCOR処理及びPHT処理が終了したウエハWを測定処理室400にて膜厚測定及びパーティクル測定を行った上で,次の成膜処理(Ti膜成膜処理及びTiN膜成膜処理)に移る場合について説明する。今,各処理室104A〜104D内及び測定処理室400内にはそれぞれウエハWが収容されてそれぞれの処理が終了しているか,又はほぼ終了しかけているものとする。   Here, as an example, it is assumed that the pre-process wafer W in which, for example, a contact hole or a via hole is formed is taken out from a cassette (including a carrier) installed in the central introduction port 112B, and one of the two load lock chambers 108A and 108B. One of the load lock chambers, for example, the load lock chamber 108A is used for loading the unprocessed wafer W, and the other load lock chamber 108B is used for unloading the processed wafer W. Further, here, after the film thickness measurement and particle measurement are performed in the measurement processing chamber 400 on the wafer W that has undergone the COR process and the PHT process, the next film formation process (Ti film formation process and TiN film formation process) is performed. ) Will be described. Now, it is assumed that the wafers W are accommodated in the processing chambers 104A to 104D and the measurement processing chamber 400, and the respective processes are completed or almost finished.

先ず,図13に示す搬入側搬送室110内のウエハWの搬送処理及び第2共通搬送室120内のウエハWの搬送処理については,図7に示す場合と同様であるため,その詳細な説明は省略する。この場合,図13に示す搬送経路X41〜X43,Z41,Z42はそれぞれ図7に示す搬送経路X21〜X23,Z21,Z22に相当する。   First, the transfer process of the wafer W in the carry-in transfer chamber 110 and the transfer process of the wafer W in the second common transfer chamber 120 shown in FIG. 13 are the same as those shown in FIG. Is omitted. In this case, the transport paths X41 to X43, Z41, and Z42 shown in FIG. 13 correspond to the transport paths X21 to X23, Z21, and Z22 shown in FIG.

次に,第1共通搬送室120内のウエハWの搬送処理について説明する。先ず搬送機構118により処理室104Dに収容されている処理済のウエハWを取りに行き,搬送経路Y41に示すようにこれを空き状態のパス部122内に置く。次いで,搬送機構118により処理室104C内に収容されている処理済のウエハWを取りに行き,搬送経路Y42に示すようにこれを空き状態の処理室104D内へ搬入して置き,処理室104D内での処理を開始する。   Next, the transfer process of the wafer W in the first common transfer chamber 120 will be described. First, the processed wafer W accommodated in the processing chamber 104D is picked up by the transfer mechanism 118, and is placed in the empty path section 122 as indicated by the transfer path Y41. Next, the processed wafer W accommodated in the processing chamber 104C is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104D as shown in the transfer path Y42. Start processing within.

続いて,搬送機構118により測定処理室400に収容されている測定処理済みのウエハWを取りに行き,搬送経路Y43に示すようにこれを空き状態の処理室104C内へ搬入して置き,処理室104C内での処理を開始する。次いで,処理室104Bに収容されている処理済のウエハWを取りに行き,搬送経路Y44に示すようにこれを空き状態の測定処理室400内へ搬入して置き,測定処理室400内での測定処理を開始する。次いで,搬送機構118により処理室104A内に収容されている処理済のウエハWを取りに行き,搬送経路Y45に示すようにこれを空き状態の処理室104B内へ搬入して置き,処理室104B内での処理を開始する。   Subsequently, the wafer W that has been subjected to the measurement processing stored in the measurement processing chamber 400 is taken by the transfer mechanism 118, and is loaded into the empty processing chamber 104C as shown in the transfer path Y43, where the processing is performed. Processing in the chamber 104C is started. Next, the processed wafer W accommodated in the processing chamber 104B is picked up and loaded into the empty measurement processing chamber 400 as indicated by the transfer path Y44. Start the measurement process. Next, the processed wafer W accommodated in the processing chamber 104A is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104B as shown in the transfer path Y45, and is set in the processing chamber 104B. Start processing within.

続いて,パス部122内にウエハWが搬入されると,このウエハWを搬送機構118によって取りに行き,搬送経路Y46に示すようにこれを上記空き状態の処理室104A内へ搬入して置き,この処理室104A内での処理を開始する。なお,ウエハWの搬出入の際には,各ゲートバルブ106A〜106D,107A,107B,406のうち,ウエハWの搬出入に必要なゲートバルブを開閉操作する。そして,各処理室104A〜104D,測定処理室400にてウエハWの処理が完了する毎に上記の操作が繰り返し行われることになる。   Subsequently, when the wafer W is loaded into the pass unit 122, the wafer W is picked up by the transfer mechanism 118, and is loaded into the empty processing chamber 104A as shown in the transfer path Y46. , Processing in the processing chamber 104A is started. When the wafer W is loaded / unloaded, among the gate valves 106A to 106D, 107A, 107B, 406, a gate valve necessary for loading / unloading the wafer W is opened / closed. Each time the processing of the wafer W is completed in each of the processing chambers 104A to 104D and the measurement processing chamber 400, the above operation is repeated.

こうして,コンタクトホール又はビアホールが形成された処理前のウエハWに対して処理室104A,104B,測定処理室400,処理室104C,104DにてそれぞれCOR処理,PHT処理,測定処理,Ti膜成膜処理,TiN膜成膜処理が連続して施される。   Thus, the COR process, the PHT process, the measurement process, and the Ti film formation are performed on the unprocessed wafer W in which the contact hole or the via hole is formed in the process chambers 104A and 104B, the measurement process chamber 400, and the process chambers 104C and 104D, respectively. The process and the TiN film forming process are continuously performed.

すなわち,先ずCOR処理及びPHT処理によってウエハWのコンタクトホール又はビアホールの内壁及び底部から自然酸化膜などの付着物が除去される。そして,測定処理室400にて膜厚測定とパーティクル測定を行うことによって,実際に自然酸化膜などの付着物が除去されているか否かを確認した上で,次のTi膜成膜処理及びTiN膜成膜処理によってTi膜及びTiN膜のバリア層が成膜される。これにより,ウエハWから確実に自然酸化膜などの付着物が除去された状態でバリア層を形成することができる。   That is, first, deposits such as a natural oxide film are removed from the inner wall and bottom of the contact hole or via hole of the wafer W by COR processing and PHT processing. Then, by performing film thickness measurement and particle measurement in the measurement processing chamber 400, it is confirmed whether or not deposits such as a natural oxide film are actually removed, and then the next Ti film deposition process and TiN are performed. A barrier layer of a Ti film and a TiN film is formed by the film forming process. As a result, the barrier layer can be formed in a state where deposits such as a natural oxide film are reliably removed from the wafer W.

また,1つの測定処理室400で膜厚測定とパーティクル測定を行うことができるので,COR処理及びPHT処理による自然酸化膜除去が適正に実行されたか否かをより確実に検査することができる。例えばPHT処理が過剰の場合は酸化膜が形成されてしまうこともあるが,この場合は膜厚測定によって検査することができる。またPHT処理が不足の場合は,COR処理で形成された錯体がバイプロダクト(副生成物)として残ってしまうこともあるが,この場合はパーティクル測定によって検査することができる。   In addition, since the film thickness measurement and the particle measurement can be performed in one measurement processing chamber 400, it is possible to more reliably inspect whether or not the natural oxide film removal by the COR process and the PHT process has been properly executed. For example, if the PHT process is excessive, an oxide film may be formed. In this case, the inspection can be performed by measuring the film thickness. In addition, when the PHT treatment is insufficient, the complex formed by the COR treatment may remain as a biproduct (byproduct), but in this case, it can be inspected by particle measurement.

このように,本実施形態にかかる基板処理装置によれば,付着物除去処理(COR処理及びPHT処理)の後に,連続して測定処理室400で測定処理を行うので,ウエハに付着物除去処理が適正に実行されているか否かを,そのウエハWの膜厚やパーティクル(付着物を含む)を測定することによって検査することができる。しかも,ウエハに付着物除去処理を施した直後に,そのウエハを大気に晒すことなく,連続して測定処理室400で測定処理を行うことができる。このため,ウエハ上の付着物が除去された表面(例えばウエハ上に形成されたコンタクトホールの底部などの露出表面)に再び自然酸化膜が付着することなく,ウエハ上の膜厚やパーティクルを測定して検査を行うことができる。これにより,付着物除去処理の効果を的確に検査することができる。   As described above, according to the substrate processing apparatus of this embodiment, since the measurement process is continuously performed in the measurement processing chamber 400 after the deposit removal process (COR process and PHT process), the deposit removal process is performed on the wafer. Can be inspected by measuring the film thickness and particles (including deposits) of the wafer W. In addition, immediately after the deposit removal process is performed on the wafer, the measurement process can be continuously performed in the measurement processing chamber 400 without exposing the wafer to the atmosphere. Therefore, the film thickness and particles on the wafer can be measured without the natural oxide film adhering again to the surface from which the deposits on the wafer have been removed (for example, the exposed surface such as the bottom of a contact hole formed on the wafer). Can be inspected. Thereby, the effect of the deposit removal process can be accurately inspected.

この場合,ウエハWの膜厚やパーティクルを測定結果に基づいて付着物除去処理(COR処理及びPHT処理)のプロセスレシピ(付着物除去処理のためのプロセス条件)を補正するようにしてもよい。こうすることにより,常に付着物除去処理(COR処理及びPHT処理)を適正に実行することができる。これにより,実際の処理結果に応じた付着物除去処理を実行することができるため,確実にウエハW上から自然酸化膜を含む付着物を除去することができる。   In this case, the process recipe (process conditions for the deposit removal process) of the deposit removal process (COR process and PHT process) may be corrected based on the measurement result of the film thickness and particles of the wafer W. By doing so, the deposit removal process (COR process and PHT process) can always be properly performed. As a result, the deposit removal process according to the actual processing result can be executed, so that deposits including the natural oxide film can be reliably removed from the wafer W.

また,膜厚測定とパーティクル測定の測定結果に基づいて,次の成膜処理ステップを実行するか否かを判断するようにしてもよい。この場合,例えば膜厚測定とパーティクル測定により測定された測定結果が許容範囲内にあれば,次の成膜処理を実行可能と判断し,許容範囲になければ次の成膜処理を実行不可能と判断するようにしてもよい。これにより,常にウエハW上の自然酸化膜を含む付着物が除去された状態で次の成膜処理を実行することができるので,ウエハW上に成膜された膜質の均一性を確保することができる。   Further, based on the measurement results of the film thickness measurement and the particle measurement, it may be determined whether or not to execute the next film forming process step. In this case, for example, if the measurement results measured by the film thickness measurement and the particle measurement are within the allowable range, it is determined that the next film forming process can be performed, and if it is not within the allowable range, the next film forming process cannot be performed. You may make it judge. As a result, the next film forming process can be executed in a state where the deposits including the natural oxide film on the wafer W are always removed, so that the uniformity of the film quality formed on the wafer W is ensured. Can do.

また,付着物除去処理後に行う測定処理室400による測定処理は,上述したような付着物除去処理が適正に実行されたか否かを検査するための測定の他に,次の成膜処理が施される下地膜の膜厚測定を行うようにしてもよい。この場合には,測定処理室400内でウエハ上において付着物除去処理が施された表面(例えばウエハ上に形成されたコンタクトホールの底部などの露出表面)の膜厚測定及び次の成膜処理が施される下地膜(例えばウエハ上に形成された下地となる膜)の膜厚測定を行うとともに,付着物除去処理が施された表面の付着物測定を行う。これによれば,付着物除去処理が適正に実行されたか否かを検査するための膜厚測定と,次の成膜処理が施される下地膜の膜厚測定とを同時に実行できるので,測定処理にかかる時間を大幅に短縮することができる。   In addition, the measurement process performed by the measurement processing chamber 400 after the deposit removal process includes the following film forming process in addition to the measurement for checking whether or not the deposit removal process as described above is properly performed. It is also possible to measure the film thickness of the underlying film. In this case, the film thickness measurement on the surface (for example, the exposed surface such as the bottom of a contact hole formed on the wafer) on the wafer in the measurement processing chamber 400 and the next film formation process are performed. In addition to measuring the film thickness of a base film (for example, a base film formed on a wafer) to be subjected to deposition, the surface of the surface subjected to the deposit removal process is measured. According to this, the film thickness measurement for inspecting whether or not the deposit removal process has been properly executed and the film thickness measurement of the base film to be subjected to the next film formation process can be performed simultaneously. Processing time can be greatly reduced.

さらに,測定処理室400による測定処理は,上記成膜処理後に実行するようにしてもよい。この場合には,例えば上記成膜処理により形成された膜の膜厚測定を行う。これにより,成膜処理が適正に実行されたか否かを膜厚測定することにより検査することができる。また,こうして測定された測定結果に基づいて,成膜処理を実行するためのプロセスレシピ(成膜処理のプロセス条件)を補正することもできる。これにより,以降のウエハの処理で常に適正な成膜処理を実行させることができる。なお,測定処理室400による測定処理は,付着物除去処理前に行うようにしてもよい。   Further, the measurement process by the measurement process chamber 400 may be executed after the film formation process. In this case, for example, the film thickness of the film formed by the film forming process is measured. Thereby, it can be inspected by measuring the film thickness whether or not the film forming process is properly executed. Further, based on the measurement result thus measured, a process recipe (process conditions for the film forming process) for executing the film forming process can be corrected. Thus, it is possible to always execute an appropriate film forming process in subsequent wafer processing. Note that the measurement process in the measurement process chamber 400 may be performed before the deposit removal process.

(測定処理室の測定処理)
ここで,このような測定処理室400における測定処理について図面を参照しながら説明する。図14は測定処理の1例を示すフローチャートである。図14に示すように,先ずステップS110にて測定条件レシピの設定を行う。具体的には測定処理情報470の測定条件レシピ476に基づいて例えばステージ405の回転速度,測定範囲などの条件を設定する。
(Measurement processing in the measurement processing room)
Here, the measurement process in the measurement process chamber 400 will be described with reference to the drawings. FIG. 14 is a flowchart showing an example of the measurement process. As shown in FIG. 14, first, a measurement condition recipe is set in step S110. Specifically, conditions such as the rotational speed of the stage 405 and the measurement range are set based on the measurement condition recipe 476 of the measurement processing information 470.

次いで,ステップS120にて測定処理室400にウエハWを搬入し,ステップS130にて膜厚測定とパーティクル測定を実行する。このとき,膜厚測定及びパーティクル測定に先立って,例えばノッチ検出によるウエハの位置合わせを行うとともに,必要に応じて画像処理部420によってウエハWの表面画像を撮像してパターン認識を行う。そして,例えばパターン認識によって得られた測定ポイント(又は測定範囲)の膜厚とパーティクルを測定する。このとき,例えばウエハWを静止させた状態で膜厚測定部410によってウエハWの測定ポイントの膜厚測定を行ってから,ウエハWを回転させながらパーティクル測定部430によってウエハW表面のパーティクル測定を行う。   Next, in step S120, the wafer W is loaded into the measurement processing chamber 400, and in step S130, film thickness measurement and particle measurement are executed. At this time, prior to film thickness measurement and particle measurement, for example, wafer alignment is performed by notch detection, and pattern recognition is performed by capturing an image of the surface of the wafer W by the image processing unit 420 as necessary. Then, for example, the film thickness and particles at the measurement point (or measurement range) obtained by pattern recognition are measured. At this time, for example, the film thickness measurement unit 410 measures the film thickness at the measurement point of the wafer W while the wafer W is stationary, and then the particle measurement unit 430 measures the particle on the surface of the wafer W while rotating the wafer W. Do.

続いて,ステップS140にて膜厚とパーティクルの測定結果に基づいてそれぞれ評価データを作成する。ステップS150にて測定結果及び評価データを制御部200のEC300へ送信して,ステップS140にてウエハWを搬出する。   In step S140, evaluation data is created based on the film thickness and particle measurement results. In step S150, the measurement result and evaluation data are transmitted to the EC 300 of the control unit 200, and the wafer W is unloaded in step S140.

このように,基板処理装置103の第1共通搬送室102に測定処理室400を接続するので,処理済みのウエハWを大気に露出することなく,膜厚やパーティクルを測定することができるので,ウエハWに例えば自然酸化膜が生成されるなどウエハの状態が変質することなく,直ちに測定することができる。例えば上述したようにCOR処理及びPHT処理の後に,ウエハWを大気に露出することなく,直ちに膜厚やパーティクルを測定することができる。これにより,ウエハWに例えば自然酸化膜が付着することなく,次の成膜処理を実行することができる。   Thus, since the measurement processing chamber 400 is connected to the first common transfer chamber 102 of the substrate processing apparatus 103, the film thickness and particles can be measured without exposing the processed wafer W to the atmosphere. For example, a natural oxide film is formed on the wafer W, and the measurement can be performed immediately without changing the state of the wafer. For example, as described above, after the COR process and the PHT process, the film thickness and particles can be measured immediately without exposing the wafer W to the atmosphere. Thereby, the next film forming process can be executed without, for example, a natural oxide film adhering to the wafer W.

本実施形態では,測定処理室400を基板処理装置の1つのモジュール(ユニット)として構成するので,既存の基板処理装置であっても容易に取付けることができる。また,測定処理室400を基板処理装置にモジュール(ユニット)として取付けるため,ウエハWを測定処理室400に搬入するだけで測定処理を実行できるので,測定処理室を別の装置として構成する場合に比して膜厚測定やパーティクル測定にかかる時間と手間を大幅に軽減することができる。   In the present embodiment, since the measurement processing chamber 400 is configured as one module (unit) of the substrate processing apparatus, even an existing substrate processing apparatus can be easily attached. In addition, since the measurement processing chamber 400 is attached to the substrate processing apparatus as a module (unit), the measurement processing can be executed simply by loading the wafer W into the measurement processing chamber 400. Therefore, when the measurement processing chamber is configured as a separate apparatus. In comparison, the time and labor required for film thickness measurement and particle measurement can be greatly reduced.

また,膜厚測定及びパーティクル測定を1つの測定処理室400で行うことができるので,各測定処理室を別の装置として2台設置するよりも,フットプリントを大幅に削減させることができる。また,測定処理室400自体をコンパクト化することができるので,よりフットプリントを削減することができる。   In addition, since the film thickness measurement and the particle measurement can be performed in one measurement processing chamber 400, the footprint can be greatly reduced as compared with the case where two measurement processing chambers are installed as separate devices. Moreover, since the measurement processing chamber 400 itself can be made compact, the footprint can be further reduced.

なお,図13ではCOR処理及びPHT処理の後に測定処理室400で測定処理を行うことによって自然酸化膜が除去されているか否かを検査する場合について説明したが,必ずしもこれに限定されるものではなく,成膜処理(Ti膜成膜処理,TiN膜成膜処理)の後にも測定処理室400で測定処理を行って所望の膜厚が成膜されているか否かを検査するようにしてもよい。また,測定処理室400の測定処理は,上述したように膜厚測定及びパーティクル測定とを両方行ってもよく,またいずれか一方を行うようにしてもよい。   Although FIG. 13 illustrates the case where it is inspected whether the natural oxide film has been removed by performing the measurement process in the measurement process chamber 400 after the COR process and the PHT process, the present invention is not necessarily limited to this. In addition, after the film formation process (Ti film formation process, TiN film formation process), the measurement process is performed in the measurement processing chamber 400 to check whether a desired film thickness is formed. Good. Moreover, as described above, both the film thickness measurement and the particle measurement may be performed in the measurement processing chamber 400, or one of them may be performed.

また,基板処理装置103の処理室の構成は,図13に示すものに限られるものではない。例えば成膜処理としてベース酸化膜成膜処理(UV処理),High−K膜成膜処理(MOCVD処理)を行う場合には,処理室104C,104Dをベース酸化膜成膜処理(UV処理)室,High−K膜成膜処理(MOCVD処理)室として構成してもよい。この場合の搬送処理は,図13に示す場合と同様である。   Further, the configuration of the processing chamber of the substrate processing apparatus 103 is not limited to that shown in FIG. For example, when a base oxide film forming process (UV process) and a High-K film forming process (MOCVD process) are performed as the film forming process, the processing chambers 104C and 104D are formed as base oxide film forming processes (UV processing) chambers. , High-K film forming process (MOCVD process) chamber. The conveyance process in this case is the same as that shown in FIG.

また,測定処理室400の取付け位置は,図10に示す場合に限られるものではない。例えば第1共通搬送室102,第2共通搬送室120のうち処理室を取付けられる部分には,どこでも取付けることができる。さらに,本実施形態では,測定処理室400を例えば図6に示すような複数の共通搬送室を連結するタイプの基板処理装置に取付けた場合について説明したが,これに限られるものではなく,例えば図1に示すような単一の共通搬送室を備えるタイプの基板処理装置に取付けてもよい。例えば図1に示すような基板処理装置であれば共通搬送室102を7角形以上の多角形に構成することにより,処理室104A〜104Dに追加して測定処理室400を取付けるようにしてもよい。   Further, the mounting position of the measurement processing chamber 400 is not limited to the case shown in FIG. For example, the first common transfer chamber 102 and the second common transfer chamber 120 can be mounted anywhere on the portion where the processing chamber can be mounted. Furthermore, in the present embodiment, the case where the measurement processing chamber 400 is attached to a substrate processing apparatus of a type connecting a plurality of common transfer chambers as shown in FIG. 6 is described, but the present invention is not limited to this. You may attach to the type of substrate processing apparatus provided with the single common conveyance chamber as shown in FIG. For example, in the case of a substrate processing apparatus as shown in FIG. 1, the measurement processing chamber 400 may be attached in addition to the processing chambers 104 </ b> A to 104 </ b> D by configuring the common transfer chamber 102 to be a heptagon or more polygon. .

また,上記実施形態により詳述した本発明については,複数の機器から構成されるシステムに適用しても,1つの機器からなる装置に適用してもよい。上述した実施形態の機能を実現するソフトウェアのプログラムを記憶した記憶媒体等の媒体をシステム或いは装置に供給し,そのシステム或いは装置のコンピュータ(またはCPUやMPU)が記憶媒体等の媒体に格納されたプログラムを読み出して実行することによっても,本発明が達成されることは言うまでもない。   In addition, the present invention described in detail in the above embodiment may be applied to a system composed of a plurality of devices or an apparatus composed of a single device. A medium such as a storage medium storing software programs for realizing the functions of the above-described embodiments is supplied to the system or apparatus, and the computer (or CPU or MPU) of the system or apparatus is stored in the medium such as the storage medium. It goes without saying that the present invention can also be achieved by reading and executing the program.

この場合,記憶媒体等の媒体から読み出されたプログラム自体が上述した実施形態の機能を実現することになり,そのプログラムを記憶した記憶媒体等の媒体は本発明を構成することになる。プログラムを供給するための記憶媒体等の媒体としては,例えば,フロッピー(登録商標)ディスク,ハードディスク,光ディスク,光磁気ディスク,CD−ROM,CD−R,CD−RW,DVD−ROM,DVD−RAM,DVD−RW,DVD+RW,磁気テープ,不揮発性のメモリカード,ROM,或いはネットワークを介したダウンロードなどを用いることができる。   In this case, the program itself read from the medium such as a storage medium realizes the functions of the above-described embodiment, and the medium such as the storage medium storing the program constitutes the present invention. Examples of the medium such as a storage medium for supplying the program include a floppy (registered trademark) disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a CD-RW, a DVD-ROM, and a DVD-RAM. , DVD-RW, DVD + RW, magnetic tape, non-volatile memory card, ROM, or network download.

なお,コンピュータが読み出したプログラムを実行することにより,上述した実施形態の機能が実現されるだけでなく,そのプログラムの指示に基づき,コンピュータ上で稼動しているOSなどが実際の処理の一部または全部を行い,その処理によって上述した実施形態の機能が実現される場合も,本発明に含まれる。   Note that by executing the program read by the computer, not only the functions of the above-described embodiments are realized, but also an OS or the like running on the computer is part of the actual processing based on the instructions of the program. Alternatively, the case where the functions of the above-described embodiment are realized by performing all the processing and the processing is included in the present invention.

さらに,記憶媒体等の媒体から読み出されたプログラムが,コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後,そのプログラムの指示に基づき,その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い,その処理によって上述した実施形態の機能が実現される場合も,本発明に含まれる。   Furthermore, after a program read from a medium such as a storage medium is written to a memory provided in a function expansion board inserted into the computer or a function expansion unit connected to the computer, the function is determined based on the instructions of the program. The present invention also includes a case where the CPU or the like provided in the expansion board or the function expansion unit performs part or all of the actual processing and the functions of the above-described embodiments are realized by the processing.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は,半導体ウエハなどの被処理基板に所定の処理を施す基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体に適用可能である。   The present invention can be applied to a substrate processing apparatus, a substrate processing method, a program, and a recording medium on which a program is recorded, which performs a predetermined process on a substrate to be processed such as a semiconductor wafer.

本発明の第1実施形態にかかる基板処理装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the substrate processing apparatus concerning 1st Embodiment of this invention. 図1に示す基板処理装置における処理室の構成例を示す図である。It is a figure which shows the structural example of the process chamber in the substrate processing apparatus shown in FIG. 図1に示す制御部(システムコントローラ)の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control part (system controller) shown in FIG. 同実施形態におけるEC(装置制御部)の構成例を示すブロック図である。It is a block diagram which shows the structural example of EC (apparatus control part) in the embodiment. 図1に示す基板処理装置における処理室の他の構成例を示す図である。It is a figure which shows the other structural example of the process chamber in the substrate processing apparatus shown in FIG. 本発明の第2実施形態にかかる基板処理装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the substrate processing apparatus concerning 2nd Embodiment of this invention. 図6に示す基板処理装置における処理室の構成例を示す図である。It is a figure which shows the structural example of the process chamber in the substrate processing apparatus shown in FIG. 図6に示す基板処理装置における処理室の他の構成例を示す図である。It is a figure which shows the other structural example of the process chamber in the substrate processing apparatus shown in FIG. 図6に示す基板処理装置における処理室の他の構成例を示す図である。It is a figure which shows the other structural example of the process chamber in the substrate processing apparatus shown in FIG. 本発明の第3実施形態にかかる基板処理装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the substrate processing apparatus concerning 3rd Embodiment of this invention. 図10に示す測定処理室の構成例を示すブロック図である。It is a block diagram which shows the structural example of the measurement process chamber shown in FIG. 同実施形態におけるEC(装置制御部)の構成例を示すブロック図である。It is a block diagram which shows the structural example of EC (apparatus control part) in the embodiment. 図10に示す基板処理装置における処理室の構成例を示す図である。It is a figure which shows the structural example of the process chamber in the substrate processing apparatus shown in FIG. 図10に示す測定処理室における測定処理の具体例を示すフローチャートである。It is a flowchart which shows the specific example of the measurement process in the measurement process chamber shown in FIG.

符号の説明Explanation of symbols

100,101,103 基板処理装置
102,120 共通搬送室
104(104A〜104F) 処理室
105(105A〜105F) 載置台
106(106A〜106F) ゲートバルブ
107A,107B ゲートバルブ
108A,108B ロードロック室
109A,109B 搬送口
110 搬入側搬送室
112A〜112C 導入ポート
114 オリエンタ
116 搬入側搬送機構
116A,116B ピック
118 搬送機構(第1搬送機構)
118A,118B ピック
122 パス部
124 搬送機構(第2搬送機構)
124A,124B ピック
126 ゲートバルブ
152A,152B 搬送口
200 制御部(システムコントローラ)
202 LAN
204 MES
206 GHOSTネットワーク
220 スイッチングハブ
230A,230B,230C MC(モジュール制御部)
234A,234B,234C DISTボード
236A,236B,236C モジュール
300 EC(装置制御部)
310 CPU
320 RAM
330 表示手段
340 入出力手段
350 報知手段
360 プログラムデータ記憶手段
362 搬送処理プログラム
364 プロセス処理プログラム
370 処理データ記憶手段
372 搬送処理情報
374 プロセス処理情報
400 測定処理室
405 ステージ
406 ゲートバルブ
407 モータ
408 モータ駆動部
410 膜厚測定部
412,422,432 信号処理部
414,434 光源
416,436 受光部
420 画像処理部
424 撮像素子
430 パーティクル測定部
460 測定処理プログラム
462 膜厚測定プログラム
464 画像処理プログラム
466 パーティクル測定プログラム
468 ステージ駆動プログラム
470 測定処理情報
472 膜厚評価情報
474 パーティクル評価情報
476 測定条件レシピ
W ウエハ
100, 101, 103 Substrate processing apparatus 102, 120 Common transfer chamber 104 (104A-104F) Processing chamber 105 (105A-105F) Mounting table 106 (106A-106F) Gate valve 107A, 107B Gate valve 108A, 108B Load lock chamber 109A , 109B Transport port 110 Carry-in side transport chambers 112A to 112C Introduction port 114 Orienter 116 Carry-in side transport mechanism 116A, 116B Pick 118 Transport mechanism (first transport mechanism)
118A, 118B Pick 122 Pass part 124 Transport mechanism (second transport mechanism)
124A, 124B Pick 126 Gate valve 152A, 152B Transport port 200 Control unit (system controller)
202 LAN
204 MES
206 GHOST network 220 switching hub 230A, 230B, 230C MC (module control unit)
234A, 234B, 234C DIST board 236A, 236B, 236C Module 300 EC (apparatus control unit)
310 CPU
320 RAM
330 Display means 340 Input / output means 350 Notification means 360 Program data storage means 362 Transport processing program 364 Process processing program 370 Processing data storage means 372 Transport processing information 374 Process processing information 400 Measurement processing chamber 405 Stage 406 Gate valve 407 Motor 408 Motor drive Unit 410 film thickness measurement unit 412, 422, 432 signal processing unit 414, 434 light source 416, 436 light receiving unit 420 image processing unit 424 image sensor 430 particle measurement unit 460 measurement processing program 462 film thickness measurement program 464 image processing program 466 particle measurement Program 468 Stage drive program 470 Measurement processing information 472 Film thickness evaluation information 474 Particle evaluation information 476 Measurement condition recipe W Wafer

Claims (26)

被処理基板に所定の処理を施す複数の処理室と,これらの処理室に共通に連結され,前記各処理室に対して前記被処理基板の搬出入を行う共通搬送室とを備える基板処理装置であって,
前記複数の処理室は,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去するための付着物除去処理室と,前記被処理基板上に成膜処理を施すための成膜処理室と,前記被処理基板上の測定処理を行うための測定処理室とを含むことを特徴とする基板処理装置。
A substrate processing apparatus comprising: a plurality of processing chambers that perform predetermined processing on a substrate to be processed; and a common transfer chamber that is commonly connected to these processing chambers and carries the processing substrate into and out of each processing chamber. Because
The plurality of processing chambers include a deposit removal processing chamber for removing deposits including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and heat treatment; A substrate processing apparatus comprising: a film forming process chamber for performing a film forming process on a substrate; and a measurement processing chamber for performing a measurement process on the substrate to be processed.
前記付着物除去処理室は,前記被処理基板上の前記付着物とガス成分とを化学反応させて生成物を生成するための生成物生成処理室と,前記被処理基板上に形成された前記付着物の生成物を熱処理により除去するための生成物除去処理室との2つの処理室により構成されることを特徴とする請求項1に記載の基板処理装置。 The deposit removal processing chamber includes a product generation processing chamber for generating a product by chemically reacting the deposit on the substrate to be processed with a gas component, and the substrate formed on the substrate to be processed. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus includes two processing chambers, a product removal processing chamber for removing a product of deposits by heat treatment. 前記成膜処理室は,前記被処理基板に第1膜を成膜する第1膜成膜処理室と,前記第1膜上に第2膜を成膜する第2膜成膜処理室との2つの処理室により構成されることを特徴とする請求項1に記載の基板処理装置。 The film forming chamber includes a first film forming chamber for forming a first film on the substrate to be processed and a second film forming chamber for forming a second film on the first film. The substrate processing apparatus according to claim 1, comprising two processing chambers. 前記測定処理室は,前記被処理基板上の膜厚を測定する膜厚測定部と,前記被処理基板上のパーティクルを測定するパーティクル測定部とを備えることを特徴とする請求項1に記載の基板処理装置。 The said measurement process chamber is provided with the film thickness measurement part which measures the film thickness on the said to-be-processed substrate, and the particle measurement part which measures the particle on the said to-be-processed substrate, The Claim 1 characterized by the above-mentioned. Substrate processing equipment. 前記測定処理室は,さらに前記被処理基板の表面画像を撮像し,認識するための画像処理部を備えることを特徴とする請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the measurement processing chamber further includes an image processing unit for capturing and recognizing a surface image of the substrate to be processed. 被処理基板に所定の処理を施す複数の処理室と,これらの処理室に共通に連結される共通搬送室と,この共通搬送室内に設けられた前記被処理基板を搬送するための搬送機構とをそれぞれ備える複数の真空処理装置をパス部を介してそれぞれ連結してなる基板処理装置であって,
前記複数の処理室は,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去するための付着物除去処理室と,前記被処理基板上に成膜処理を施すための成膜処理室と,前記被処理基板上の測定処理を行うための測定処理室とを含むことを特徴とする基板処理装置。
A plurality of processing chambers for performing predetermined processing on the substrate to be processed; a common transfer chamber commonly connected to these processing chambers; and a transfer mechanism for transferring the substrate to be processed provided in the common transfer chamber; A substrate processing apparatus in which a plurality of vacuum processing apparatuses each including a plurality of vacuum processing apparatuses are connected via a path unit,
The plurality of processing chambers include a deposit removal processing chamber for removing deposits including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and heat treatment; A substrate processing apparatus comprising: a film forming process chamber for performing a film forming process on a substrate; and a measurement processing chamber for performing a measurement process on the substrate to be processed.
前記付着物除去処理室は,前記被処理基板上の前記付着物とガス成分とを化学反応させて生成物を生成するための生成物生成処理室と,前記被処理基板上に形成された前記付着物の生成物を熱処理により除去するための生成物除去処理室との2つの処理室により構成されることを特徴とする請求項6に記載の基板処理装置。 The deposit removal processing chamber includes a product generation processing chamber for generating a product by chemically reacting the deposit on the substrate to be processed with a gas component, and the substrate formed on the substrate to be processed. The substrate processing apparatus according to claim 6, wherein the substrate processing apparatus includes two processing chambers, a product removal processing chamber for removing a deposit product by heat treatment. 前記成膜処理室は,前記被処理基板に第1膜を成膜する第1膜成膜処理室と,前記第1膜上に第2膜を成膜する第2膜成膜処理室との2つの処理室により構成されることを特徴とする請求項6に記載の基板処理装置。 The film forming chamber includes a first film forming chamber for forming a first film on the substrate to be processed and a second film forming chamber for forming a second film on the first film. The substrate processing apparatus according to claim 6, comprising two processing chambers. 前記成膜処理室は,前記被処理基板に第1膜を成膜する第1膜成膜処理室と,前記第1膜上に第2膜を成膜する第2膜成膜処理室とから構成される2つの処理室の組を複数含むことを特徴とする請求項6に記載の基板処理装置。 The film forming chamber includes a first film forming chamber for forming a first film on the substrate to be processed and a second film forming chamber for forming a second film on the first film. The substrate processing apparatus according to claim 6, comprising a plurality of sets of two processing chambers configured. 前記付着物除去処理室で処理される被処理基板は,コンタクトホール又はビアホールが形成された被処理基板であり,
前記成膜処理室は,前記被処理基板に形成されたコンタクトホール又はビアホールの内側に第1バリア層を成膜する第1バリア層成膜処理室と,前記第1バリア層の上側に第2バリア層を成膜する第2バリア層成膜処理室とにより構成されることを特徴とする請求項1又は6に記載の基板処理装置。
The substrate to be processed in the deposit removal processing chamber is a substrate to be processed in which contact holes or via holes are formed,
The film formation chamber includes a first barrier layer film formation chamber that forms a first barrier layer inside a contact hole or via hole formed in the substrate to be processed, and a second barrier layer above the first barrier layer. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is configured by a second barrier layer film formation processing chamber in which a barrier layer is formed.
前記付着物除去処理室で処理される被処理基板は,シリコン基板であり,
前記成膜処理室は,前記被処理基板上に酸素ラジカルによってベース酸化膜層を成膜するベース酸化膜層成膜処理室と,前記ベース酸化膜層が形成された被処理基板に高誘電体ゲート酸化膜を成膜する高誘電体ゲート酸化膜成膜処理室とにより構成されることを特徴とする請求項1又は6に記載の基板処理装置。
The substrate to be processed in the deposit removal chamber is a silicon substrate,
The film forming chamber includes a base oxide film forming film forming chamber for forming a base oxide film layer on the substrate to be processed by oxygen radicals, and a high dielectric on the substrate to be processed on which the base oxide film layer is formed. 7. The substrate processing apparatus according to claim 1, comprising a high dielectric gate oxide film forming chamber for forming a gate oxide film.
前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,
前記付着物除去処理後に,前記被処理基板上の測定処理を行う測定処理ステップと,
前記測定処理後に,前記被処理基板上に成膜処理を施す成膜処理ステップと,
を有することを特徴とする基板処理方法。
A deposit removal treatment step for removing deposits including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and heat treatment;
A measurement processing step for performing measurement processing on the substrate to be processed after the deposit removal processing;
A film forming process step of performing a film forming process on the substrate to be processed after the measurement process;
A substrate processing method comprising:
前記付着物除去処理ステップは,前記被処理基板上の前記付着物とガス成分とを化学反応させて生成物を生成するステップと,前記被処理基板上に形成された前記付着物の生成物を熱処理により除去するステップとを有することを特徴とする請求項12に記載の基板処理方法。 The deposit removal processing step includes a step of chemically reacting the deposit on the substrate to be processed with a gas component to generate a product, and a product of the deposit formed on the substrate to be processed. The substrate processing method according to claim 12, further comprising a step of removing by heat treatment. 前記測定処理ステップは,前記付着物除去処理が適正に実行されたか否かを検査するための測定を行うことを特徴とする請求項13に記載の基板処理方法。 The substrate processing method according to claim 13, wherein the measurement processing step performs measurement for inspecting whether or not the deposit removal processing is properly executed. 前記測定処理ステップは,前記被処理基板上において前記付着物除去処理が施された表面の膜厚測定を行うステップと,前記付着物除去処理が施された表面の付着物測定を行うステップとを1つの測定処理室内で実行することを特徴とする請求項14に記載の基板処理方法。 The measurement processing step includes a step of measuring a film thickness of the surface subjected to the deposit removal process on the substrate to be processed, and a step of performing a deposit measurement of the surface subjected to the deposit removal process. The substrate processing method according to claim 14, wherein the substrate processing method is performed in one measurement processing chamber. 前記測定処理ステップは,さらに前記膜厚測定ステップと前記付着物測定ステップにより測定された測定結果に基づいて,前記付着物除去処理を実行するためのプロセスレシピを補正することを特徴とする請求項15に記載の基板処理方法。 The measurement processing step further includes correcting a process recipe for executing the deposit removal processing based on measurement results measured by the film thickness measurement step and the deposit measurement step. 15. The substrate processing method according to 15. 前記測定処理ステップは,さらに前記膜厚測定ステップと前記パーティクル測定ステップにより測定された測定結果に基づいて,次の前記成膜処理ステップを実行するか否かを判断することを特徴とする請求項15に記載の基板処理方法。 The measurement processing step further determines whether or not to execute the next film formation processing step based on measurement results measured by the film thickness measurement step and the particle measurement step. 15. The substrate processing method according to 15. 前記測定処理ステップは,前記付着物除去処理が適正に実行されたか否かを検査するための測定と,次の前記成膜処理が施される下地膜の膜厚測定とを行うことを特徴とする請求項13に記載の基板処理方法。 The measurement processing step performs a measurement for inspecting whether or not the deposit removal process is properly performed, and a film thickness measurement of a base film on which the next film formation process is performed. The substrate processing method according to claim 13. 前記測定処理ステップは,前記被処理基板上において前記付着物除去処理が施された表面の膜厚測定及び前記成膜処理が施される下地膜の膜厚測定を行うステップと,前記付着物除去処理が施された表面の付着物測定を行うステップとを1つの測定処理室内で実行することを特徴とする請求項18に記載の基板処理方法。 The measurement processing step includes a step of measuring a film thickness of a surface on which the deposit removal process is performed on the substrate to be processed and a film thickness measurement of a base film on which the film formation process is performed, and the deposit removal 19. The substrate processing method according to claim 18, wherein the step of measuring a deposit on the surface subjected to the processing is performed in one measurement processing chamber. 前記成膜処理ステップは,前記被処理基板に第1膜を成膜するステップと,前記第1膜上に第2膜を成膜するステップとを有することを特徴とする請求項12に記載の基板処理方法。 The film forming process step includes a step of forming a first film on the substrate to be processed and a step of forming a second film on the first film. Substrate processing method. 前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,
前記付着物除去処理後に,前記被処理基板上に成膜処理を施す成膜処理ステップと,
前記成膜処理後に,前記被処理基板上の測定処理を行う測定処理ステップと,
を有することを特徴とする基板処理方法。
A deposit removal treatment step for removing deposits including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and heat treatment;
A film forming process step of performing a film forming process on the substrate to be processed after the deposit removing process;
A measurement processing step for performing measurement processing on the substrate to be processed after the film formation processing;
A substrate processing method comprising:
前記測定処理ステップは,前記成膜処理により形成された膜の膜厚測定を行うステップを有することを特徴とする請求項21に記載の基板処理方法。 The substrate processing method according to claim 21, wherein the measurement processing step includes a step of measuring a film thickness of the film formed by the film forming process. 前記測定処理ステップは,さらに前記膜厚測定ステップにより測定された測定結果に基づいて,前記成膜処理を実行するためのプロセスレシピを補正することを特徴とする請求項22に記載の基板処理方法。 23. The substrate processing method according to claim 22, wherein the measurement processing step further corrects a process recipe for executing the film formation processing based on a measurement result measured by the film thickness measurement step. . 前記被処理基板上の測定処理を行う測定処理ステップと,
前記測定処理後に,前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,
前記付着物除去処理後に,前記被処理基板上に成膜処理を施す成膜処理ステップと,
を有することを特徴とする基板処理方法。
A measurement processing step for performing measurement processing on the substrate to be processed;
A deposit removal treatment step for removing deposits including a natural oxide film deposited on the substrate to be treated by a chemical reaction with a gas component that does not depend on plasma and heat treatment after the measurement process;
A film forming process step of performing a film forming process on the substrate to be processed after the deposit removing process;
A substrate processing method comprising:
コンピュータに,
前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,
前記被処理基板上の測定処理を行う測定処理ステップと,
前記付着物が除去された前記被処理基板上に成膜処理を施す成膜処理ステップと,
を実行させるためのプログラム。
Computer
A deposit removal treatment step for removing deposits including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and heat treatment;
A measurement processing step for performing measurement processing on the substrate to be processed;
A film forming process step of performing a film forming process on the substrate to be processed from which the deposits have been removed;
A program for running
コンピュータに,
前記被処理基板上に付着した自然酸化膜を含む付着物をプラズマによらないガス成分との化学反応と熱処理によって除去する付着物除去処理ステップと,
前記被処理基板上の測定処理を行う測定処理ステップと,
前記付着物が除去された前記被処理基板上に成膜処理を施す成膜処理ステップと,
を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
Computer
A deposit removal treatment step for removing deposits including a natural oxide film deposited on the substrate to be processed by a chemical reaction with a gas component that does not depend on plasma and heat treatment;
A measurement processing step for performing measurement processing on the substrate to be processed;
A film forming process step of performing a film forming process on the substrate to be processed from which the deposits have been removed;
The computer-readable recording medium which recorded the program for performing this.
JP2005349556A 2005-08-25 2005-12-02 Substrate processing device, substrate processing method, program, and record medium recorded therewith Pending JP2007088401A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005349556A JP2007088401A (en) 2005-08-25 2005-12-02 Substrate processing device, substrate processing method, program, and record medium recorded therewith
PCT/JP2006/316747 WO2007023951A1 (en) 2005-08-25 2006-08-25 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005244797 2005-08-25
JP2005349556A JP2007088401A (en) 2005-08-25 2005-12-02 Substrate processing device, substrate processing method, program, and record medium recorded therewith

Publications (2)

Publication Number Publication Date
JP2007088401A true JP2007088401A (en) 2007-04-05
JP2007088401A5 JP2007088401A5 (en) 2008-12-25

Family

ID=37771689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005349556A Pending JP2007088401A (en) 2005-08-25 2005-12-02 Substrate processing device, substrate processing method, program, and record medium recorded therewith

Country Status (2)

Country Link
JP (1) JP2007088401A (en)
WO (1) WO2007023951A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158774A (en) * 2007-12-27 2009-07-16 Tokyo Electron Ltd Substrate processing method, substrate processing apparatus and storage medium
JP2020172706A (en) * 2020-07-03 2020-10-22 デクセリアルズ株式会社 Method of manufacturing optical film
KR20200124314A (en) * 2018-03-20 2020-11-02 도쿄엘렉트론가부시키가이샤 Metrology integrated substrate processing tool and how to use it
JP2022077990A (en) * 2020-11-06 2022-05-24 アプライド マテリアルズ インコーポレイテッド Treatments to enhance material structures
JP2022549489A (en) * 2019-09-25 2022-11-25 ベネク・オサケユフティオ Method and apparatus for treating the surface of a semiconductor substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305072A (en) * 2000-04-25 2001-10-31 Advantest Corp Method and device for detecting defect in substrate
JP2001338964A (en) * 2000-05-26 2001-12-07 Hitachi Ltd Device and method for processing specimen
JP2003098112A (en) * 2001-09-25 2003-04-03 Hitachi Ltd Method for detecting/outputting surface image of thin film device, apparatus therefor, method for manufacturing thin film device using the same, and apparatus therefor
JP2003297822A (en) * 2002-03-29 2003-10-17 Tokyo Electron Ltd Method of forming insulation film
JP2004071796A (en) * 2002-08-06 2004-03-04 Hitachi Kokusai Electric Inc Vertical type semiconductor manufacturing equipment
JP2004119635A (en) * 2002-09-25 2004-04-15 Tokyo Electron Ltd Method of transferring processing object
JP2004363316A (en) * 2003-06-04 2004-12-24 Tokyo Electron Ltd Plasma treatment method
JP2005039185A (en) * 2003-06-24 2005-02-10 Tokyo Electron Ltd Work processing apparatus, work processing method therefor, pressure control method, work carrying method, and carrying apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305072A (en) * 2000-04-25 2001-10-31 Advantest Corp Method and device for detecting defect in substrate
JP2001338964A (en) * 2000-05-26 2001-12-07 Hitachi Ltd Device and method for processing specimen
JP2003098112A (en) * 2001-09-25 2003-04-03 Hitachi Ltd Method for detecting/outputting surface image of thin film device, apparatus therefor, method for manufacturing thin film device using the same, and apparatus therefor
JP2003297822A (en) * 2002-03-29 2003-10-17 Tokyo Electron Ltd Method of forming insulation film
JP2004071796A (en) * 2002-08-06 2004-03-04 Hitachi Kokusai Electric Inc Vertical type semiconductor manufacturing equipment
JP2004119635A (en) * 2002-09-25 2004-04-15 Tokyo Electron Ltd Method of transferring processing object
JP2004363316A (en) * 2003-06-04 2004-12-24 Tokyo Electron Ltd Plasma treatment method
JP2005039185A (en) * 2003-06-24 2005-02-10 Tokyo Electron Ltd Work processing apparatus, work processing method therefor, pressure control method, work carrying method, and carrying apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158774A (en) * 2007-12-27 2009-07-16 Tokyo Electron Ltd Substrate processing method, substrate processing apparatus and storage medium
KR101553075B1 (en) 2007-12-27 2015-09-14 도쿄엘렉트론가부시키가이샤 Substrate processing method substrate processing apparatus and storage medium
KR20200124314A (en) * 2018-03-20 2020-11-02 도쿄엘렉트론가부시키가이샤 Metrology integrated substrate processing tool and how to use it
KR102655137B1 (en) 2018-03-20 2024-04-04 도쿄엘렉트론가부시키가이샤 Metrology-integrated board processing tools and methods of using them
JP2022549489A (en) * 2019-09-25 2022-11-25 ベネク・オサケユフティオ Method and apparatus for treating the surface of a semiconductor substrate
JP7395721B2 (en) 2019-09-25 2023-12-11 ベネク・オサケユフティオ Method and apparatus for treating the surface of a semiconductor substrate
JP2020172706A (en) * 2020-07-03 2020-10-22 デクセリアルズ株式会社 Method of manufacturing optical film
JP7146853B2 (en) 2020-07-03 2022-10-04 デクセリアルズ株式会社 Method for manufacturing optical film
JP2022077990A (en) * 2020-11-06 2022-05-24 アプライド マテリアルズ インコーポレイテッド Treatments to enhance material structures
JP7313414B2 (en) 2020-11-06 2023-07-24 アプライド マテリアルズ インコーポレイテッド Treatment to improve material structure

Also Published As

Publication number Publication date
WO2007023951A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
US10861744B2 (en) Platform and method of operating for integrated end-to-end CMP-less interconnect process
JP2007056336A (en) Substrate treatment device, method and program for conveying substrate of substrate treatment device, and recording medium recording the program
US7585686B2 (en) Method and apparatus for processing a wafer
US7159599B2 (en) Method and apparatus for processing a wafer
US20070134821A1 (en) Cluster tool for advanced front-end processing
JP5207615B2 (en) Film forming method and substrate processing apparatus
JP5046506B2 (en) Substrate processing apparatus, substrate processing method, program, and recording medium recording program
KR100456105B1 (en) Semiconductor manufacturing method, substrate processing method and semiconductor manufacturing apparatus
US20070196011A1 (en) Integrated vacuum metrology for cluster tool
US7510972B2 (en) Method of processing substrate, post-chemical mechanical polishing cleaning method, and method of and program for manufacturing electronic device
US20050257890A1 (en) Method of cleaning an interior of a remote plasma generating tube and appartus and method for processing a substrate using the same
JP2009543355A (en) Cluster tools for advanced front-end processing
US20060196527A1 (en) Method of surface processing substrate, method of cleaning substrate, and programs for implementing the methods
US11127597B2 (en) Etching method
KR101678266B1 (en) Device for producing and method for producing semiconductor device
JP2007088401A (en) Substrate processing device, substrate processing method, program, and record medium recorded therewith
JP4895256B2 (en) Substrate surface treatment method
JP2008192835A (en) Film formation method, substrate processing equipment and semiconductor device
US12020992B2 (en) Methods and apparatus for processing a substrate
JP2005064526A (en) Method of manufacturing semiconductor, method of processing substrate, and semiconductor manufacturing apparatus
JP4843285B2 (en) Electronic device manufacturing method and program
US20070031596A1 (en) Method for reducing particle contamination in a low pressure CVD apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329