JP2007085686A - Air conditioning system and its operation method - Google Patents

Air conditioning system and its operation method Download PDF

Info

Publication number
JP2007085686A
JP2007085686A JP2005277526A JP2005277526A JP2007085686A JP 2007085686 A JP2007085686 A JP 2007085686A JP 2005277526 A JP2005277526 A JP 2005277526A JP 2005277526 A JP2005277526 A JP 2005277526A JP 2007085686 A JP2007085686 A JP 2007085686A
Authority
JP
Japan
Prior art keywords
temperature
air conditioning
conditioning system
indoor unit
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005277526A
Other languages
Japanese (ja)
Inventor
Keisuke Sekiguchi
圭輔 関口
Shisei Waratani
至誠 藁谷
Tsuneo Uekusa
常雄 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2005277526A priority Critical patent/JP2007085686A/en
Publication of JP2007085686A publication Critical patent/JP2007085686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning system and its operation method that can avoid the occurrence of a high temperature abnormality or a locally high temperature state in a room to be air-conditioned even during the failure of an air conditioner. <P>SOLUTION: When it is determined that there is no problem in continuing the operation of an indoor blower 4b, whether a highest temperature T(1) computed based on the detection values of temperature sensors T1-Tn in a communication machine chamber 10 exceeds an upper limit temperature Tu (this value is set based on the allowable temperature of storage equipment) is determined (step S14). When the highest temperature T(1) exceeds Tu, the operation of the indoor blower 4b is continued (step S15). When the highest temperature T(1) is the upper limit temperature Tu or less, whether the difference between the indoor highest temperature T(1) and the lowest temperature T(n) exceeds a predetermined limit temperature difference ΔTu is determined (step S16). When exceeding ΔTu, the operation of the indoor blower 4b is continued (step S15). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気調和システム及びその運転方法に関し、特に情報通信機器類を格納する機械室に設置する空調機故障時の運転に好適な空気調和システム及びその運転方法に関する。   The present invention relates to an air conditioning system and an operation method thereof, and more particularly, to an air conditioning system suitable for operation when an air conditioner installed in a machine room storing information communication devices fails and an operation method thereof.

従来、空気調和機(以下、空調機ともいう)においては、マイコンを室内機制御部に持ち、制御部において空調機の故障箇所を判定して運転継続判断や故障部位の表示を行うものが公知である。この場合、例えば圧縮機の高圧異常、四方弁の動作不良等の冷媒循環系統の異常の場合には機器運転を停止し、これに伴い室内機送風機も停止することが一般的である(例えば特許文献1)。   Conventionally, an air conditioner (hereinafter also referred to as an air conditioner) has a microcomputer in an indoor unit control unit, and the control unit determines a failure location of the air conditioner and determines whether to continue operation or display a failure location. It is. In this case, for example, in the case of an abnormality in the refrigerant circulation system such as a high-pressure abnormality of the compressor or a malfunction of the four-way valve, it is common to stop the operation of the equipment and to stop the indoor unit blower accordingly (for example, patents) Reference 1).

しかし、例えば情報通信機器等を格納する機械室に設置する空調機の場合には、室内機送風機稼動停止が長時間継続すると、機器類の発熱により室内が高温状態になったり、局所的に高温の箇所が発生する状態となる。一般に、情報通信機器類の許容温度は常温程度であり、周囲空気が高温になった場合、機器自身が保護制御により自動停止し通信サービスの継続が不能となったり、さらには機器の構成部品が破壊されて故障に至るおそれもある。
特開平9−243138号公報
However, for example, in the case of an air conditioner installed in a machine room that stores information communication equipment, etc., if the operation of the indoor unit blower continues for a long time, the room becomes hot due to the heat generated by the equipment, or the temperature is locally high. It will be in the state where this part occurs. In general, the permissible temperature of information communication equipment is about room temperature, and when the ambient air becomes hot, the equipment itself automatically stops due to protection control and communication service cannot be continued. There is also a risk of destruction and failure.
JP-A-9-243138

本発明は、このような問題を解決するためのものであって、空調機故障時であっても空調対象室内の温度が異常高温となったり、局所的な高温状態となることを回避可能な空気調和システム及びその運転方法を提供するものである。   The present invention is for solving such a problem, and even when the air conditioner fails, it is possible to avoid that the temperature in the air-conditioned room becomes abnormally high or a locally high temperature state. An air conditioning system and an operation method thereof are provided.

(1)本発明に係る空気調和システムの運転方法は、冷媒循環系統と、室内機送風機と、を含む空調機と、複数の冷房対象箇所の検知温度を取得する手段と、を備えた空気調和システムにおいて、空調機に故障が発生したときに、室内機送風機が稼動可能であるときは、これを継続して稼動させることを特徴とする(請求項1)。   (1) An air conditioning system operating method according to the present invention includes an air conditioner including a refrigerant circulation system and an indoor unit blower, and means for acquiring detected temperatures of a plurality of cooling target locations. In the system, when a failure occurs in the air conditioner, if the indoor unit blower can be operated, it is continuously operated (Claim 1).

(2)この場合、前記故障が前記冷媒循環系統の故障であることを特徴とする(請求項2)。
(3)さらに、検知温度に基づく演算値が第一の閾値を超えていることを、さらに室内機送風機継続稼動の条件とすることを特徴とする(請求項3)。
(4)前記演算値が、複数の検知温度の偏差であることを特徴とする(請求項4)。
ここに、「偏差」としては、たとえば最高温度と最低温度の偏差である最大偏差、四分位偏差、平均偏差、標準偏差等、いずれをも用いることができる。
「第一の閾値」は、空調対象室内の許容温度に基づいて定めることができる。
(5)前記偏差が、複数の検知温度のうちの最高温度と最低温度の偏差であることを特徴とする(請求項5)。
この場合の偏差は、複数の冷房対象箇所温度をそれぞれT1、T2、・・・Tnとし、これらを高温の順に並び替えた順序統計量をT(1)≧、T(2) ≧・・・≧T(n)とするときに、T(1)−T(n)で表される値を言う。
(2) In this case, the failure is a failure of the refrigerant circulation system (claim 2).
(3) Further, it is further characterized in that the calculated value based on the detected temperature exceeds the first threshold value as a condition for continuing the indoor unit blower (Claim 3).
(4) The calculated value is a deviation of a plurality of detected temperatures (claim 4).
Here, as the “deviation”, for example, any of a maximum deviation, a quartile deviation, an average deviation, a standard deviation, etc., which are deviations between the highest temperature and the lowest temperature, can be used.
The “first threshold value” can be determined based on the allowable temperature in the air-conditioned room.
(5) The deviation is a deviation between a maximum temperature and a minimum temperature among a plurality of detected temperatures (claim 5).
Deviations in this case are T1, T2,... Tn, respectively, where the plurality of cooling target part temperatures are T1, T2,..., Tn, and T (1) ≧, T (2) ≧. When ≧ T (n), it means a value represented by T (1) −T (n).

(6)前記演算値が、複数の検知温度のうちの最高温度であることを特徴とする(請求項6)。
(7)複数の検知温度の偏差が前記第一の閾値を超えており、かつ、複数の検知温度のうちの最高温度が第二の閾値を超えていることを、さらに室内機送風機継続稼動の条件とする(請求項7)。
(8)前記検知温度に基づく演算値が、二重床内温度であることを特徴とする(請求項8)。
(9)前記演算値が、複数の検知温度のうちの最高温度と二重床内温度との偏差であることを特徴とする(請求項9)。
(6) The calculated value is a maximum temperature among a plurality of detected temperatures (claim 6).
(7) The deviation of the plurality of detected temperatures exceeds the first threshold, and the highest temperature among the plurality of detected temperatures exceeds the second threshold. Condition (Claim 7).
(8) The calculated value based on the detected temperature is a double bed temperature (claim 8).
(9) The calculated value is a deviation between a maximum temperature of a plurality of detected temperatures and a double bed temperature (claim 9).

各発明によれば、室内機送風機の稼動に支障がないときは、他の部位に故障が発生したとしても室内空気を強制循環させるため、室内の異常高温や局所的高温状態の発生を防止することができる。これにより、情報通信機器等を格納する機械室等に適用した場合、通信機器の自動停止によるサービス継続不能や、機器構成部品の破壊による故障等のトラブルを回避できる。
また、検知温度として二重床内温度を用いる発明にあっては、二重床内蓄冷熱を有効に室内に放熱することができる。
According to each invention, when there is no hindrance to the operation of the indoor unit blower, the room air is forcibly circulated even if a failure occurs in another part, thereby preventing the occurrence of an abnormally high temperature or local high temperature in the room. be able to. As a result, when applied to a machine room or the like for storing information communication devices, it is possible to avoid troubles such as failure to continue service due to automatic stop of communication devices and failure due to destruction of device components.
In the invention using the double floor temperature as the detected temperature, the cold storage heat in the double floor can be effectively radiated indoors.

以下、本発明に係る無除湿運転制御方法の実施形態について、図1乃至3を参照してさらに詳細に説明する。重複を避けるため、各図において同一構成には同一符号を用いて示している。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。   Hereinafter, an embodiment of a non-dehumidifying operation control method according to the present invention will be described in more detail with reference to FIGS. In order to avoid duplication, in each figure, the same structure is shown using the same code | symbol. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.

(第一の実施形態)
図1は、第一の実施形態に係る空気調和システム1を示す図である。空気調和システム1の空調制御は、二重床構造の通信機械室10の壁面近傍に設置される空調機2によってなされる。空調機2は、室内機4、室外機3、圧縮機5(後述)とこれらを結ぶ冷媒配管7を主要構成とし、後述する冷凍サイクル運転により冷気を生成して通信機械室10に供給する。通信機械室10の床は床パネル10aにより区画され、二重床空間11が形成されている。また、天井部は天井板10bにより区画され、天井空間12が形成されている。室内機4と二重床空間5とは、往き側ダクト19を介して接続されている。また、天井空間12と空調機2とは、戻り側ダクト18を介して接続されている。通信機械室10内部には情報通信装置(図示せず)を収納した機器収納ラック16a乃至16cが設置されている。このうち、ラック16aは前面吸気タイプであり、また、ラック16bは前面下部吸気タイプ、ラック16cは下面吸気タイプである。ラック16aについてみると、機器前面から導入される冷気は、内部に搭載されている機器類を冷却した後に上部のファン(図示せず)からラック外に排出される。他のタイプのラックについても同様である。通信機械室10の天井近傍には温度センサT1乃至Tnが取り付けられており、ラック16a乃至16cから排出される暖気を検出するように構成されている。各温度センサの検出値は通信線C1を介して制御部8に伝送される。
(First embodiment)
FIG. 1 is a diagram showing an air conditioning system 1 according to the first embodiment. Air conditioning control of the air conditioning system 1 is performed by the air conditioner 2 installed near the wall surface of the communication machine room 10 having a double floor structure. The air conditioner 2 has an indoor unit 4, an outdoor unit 3, a compressor 5 (described later) and a refrigerant pipe 7 connecting them as main components, generates cold air by a refrigeration cycle operation described later, and supplies it to the communication machine room 10. The floor of the communication machine room 10 is partitioned by a floor panel 10a, and a double floor space 11 is formed. Further, the ceiling part is partitioned by a ceiling plate 10b, and a ceiling space 12 is formed. The indoor unit 4 and the double floor space 5 are connected via a forward duct 19. The ceiling space 12 and the air conditioner 2 are connected via a return side duct 18. Inside the communication machine room 10, equipment storage racks 16a to 16c storing information communication devices (not shown) are installed. Among these, the rack 16a is a front intake type, the rack 16b is a front lower intake type, and the rack 16c is a lower intake type. Looking at the rack 16a, the cool air introduced from the front of the equipment is discharged from the upper fan (not shown) to the outside of the rack after the equipment mounted inside is cooled. The same applies to other types of racks. In the vicinity of the ceiling of the communication machine room 10, temperature sensors T1 to Tn are attached, and configured to detect warm air discharged from the racks 16a to 16c. The detection value of each temperature sensor is transmitted to the control unit 8 via the communication line C1.

図2は空調機2の詳細構成を示す図である。空調機2は、室外機3、室内機4、圧縮機5、膨張弁6、これらを結ぶ冷媒循環配管7、及び空気調和システムの運転制御を司る制御部8を主要構成としている。室内機4は、蒸発器4a、室内機送風機4bを備えており、吸い込んだ室内空気を蒸発器4aで冷却し、室内機送風機4bにより通信機械室10に送出する。冷媒循環配管7内部にはフロン冷媒が充填されており、配管内を気相又は液相状態で循環するように構成されている。屋外に設置される室外機3は、圧縮機5、凝縮器3a、室外機送風機3bを内蔵しており、圧縮機5で高温高圧にされたガス冷媒を凝縮器3aで外気と熱交換して冷却凝縮し、冷媒循環配管7を介して室内機4に搬送する。圧縮機5の出口近傍には冷媒圧力及び温度を検出する圧力・温度センサ5aが取り付けられている。各構成要素の運転状態は通信線C2乃至C4を介して制御部8に伝送される。制御部8は、いずれも不図示のCPU、RAM、ROM、記憶部等を備え、各センサの検出値、室外機送風機3b風量、室内機送風機4b風量等に基づいて、ROMに格納されている所定のプログラムに従って空調機2の運転制御を行い、さらに故障発生時には、故障判定プログラムに従って後述する制御を行う。空調機2は、この他にも四方弁、アキュムレーター、四方弁等の冷凍サイクルを構成する各種要素が含まれるが、図示を省略してある。   FIG. 2 is a diagram showing a detailed configuration of the air conditioner 2. The air conditioner 2 mainly includes an outdoor unit 3, an indoor unit 4, a compressor 5, an expansion valve 6, a refrigerant circulation pipe 7 connecting them, and a control unit 8 that controls operation of the air conditioning system. The indoor unit 4 includes an evaporator 4a and an indoor unit blower 4b. The sucked room air is cooled by the evaporator 4a and is sent to the communication machine room 10 by the indoor unit blower 4b. The refrigerant circulation pipe 7 is filled with a chlorofluorocarbon refrigerant, and is configured to circulate in the gas phase or liquid phase. The outdoor unit 3 installed outdoors incorporates a compressor 5, a condenser 3a, and an outdoor unit blower 3b. The condenser 3a exchanges heat with high-temperature and high-pressure gas refrigerant with the outside air. It cools and condenses and is conveyed to the indoor unit 4 through the refrigerant circulation pipe 7. In the vicinity of the outlet of the compressor 5, a pressure / temperature sensor 5a for detecting the refrigerant pressure and temperature is attached. The operating state of each component is transmitted to the control unit 8 via communication lines C2 to C4. The control unit 8 includes a CPU, a RAM, a ROM, a storage unit, and the like (not shown), and is stored in the ROM based on the detection value of each sensor, the outdoor unit fan 3b air volume, the indoor unit fan 4b air volume, and the like. Operation control of the air conditioner 2 is performed according to a predetermined program, and when a failure occurs, control described later is performed according to the failure determination program. The air conditioner 2 includes various elements constituting the refrigeration cycle such as a four-way valve, an accumulator, and a four-way valve, but the illustration is omitted.

以上の構成により、蒸発器4aで作られる冷気は室内機送風機4bにより往き側ダクト19を介して二重床空間11に送出され、床パネル10aに複数設けられた吹出し口14から室内に供給される。室内を冷房した後に上昇する空気は、天井板10bに複数設けられた吸込口15から天井空間12に導かれ、さらに戻り側ダクト18を介して室内機4に戻される。戻り側空気には外気導入ダクト20を介して導入される外気が混和される。   With the above configuration, the cold air generated by the evaporator 4a is sent to the double floor space 11 by the indoor unit blower 4b via the forward duct 19 and supplied indoors from the plurality of outlets 14 provided in the floor panel 10a. The The air that rises after the room is cooled is guided to the ceiling space 12 through a plurality of inlets 15 provided in the ceiling plate 10 b and is returned to the indoor unit 4 through the return side duct 18. The return side air is mixed with outside air introduced through the outside air introduction duct 20.

次に図3をも参照して、空調機2の故障時における制御フローについて説明する。本実施形態では圧縮機5が高圧異常により停止する故障を例に説明する。運転開始後、制御部8は、圧力・温度センサ5aの検出値に基づいて圧縮機5の高圧異常故障を検出すると(ステップS11)、直ちに圧縮機5の稼動を停止させる(ステップS12)。次いで、当該故障により室内機送風機4bの運転を継続することが可能か否かを判定する(ステップS13)。運転継続不可のときは、室内機送風機4bを含め運転を完全に停止する(ステップS17)。   Next, a control flow when the air conditioner 2 is in failure will be described with reference to FIG. In the present embodiment, a failure in which the compressor 5 stops due to a high pressure abnormality will be described as an example. After starting the operation, when the controller 8 detects a high-pressure abnormal failure of the compressor 5 based on the detected value of the pressure / temperature sensor 5a (step S11), it immediately stops the operation of the compressor 5 (step S12). Next, it is determined whether or not it is possible to continue the operation of the indoor unit blower 4b due to the failure (step S13). When the operation cannot be continued, the operation including the indoor unit blower 4b is completely stopped (step S17).

本実施形態のように、冷媒循環系統の故障であり室内機送風機4bの稼動継続に問題がないと判定したときは、次いで、通信機械室10内の温度センサT1乃至Tnの検出値に基づいて演算される最高温度T(1)が、上限温度Tu(この値は収納機器類の許容温度に基づいて設定される)を超えているか否かが判定される(ステップS14)。Tuを超えているときは室内機送風機4bの運転を継続し(ステップS15)、室内空気を強制循環させることにより、室温上昇、局所的な異常高温発生の回避を図る。この場合の室内機送風機4bの風量は故障直前の風量を維持する。   When it is determined that there is no problem in the continuation of the operation of the indoor unit blower 4b due to the failure of the refrigerant circulation system as in the present embodiment, then, based on the detection values of the temperature sensors T1 to Tn in the communication machine room 10. It is determined whether or not the calculated maximum temperature T (1) exceeds the upper limit temperature Tu (this value is set based on the allowable temperature of the storage devices) (step S14). When the temperature exceeds Tu, the operation of the indoor unit blower 4b is continued (step S15), and the room air is forced to circulate, thereby avoiding a rise in room temperature and occurrence of a local abnormally high temperature. The air volume of the indoor unit blower 4b in this case maintains the air volume immediately before the failure.

上限温度Tu以下のときは、さらに室内最高温度T(1)と最低温度T(n)の差が所定の限界温度差ΔTuを超えているか否かが判定される(ステップS16)。ΔTuを超えているときは、室内機送風機4bの運転を継続する(ステップS15)。運転継続不可のときは、室内機送風機4bの運転を停止する(ステップS17)。   When the temperature is not more than the upper limit temperature Tu, it is further determined whether or not the difference between the indoor maximum temperature T (1) and the minimum temperature T (n) exceeds a predetermined limit temperature difference ΔTu (step S16). When ΔTu is exceeded, the operation of the indoor unit blower 4b is continued (step S15). When the operation cannot be continued, the operation of the indoor unit blower 4b is stopped (step S17).

なお、本実施形態では圧縮機高圧異常故障を例にしたが、これに限らず他の部位の故障の場合も同様のフローにより判定される。
また本実施形態では、T(1)>Tu、かつ、T(1)−T(n)>ΔTuを室内機送風機運転の条件としたが、これに限らずどちらか一方に適合することを条件としてもよい。
また、最大偏差で判定するのではなく標準偏差を以って判定することもできる。さらに、平均温度により判定してもよい。
In this embodiment, the compressor high-pressure abnormal failure is taken as an example. However, the present invention is not limited to this, and a failure in other parts is also determined by the same flow.
Further, in this embodiment, T (1)> Tu and T (1) −T (n)> ΔTu are set as conditions for the indoor unit blower operation. It is good.
Further, the determination can be made not with the maximum deviation but with the standard deviation. Furthermore, you may determine by average temperature.

(第二の実施形態)
次に、本発明の他の実施形態について説明する。本実施形態は、主として請求項9に関する。図4は、本実施形態に係る空気調和システム30を示す図である。空気調和システム30が第一の実施形態に係る空気調和システム1と相違する点は、二重床空間11内に温度センサT0を備えており、その検知温度(二重床内温度)T0は通信線C2を介して制御部8に伝送される。その他の構成は空気調和システム1と同一であるので、説明を省略する。
(Second embodiment)
Next, another embodiment of the present invention will be described. This embodiment mainly relates to claim 9. FIG. 4 is a diagram showing an air conditioning system 30 according to the present embodiment. The air conditioning system 30 is different from the air conditioning system 1 according to the first embodiment in that the temperature sensor T0 is provided in the double floor space 11, and the detected temperature (double floor temperature) T0 is a communication. It is transmitted to the control unit 8 via the line C2. Since the other structure is the same as the air conditioning system 1, description is abbreviate | omitted.

次に図5をも参照して、空調機2の故障時における制御フローについて説明する。本実施形態についても圧縮機5が高圧異常により停止する故障を例に説明する。運転開始後、制御部8は、圧力・温度センサ5aの検出値に基づいて圧縮機5の高圧異常故障を検出すると(ステップS21)、直ちに圧縮機5の稼動を停止させる(ステップS22)。次いで、当該故障により室内機送風機4bの運転を継続することが可能か否かを判定する(ステップS23)。運転継続不可のときは、室内機送風機4bを含め運転を完全に停止する(ステップS26)。冷媒循環系統の故障であり室内機送風機4bの稼動継続に問題がないと判定したときは、次いで、通信機械室10内の温度センサT1乃至Tnの検知温度に基づいて演算される最高温度T(1)と、二重床内温度T0の偏差が、所定の閾値(α)を超えているか否かが判定される(ステップS24)。閾値(α)を超えているときは室内機送風機4bの運転を継続し(ステップS25)、室内空気を強制循環させることにより、室温上昇、局所的な異常高温発生の回避を図る。この場合の室内機送風機4bの風量は故障直前の風量を維持する。閾値(α)以下のときは室内機送風機4bの運転を停止する(ステップS26)。   Next, a control flow when the air conditioner 2 is in failure will be described with reference to FIG. This embodiment will be described by taking as an example a failure in which the compressor 5 stops due to a high pressure abnormality. After starting the operation, when the controller 8 detects a high-pressure abnormal failure of the compressor 5 based on the detected value of the pressure / temperature sensor 5a (step S21), it immediately stops the operation of the compressor 5 (step S22). Next, it is determined whether or not the operation of the indoor unit blower 4b can be continued due to the failure (step S23). When the operation cannot be continued, the operation including the indoor unit blower 4b is completely stopped (step S26). If it is determined that there is a problem with the refrigerant circulation system and there is no problem in the continuation of the operation of the indoor unit blower 4b, then the maximum temperature T (calculated based on the detected temperatures of the temperature sensors T1 to Tn in the communication machine room 10 1) and whether or not the deviation between the double bed temperature T0 exceeds a predetermined threshold value (α) (step S24). When the threshold (α) is exceeded, the operation of the indoor unit blower 4b is continued (step S25), and the room air is forcibly circulated, thereby avoiding a rise in room temperature and occurrence of local abnormally high temperatures. The air volume of the indoor unit blower 4b in this case maintains the air volume immediately before the failure. When it is equal to or less than the threshold value (α), the operation of the indoor unit blower 4b is stopped (step S26).

本発明は、熱源種類、冷媒種類、空調方式、建築構造等を問わず空気調和システムに広く適用可能である。   The present invention is widely applicable to air conditioning systems regardless of heat source type, refrigerant type, air conditioning system, building structure, and the like.

第一の実施形態に係る空気調和システム1を示す図である。It is a figure showing air harmony system 1 concerning a first embodiment. 空調機2の詳細を示す図である。It is a figure which shows the detail of the air conditioning machine. 空気調和システム1における空調機2故障時における運転制御フローを示す図である。It is a figure which shows the operation control flow at the time of the air conditioner 2 failure in the air conditioning system 1. FIG. 第二の実施形態に係る空気調和システム30を示す図である。It is a figure which shows the air conditioning system 30 which concerns on 2nd embodiment. 空気調和システム30における空調機2故障時における運転制御フローを示す図である。It is a figure which shows the operation control flow at the time of the air conditioner 2 failure in the air conditioning system 30. FIG.

符号の説明Explanation of symbols

1・30・・・・空気調和システム
2・・・・空調機
3・・・・室外機
4・・・・室内機
4b・・・室内機送風機
5・・・・圧縮機
8・・・・制御部
16a〜16c・・・機器収納ラック
T0〜Tn・・・温度センサ

1.30 ... Air conditioning system 2 .... Air conditioner 3 .... Outdoor unit 4 .... Indoor unit 4b ... Indoor unit blower 5 .... Compressor 8 .... Control units 16a to 16c ... equipment storage racks T0 to Tn ... temperature sensors

Claims (9)

冷媒循環系統と、室内機送風機と、を含む空調機と、複数の冷房対象箇所の検知温度を取得する手段と、を備えた空気調和システムにおいて、
空調機に故障が発生したときに、室内機送風機が稼動可能であるときは、室内機送風機を継続して稼動させることを特徴とする空気調和システムの運転方法。
In an air conditioning system comprising an air conditioner including a refrigerant circulation system, an indoor unit blower, and a means for acquiring detected temperatures of a plurality of cooling target locations,
An operating method of an air conditioning system, wherein when an air conditioner fails, when the indoor unit blower is operable, the indoor unit blower is continuously operated.
前記故障が、前記冷媒循環系統の故障であることを特徴とする請求項1に記載の空気調和システムの運転方法。 The method of operating an air conditioning system according to claim 1, wherein the failure is a failure of the refrigerant circulation system. 前記検知温度に基づく演算値が第一の閾値を超えていることを、さらに室内機送風機継続稼動の条件とすることを特徴とする請求項1又は2に記載の空気調和システムの運転方法。 The operating method of the air conditioning system according to claim 1 or 2, wherein the calculation value based on the detected temperature exceeds a first threshold value as a condition for continuous operation of the indoor unit blower. 前記演算値が、複数の検知温度の偏差であることを特徴とする請求項1乃至3に記載の空気調和システムの運転方法。 The method of operating an air conditioning system according to claim 1, wherein the calculated value is a deviation of a plurality of detected temperatures. 前記偏差が、複数の検知温度のうちの最高温度と最低温度との偏差であることを特徴とする請求項4に記載の空気調和システムの運転方法。 The method of operating an air conditioning system according to claim 4, wherein the deviation is a deviation between a maximum temperature and a minimum temperature among a plurality of detected temperatures. 前記演算値が、複数の検知温度のうちの最高温度であることを特徴とする請求項1乃至3に記載の空気調和システムの運転方法。 The operation method of the air conditioning system according to claim 1, wherein the calculated value is a maximum temperature among a plurality of detected temperatures. 複数の検知温度の偏差が前記第一の閾値を超えており、かつ、複数の検知温度のうちの最高温度が第二の閾値を超えていることを、さらに室内機送風機継続稼動の条件とすることを特徴とする請求項1乃至3に記載の空気調和システムの運転方法。 The deviation of the plurality of detected temperatures exceeds the first threshold, and the maximum temperature among the plurality of detected temperatures exceeds the second threshold is further set as a condition for continuous operation of the indoor unit blower. The operation method of the air conditioning system according to any one of claims 1 to 3. 前記検知温度に基づく演算値が、二重床内温度であることを特徴とする請求項3に記載の空気調和システムの運転方法。 The operation value of the air conditioning system according to claim 3, wherein the calculated value based on the detected temperature is a double bed temperature. 前記演算値が、複数の検知温度のうちの最高温度と二重床内温度との偏差であることを特徴とする請求項3に記載の空気調和システムの運転方法。


The operation method of the air conditioning system according to claim 3, wherein the calculated value is a deviation between a maximum temperature of a plurality of detected temperatures and a double bed temperature.


JP2005277526A 2005-09-26 2005-09-26 Air conditioning system and its operation method Pending JP2007085686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277526A JP2007085686A (en) 2005-09-26 2005-09-26 Air conditioning system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277526A JP2007085686A (en) 2005-09-26 2005-09-26 Air conditioning system and its operation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008276520A Division JP4850224B2 (en) 2008-10-28 2008-10-28 Air conditioning system and operation method thereof

Publications (1)

Publication Number Publication Date
JP2007085686A true JP2007085686A (en) 2007-04-05

Family

ID=37972825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277526A Pending JP2007085686A (en) 2005-09-26 2005-09-26 Air conditioning system and its operation method

Country Status (1)

Country Link
JP (1) JP2007085686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236335A (en) * 2008-03-26 2009-10-15 Ntt Facilities Inc Rack type air conditioner and its operating method
JP2010203663A (en) * 2009-03-03 2010-09-16 Ntt Facilities Inc Water cooling type air conditioning system, air conditioner and method of operating the system
JP2014142106A (en) * 2013-01-23 2014-08-07 Mitsubishi Electric Corp Air conditioning system, local air conditioner, and air conditioning system control method
JP2017116154A (en) * 2015-12-22 2017-06-29 ダイキン工業株式会社 Air conditioning device
CN109737565A (en) * 2018-12-26 2019-05-10 青岛海尔空调电子有限公司 Method for controlling of operation for air conditioner indoor unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011050A (en) * 1983-07-01 1985-01-21 Mayekawa Mfg Co Ltd Speed control device for cooling fan of unit cooler
JPH11141963A (en) * 1997-11-06 1999-05-28 Takasago Thermal Eng Co Ltd Floor outlet air-conditioning method and device thereof
JP2000320876A (en) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp Air conditioner
JP2004150679A (en) * 2002-10-30 2004-05-27 Sanyo Electric Co Ltd Air-conditioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011050A (en) * 1983-07-01 1985-01-21 Mayekawa Mfg Co Ltd Speed control device for cooling fan of unit cooler
JPH11141963A (en) * 1997-11-06 1999-05-28 Takasago Thermal Eng Co Ltd Floor outlet air-conditioning method and device thereof
JP2000320876A (en) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp Air conditioner
JP2004150679A (en) * 2002-10-30 2004-05-27 Sanyo Electric Co Ltd Air-conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236335A (en) * 2008-03-26 2009-10-15 Ntt Facilities Inc Rack type air conditioner and its operating method
JP2010203663A (en) * 2009-03-03 2010-09-16 Ntt Facilities Inc Water cooling type air conditioning system, air conditioner and method of operating the system
JP2014142106A (en) * 2013-01-23 2014-08-07 Mitsubishi Electric Corp Air conditioning system, local air conditioner, and air conditioning system control method
JP2017116154A (en) * 2015-12-22 2017-06-29 ダイキン工業株式会社 Air conditioning device
CN109737565A (en) * 2018-12-26 2019-05-10 青岛海尔空调电子有限公司 Method for controlling of operation for air conditioner indoor unit

Similar Documents

Publication Publication Date Title
JP6899896B2 (en) Air conditioning system
JP6143977B1 (en) Refrigeration cycle apparatus and refrigeration cycle system
JP5405161B2 (en) Air conditioner and energy equipment
US8113009B2 (en) Electronic device cooling system and electronic device cooling apparatus
JP4173880B2 (en) Dehumidification control method for air conditioning system
NL2006949C2 (en) Refrigerant circulation apparatus.
JP4180589B2 (en) AIR CONDITIONING SYSTEM AND ITS OPERATION METHOD DURING POWER SUPPLY FOR EMERGENCY
JP6253853B1 (en) Refrigeration cycle equipment
JP5268072B2 (en) Air conditioning control system and operation method thereof
WO2018220758A1 (en) Air-conditioning apparatus
JP2010216776A (en) Local air conditioning system, control device of the same, and program
US20230052745A1 (en) Refrigerant cycle apparatus
JP4274326B2 (en) Dehumidification control method for air conditioning system
JP2007278665A (en) Air conditioner
JP2007085686A (en) Air conditioning system and its operation method
JP2009104306A (en) Electronic equipment cooling device
JP4850224B2 (en) Air conditioning system and operation method thereof
JP2008039388A (en) Multi-type air conditioner
JP6430758B2 (en) Cooling system
JP2010211363A (en) Electronic equipment cooling device
JP7211913B2 (en) heat pump equipment
JP2009133544A (en) Air conditioning system
KR20070060336A (en) Multi air-conditioner system and controlling method for the same
JP2003056933A (en) Multiple air conditioner
JP5450208B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902