JP2007085570A - Absorber and absorption refrigerating machine comprising the same - Google Patents

Absorber and absorption refrigerating machine comprising the same Download PDF

Info

Publication number
JP2007085570A
JP2007085570A JP2005271461A JP2005271461A JP2007085570A JP 2007085570 A JP2007085570 A JP 2007085570A JP 2005271461 A JP2005271461 A JP 2005271461A JP 2005271461 A JP2005271461 A JP 2005271461A JP 2007085570 A JP2007085570 A JP 2007085570A
Authority
JP
Japan
Prior art keywords
solution
refrigerant vapor
absorption
absorber
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005271461A
Other languages
Japanese (ja)
Inventor
Naoki Shikazono
直毅 鹿園
Akira Nishiguchi
章 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
University of Tokyo NUC
Original Assignee
Hitachi Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, University of Tokyo NUC filed Critical Hitachi Ltd
Priority to JP2005271461A priority Critical patent/JP2007085570A/en
Publication of JP2007085570A publication Critical patent/JP2007085570A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve high performance and miniaturization of an absorber by reducing a thickness of a liquid film and securing a flow rate while preventing rupture of the liquid film. <P>SOLUTION: This absorber 5 for guiding absorbent solution 61 and refrigerant vapor 62 into an absorbing tube 51 to allow the refrigerant vapor 62 to be absorbed by the absorbent solution 61, and radiating absorption heat to the outside of the absorbing tube, comprises a solution introducing portion 53 for introducing the absorbent solution 61 to the absorbing tube 51, and a refrigerant vapor introducing tube 55 for introducing the refrigerant vapor 62 to the absorbing tube 51. This absorber 5 is provided with a solution contraction portion 56 formed in such manner that a slight clearance is formed between an outer face of the refrigerant vapor introducing tube 55 and an inner face of an inlet portion of the absorbing tube 51, an inlet side of the solution contraction portion 56 is communicated in the solution introducing portion 53, and the absorbent solution 61A is circularly jetted along an inner wall of the absorbing tube 51 from the solution contraction portion 56 by pressure of the absorbent solution 61. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、吸収器およびこれを備えた吸収冷凍機に係り、特に燃料または排熱を利用して冷房を行う吸収冷凍機及びこれに用いる吸収器に好適なものである。   The present invention relates to an absorber and an absorption refrigerator equipped with the absorber, and is particularly suitable for an absorption refrigerator that performs cooling using fuel or exhaust heat and an absorber used therefor.

従来の吸収冷凍機に用いられる吸収器としては、特開平4−116352号公報(特許文献1)の図5に示されたものがある。この特許文献1の図5に係る説明では、次のように開示されている。空冷吸収器は、上部ヘツダ及び下部ヘツダとそれに接合された複数本の伝熱管(吸収管)、この伝熱管の外側に嵌合された複数枚の空冷フィンから構成されている。前記伝熱管の内側には微細なフィンが設けられて吸収液(吸収剤溶液)の内熱・物質移動を促進する。上部ヘツダには伝熱管内に濃い吸収液を流下させる液散布装置及び吸収液を伝熱管群に分配する溶液ダクトが配置されている。蒸発器で発生した冷媒蒸気は上部ヘツダより伝熱管内に導かれて、溶液ダクト及び液散布装置により伝熱管の内側を流下させられる濃い吸収液に吸収される。その際の吸収熱は伝熱管及び空冷フィンを介して冷却空気に放熱する。   As an absorber used for a conventional absorption refrigerator, there is one shown in FIG. 5 of JP-A-4-116352 (Patent Document 1). The description relating to FIG. 5 of Patent Document 1 discloses as follows. The air-cooled absorber includes an upper header and a lower header, a plurality of heat transfer tubes (absorption tubes) joined to the upper header, and a plurality of air-cooling fins fitted to the outside of the heat transfer tubes. Fine fins are provided inside the heat transfer tube to promote internal heat and mass transfer of the absorbent (absorbent solution). In the upper header, there are arranged a liquid spraying device for flowing down the dense absorbent in the heat transfer tube and a solution duct for distributing the absorbent to the heat transfer tube group. Refrigerant vapor generated in the evaporator is guided into the heat transfer tube from the upper header, and is absorbed by the concentrated absorbent that can flow down inside the heat transfer tube by the solution duct and the liquid spraying device. The absorbed heat at that time is radiated to the cooling air through the heat transfer tubes and the air cooling fins.

特開平4−116352号公報JP-A-4-116352

従来の特許文献1の吸収器では、伝熱管の内側を重力により流下される吸収液(流下液膜)を用いているため、高性能化しようとして流下液膜の薄液膜化を図ると、液膜流量が低下してしまう、また、液膜破断(ドライパッチ(乾き面))が生じやすい、などの問題が発生する。このため、必要な溶液流量を確保しようとすると、流路幅が広がってしまうこととなり、吸収器が大型のものとなってしまうという課題があった。また、特許文献1では、伝熱管の内側に微細なフィンを設けて吸収液の内熱・物質移動を促進することが記載されているが、伝熱面の微細なフィンのみの伝熱促進によるコンパクト化には限界がある。   In the absorber of the conventional patent document 1, since the absorption liquid (falling liquid film) which flows down by the gravity inside the heat exchanger tube is used, when trying to make the falling liquid film thinner in order to improve performance, Problems such as a decrease in the flow rate of the liquid film and a tendency to break the liquid film (dry patch (dry surface)) occur. For this reason, when it was going to ensure the required solution flow volume, the flow-path width | variety will spread and the subject that an absorber will become large sized occurred. Further, Patent Document 1 describes that a fine fin is provided inside the heat transfer tube to promote internal heat and mass transfer of the absorption liquid. However, by heat transfer enhancement of only the fine fin on the heat transfer surface. There is a limit to downsizing.

本発明の目的は、液膜破断を防ぎつつ薄液膜化と流量確保とを実現することで、吸収器の高性能化並びに小型化を図ることにある。   An object of the present invention is to achieve high performance and downsizing of an absorber by realizing thin liquid film and securing a flow rate while preventing breakage of the liquid film.

前述の目的を達成するために、本発明は、吸収剤溶液及び冷媒蒸気を吸収管内に導いて前記冷媒蒸気を前記吸収剤溶液に吸収すると共にその吸収熱を前記吸収管外に放熱する吸収器において、前記吸収剤溶液を前記吸収管に導くための溶液導入部と、前記冷媒蒸気を前記吸収管に導くための冷媒蒸気導入管とを備え、前記冷媒蒸気導入管の外面と前記吸収管の入口部の内面とが僅かな間隙を有するように形成して溶液縮流部とすると共に、前記溶液縮流部の入口側を前記溶液導入部内と連通し、前記吸収剤溶液の圧力で前記溶液縮流部から前記吸収管の内壁に沿って前記吸収剤溶液を環状に噴出するように構成したことにある。   In order to achieve the above-mentioned object, the present invention is directed to an absorber that guides an absorbent solution and refrigerant vapor into an absorption tube, absorbs the refrigerant vapor into the absorbent solution, and dissipates the heat of absorption outside the absorption tube. A solution introduction part for guiding the absorbent solution to the absorption pipe, and a refrigerant vapor introduction pipe for guiding the refrigerant vapor to the absorption pipe, and an outer surface of the refrigerant vapor introduction pipe and the absorption pipe The inner surface of the inlet portion is formed so as to have a slight gap to form a solution contraction portion, and the inlet side of the solution contraction portion is communicated with the inside of the solution introduction portion, and the solution is adjusted by the pressure of the absorbent solution. The absorbent solution is configured to be ejected in an annular shape from the contracted portion along the inner wall of the absorption tube.

係る本発明のより好ましい具体的な構成例は次の通りである。
(1)前記吸収管の内面にらせん状の溝を形成したこと。
(2)前記冷媒蒸気導入管の内面にらせん状の溝を形成したこと。
(3)前記吸収管の外面に複数の拡大フィンを設けたこと。
(4)上述の吸収器を備えた吸収冷凍機。
A more preferable specific configuration example of the present invention is as follows.
(1) A spiral groove is formed on the inner surface of the absorption tube.
(2) A spiral groove is formed on the inner surface of the refrigerant vapor introducing pipe.
(3) A plurality of enlarged fins are provided on the outer surface of the absorption tube.
(4) An absorption refrigerator having the above-described absorber.

本発明によれば、吸収剤溶液及び冷媒蒸気を吸収管内に導いて前記冷媒蒸気を前記吸収剤溶液に吸収すると共にその吸収熱を前記吸収管外に放熱する吸収器において、前記吸収剤溶液を前記吸収管に導くための溶液導入部と、前記冷媒蒸気を前記吸収管に導く冷媒蒸気導入管とを備え、前記冷媒蒸気導入管の外面と前記吸収管の入口部の内面とが僅かな間隙を有するように形成して溶液縮流部とすると共に、前記溶液縮流部の入口側を前記溶液導入部に連通し、前記吸収剤溶液の圧力で前記溶液縮流部から前記吸収管の内壁に沿って前記吸収剤溶液を環状に噴出するように構成しているので、大流量の溶液を極めて薄い液膜として流すことができる。また、吸収剤溶液は、溶液噴出部において大きな運動エネルギーを有するため、その静圧が低下して冷媒蒸気を有効に吸引することができると共に、吸収剤溶液と冷媒蒸気との流れが下流部で馴染んで応力バランスが取られることにより溶液噴出部での過剰な運動エネルギーの一部が静圧上昇として回収される。さらには、吸収剤溶液と冷媒蒸気とが管内二相流として吸収管内面を流れるので、従来の重力による流下液膜式吸収管で問題となっていた液膜破断(ドライパッチ(乾き面))の発生を抑制することができる。これらにより、本発明では、従来の重力のみに頼っていた場合に比べて大幅に流量を増加することができ、液膜破断を防ぎつつ薄液膜化と流量の増大化の両立が可能となり、吸収器の高性能化並びに小型化を図ることができる。   According to the present invention, in the absorber that guides the absorbent solution and the refrigerant vapor into the absorption pipe and absorbs the refrigerant vapor into the absorbent solution and dissipates the heat of absorption outside the absorption pipe, the absorbent solution is A solution introduction section for introducing the refrigerant vapor to the absorption pipe; and a refrigerant vapor introduction pipe for introducing the refrigerant vapor to the absorption pipe; and a slight gap between the outer surface of the refrigerant vapor introduction pipe and the inner surface of the inlet section of the absorption pipe. The solution contraction part is formed so as to have an inlet side of the solution contraction part connected to the solution introduction part, and the inner wall of the absorption tube is formed from the solution contraction part by the pressure of the absorbent solution. Since the absorbent solution is configured to be ejected in a ring shape along the line, a large flow rate solution can be flowed as an extremely thin liquid film. In addition, since the absorbent solution has a large kinetic energy at the solution ejection portion, the static pressure is reduced and the refrigerant vapor can be sucked effectively, and the flow of the absorbent solution and the refrigerant vapor is at the downstream portion. A part of the excess kinetic energy at the solution jetting part is recovered as an increase in static pressure by being familiar and stress balanced. Furthermore, since the absorbent solution and the refrigerant vapor flow on the inner surface of the absorption tube as a two-phase flow in the tube, the liquid film breaks (dry patch (dry surface)), which has been a problem with conventional gravity falling liquid film type absorption tubes. Can be suppressed. With these, in the present invention, it is possible to greatly increase the flow rate compared to the case of relying only on conventional gravity, and it is possible to achieve both a thin liquid film and an increase in the flow rate while preventing breakage of the liquid film, It is possible to improve the performance and size of the absorber.

また、前記好ましい構成例(1)によれば、吸収管の内面にらせん状の溝を形成しているため、吸収管内に環状に噴射された吸収剤溶液を旋回流させることができ、その遠心力によって液膜をさらに薄くすることができる。さらには、吸収管の溝付き面は拡大フィンとしても作用するため、通過する吸収剤溶液の体積に対して伝熱面積が増大し、実質的に液膜厚さを薄くする効果がある。このため、大きな伝熱促進効果が得られる。   Further, according to the preferred configuration example (1), since the helical groove is formed on the inner surface of the absorption tube, the absorbent solution injected in an annular shape into the absorption tube can be swirled, and the centrifugal The liquid film can be made thinner by force. Furthermore, since the grooved surface of the absorption tube also functions as an expansion fin, the heat transfer area increases with respect to the volume of the absorbent solution passing therethrough, and the liquid film thickness is substantially reduced. For this reason, the big heat-transfer promotion effect is acquired.

また、前記好ましい構成例(2)によれば、前記冷媒蒸気導入管の内面にらせん状の溝を形成してあるので、冷媒蒸気も旋回流となって吸収器に流入する。このため吸収器での旋回流れをより効果的に発生させることができ、一層の吸収促進を図ることができる。   Moreover, according to the preferable configuration example (2), since the spiral groove is formed on the inner surface of the refrigerant vapor introducing pipe, the refrigerant vapor also flows into the absorber as a swirling flow. For this reason, a swirl flow in the absorber can be generated more effectively, and further absorption promotion can be achieved.

また、前記好ましい構成例(3)によれば、吸収管の外面に拡大フィンを設けているので、周囲の空気によって直接冷却することが可能である。空冷吸収器が実現でき、一層の小型コンパクト化が達成される。   Moreover, according to the preferable configuration example (3), since the expansion fin is provided on the outer surface of the absorption tube, it can be directly cooled by the surrounding air. An air-cooled absorber can be realized, and a further reduction in size and size can be achieved.

また、前記好ましい構成例(4)によれば、吸収冷凍機に上述した吸収器を用いているので、非常に高性能かつ小型な吸収冷凍機を実現できる。   Moreover, according to the said preferable structural example (4), since the absorber mentioned above is used for an absorption refrigerator, a very high performance and small absorption refrigerator can be implement | achieved.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。各実施形態の図における同一符号は同一物または相当物を示す。
(第1実施形態)
本発明の第1実施形態を図1から図3を用いて説明する。
Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS.

まず、本発明の第1実施形態の吸収冷凍機の全体に関して図1を参照しながら説明する。図1は本発明の第1実施形態の吸収冷凍機のサイクル構成図である。   First, the entire absorption refrigerator according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cycle configuration diagram of an absorption refrigerator according to a first embodiment of the present invention.

図1において、1は高温再生器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸収器、7は高温熱交換器、9は溶液ポンプ、10は冷媒ポンプ、11は冷水、12は温水熱交換器、13は温水、17は液熱交換器、19は溶液ポンプ、21は低温再生器2を加熱した高温再生器1の冷媒の減圧手段である。   In FIG. 1, 1 is a high temperature regenerator, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 7 is a high temperature heat exchanger, 9 is a solution pump, 10 is a refrigerant pump, 11 is Cold water, 12 is a hot water heat exchanger, 13 is hot water, 17 is a liquid heat exchanger, 19 is a solution pump, and 21 is a pressure reducing means for refrigerant in the high temperature regenerator 1 that has heated the low temperature regenerator 2.

本実施形態の吸収冷凍機の冷房サイクルについて説明する。   The cooling cycle of the absorption refrigerator according to this embodiment will be described.

冷房運転時において、高温再生器1は器内の吸収剤溶液を外部熱源により加熱して冷媒蒸気を発生させて凝縮する。発生した冷媒蒸気は蒸気ダクトを介して低温再生器2内の熱交換器内に導入され、低温再生器2内の吸収剤溶液を加熱して自身は凝縮液化して管及び減圧手段21を経由して凝縮器3に導入される。   During the cooling operation, the high temperature regenerator 1 heats the absorbent solution in the chamber with an external heat source to generate refrigerant vapor and condense. The generated refrigerant vapor is introduced into the heat exchanger in the low-temperature regenerator 2 through the vapor duct, and the absorbent solution in the low-temperature regenerator 2 is heated to condense and liquefy itself through the pipe and the decompression means 21. And introduced into the condenser 3.

高温熱交換器7は高温再生器1で生成された濃溶液と高温再生器1に流入する希溶液とを熱交換させる。低温再生器2は高温再生器1で発生した冷媒蒸気の凝縮潜熱を加熱源として器内の吸収剤溶液を加熱して冷媒蒸気を発生させて濃溶液を生成する。凝縮器3は低温再生器2で発生した冷媒蒸気を器内に導いて伝熱管群内を通過する冷却水39で冷却して凝縮液化させるとともに、高温再生器1で発生した冷媒蒸気が低温再生器2の熱交換器内で凝縮液化した冷媒を減圧手段21を介して凝縮器3内に導いて、伝熱管群内を通過する冷却水39でさらに冷却する。   The high temperature heat exchanger 7 exchanges heat between the concentrated solution generated in the high temperature regenerator 1 and the dilute solution flowing into the high temperature regenerator 1. The low temperature regenerator 2 uses the latent heat of condensation of the refrigerant vapor generated in the high temperature regenerator 1 as a heating source to heat the absorbent solution in the container to generate refrigerant vapor to generate a concentrated solution. The condenser 3 guides the refrigerant vapor generated in the low-temperature regenerator 2 into the apparatus and cools it with the cooling water 39 passing through the heat transfer tube group to condense and liquefy the refrigerant vapor generated in the high-temperature regenerator 1. The refrigerant condensed and liquefied in the heat exchanger of the condenser 2 is introduced into the condenser 3 through the decompression means 21 and further cooled by the cooling water 39 passing through the heat transfer tube group.

凝縮器3で生成された液冷媒は位置のヘツド差または液輸送手段により導管及びU字液シール等による減圧手段24を経由して蒸発器4に導入され、蒸発器4内の伝熱管群上に冷媒ポンプ10によって散布されて、伝熱管内を流れる冷水11と熱交換して蒸発気化する。この際の冷媒蒸発潜熱により冷水11が冷却されて冷房能力を発揮する。   The liquid refrigerant generated in the condenser 3 is introduced into the evaporator 4 via a conduit and a pressure reducing means 24 such as a U-shaped liquid seal or the like due to a head difference in position or liquid transporting means, and on the heat transfer tube group in the evaporator 4. The heat is exchanged with the cold water 11 which is sprayed by the refrigerant pump 10 and flows in the heat transfer tube, and is evaporated. The cold water 11 is cooled by the latent heat of vaporization of the refrigerant at this time, and exhibits cooling capacity.

蒸発器4で蒸発気化した冷媒蒸気は吸収器5に導かれる。吸収器5では、再生室15及び高温再生器1及び低温再生器2で生成された濃い吸収剤溶液が混合した濃溶液が溶液ポンプ19によって吸収器5内に供給され、該濃溶液は吸収器5の外部を通過する空気または冷却水で冷却されるとともに蒸発器4からの冷媒蒸気を吸収して希釈され、希溶液を生成する。   The refrigerant vapor evaporated by the evaporator 4 is guided to the absorber 5. In the absorber 5, a concentrated solution mixed with the thick absorbent solution generated in the regeneration chamber 15, the high temperature regenerator 1 and the low temperature regenerator 2 is supplied into the absorber 5 by the solution pump 19, and the concentrated solution is absorbed in the absorber. 5 is cooled with air or cooling water passing through the outside, and is diluted by absorbing refrigerant vapor from the evaporator 4 to form a diluted solution.

吸収器5で生成された希溶液は、溶液ポンプ9により液熱交換器17に送られて予熱され、一部は低温再生器2へ、また残りは高温熱交換器7を経由して高温再生器1へと輸送される。高温再生器1で生成された濃溶液は高温熱交換器7を経由して低温再生器2で生成された濃溶液と混合され、濃溶液となって、溶液ポンプ19により液熱交換器17を経由して吸収器5に供給される。液熱交換器17は吸収器5に送る濃溶液と低温再生器2及び高温再生器1に送る希溶液とを熱交換させて吸収器5の溶液顕熱分の放熱量を削減するとともに低温再生器2及び高温再生器1に送る希溶液を予熱して、低温再生器2及び高温再生器1での冷媒蒸気発生量を増大させる効果がある。   The dilute solution generated in the absorber 5 is sent to the liquid heat exchanger 17 by the solution pump 9 and preheated, partly to the low temperature regenerator 2 and the rest to the high temperature regenerator via the high temperature heat exchanger 7. Transported to vessel 1 The concentrated solution generated in the high temperature regenerator 1 is mixed with the concentrated solution generated in the low temperature regenerator 2 via the high temperature heat exchanger 7 to become a concentrated solution, and the liquid heat exchanger 17 is moved by the solution pump 19. Via, it is supplied to the absorber 5. The liquid heat exchanger 17 exchanges heat between the concentrated solution to be sent to the absorber 5 and the dilute solution to be sent to the low temperature regenerator 2 and the high temperature regenerator 1 to reduce the heat release amount of the solution sensible heat of the absorber 5 and to regenerate at low temperature. The dilute solution sent to the regenerator 2 and the high temperature regenerator 1 is preheated to increase the amount of refrigerant vapor generated in the low temperature regenerator 2 and the high temperature regenerator 1.

次に、暖房サイクルについて説明する。暖房時は、高温再生器1で発生した高温冷媒蒸気を温水熱交換器12に導き、凝縮させて伝熱管群内を流れる温水13を加熱し、これによって暖房能力を得る。温水熱交換器12で凝縮液化した液冷媒はU字液シールを経由して高温再生器1内に戻される。以上のように暖房サイクルが構成されている。   Next, the heating cycle will be described. At the time of heating, the high-temperature refrigerant vapor generated in the high-temperature regenerator 1 is guided to the hot water heat exchanger 12 and condensed to heat the hot water 13 flowing in the heat transfer tube group, thereby obtaining the heating capacity. The liquid refrigerant condensed and liquefied by the hot water heat exchanger 12 is returned into the high temperature regenerator 1 via the U-shaped liquid seal. The heating cycle is configured as described above.

なお、高温再生器1及び低温再生器2で生成される濃溶液及び濃溶液は、吸収剤に例えば臭化リチウムを用い、冷媒に水を用いた吸収剤溶液である。   The concentrated solution and concentrated solution produced by the high temperature regenerator 1 and the low temperature regenerator 2 are absorbent solutions using, for example, lithium bromide as an absorbent and water as a refrigerant.

次に、本実施形態の吸収器5に関して図2及び図3を参照しながら説明する。図2は本発明の第1実施形態の吸収器における吸収剤溶液及び冷媒蒸気の導入部部分の断面図、図3は図2の吸収器における要部拡大説明図である。   Next, the absorber 5 of this embodiment will be described with reference to FIGS. FIG. 2 is a cross-sectional view of the introduction portion of the absorbent solution and the refrigerant vapor in the absorber according to the first embodiment of the present invention, and FIG.

吸収器5は、冷媒蒸気62を吸収剤溶液61に吸収するための吸収管51と、吸収管51の外部に設けられた冷却管(図示せず)と、再生器1、2から供給される濃溶液である吸収剤溶液61を吸収管51に導くための溶液導入部53と、溶液導入部53の入口パイプ54と、冷媒蒸気62を吸収管51に導くための冷媒蒸気導入管55とを備えている。   The absorber 5 is supplied from an absorption pipe 51 for absorbing the refrigerant vapor 62 into the absorbent solution 61, a cooling pipe (not shown) provided outside the absorption pipe 51, and the regenerators 1 and 2. A solution introduction part 53 for introducing the absorbent solution 61, which is a concentrated solution, to the absorption pipe 51, an inlet pipe 54 of the solution introduction part 53, and a refrigerant vapor introduction pipe 55 for introducing the refrigerant vapor 62 to the absorption pipe 51 are provided. I have.

吸収管51は、金属製の円筒パイプで構成され、その入口部51aが溶液導入部53内に挿入されている。冷媒蒸気導入管55は、金属製の円筒パイプで構成され、その中央部55aが吸収管51の反対側から溶液導入部53を貫通して吸収管51側に延び、その端部55bが吸収管51の入口部51aに挿入されている。ここで、冷媒蒸気導入管55の流出側端部55bの外面と吸収管51の入口部51aの内面とが僅かな間隙を有するように形成されて溶液縮流部56としている。この溶液縮流部56は環状の小さな断面積を有する。溶液縮流部56の入口側は溶液導入部53内に連通され、溶液縮流部56の出口側は吸収管51内に連通されている。吸収管51の入口部51aは溶液導入部53の一側の側面に支持され、冷媒蒸気導入管55は溶液導入部53の他側の側面に支持されている。   The absorption pipe 51 is formed of a metal cylindrical pipe, and an inlet part 51 a thereof is inserted into the solution introduction part 53. The refrigerant vapor introduction pipe 55 is formed of a metal cylindrical pipe, and a central portion 55a extends from the opposite side of the absorption pipe 51 through the solution introduction section 53 to the absorption pipe 51 side, and an end 55b thereof is the absorption pipe. 51 is inserted into the inlet 51a. Here, the outer surface of the outflow side end portion 55b of the refrigerant vapor introducing pipe 55 and the inner surface of the inlet section 51a of the absorption pipe 51 are formed to have a slight gap to form the solution contraction section 56. The solution contraction portion 56 has a small annular cross-sectional area. The inlet side of the solution contraction part 56 communicates with the solution introduction part 53, and the outlet side of the solution contraction part 56 communicates with the absorption pipe 51. The inlet portion 51 a of the absorption tube 51 is supported on one side surface of the solution introduction portion 53, and the refrigerant vapor introduction tube 55 is supported on the other side surface of the solution introduction portion 53.

再生器1、2からの高圧の吸収剤溶液61は、入口パイプ54を通して溶液導入部53内に供給され、吸収管51内面と冷媒蒸気導入管55の外面とで構成される小さい断面積を有する溶液縮流部56を通り、図2及び図3に示すように吸収管51の内壁へ沿って噴出され、環状の薄液膜流れ61Aとなる。通常、吸収管51の外側は冷却水によって冷却され、吸収管51では吸収熱7が放出される。冷媒蒸気62が薄液膜流れ61Aに吸収されるため、冷媒蒸気62が冷媒蒸気導入管55から吸収管51内に吸引される。本実施形態によれば、大流量の吸収剤溶液61を極めて薄い薄液膜流れ61Aとして流すことができる。このため、従来の重力のみに頼っていた場合に比べ大幅に流量が増加し、薄液膜化と流量の増大化の両立が可能となる。   The high-pressure absorbent solution 61 from the regenerators 1 and 2 is supplied into the solution introduction part 53 through the inlet pipe 54 and has a small cross-sectional area constituted by the inner surface of the absorption pipe 51 and the outer surface of the refrigerant vapor introduction pipe 55. As shown in FIG. 2 and FIG. 3, it passes through the solution constricted portion 56 and is ejected along the inner wall of the absorption pipe 51 to form an annular thin liquid film flow 61A. Usually, the outside of the absorption pipe 51 is cooled by cooling water, and the absorption heat 7 is released in the absorption pipe 51. Since the refrigerant vapor 62 is absorbed by the thin liquid film flow 61 </ b> A, the refrigerant vapor 62 is sucked into the absorption pipe 51 from the refrigerant vapor introduction pipe 55. According to this embodiment, the absorbent solution 61 with a large flow rate can be flowed as an extremely thin thin film flow 61A. For this reason, compared with the case where it relies only on the conventional gravity, a flow volume increases significantly, and it becomes possible to make a thin liquid film and an increase in flow volume compatible.

溶液縮流部56からの噴出部において、吸収剤溶液61Aが大きな運動エネルギーを有するためにその静圧が低下し、図3の矢印で示すように冷媒蒸気62Aを有効に吸引することができる。吸収管51の下流部では、吸収剤溶液61Aと冷媒蒸気62Aの流れは応力バランスが取られて馴染むので、噴出部での過剰な運動エネルギーの一部が静圧上昇として回収される。   Since the absorbent solution 61A has a large kinetic energy at the ejection portion from the solution constricted portion 56, the static pressure is reduced, and the refrigerant vapor 62A can be effectively sucked as shown by the arrow in FIG. In the downstream part of the absorption pipe 51, the flow of the absorbent solution 61A and the refrigerant vapor 62A is adapted to a stress balance, so that a part of the excessive kinetic energy in the ejection part is recovered as an increase in static pressure.

この薄液膜部61Aでは、液膜厚さが非常に薄くなり、吸収時の熱・物質移動が格段に促進される。また、速度も非常に大きくできるので、流れが乱され、一層の吸収促進が図られる。半径方向の応力バランスがとられる下流側においても、通常の環状気液二相流と同様に、そこでの乾き度に応じた薄液膜が管内壁に構成される。この場合でも、重力のみで駆動される流下液膜よりも薄液膜化を実現できる。また、従来の重力による流下液膜式熱交換器で問題となっていたドライパッチ(乾き面)の発生を抑制できる。
(第2実施形態)
次に、本発明の第2実施形態について図4を用いて説明する。図4は本発明の第2実施形態の吸収器の要部断面図である。この第2実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
In this thin liquid film portion 61A, the liquid film thickness becomes very thin, and the heat and mass transfer during absorption is greatly promoted. Moreover, since the speed can be made very large, the flow is disturbed and further absorption promotion is achieved. On the downstream side where the stress balance in the radial direction is taken, a thin liquid film corresponding to the degree of dryness is formed on the inner wall of the pipe, as in the ordinary annular gas-liquid two-phase flow. Even in this case, a thinner liquid film can be realized than a falling liquid film driven only by gravity. Moreover, generation | occurrence | production of the dry patch (dry surface) which became a problem with the falling liquid film type heat exchanger by the conventional gravity can be suppressed.
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a sectional view of an essential part of an absorber according to a second embodiment of the present invention. The second embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第2実施形態では、吸収管51の内面にらせん状の溝59を形成すると共に、冷媒蒸気導入管55の内面にらせん状の溝60を形成している。両らせん状の溝59、60は、同一方向に且つ同一ピッチで形成されている。   In the second embodiment, a spiral groove 59 is formed on the inner surface of the absorption tube 51, and a spiral groove 60 is formed on the inner surface of the refrigerant vapor introducing tube 55. Both spiral grooves 59 and 60 are formed in the same direction and at the same pitch.

この第2実施形態によれば、吸収管51の内面にらせん状の溝59を形成しているため、吸収管59内に環状に噴射された吸収剤溶液61Aを旋回流させることができ、その遠心力によって液膜をさらに薄くすることができる。さらには、吸収管51の溝付き面は拡大フィンとしても作用するため、通過する吸収剤溶液61Aの体積に対して伝熱面積が増大し、実質的に液膜厚さを薄くする効果がある。このため、大きな伝熱促進効果が得られる。   According to the second embodiment, since the helical groove 59 is formed on the inner surface of the absorption tube 51, the absorbent solution 61A sprayed into the absorption tube 59 can be swirled, The liquid film can be further thinned by centrifugal force. Furthermore, since the grooved surface of the absorption tube 51 also functions as an expansion fin, the heat transfer area increases with respect to the volume of the absorbent solution 61A that passes therethrough, and the liquid film thickness is substantially reduced. . For this reason, the big heat-transfer promotion effect is acquired.

また、この第2実施形態によれば、冷媒蒸気導入管55の内面にらせん状の溝60を形成してあるので、冷媒蒸気62も旋回流となって吸収器51に流入する。このため吸収器51での旋回流れをより効果的に発生させることができ、一層の吸収促進を図ることができる。
(第3実施形態)
次に、本発明の第3実施形態について図5を用いて説明する。図5は本発明の第3実施形態の吸収器の斜視図である。この第3実施形態は、次に述べる点で第1または第2実施形態と相違するものであり、その他の点については第1または第2実施形態と基本的には同一であるので、重複する説明を省略する。
Further, according to the second embodiment, since the spiral groove 60 is formed on the inner surface of the refrigerant vapor introducing pipe 55, the refrigerant vapor 62 also flows into the absorber 51 as a swirling flow. For this reason, the swirling flow in the absorber 51 can be generated more effectively, and further absorption promotion can be achieved.
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a perspective view of an absorber according to a third embodiment of the present invention. The third embodiment is different from the first or second embodiment in the following points, and the other points are basically the same as those in the first or second embodiment, and thus overlap. Description is omitted.

この第3実施形態では、複数の吸収管51を縦に設置すると共に、吸収管51の外面に複数の拡大フィン52を設けている。拡大フィン52は複数の吸収管51にまたがって水平に設けられている。   In the third embodiment, a plurality of absorption pipes 51 are installed vertically, and a plurality of enlarged fins 52 are provided on the outer surface of the absorption pipe 51. The expansion fins 52 are provided horizontally across the plurality of absorption tubes 51.

この第3実施形態によれば、吸収管51外面に拡大フィン10を設けているので、周囲の空気63によって直接吸収器5を冷却することが可能である。空冷吸収器が実現でき、一層の小型コンパクト化が達成される。   According to the third embodiment, since the expansion fin 10 is provided on the outer surface of the absorption pipe 51, the absorber 5 can be directly cooled by the surrounding air 63. An air-cooled absorber can be realized, and a further reduction in size and size can be achieved.

また、この第3実施形態によれば、吸収管51が重力方向に延びるように設置されているので、吸収剤溶液61Aの流れに重力が加わることとなり、より一層流量の増大を図ることができる。   Further, according to the third embodiment, since the absorption pipe 51 is installed so as to extend in the direction of gravity, gravity is added to the flow of the absorbent solution 61A, and the flow rate can be further increased. .

なお、本発明では、供給される吸収剤溶液61の圧力を駆動力としているので、例えば、アンモニア、フロン類、アルコール類、ジメチルエーテル、プロパン、ブタンといった大気圧以上で蒸発吸収がおこる高圧冷媒を用いることによって、吸収管51を水平または垂直の何れとすることもできる。   In the present invention, since the pressure of the supplied absorbent solution 61 is used as a driving force, for example, a high-pressure refrigerant that evaporates and absorbs at atmospheric pressure or higher, such as ammonia, chlorofluorocarbons, alcohols, dimethyl ether, propane, and butane is used. Accordingly, the absorption tube 51 can be either horizontal or vertical.

本発明の第1実施形態の吸収冷凍機の構成図である。It is a block diagram of the absorption refrigerator of 1st Embodiment of this invention. 本発明の第1実施形態の吸収器における吸収剤溶液及び冷媒蒸気の導入部部分の断面図である。It is sectional drawing of the introduction part part of the absorber solution and refrigerant | coolant vapor | steam in the absorber of 1st Embodiment of this invention. 図2の吸収器における要部拡大説明図である。It is a principal part expansion explanatory drawing in the absorber of FIG. 本発明の第2実施形態の吸収器の要部断面図である。It is principal part sectional drawing of the absorber of 2nd Embodiment of this invention. 本発明の第3実施形態の吸収器の斜視図である。It is a perspective view of the absorber of a 3rd embodiment of the present invention.

符号の説明Explanation of symbols

1…高温再生器、2…低温再生器、3…凝縮器、4…蒸発器、5…吸収器、7…高温熱交換器、9…溶液ポンプ、10…冷媒ポンプ、11…冷水、12…温水熱交換器、13…温水、17…液熱交換器、19…溶液ポンプ、21…減圧手段、51…吸収管、52…拡大フィン、53…溶液導入部、54…入口パイプ、55…冷媒蒸気導入管、56…溶液縮流部、61…吸収剤溶液、61A…薄液膜流れ、62…冷媒蒸気、63…空気。   DESCRIPTION OF SYMBOLS 1 ... High temperature regenerator, 2 ... Low temperature regenerator, 3 ... Condenser, 4 ... Evaporator, 5 ... Absorber, 7 ... High temperature heat exchanger, 9 ... Solution pump, 10 ... Refrigerant pump, 11 ... Cold water, 12 ... Hot water heat exchanger, 13 ... hot water, 17 ... liquid heat exchanger, 19 ... solution pump, 21 ... pressure reducing means, 51 ... absorption pipe, 52 ... expansion fin, 53 ... solution introduction part, 54 ... inlet pipe, 55 ... refrigerant Steam introduction pipe, 56 ... Solution constriction part, 61 ... Absorbent solution, 61A ... Thin liquid film flow, 62 ... Refrigerant vapor, 63 ... Air.

Claims (5)

吸収剤溶液及び冷媒蒸気を吸収管内に導いて前記冷媒蒸気を前記吸収剤溶液に吸収すると共にその吸収熱を前記吸収管外に放熱する吸収器において、
前記吸収剤溶液を前記吸収管に導くための溶液導入部と、前記冷媒蒸気を前記吸収管に導くための冷媒蒸気導入管とを備え、
前記冷媒蒸気導入管の外面と前記吸収管の入口部の内面とが僅かな間隙を有するように形成して溶液縮流部とすると共に、前記溶液縮流部の入口側を前記溶液導入部内と連通し、前記吸収剤溶液の圧力で前記溶液縮流部から前記吸収管の内壁に沿って前記吸収剤溶液を環状に噴出するように構成した
ことを特徴とする吸収器。
In the absorber that guides the absorbent solution and the refrigerant vapor into the absorption pipe and absorbs the refrigerant vapor in the absorbent solution and dissipates the absorption heat to the outside of the absorption pipe.
A solution introduction part for guiding the absorbent solution to the absorption pipe; and a refrigerant vapor introduction pipe for guiding the refrigerant vapor to the absorption pipe,
The outer surface of the refrigerant vapor introducing tube and the inner surface of the inlet portion of the absorption tube are formed to have a slight gap to form a solution contraction portion, and the inlet side of the solution contraction portion is connected to the inside of the solution introduction portion. An absorber which is configured to communicate and to eject the absorbent solution in an annular shape along the inner wall of the absorption tube from the solution constriction portion with the pressure of the absorbent solution.
請求項1に記載の吸収器において、前記吸収管の内面にらせん状の溝を形成したことを特徴とする吸収器。   The absorber according to claim 1, wherein a spiral groove is formed on an inner surface of the absorption tube. 請求項1または請求項2に記載の吸収器において、前記冷媒蒸気導入管の内面にらせん状の溝を形成したことを特徴とする吸収器。   The absorber according to claim 1 or 2, wherein a spiral groove is formed on an inner surface of the refrigerant vapor introducing pipe. 請求項1から3の何れかに記載の吸収器において、前記吸収管の外面に複数の拡大フィンを設けたことを特徴とする吸収器。   The absorber according to any one of claims 1 to 3, wherein a plurality of expansion fins are provided on an outer surface of the absorption tube. 請求項1から請求項4に記載の吸収器を備えたことを特徴とする吸収冷凍機。   An absorption refrigerator comprising the absorber according to claim 1.
JP2005271461A 2005-09-20 2005-09-20 Absorber and absorption refrigerating machine comprising the same Pending JP2007085570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005271461A JP2007085570A (en) 2005-09-20 2005-09-20 Absorber and absorption refrigerating machine comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271461A JP2007085570A (en) 2005-09-20 2005-09-20 Absorber and absorption refrigerating machine comprising the same

Publications (1)

Publication Number Publication Date
JP2007085570A true JP2007085570A (en) 2007-04-05

Family

ID=37972718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271461A Pending JP2007085570A (en) 2005-09-20 2005-09-20 Absorber and absorption refrigerating machine comprising the same

Country Status (1)

Country Link
JP (1) JP2007085570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619916A (en) * 2019-09-24 2021-04-09 新奥科技发展有限公司 Ejector, absorber and absorber control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619916A (en) * 2019-09-24 2021-04-09 新奥科技发展有限公司 Ejector, absorber and absorber control method

Similar Documents

Publication Publication Date Title
JP4701147B2 (en) 2-stage absorption refrigerator
JP2001221015A (en) Mixed medium power generation system
JP2009058181A (en) Absorption type refrigerating apparatus
JP2007263515A (en) Evaporation/absorption unit for absorption refrigerating machine
JP2007085570A (en) Absorber and absorption refrigerating machine comprising the same
KR890004393B1 (en) Air cooling type absorption cooler
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JP2503315B2 (en) Absorption refrigerator
JP2009068724A (en) Absorption refrigerator
KR102268283B1 (en) Ejector and an Absorption type cooler and heater including the same
KR20200120190A (en) Absorption type chiller
KR20200120186A (en) Absorption type chiller-heater
JP4903743B2 (en) Absorption refrigerator
WO2022130986A1 (en) Shell-and-tube heat exchanger, refrigeration cycle device, and heat exchange method
US6595023B2 (en) Structure of evaporation region of absorption diffusion type refrigerating circulation
JP2007078300A (en) High temperature regenerator, and absorption refrigerating machine
JP3479104B2 (en) Vertical low temperature regenerator
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JPH04371764A (en) Absorbing device in ammonia-water absorption type freezer
JP2022096089A (en) Shell-and-tube type heat exchanger and refrigeration cycle device
JP2021081115A (en) Boiling cooling device
KR100307749B1 (en) Absorption cooling and heating system
JP2014173810A (en) Air-cooling absorption type refrigerator
CN117916538A (en) Absorber unit, heat exchange unit and absorption refrigerator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070328