JP2007084385A - Manufacturing method of molding die for optical element and molding die for optical element - Google Patents

Manufacturing method of molding die for optical element and molding die for optical element Download PDF

Info

Publication number
JP2007084385A
JP2007084385A JP2005275408A JP2005275408A JP2007084385A JP 2007084385 A JP2007084385 A JP 2007084385A JP 2005275408 A JP2005275408 A JP 2005275408A JP 2005275408 A JP2005275408 A JP 2005275408A JP 2007084385 A JP2007084385 A JP 2007084385A
Authority
JP
Japan
Prior art keywords
optical element
molding die
amorphous alloy
film
element molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005275408A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nabeta
博之 鍋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005275408A priority Critical patent/JP2007084385A/en
Publication of JP2007084385A publication Critical patent/JP2007084385A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding die for an optical element which has high productivity, hardly causes peeling, is excellent in cutting properties, and can improve dimensional accuracy. <P>SOLUTION: The manufacturing method of a molding die for an optical element is characterized in that it comprises forming an amorphous alloy layer on a base body by an aerosol deposition method, and thereafter forming and creating an optical surface transcript plane by diamond cutting or heating press molding the amorphous alloy layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学素子成形用金型の製造方法及び光学素子成形用金型に関する。   The present invention relates to a method for manufacturing an optical element molding die and an optical element molding die.

近年、従来から一般的に行われてきたプラスチック光学素子の成形用金型の製作手法によれば、例えば鋼材やステンレス鋼などでブランク(一次加工品)を作っておき、その上に無電解ニッケルメッキとよばれる化学メッキにより、アモルファス状のニッケルと燐の合金を100μmほどの厚みに鍍膜し、このメッキ層を超精密加工機によりダイアモンド工具で切削加工して、光学素子の光学面を成形するための高精度な光学面転写面を得ていた。   In recent years, according to a conventional method for producing a mold for molding plastic optical elements, a blank (primary work product) is made of, for example, steel or stainless steel, and then electroless nickel is formed thereon. By chemical plating called plating, an amorphous nickel-phosphorus alloy is deposited to a thickness of about 100 μm, and this plated layer is cut with a diamond tool by an ultra-precision processing machine to form the optical surface of the optical element. In order to obtain a highly accurate optical surface transfer surface.

かかる従来技術の手法によれば、基本的に機械加工により部品形状を創成するため、加工機の運動精度近くまで容易に部品精度が高められる反面、製作工程に機械加工と化学メッキ処理が混在し煩雑で納期がかかること、メッキ層の厚みを考慮してブランク(一次加工品)を作製する必要があること、必ずしもメッキ処理が安定している訳ではなく、ブランクの組成の偏りや汚れ具合によってメッキ層の付着強度がばらついたり、ピットと呼ばれるピンホール状の欠陥が生じたりすること、メッキ層の厚みの中で光学面転写面を創成しなければならないため、光学面転写面を再加工するときなどはメッキ厚みに余裕が無く加工不可能となる場合があること等々の不具合が生じていた。   According to such a conventional technique, the part shape is basically created by machining, so that the part accuracy can be easily increased to near the motion accuracy of the processing machine, but the machining process and the chemical plating process are mixed. It is complicated and takes delivery time, it is necessary to prepare a blank (primary processed product) in consideration of the thickness of the plating layer, the plating process is not necessarily stable, and it depends on the blank composition and the degree of dirt Rework the optical surface transfer surface because the adhesion strength of the plating layer varies, pinhole-like defects called pits occur, and the optical surface transfer surface must be created within the thickness of the plating layer. In some cases, there was a problem that the plating thickness could not be processed because it could not be processed.

更に、従来技術によれば、多量に光学面転写面をダイヤモンド切削加工する必要があるが、かかる場合、工具の切れ刃の状態や加工条件、加工環境温度の変化などの影響を受けて、切削加工し仕上げた光学面転写面の形状が微妙にバラツくという問題もあった。この光学面転写面の加工バラツキは、素材の被削性の悪さに起因するものであり、一般的には100nm程度の光学面形状誤差を発生し、非常に慎重に加工した場合でも50nm程度の形状誤差が残るが、これが多量に同一形状の光学面転写面を創成する際の加工精度限界となっている。   Furthermore, according to the prior art, it is necessary to perform a large amount of diamond cutting on the optical surface transfer surface. In such a case, the cutting is affected by the state of the cutting edge of the tool, processing conditions, changes in the processing environment temperature, etc. There was also a problem that the shape of the processed and finished optical surface transfer surface varied slightly. This variation in the processing of the optical surface transfer surface is due to the poor machinability of the material. Generally, an optical surface shape error of about 100 nm occurs, and even when processed very carefully, it is about 50 nm. Although a shape error remains, this is a processing accuracy limit when a large amount of the optical surface transfer surface having the same shape is created.

無電解ニッケルめっきを改良する手段として、過冷却液体域を有する非晶質合金を基体に付着させ、ダイヤモンド切削などにより光学素子成形用金型を製造する技術が開示されている(特許文献1参照)。この技術によれば、最大で20μm/h程度の成膜速度で非晶質合金膜を形成できるので、無電解ニッケルめっきで要した数週間の加工時間と比べて格段に早い納期で金型の製造が可能になった。   As means for improving electroless nickel plating, a technique is disclosed in which an amorphous alloy having a supercooled liquid region is attached to a substrate and a mold for optical element molding is manufactured by diamond cutting or the like (see Patent Document 1). ). According to this technology, an amorphous alloy film can be formed at a film forming speed of about 20 μm / h at the maximum, so that the mold can be delivered at a much faster delivery time than the processing time of several weeks required for electroless nickel plating. Manufacture is now possible.

ここで、過冷却液体域を有するアモルファス状合金(いわゆる非晶質合金)について説明する。近年、金属ガラスと呼ばれる、加熱すると過冷却液体となるアモルファス状の合金材料が注目されている。これは、通常の金属が多結晶組織であるのに対して、組織がアモルファス状のため組成がミクロ的にも均一で機械強度や常温化学耐性に優れ、ガラス転移点を有し、過冷却液体域であるガラス転移点〜結晶化温度の範囲(通常、ガラス転移点+200℃前後である)に加熱するとガラス状に軟化するためプレス成形加工が出来るという、通常の金属には無い特徴を有する。また、切削加工においても、特にダイアモンド工具による超精密切削加工を行うと、高精度な鏡面が容易に得られることが知られている。その理由は、この材料がアモルファス状であり結晶粒界を持たないので場所によらず被削性が均一であること、又、アモルファス状を保つために結晶化エネルギーを大きくして組成的に多晶体としているため、切削加工中のダイアモンドの拡散摩耗が少なく工具の刃先寿命を長く保てること等によると考えられる。   Here, an amorphous alloy having a supercooled liquid region (so-called amorphous alloy) will be described. In recent years, an amorphous alloy material called a metallic glass, which becomes a supercooled liquid when heated, has attracted attention. This is because the normal metal has a polycrystalline structure, but the structure is amorphous, so the composition is microscopically uniform, excellent in mechanical strength and room temperature chemical resistance, has a glass transition point, and is a supercooled liquid. When it is heated to a range from a glass transition point to a crystallization temperature (usually around glass transition point + 200 ° C.), it softens into a glassy state, so that it has a characteristic not found in ordinary metals. Also in cutting, it is known that a highly accurate mirror surface can be easily obtained particularly when ultra-precision cutting is performed with a diamond tool. The reason for this is that this material is amorphous and has no grain boundaries, so that machinability is uniform regardless of location, and in order to maintain the amorphous state, the crystallization energy is increased to increase the composition. Since it is made of a crystal, it is considered that there is little diffusion wear of diamond during the cutting process, and the tool edge life of the tool can be kept long.

このように、金属ガラス薄膜を用いた光学素子成形用金型は、従来技術より高効率で製造することが可能となったが、薄膜の成膜速度において幾分改良の余地があった。薄膜の製造にはスパッタ法が用いられるが、高真空を用いるために装置が高価であり、真空引きを含めた成膜時間は約1日程度を要した。この他、前記特許文献1ではスパッタ法以外のPVD処理、イオンプレーティング、蒸着、CVD処理が記載されているが、これらのどの方法であっても同様な問題を抱えていた。また、もう一つの課題として、金属ガラス膜の剥離が挙げられる。光学素子成形用金型としては100μm程度の膜厚が必要であるが、このような厚膜を形成する際には、逆スパッタ等の手段で基体と金属ガラス膜の接着性を向上させても、金属ガラス膜自体の内部応力により剥離が生じる場合があった。   As described above, an optical element molding die using a metallic glass thin film can be manufactured with higher efficiency than the prior art, but there is some room for improvement in the deposition rate of the thin film. A sputtering method is used to manufacture the thin film, but the apparatus is expensive because high vacuum is used, and the film formation time including vacuuming requires about one day. In addition, Patent Document 1 describes PVD processing, ion plating, vapor deposition, and CVD processing other than sputtering, but any of these methods has similar problems. Another problem is peeling of the metallic glass film. An optical element molding die needs to have a film thickness of about 100 μm. When such a thick film is formed, the adhesion between the substrate and the metallic glass film can be improved by means such as reverse sputtering. In some cases, peeling occurred due to internal stress of the metal glass film itself.

一方、近年新しい厚膜形成技術としてエアロゾルデポジション法(以下、AD法ともいう)が開発され、圧電材料などのセラミックスや、本発明者による蛍光体などの厚膜作製が検討されている(特許文献2、3参照)。この方法では、セラミックス微粒子を、エアロゾルチャンバー内でガスと攪拌・混合してエアロゾル化し、成膜チャンバーとの圧力差によるガスの流れで成膜チャンバーに搬送し、スリット状のノズルを通して加速、基板に噴射し、セラミックス厚膜を基板上に製造する。この成膜方法は高速に比較的低温でセラミックスの厚膜を形成することができる。   On the other hand, in recent years, an aerosol deposition method (hereinafter also referred to as AD method) has been developed as a new thick film forming technique, and the production of thick films such as ceramics such as piezoelectric materials and phosphors by the present inventor has been studied (patents). References 2 and 3). In this method, ceramic fine particles are agitated and mixed with gas in an aerosol chamber to form an aerosol, transported to the film formation chamber by a gas flow due to a pressure difference with the film formation chamber, accelerated through a slit-shaped nozzle, and applied to the substrate. The ceramic thick film is produced on the substrate by spraying. This film forming method can form a thick ceramic film at a high speed at a relatively low temperature.

セラミックス以外の厚膜形成も試みられており、最近、AD法による金属ガラス膜の形成技術が開示された(特許文献4参照)。しかしながら、この中で開示されているCo,Fe系の金属ガラスは磁性材料としての応用例のみであり、また耐酸化性や耐熱性の観点で、光学素子成形用金型材料としては好ましくないものである。
特開2003−154529号公報 特開平2−16379号公報 特開2005−91200号公報 特開2005−60805号公報
Thick film formation other than ceramics has also been attempted, and recently, a technique for forming a metallic glass film by the AD method has been disclosed (see Patent Document 4). However, the Co and Fe-based metallic glasses disclosed therein are only examples of applications as magnetic materials, and are not preferable as mold materials for optical element molding from the viewpoint of oxidation resistance and heat resistance. It is.
JP 2003-154529 A Japanese Patent Laid-Open No. 2-16379 Japanese Patent Laid-Open No. 2005-91200 JP 2005-60805 A

本発明は、上記課題に鑑みなされたものであり、本発明の目的は、生産性が高く、剥離を生じにくく、切削性に優れ、寸法精度を高めることができる光学素子成形用金型を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical element molding die that has high productivity, is less likely to be peeled off, has excellent machinability, and can improve dimensional accuracy. There is to do.

本発明の上記目的は、下記の構成により達成される。   The above object of the present invention can be achieved by the following constitution.

(1)アモルファス合金層をエアロゾルデポジション法により基体上に形成した後、前記アモルファス合金層をダイアモンド切削または加熱プレス成形し光学面転写面を成形創成することを特徴とする光学素子成形用金型の製造方法。   (1) An optical element molding die, wherein an amorphous alloy layer is formed on a substrate by an aerosol deposition method, and then the amorphous alloy layer is formed by diamond cutting or heat press molding to form an optical surface transfer surface. Manufacturing method.

(2)前記(1)項に記載の光学素子成形用金型の製造方法により製造されたことを特徴とする光学素子成形用金型。   (2) An optical element molding die manufactured by the method for manufacturing an optical element molding die described in (1) above.

(3)アモルファス合金層のアモルファス合金がPd元素を20〜80mol%含むことを特徴とする前記(2)項に記載の光学素子成形用金型。   (3) The optical element molding die as described in (2) above, wherein the amorphous alloy of the amorphous alloy layer contains 20 to 80 mol% of Pd element.

本発明によれば、生産性が高く、剥離を生じにくく、切削性に優れ、寸法精度を高めることができる光学素子成形用金型を提供することができる。   According to the present invention, it is possible to provide an optical element molding die that has high productivity, is unlikely to be peeled off, has excellent machinability, and can improve dimensional accuracy.

以下、本発明を実施するための最良の形態について説明するが、本発明はこれらに限定されない。   Hereinafter, although the best mode for carrying out the present invention will be described, the present invention is not limited to these.

本発明の実施の形態について説明する。   Embodiments of the present invention will be described.

まず、光学素子成形用金型の製作工程を示す。ステンレス鋼材等から基体を形成する。基体の材料は、鋼やステンレス鋼などの一般的に用いられる金型材料で良いから、供給も安定しており価格も安い。ブランクとしての基体は、一端に、光学素子の光学面(例えば非球面)に対応したくぼみと、その周囲の周囲面とを形成することで、金型の近似形状を有するようになっている。このくぼみと周囲面、さらに基体の端部周囲面に、過冷却液体域を有する非晶質合金(以下、単に非晶質合金ともいう)を、以下のようにして付着させる。くぼみと周囲面、基体の端部周囲面の形状精度は、表面に施す非晶質合金の膜厚によるが100μm程度の非晶質合金を成膜する場合であれば、10〜20μm程度の精度であれば十分なので、ブランク加工そのものはNC旋盤などを使用して数10分でできる程度のものである。   First, the manufacturing process of the optical element molding die will be described. A base is formed from a stainless steel material or the like. Since the base material may be a generally used mold material such as steel or stainless steel, the supply is stable and the price is low. The base as a blank has an approximate shape of the mold by forming a recess corresponding to the optical surface (for example, aspherical surface) of the optical element and a peripheral surface around it at one end. An amorphous alloy having a supercooled liquid region (hereinafter, also simply referred to as an amorphous alloy) is attached to the recess and the peripheral surface, and further to the peripheral surface of the end portion of the substrate as follows. The shape accuracy of the indentation, the peripheral surface, and the peripheral surface of the edge of the substrate depends on the film thickness of the amorphous alloy applied to the surface, but if an amorphous alloy of about 100 μm is formed, the accuracy of about 10-20 μm If so, the blanking process itself can be performed in several tens of minutes using an NC lathe.

(AD法による金属ガラス成膜)
平均粒径2μm以下である合金微粒子を用いて製造した場合、表面平滑性の良いアモルファス合金厚膜からなるアモルファス合金部材を製造できるため好ましい。好ましくは0.1〜2μmの平均粒径の合金微粒子である。
(Metal glass film formation by AD method)
When manufactured using alloy fine particles having an average particle size of 2 μm or less, it is preferable because an amorphous alloy member made of an amorphous alloy thick film having good surface smoothness can be manufactured. Preferably, the alloy fine particles have an average particle diameter of 0.1 to 2 μm.

本発明に係わるアモルファス合金微粒子は、水アトマイズ法やガスアトマイズ法により作製したアモルファス合金粉末あるいはこれらの粉末を粉砕や分級したアモルファス合金微粒子、液体急冷法により作製したアモルファスリボンを粉砕及び分級したアモルファス合金微粒子、アモルファス合金を水素化して微粉細したアモルファス合金微粒子、DCプラズマや高周波プラズマを用いて作製したアモルファス合金微粒子等である。   Amorphous alloy fine particles according to the present invention are amorphous alloy powders produced by water atomization method or gas atomization method, amorphous alloy fine particles obtained by pulverizing or classifying these powders, amorphous alloy fine particles obtained by pulverizing and classifying amorphous ribbons produced by liquid quenching method. These are amorphous alloy fine particles obtained by hydrogenating an amorphous alloy and finely divided, and amorphous alloy fine particles produced using DC plasma or high frequency plasma.

本発明ではパラジウムを含んだ金属ガラスを用いることが好ましい。パラジウム系の非晶質合金としては、Pd40Cu30Ni1020、Pd76Cu6Si18、Pd61Pt15Cu6Si18、などがあるが、パラジウムの含有量が少なくとも20mol%以上含有しないと、他の構成原子が酸化したり結晶化しやすくなって、大気中での加熱プレス成形は難しくなる。一方、パラジウムの含有量が80mol%以上では、一般的には、ガラス転移点が存在しなくなり非晶質合金とならない。そのため非晶質合金の材料としては、パラジウム含有量が20mol%以上かつ80mol%以下であることが好ましい。また、最多含有原子であるパラジウム以外では、銅、ニッケル、アルミニウム、シリコン、燐、ボロンのいずれかを少なくとも3mol%以上含有していることが、アモルファス状の非晶質合金とするために好ましい。 In the present invention, it is preferable to use metallic glass containing palladium. Examples of the palladium-based amorphous alloy include Pd 40 Cu 30 Ni 10 P 20 , Pd 76 Cu 6 Si 18 , Pd 61 Pt 15 Cu 6 Si 18 , and the content of palladium is at least 20 mol% or more. Otherwise, other constituent atoms are easily oxidized or crystallized, and hot press molding in the air becomes difficult. On the other hand, when the content of palladium is 80 mol% or more, generally, the glass transition point does not exist and an amorphous alloy is not formed. Therefore, it is preferable that the amorphous alloy material has a palladium content of 20 mol% or more and 80 mol% or less. In addition to palladium, which is the most abundant atom, it is preferable to contain at least 3 mol% of copper, nickel, aluminum, silicon, phosphorus, or boron in order to obtain an amorphous amorphous alloy.

成膜チャンバーは、真空ポンプ等で排気され、チャンバー内の真空度は必要に応じて調整されている。本発明では、真空度は0.1〜1000Paが好ましい。   The film forming chamber is evacuated by a vacuum pump or the like, and the degree of vacuum in the chamber is adjusted as necessary. In the present invention, the degree of vacuum is preferably 0.1 to 1000 Pa.

エアロゾル化された原料粒子は、好ましくは流速100〜400m/secのキャリアガスによって衝突することによって、基板上に堆積することができる。キャリアガスにより衝突した粒子は、互いに衝突の衝撃によって接合し膜を形成する。   The aerosolized raw material particles can be deposited on the substrate by preferably colliding with a carrier gas having a flow rate of 100 to 400 m / sec. The particles colliding with the carrier gas are bonded to each other by impact of the collision to form a film.

本発明の製造方法において、合金粒子を加速・噴出するためのキャリアガスとしては、窒素ガスが好ましい。He等の希ガス類は、粒子衝突時に放電が起きやすく、膜内へ欠陥が導入される場合があり好ましく無い。欠陥が導入された場合、膜の透明性が劣化し、放射線から変換された光が取り出せず検出効率が悪化する。   In the production method of the present invention, nitrogen gas is preferable as the carrier gas for accelerating and ejecting the alloy particles. A rare gas such as He is not preferable because discharge is likely to occur at the time of particle collision and defects may be introduced into the film. When a defect is introduced, the transparency of the film deteriorates, and light converted from radiation cannot be extracted, resulting in a deterioration in detection efficiency.

本発明の製造方法においては、合金粒子を衝突させる基板の温度は、−100℃以上、200℃以下に保持することが好ましい。基板温度を300℃以上に加熱した時には膜が結晶化し、金属ガラスとしての性質を失うため、切削性やプレス成形性といった特徴が失われる。   In the production method of the present invention, the temperature of the substrate on which the alloy particles collide is preferably maintained at −100 ° C. or higher and 200 ° C. or lower. When the substrate temperature is heated to 300 ° C. or higher, the film crystallizes and loses its properties as a metallic glass, so that characteristics such as machinability and press formability are lost.

この方法によって得られる成膜速度は、1〜50μm/minの範囲が好ましく利用でき、前記真空度やエアロゾル密度、流速などの制御因子を最適化することで調節できる。   The film formation rate obtained by this method is preferably in the range of 1 to 50 μm / min, and can be adjusted by optimizing control factors such as the degree of vacuum, aerosol density, and flow rate.

(型加工)
続いて、この非晶質合金の成膜に対し、ダイアモンド切削加工や加熱プレス成形もしくはこれらの組み合わせを施すことで、非晶質合金の表面を所望の光学面転写面(基体のくぼみに対応)に仕上げる。ダイアモンド切削は、単結晶ダイアモンド工具を用いて、超精密旋盤などにより一つ一つ切削加工するため、従来の無電解ニッケルメッキによる金型製作手法と基本的に同じ加工工程を経るが、従来に比べて、光学面転写面は、AD法で迅速に緻密に形成され、化学メッキ処理をしないためピンホールなどの欠陥が無く処理納期が早いことと、被削性が非常に良いので工具摩耗が少なく切削加工による形状創成が容易であること等が、より優れた特徴といえる。
(Mold processing)
Subsequently, the surface of the amorphous alloy is transferred to a desired optical surface transfer surface (corresponding to the indentation of the substrate) by performing diamond cutting, hot press molding, or a combination thereof on the amorphous alloy film. Finish. Diamond cutting uses a single crystal diamond tool and cuts one by one with an ultra-precise lathe, etc., so it undergoes basically the same processing steps as the conventional mold manufacturing method using electroless nickel plating. In comparison, the optical surface transfer surface is rapidly and densely formed by the AD method, and since there is no chemical plating treatment, there are no defects such as pinholes and the process delivery time is fast, and the machinability is very good, so tool wear is reduced. It can be said that it is a more excellent feature that the shape creation by cutting is easy.

また本発明のAD法は、スパッタ法を始めとするPVD、CVD成膜法と比較して、基体との接着性が非常に高い特徴がある。   In addition, the AD method of the present invention is characterized by extremely high adhesion to the substrate as compared with PVD and CVD film forming methods including sputtering.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

実施例1
《本発明の光学素子成形用金型の作製(エアロゾルデポジション法)》
水素ガスとArガスの混合ガス中でPdCuSi合金をアーク溶解し、発生した微粒子を捕集した。合金微粒子の平均粒径は50nmであった。組成分析の結果、合金微粒子の組成(mol%比)はPd76Cu6Si18であった。X線回折の結果、合金微粒子はアモルファス特有のハローパターンを示しており、アモルファス合金微粒子であることを確認した。また、透過電子顕微鏡による観察の結果、結晶格子はほとんど観察されず、微粒子内部はアモルファス相がほとんどを占めていることが確認された。
Example 1
<< Production of optical element molding die of the present invention (aerosol deposition method) >>
PdCuSi alloy was arc melted in a mixed gas of hydrogen gas and Ar gas, and the generated fine particles were collected. The average particle size of the alloy fine particles was 50 nm. As a result of the composition analysis, the composition (mol% ratio) of the alloy fine particles was Pd 76 Cu 6 Si 18 . As a result of X-ray diffraction, the alloy fine particles showed a halo pattern peculiar to amorphous, and were confirmed to be amorphous alloy fine particles. As a result of observation with a transmission electron microscope, almost no crystal lattice was observed, and it was confirmed that the amorphous phase occupied most of the fine particles.

次にこのアモルファス合金微粒子をエアロゾル化チャンバー内でN2ガスと攪拌・混合してエアロゾル化し、成膜チャンバーとの圧力差によるガスの流れにより成膜チャンバーに搬送し、合金部材を製造した。成膜速度は10μm/minであった。 Next, the amorphous alloy fine particles were agitated and mixed with N 2 gas in an aerosol-generating chamber to be aerosolized, and were transported to the film-forming chamber by a gas flow caused by a pressure difference with the film-forming chamber to produce an alloy member. The film formation rate was 10 μm / min.

100μmの膜を得るために要した時間は、段取り、真空引き等含めて1時間であった。   The time required to obtain a 100 μm film was 1 hour including setup and vacuuming.

作製した部材をダイヤモンド切削により光学面転写面を形成し、光学素子成形用金型を製造した。   An optical surface transfer surface was formed on the produced member by diamond cutting, and an optical element molding die was manufactured.

このように製造した金型100個を用いて光学素子成形を行なったところ、全ての金型で50,000回の成形が可能であった。   When 100 optical elements thus manufactured were used to perform optical element molding, all molds could be molded 50,000 times.

《比較の光学素子成形用金型の作製(スパッタ成膜法)》
アモルファス合金ターゲットを作製し、上記アモルファス合金微粒子を用いて、スパッタにより成膜した。更にダイヤモンド切削により光学面転写面を形成し、光学素子成形用金型を製造した。スパッタ成膜速度は20μm/hであった。100μmの膜を得るために要した時間は、段取り、真空引き等含めて12時間であった。
<Production of comparative optical element molding die (sputter deposition method)>
An amorphous alloy target was prepared, and a film was formed by sputtering using the amorphous alloy fine particles. Further, an optical surface transfer surface was formed by diamond cutting to produce an optical element molding die. The sputter deposition rate was 20 μm / h. The time required to obtain a 100 μm film was 12 hours including setup and vacuuming.

このように製造した金型100個を用いて光学素子成形を行なったところ、97個の金型で規定の回数(50,000回)の成形が可能であった。残り3個の金型は、それぞれ規定の回数の50%、67%、96%、の回数で、金属ガラス層が剥離して成形不可能になった。   When the optical element was molded using 100 molds manufactured in this manner, 97 molds could be molded a specified number of times (50,000 times). The remaining three molds could not be molded because the metal glass layer peeled off at the prescribed number of times of 50%, 67% and 96%.

上記、《本発明の光学素子成形用金型の作製(エアロゾルデポジション法)》と、《比較の光学素子成形用金型の作製(スパッタ成膜法)》との結果を比較すると、本発明の場合には特段に、生産性が高く、剥離を生じにくく、切削性に優れ、寸法精度を高める、ことができる光学素子成形用金型の製造方法、および光学素子成形用金型を提供することができることは明らかである。   Comparing the results of the above <Preparation of optical element molding die of the present invention (aerosol deposition method)> and << Preparation of comparative optical element molding die (sputter deposition method) >> In the case of the above, a method for producing an optical element molding die and an optical element molding die capable of producing high productivity, being difficult to cause peeling, excellent in machinability, and improving dimensional accuracy are provided. Obviously it can be done.

Claims (3)

アモルファス合金層をエアロゾルデポジション法により基体上に形成した後、前記アモルファス合金層をダイアモンド切削または加熱プレス成形し光学面転写面を成形創成することを特徴とする光学素子成形用金型の製造方法。 A method of manufacturing an optical element molding die, comprising forming an amorphous alloy layer on a substrate by an aerosol deposition method and then forming the optical surface transfer surface by diamond cutting or hot press molding of the amorphous alloy layer . 請求項1に記載の光学素子成形用金型の製造方法により製造されたことを特徴とする光学素子成形用金型。 An optical element molding die produced by the method for producing an optical element molding die according to claim 1. アモルファス合金層のアモルファス合金がPd元素を20〜80mol%含むことを特徴とする請求項2に記載の光学素子成形用金型。 The optical element molding die according to claim 2, wherein the amorphous alloy of the amorphous alloy layer contains 20 to 80 mol% of Pd element.
JP2005275408A 2005-09-22 2005-09-22 Manufacturing method of molding die for optical element and molding die for optical element Pending JP2007084385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275408A JP2007084385A (en) 2005-09-22 2005-09-22 Manufacturing method of molding die for optical element and molding die for optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275408A JP2007084385A (en) 2005-09-22 2005-09-22 Manufacturing method of molding die for optical element and molding die for optical element

Publications (1)

Publication Number Publication Date
JP2007084385A true JP2007084385A (en) 2007-04-05

Family

ID=37971765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275408A Pending JP2007084385A (en) 2005-09-22 2005-09-22 Manufacturing method of molding die for optical element and molding die for optical element

Country Status (1)

Country Link
JP (1) JP2007084385A (en)

Similar Documents

Publication Publication Date Title
JP5968479B2 (en) Method for forming a sputtering target
US11098403B2 (en) High entropy alloy thin film coating and method for preparing the same
TWI299364B (en) Fabrication of b/c/n/o doped sputtering targets
US8430978B2 (en) Sputtering target and method for production thereof
JP2020007642A (en) Production method of sputtering target
JP5826283B2 (en) Method for manufacturing target assembly
WO2006051737A1 (en) Sputtering target for production of metallic glass film and process for producing the same
JPWO2006059429A1 (en) Sb-Te based alloy sintered body sputtering target
JP4484105B2 (en) Molded product comprising metal glass laminate and method for producing the same
WO2014101654A1 (en) Use of a noncrystalline alloy material source, composite material, and method of preparing the composite material
WO2006067937A1 (en) Sb-Te ALLOY SINTERING PRODUCT TARGET AND PROCESS FOR PRODUCING THE SAME
JP2006225190A (en) Metallic mold for molding optical element and its manufacturing method
JP2007084385A (en) Manufacturing method of molding die for optical element and molding die for optical element
JP6029133B2 (en) Heat insulating material and resin molding mold using the same
JP2010202917A (en) HARD NITRIDE FILM MAKING Ti, Cr, Al UNDERLYING ELEMENT AND METHOD OF MANUFACTURING THE SAME
TW200902741A (en) Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
JPH11268921A (en) Press mold for forming glass
JP2003335531A (en) Mold for forming optical element and its production method
TWI337126B (en) Mold and porcess for producing the mold
JP5364433B2 (en) Mold for optical elements
JP5364434B2 (en) Mold for optical elements
JPH10323724A (en) Covering form member
JP2007254216A (en) Coated mold for forming optical element and its producing method
JPH0226842A (en) Metal mold for molding glass
JP2007223846A (en) Molding mold